圆柱圆锥2

合集下载

小学数学六年级从课本到奥数举一反三第四周圆柱和圆锥(二)第2节圆柱的表面积和体积

小学数学六年级从课本到奥数举一反三第四周圆柱和圆锥(二)第2节圆柱的表面积和体积

4. 一个圆柱体的高是10厘米,若高减少3厘米,侧表面积比原来 减少94.2平方厘米,求原来圆柱体的体积。
答案
小学数学六年级第二学期
5.一个圆柱形水桶的侧面积是它的一个底面积的3倍,已知水桶的 底面半径是2分米,这个水桶能装多少升水?
答案
小学数学六年级第二学期
解析: 底面积:3.14×2×2 =3.14×4 =12.56(平方分米) 侧面积:12.56×3=37.68(平方分米) 圆柱的高:37.68÷(2×3.14×2) =37.68÷12.56 =3(分米) 容积:12.56×3=37.68(立方分米37.68(升) 答:这个水桶能装37.68升.
思路点拨: 圆柱体若被锯掉8厘米后,表面积减少了 251.2平方厘米,可以知道图中阴影部分的侧 面积为251.2平方厘米,所以,我们可以先求 出圆柱体的底面周长,再求出它的体积, 251.2 ÷8=31.4(厘米)
3.14 ×(31.4 ÷ 3.14 ÷ 2)2 ×20=1570(立方厘米)
小学数学六年级第二学期
小学数学六年级第二学期
小学数学 从课本到奥数
六年级第二学期
小学数学六年级第二学期
第四单元 圆柱和圆锥(二)
小学数学六年级第二学期
2.圆柱的表面积 和体积(二)
【题型概述】
根据圆柱体底面、侧面和表面积的特征,以及它们之间的 关系可以解决一些求体积的趣题,下面,我们就开始学习这方 面的知识。
小学数学六年级第二学期
点评:解答此题的关键是知道圆柱的侧面展开图正方形与圆柱的 关系,由此再灵活利用相应的公式解决问题.
小学数学六年级第二学期
2.一个圆柱体的侧面展开是一个正方形,圆柱的底面半径是10厘米, 这个圆柱体的体积是多少立方厘米?

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案一. 教材分析苏教版六年级数学下册第二单元《圆柱和圆锥》是本册教材中的重要内容,它让学生在已有知识的基础上,进一步认识圆柱和圆锥的特征,掌握它们的体积计算方法,并了解它们在实际生活中的应用。

本单元包括圆柱和圆锥的定义、特征、展开图、体积计算以及应用等内容。

通过本单元的学习,学生能更好地理解立体图形,提高空间想象力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形的认识较为深刻,但立体图形的学习还相对较弱。

因此,在教学过程中,教师要注重引导学生从平面图形过渡到立体图形,让学生在实际操作和观察中,理解和掌握圆柱和圆锥的特征和体积计算方法。

三. 教学目标1.知识与技能:学生能够准确地描述圆柱和圆锥的特征,掌握它们的体积计算方法,并能应用于实际问题中。

2.过程与方法:学生通过观察、操作、思考、讨论等方法,培养空间想象能力和解决问题的能力。

3.情感态度与价值观:学生对数学产生浓厚的兴趣,培养合作意识,提高自我探究的能力。

四. 教学重难点1.重点:圆柱和圆锥的特征,体积计算方法的掌握。

2.难点:圆锥体积计算公式的推导,以及体积公式的应用。

五. 教学方法1.情境教学法:通过生活情境,引导学生认识和理解圆柱和圆锥。

2.启发式教学法:引导学生思考问题,自主探究,发现和总结规律。

3.合作学习法:学生分组讨论,共同解决问题,提高合作能力。

4.实践操作法:让学生动手操作,增强直观感受,培养空间想象力。

六. 教学准备1.教具:圆柱和圆锥模型、卡片、课件等。

2.学具:学生用书、练习本、铅笔、直尺等。

七. 教学过程1.导入(5分钟)教师通过情境创设,如生活中的圆柱和圆锥物品,引导学生观察和思考,激发学生的学习兴趣。

2.呈现(10分钟)教师利用课件展示圆柱和圆锥的定义、特征,让学生初步认识这两种立体图形。

3.操练(15分钟)教师引导学生进行分组讨论,探究圆柱和圆锥的展开图,让学生动手操作,增强直观感受。

【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第2课时圆柱的表面积(二)-附答案

【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第2课时圆柱的表面积(二)-附答案

第2课时圆柱的表面积(二)◆基础知识达标1.把一个圆柱体切割后拼成一个近似的长方体,这个长方体的表面积比原来()A.增加了B.不变C.减少了2.下面()是圆柱的展开图。

A.B.C.D.3.把一个圆柱体的侧面展开得到一个长4分米,宽为3分米的长方形,这个圆柱体的侧面积是()平方分米.A.12B.50.24C.150.72D.12.56 4.从下面的材料中选择能正好做成圆柱的材料,应选()。

A.A B C B.A D E C.A B D5.圆柱的底面周长是18.84分米,高4分米,它的表面积是()A.75.36平方分米B.56.52平方分米C.28.26平方分米D.131.88平方分米6.圆柱的底面直径和高都是8厘米,这个圆柱的表面积是()平方厘米。

A.100.48B.301.44C.200.96D.251.2 7.一个圆柱形纸筒,它的底面直径是1分米,高是3.14分米,它的侧面展开图是()A.长方形B.正方形C.平行四边形8.把一个圆柱的侧面展开,刚好可以得到一个正方形,这个圆柱的底面直径和高的比是()。

A.1:1B.1:πC.1:d D.3:4 9.圆柱的底面半径扩大到原来的2倍,高不变,体积扩大到原来的倍.10.一个圆柱形鼓,底面直径是6分米,高是2分米,它的侧面由铝皮围成,上、下底面蒙的是羊皮。

做一个这样的鼓,需要铝皮平方分米,羊皮平方分米。

◆课后能力提升11.一个圆柱的侧面积是188.4dm2,底面半径是2dm。

它的高是dm。

12.一个圆柱的底面直径是4分米,高是0.5分米,它的侧面积是平方分米;它的表面积是平方分米。

13.一个圆柱的底面直径是8厘米,高为1分米,这个圆柱的表面积是平方厘米。

14.一个底面直径是5米、深2米的圆柱形水池,如果在水池的四周和底部都抹上水泥,抹水泥的面积是平方米。

15.一个圆柱的底面半径是3分米,高是4分米,它的表面积是平方分米。

16.把一个圆柱沿直径分割成若干等分(如图),拼成一个近似的长方体,近似的长方体的宽是2厘米,高是5厘米,这个圆柱体的侧面积是.表面积cm218.一个圆柱形状的蓄水池,直径是40米,深4米.在池内的侧面和池底抹一层水泥,抹水泥的面积是19.一个长方形的长是4cm,宽是3cm,以这个长方形的长为轴旋转一周,得到的立体图形是.这个立体图形的底面积是cm2,表面积是cm2. 20.一个圆柱的底面直径是4cm,高是15cm,它的侧面积是cm2,表面积是cm2.第2课时圆柱的表面积(二)◆基础知识达标1.把一个圆柱体切割后拼成一个近似的长方体,这个长方体的表面积比原来()A.增加了B.不变C.减少了【答案】A2.下面()是圆柱的展开图。

六(下)数学教案第3讲~圆柱与圆锥2

六(下)数学教案第3讲~圆柱与圆锥2

六(下)数学教案第3讲~圆柱与圆锥2【知识精讲】圆柱与圆锥是小升初的必考点,也是六年级下学期非常重要的章节。

此章节属于立体几何专题中的一部分,圆柱和圆锥也会跟长方体正方体的专题相结合,在小升初考试中通常以填空、选择、应用题的形式出现。

本讲主要内容:1、圆锥的体积计算;2、体积不变题;3、圆柱圆锥的倍比问题;4、不规则容器的容积知识点一、圆锥的体积计算例1、一个圆锥的体积是75.36立方分米,底面半径是2分米,高是()分米。

练1.1、手工课上,小薇带了一个棱长是6厘米的正方体橡皮泥。

(1)她把这个橡皮泥切成了完全相同的两块长方体,将其中的一小块用彩纸包好,小薇至少用了多少平方厘米的彩纸?(2)她将另一小块捏成了一个高为9厘米的圆锥形陀螺,这个陀螺的底面积是多少平方厘米?练1.2、有一块正方体木料,棱长总和是96厘米,把这块木料削成一个最大的圆锥,求削成的圆锥的体积是多少?练1.3、一个长6分米、宽5分米、高4分米的长方体加工成最大的圆柱,圆柱的体积是多少立方分米再削成最大的圆锥体积是多少立方分米?例2、“六一”儿童节,乐乐在家里特制巧克力蛋糕送给福利院小朋友(如图),蛋筒的底面直径是6厘米,高是10厘米,做30个这样的蛋筒,大约需要多少升巧克力原料?(得数保留整数)练2.1、一种儿童玩具--陀螺(如右下图),上面是圆柱,下面是圆锥。

经过测试,只有当圆柱直径3厘米,高4厘米,圆锥的高是圆柱的高的43,旋转时才能又快又稳,试问这个陀螺的体积有多少。

(得数保留整立方厘米数)练2.2、如图,直角三角形绕直角边旋转一周后得到的立体图形是( ),它的体积最大是( )立方厘米。

练2.3、下图是一个直角三角形。

AC 边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC 为轴旋转一周形成的立体图形的体积是多少立方厘米?知识点二、体积不变问题例3、把一个底面积是6.28平方厘米,高是9厘米的圆柱体铁块熔铸成一个底面积是18.84平方厘米的圆锥体。

六年级数学圆柱体和圆锥体第二讲常见题型综合

六年级数学圆柱体和圆锥体第二讲常见题型综合

练习:在直径 0.8 米的水管中,水流速度是每秒 2 米,那么 5 分钟流过的水有多少立方米?
例题 3:如图,想想办法,你能否求出它的体积?( 单位:分米)
3
2
4
练习 1:用铁皮做一个如下图所示空心零件(单位:厘米) ,需用铁皮多少平方厘米? 27 4 24
练习 2、一个圆柱形物体的底面直径是 6 分米,被斜截后,如图,最低处高是 8 分米,最高处高是 10 分米。被截后的物体体积是多少立方分米?
教 学 专 用
科目: 数学 讲次:第 讲
教 案
六年级
授课教师: 章老师
【教学目标】 1、 掌握圆柱体和圆锥体常见的八种题型。 2、 能熟练应用公式解决生活中常见的实际问题。 3、 能够对圆锥和圆柱的体积关系有准确形象的认识。 4、 学会总结归纳相关题型中所应用的方法并活学活用。 【教学内容】
圆柱体和圆锥体常见的八类题型
练习 1、把一个底面半径为 5 分米、高为 9.6 分米的圆锥形零件,改铸成底面直径为 8 分米的圆柱形零 件,铸成的圆柱形零件的高是多少分米?
练习 2、要锻造一个底面周长 62.8 厘米,高 24 厘米的圆锥形零件,应截取截面边长为 4 厘米的方钢多 长?
练习 3、把一个圆柱切成两个半圆柱,切面是个正方形,已知每个半圆柱的体积是 25.12 立方厘米,求 每个半圆柱的表面积是多少平方厘米?
立方厘米?
重难点四:旋转圆锥或圆柱 例题 1:一个直角三角形,两条直角边分别是 6 厘米和 9 厘米,沿一条直角边旋转一周后,得到一个圆 锥体,求圆锥体的体积是多少?
练习:一个直角三角形,两条直角边分别是 4 厘米和 8 厘米,沿一条直角边旋转一周后,得到一个圆锥 体,求圆锥体的体积是多少?

圆柱和圆锥的体积2

圆柱和圆锥的体积2

圆柱和圆锥的体积(2)班级: 姓名:【例1】 如图所示,在一个底面直径为16厘米,高为30厘米的圆柱内,挖去两 个分别以圆柱底面为底面、有公共顶点的两个圆锥,求这两个圆锥的体积和。

【例2】 一块长方形塑料板(如右图),利用图中的阴影部分刚好能做成一个圆柱 形油桶(接头处忽略不计),求这个油桶的体积。

【例3】 有一个高为6厘米,底面半径为4厘米的圆柱形容器里装满了水。

现在 把长15厘米的圆柱形铁棒垂直插入,使铁棒的底面与容器的底面接触,这时一部分水从容器中溢出。

当把铁棒从水中拿出后,容器中的水面高度为4厘米,求圆柱形铁棒的体积。

【例4】甲、乙两个圆柱形容器的高相等,内侧直径分别为12厘米和16厘米。

把甲容器中的酒精全部倒入乙容器中,则酒精的深度比容器高的41还高5厘米,那么容器的高是多少?【例5】 在一个底面直径为13厘米的容器中,放入等底等高的一根圆柱形钢材和一个圆锥形铁块,水面上升了10厘米,但是水没有溢出来,圆柱有41露出水面,圆锥完全浸没水中,圆锥的体积是多少?【例6】把一个长、宽、高分别为8分米、7分米、6分米的长方体,削成一个最大的圆柱,圆柱的体积是多少立方分米?【例7】一个长方体木块,长50厘米,宽40厘米,高30厘米,将其加工成一个最大的圆锥形木块,圆锥形木块的体积是多少立方厘米?【例8】有A 、B 两个圆柱体的容器,从里面量得A 、B 容器的底面周长分别为62.8厘米、31.4厘米,A 、B 内分别盛有4厘米和29厘米深的水。

现将B 容器的一些水倒入A 容器,使得两个容器的水一样深,问这时水深为多少厘米?【例9】圆柱形容器中装有一些水,容器底面半径5厘米,容器高20厘米,水深10厘米,现将一根底面半径1厘米,高15厘米的圆柱形铁棒垂直插入容器,使铁棒底面与容器底面接触,这时水深多少厘米?【例10】两个相同的圆锥形容器中各盛一些水(如下图)水深都是圆锥高的一半。

那么,甲容器中的水的体积是乙容器中水的几倍?【思维拓展训练】1.一个正方体的体积是225立方厘米,一个圆锥的底面半径和高都等于该正方体的棱长。

圆柱与圆锥知识点总结

圆柱与圆锥知识点总结

Under the condition of not violating the principles, be tolerant to others, help as long as you can, don't push them out, leave a way for them, and know how to appreciate others from the heart, although this is oftendifficult.简单易用轻享办公(页眉可删)圆柱与圆锥知识点总结圆柱是由两个大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面(侧面)围成的几何体。

圆锥是一种几何图形,有两种定义。

下面和一起来看圆柱与圆锥知识点总结,希望有所帮助!一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:a沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

b.不沿着高展开,展开图形是平行四边形或不规则图形。

C.无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2。

(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)。

圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(打结处大约用彩带15厘米) (1)S=2πrh+2πr²=2×3.14×15×20+2×3.14×15²=3297(cm²)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知

圆柱、圆锥、圆台、球—高中数学湘教版(2019)必修二

圆柱、圆锥、圆台、球—高中数学湘教版(2019)必修二

(1)(2)
截挖型
由简单几何体截去或挖去一部分而成
(3)(4)
微练习
如图,第一排中的图形绕虚线旋转一周,能形成第二排中的某个几何体,请
把第一、第二排中相应的图形用线连起来.
答案 ①—C
③—D
②—B
④—A
探究一
旋转体的结构特征
例1(多选面都是矩形
B.以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周
球中的计算问题
例4(1)平面α截球O所得截面圆的半径为1,球心O到平面α的距离为 2,则此
球的半径为
.
(2)若球的半径为R,则球的内接正方体的棱长是
.
答案 (1) 3
2 3
(2) R
3
解析 (1)如图,设截面圆的圆心为 O',M 为圆 O'上任一点.
由题意得 OO'= 2,O'M=1,
2
∴OM= ( 2) + 1 = 3.即球的半径为 3.
侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以选项D
不正确,很明显选项A正确.
微判断
(1)圆柱、圆锥、圆台的底面都是圆面.(
)
(2)用平面去截圆柱,会得到一个圆柱和一个圆台.(
)
(3)用一个平面截圆锥,截得的两部分分别是圆锥和圆台.(
答案 (1)√
(2)×
(3)×
)
知识点四:球

图形及表示
当堂检测
1.正方形绕其一条对角线所在直线旋转一周,所得几何体是(
A.圆柱 B.圆锥
C.圆台 D.两个共底面的圆锥
答案 D
)
2.下列说法正确的是(
)
A.将正方形旋转不可能形成圆柱

小学数学-有答案-苏教新版六年级(下)小升初题单元试卷:第2章_圆柱和圆锥(02)

小学数学-有答案-苏教新版六年级(下)小升初题单元试卷:第2章_圆柱和圆锥(02)

苏教新版六年级(下)小升初题单元试卷:第2章圆柱和圆锥(02)一、选择题(共5小题)1. 圆柱的侧面积等于()乘高。

A.底面积B.底面周长C.底面半径2. 一个圆锥与一个圆柱的底面积与体积相等,那么圆柱的高是圆锥高的()A.13B.3倍 C.23D.2倍3. 把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A.扩大到原来的3倍B.缩小到原来的三分之一C.不变4. 图中的正方体、圆柱和圆锥底面积相等,高也相等。

下面说法正确的是()A.圆柱的体积比正方体的体积小一些B.圆柱的体积和圆锥的体积相等C.正方体的体积是圆锥体积的3倍5. 如图中3个图形的体积比是()A.3:9:1B.1:9:1C.1:3:1D.D、二、填空题(共15小题)等底等高的正方体和圆柱体的体积相等。

________.(判断对错)圆柱的________面积加上________的面积,就是圆柱的表面积。

把一根长2米的圆柱形木料,截成三个小圆柱,表面积增加了50.24平方厘米,这根木料原来的体积是________.在学习圆锥的体积时,老师或者你会先准备一组________的圆柱和圆锥形容器(提示:从两者的底和高的大小关系考虑),然后用圆锥形容器装满水后倒入圆柱形容器,重复几次刚好倒满,从这一过程中你发现,这组圆柱和圆锥的体积之比是________.如图左边圆柱形杯口的面积和右边锥形杯口的面积相等,将圆柱形杯中的液体倒入锥形杯中,能倒满________杯。

求压路机的前轮转动一周能压多少路面,实际就是求圆柱的表面积。

________.(判断对错)一个圆锥的底面半径是一个圆柱底面半径的3,圆柱的高与圆锥的高的比是4:5,那么4圆锥的体积是圆柱体的________.把一个半径为3米,高为4米的圆柱削成一个和它等底等高的圆锥,削掉的体积是________.可以把圆柱体钢锭削成和它等底等高的3个圆锥。

________.(判断对错)一个圆柱削成一个最大的圆锥后,削去部分的体积比圆锥体积多30立方厘米。

圆柱和圆锥体积的三种关系

圆柱和圆锥体积的三种关系

圆柱和圆锥体积的三种关系:
(1)等底等高,体积不等.
圆锥体积等于圆柱的,圆柱体积是圆锥
的3倍
(2)等底,等体积,高不等
圆锥的高是圆柱高的3倍,圆柱高是圆锥的(3)等高,等体积,高不等.
圆柱的底面积是圆锥底面积的,圆锥的底面积是圆柱的底面积的3倍.
利用上面关系,解决下面问题.
例1:等底等高的圆柱体和圆锥体体积之和是 12.56立方厘米,圆柱体积是多少?例 2 一个圆锥形的沙堆,它的占地面积为12平方米,高是1.5米。

每立方米沙重1.7吨。

用载重为2吨的汽车把这堆沙运走,几次才能运完?
例3 一个圆锥形的米堆,半径为3米,米堆高1.5米,把这堆米放在长4米,2.5米的长方体容器中,突器中米的高度是多?
例4 圆堆形麦堆的底面半径是2米,高是3米,如果把这堆小麦装入一个圆柱形粮囤里,只占粮囤容积的4/7。

粮囤的底面积是7平方米,粮囤的高是多少米?
例5 求下图的体积。

(单位:厘米)
欢迎您的下
载,
资料仅供参
考!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求。

新人教版高中数学必修第二册《圆柱、圆锥、圆台、球的表面积和体积》教学设计

新人教版高中数学必修第二册《圆柱、圆锥、圆台、球的表面积和体积》教学设计

【新教材】8.3.2圆柱、圆锥、圆台、球的表面积和体积教学设计(人教A版)本节是在学生已从圆柱、圆锥、圆台、球的结构特征和直观图两个方面认识了旋转体的基础上,进一步从度量的角度认识圆柱、圆锥、圆台、球,主要包括表面积和体积.课程目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.重点:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;难点:圆台的体积公式的理解.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入前面已经学习了三种多面体的表面积与体积公式,那么如何求圆柱、圆锥、圆台、球的表面积与体积公式?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-119页,思考并完成以下问题1.圆柱、圆锥、圆台、的侧面积、底面积、表面积公式各是什么?2.圆柱、圆锥、圆台的体积公式各是什么?3.球的表面积与体积公式各式什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究(一)圆柱、圆锥、圆台的表面积圆柱(底面半径为r,母线长为l)圆锥(底面半径为r,母线长为l)圆台(上、下底面半径分别为r′,r,母线长为l)侧面展开图底面积S底=2πr2S底=πr2S底=π(r′2+r2)侧面积S侧=2πrl S侧=πrl S侧=π(r′+r)l表面积S表=2πr(r+l) S表=πr(r+l) S表=π(r′2+r2)+ π(r′+r)l(二) 棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S,高为h,则V=Sh.2.棱锥:锥体的底面面积为S,高为h,则V=13 Sh.3.棱台:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.(三) 球的体积公式与表面积公式 1.球的体积公式V=43πR3(其中R为球的半径).2.球的表面积公式S=4πR2.四、典例分析、举一反三题型一圆柱、圆锥、圆台的表面积例1 若一个圆锥的轴截面是边长为4 cm的等边三角形,则这个圆锥的侧面积为________cm2,表面积为________cm2.【答案】8π 12π.【解析】如图所示,∵轴截面是边长为4 cm的等边三角形,∴OB=2 cm,PB=4 cm,∴圆锥的侧面积S侧=π×2×4=8π (cm2),表面积S表=8π+π×22=12π (cm2).解题技巧(求旋转体表面积注意事项)旋转体中,求面积应注意侧面展开图,上下面圆的周长是展开图的弧长.圆台通常还要还原为圆锥. 跟踪训练一1.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )A.81πB.100πC.168πD.169π【答案】C【解析】选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.题型二 圆柱、圆锥、圆台的体积例2 如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m 如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(π取3.14)【答案】423.9kg【解析】一个浮标的表面积是()2220.150.640.150.8478mππ⨯⨯+⨯=,所以给1000个这样的浮标涂防水漆约需涂料0.84780.51000423.9(kg)⨯⨯=.解题技巧(求几何体积的常用方法)(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的几何体即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.跟踪训练二1.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.【答案】10π.【解析】用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.2. 梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内过点C作l⊥BC,以l为轴将梯形ABCD旋转一周,求旋转体的表面积和体积.【答案】见解析【解析】由题意知以l为轴将梯形ABCD旋转一周后形成的几何体为圆柱中挖去一个倒置的且与圆柱等高的圆锥,如图所示.在梯形ABCD中,∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°,∴CD=BC-ADcos60°=2a,AB=CD sin60°=3a,∴DD′=AA′-2AD=2BC-2AD=2a,∴DO=12DD′=a.由上述计算知,圆柱的母线长为3a,底面半径为2a;圆锥的母线长为2a,底面半径为a.∴圆柱的侧面积S1=2π·2a·3a=43πa2,圆锥的侧面积S2=π·a·2a=2πa2,圆柱的底面积S3=π(2a)2=4πa2,圆锥的底面积S4=πa2,∴组合体上底面面积S5=S3-S4=3πa2,∴旋转体的表面积S=S1+S2+S3+S5=(43+9)πa2.又由题意知形成的几何体的体积为圆柱的体积减去圆锥的体积,且V柱=π·(2a)2·3a=43πa3,V锥=13·π·a2·3a=33πa3.∴旋转体的体积V=V柱-V锥=43πa3-33πa3=1133πa3.题型三球的表面积与体积例3 如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比.【答案】23【解析】 设球的半径为R ,则圆柱的底面半径为R ,高为2R .球的体积3143V R π=,圆柱的体积23222V R R R ππ=⋅=,123342::233V V R R ππ∴==.例4 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46π D .63π【答案】B【解析】如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1.∴OM =(2)2+1=3.即球的半径为3.∴V =43π(3)3=43π.解题技巧(与球有关问题的注意事项)1.正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图(1).2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=2a2,如图(2).3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=a 2+b 2+c 22,如图(3).4.正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a .5.正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为:2R =62a .6、有关球的截面问题常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪训练三1、将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【答案】A.【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是V 球=43×π×13=4π3.2.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2【答案】B.【解析】选B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP =12a ,所以球的半径R =OA 满足R 2=(33a)2+(12a)2=712a 2,故S 球=4πR 2=73πa 2.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本119页练习,119页习题8.3的剩余题.本节课的重点是掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.须注意的是:①求面积时看清求的是侧面积,还是底面积,还是表面积;②对本节课的难点的理解类比棱台与棱锥、棱锥的联系;③解决实际问题时先抽象出几何图形,再利用相关公式解决.3、球的表面积与体积公式。

北师大版人教版小学数学六年级上册《圆柱和圆锥》主题说课稿

北师大版人教版小学数学六年级上册《圆柱和圆锥》主题说课稿

北师大版人教版小学数学六年级上册《圆柱和圆锥》主题说课稿大家上午好,我们知道在小学阶段图形与几何领域当中的圆柱圆锥是我们认识的最后一组内容。

那之前我们学习的经验和方法能否在本单元的学习当中合理建构自主迁移?这引发了我的思考。

为此我以维度转化、建结构、路径探寻、促迁移为题,展开我对圆柱、圆锥单元的说课。

我的说课将从以下六个方面展开。

首先我们来看看相关的理论依据。

在图形与几何领域,人们研究图形通常采用直观、感知、操作、确认、思辨、论证、度量、计算等方法来认识图形的特征及其性质。

那么这有利于培养学生的空间观念、推理能力和理性精神,也有利于在探究和学习的过程当中,让学生获得独立思考的意识,拥有探索真理的勇气,以及具备严谨求实的态度。

那具体到小学阶段,在图形与几何的学习当中,大概经历了两个过程。

第一个阶段,直观辨认。

第二个阶段,刻画特征。

那么第一阶段,从立体到平面,让学生认识到面在体上。

第二个阶段从平面到立体,让学生体会到借助要素进。

来加深对特征的刻画。

那有了对相关理论的分析之后,让我们走进教材。

我们发现一到六年级教材的编排也遵循了儿童学习图形的认知规律,也同样经历了从立体图形到平面图形,再到立体图形这样的过程。

意图让学生在维度变化当中实现空间想象力的发展。

那具体到本单元,我们发现人教版和北京版的教材编排几乎是一致的。

但是北京版教材在援助表面积的内容当中增加了制作援助模型的内容,这有利于借助操作实现二、三维的转化。

同样,我们发现北师版和苏教版则从系统的视角来将原著。

和圆锥的认识整合在一起进行学习。

那有了对四个本身进行了调研,题目如下:面对原著你想研究哪些问题,你打算用哪些方法来进行研究?我们发现有百分之九十四的学生,近百分之九十四的学生在面对新图形的时候,他们不仅能够聚焦到具体的知识点,而且能够关注到图形的要素。

可喜的是还有百分之六点二的学生在面对一个新的图形的时候,能有一定的方法自主的开展研究。

但是我们也清晰地感受到,在学生的头脑当中还没有形成一个完整的研究立体图形的思维结构,他们对研究工具的使用和迁移还存在一定的困难。

人教版六年级数学下册单元检测(解析) 第三单元《圆柱和圆锥》(2)

人教版六年级数学下册单元检测(解析) 第三单元《圆柱和圆锥》(2)

人教版数学六年级下册第三单元圆柱和圆锥考试时间:90分钟试卷满分:100分一.选择题(共5小题,满分10分,每小题2分)1.(土默特左旗)如图,一个圆柱形容器内装有的水,把这些水倒入()圆锥形容器正好倒满。

A.B.C.D.【思路引导】因为等底等高的圆锥的体积是圆柱体积的,所以当圆柱与圆锥体积相等,底面积相等时,圆柱的高是圆锥高的,据此解答。

【完整解答】解:15×=5所以,一个圆柱形容器内装有的水,把这些水倒入A圆锥形容器正好倒满。

故选:A。

【考察注意点】此题考查的目的是理解掌握等底等高的圆柱和圆锥体积之间的关系及应用。

2.(良庆区)一个圆锥完全浸没在一个底面半径为r厘米的圆柱形容器内,水位上升h厘米,这个圆锥的体积是()立方厘米。

A.πr2h B.3πr2h C.πr2h【思路引导】根据题意可知,把这个圆锥放入有水的容器中,上升部分水的体积就等于这个圆锥的体积,根据圆柱的体积(容积)公式:V=πr2h,把数据代入公式解答。

【完整解答】解:π×r2×h=πr2h(立方厘米)答:这个圆锥的体积是πr2h立方厘米。

故选:C。

【考察注意点】此题主要考查圆柱的体积(容积)公式的灵活运用,关键是熟记公式。

3.(安源区)有一块圆柱体木料,把它加工成一个最大的圆锥体,削去的木料体积是0.6立方米,圆锥体的体积是()立方米。

A.0.9 B.1.2 C.0.3【思路引导】有一块圆柱体木料,把它加工成一个最大的圆锥体,也就是加工成的圆锥和圆柱等底等高,因为等底等高的圆柱的体积是圆锥体积的3倍,所以削去部分的体积相当于圆锥体积的(3﹣1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答。

【完整解答】解:0.6÷(3﹣1)=0.6÷2=0.3(立方米)答:圆锥的体积是0.3立方米。

故答案为:0.3。

故选:C。

【考察注意点】此题考查的目的是理解掌握等底等高的圆柱和圆锥体积之间的关系及应用。

圆柱与圆锥考点归纳总结

圆柱与圆锥考点归纳总结

圆柱与圆锥的考点的归纳总结考点一:圆柱与圆锥的特征。

1、圆柱是生活中比较常见的由3个面围成的立体图形。

2、圆柱的底面:圆柱的上下两个面叫作底面,圆柱的两个底面是大小相同的两个圆。

圆柱的侧面:圆柱周围的面(上下底面除外)叫作侧面。

圆柱的侧面是曲面。

圆柱的高:圆柱的两个底面之间的距离叫作高。

一个圆柱有无数条高。

3、圆锥的特征:圆锥是由一个底面和一个侧面围成的立体图形。

圆锥的底面是一个圆,圆锥的侧面是一个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

圆锥只有一条高。

4、圆锥高的测量方法:①把圆锥的底面水平放好;②把一块平板水平地放在圆锥的顶点上面;③平板和底面之间的距离就是圆锥的高。

练习:1、一个圆柱形蛋糕盒的底面直径是40cm,高是14cm,用彩绳将它捆扎(如图),打结处在上底面圆的圆心,打结部分的彩绳长30cm。

一共需要()cm彩绳。

考点二:展开图1、圆柱的侧面展开可能是长方形、正方形、平行四边形、不规则图形。

2、圆锥的侧面展开是一个扇形。

3、圆柱的侧面沿高剪开后,展开图是一个长方形(或正方形),这个长方形(或正方形)的一条边的长度等于圆柱的底面周长,另一条边的长度等于圆柱的高。

4、当底面周长和高相等时,圆柱的侧面展开时一个正方形。

练习:1、把一个圆锥的侧面展开可以得到一个()A.平行四边形 B.梯形C.长方形D.扇形2、一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()A.πB.2πC.r3、沿圆柱的高将圆柱的侧面展开后是一个()A.三角形B.长方形或正方形C.圆形D.扇形4、一个圆柱形油桶的侧面展开图是一个正方形.已知这个油桶的底面半径是45厘米,那么油桶的高是厘米.5、做一个有底无盖的圆柱形水桶,高为6.28分米,将它的侧面展开,正好是正方形。

做这个水桶要用多少平方分米的铁皮?6、如图,把这个圆柱的侧面沿高剪开后,可以得到一个长是()dm,宽是()dm的长方形。

考点三:旋转将长方形的长或者宽粘在小棒上旋转可得到一个圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小六数学下第2单元《圆柱与圆锥》测试卷
一、选一选。

(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。

A 、
B 、
C 、
D 、
2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。

A 、2
3 B 、2 C 、6 D 、18
3、下面( )图形是圆柱的展开图。

(单位:cm )
4、下面( )杯中的饮料最多。

5、一个圆锥有( )条高,一个圆柱有( )条高。

A 、一 B 、二 C 、三 D 、无数条
6、如图:这个杯子( )装下3000ml 牛奶。

A 、能
B 、不能
C 、无法判断
二、判断对错。

()1、圆柱的体积一般比它的表面积大。

()2、底面积相等的两个圆锥,体积也相等。

()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。

()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。

()5、把圆锥的侧面展开,得到的是一个长方形。

三、想一想,连一连。

四、填一填。

1、2.8立方米=()立方分米6000毫升=()
3060立方厘米=()立方分米
5平方米40平方分米=()平方米
2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。

3、用一张长4.5分米,宽1.2分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。

(接口处不计)
4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。

5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。

五、求下面图形的体积。

(单位:厘米)
六、解决问题。

1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?
⑵这个薯片筒的体积是多少?
2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米。

每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
3、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。

镶瓷砖的面积是多少平方米?
4、如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:厘米)
5、张师傅要把一根圆柱形木料(如右图)削成一个圆锥。

⑴削成的圆锥的体积最大是多少立方分米?
⑵请你提出一个数学问题并解答。

七、拓展应用。

某种饮料罐的形状为圆柱形,底面直径是7cm,高是12cm。

将24罐这种饮料按如图所示的方式放入箱内,这个纸箱的长、宽、高至少各是多少厘米?。

相关文档
最新文档