空间角问题
求解空间角问题的两个技巧
探索探索与与研研究究求空间角问题在高中数学立体几何中比较常见.常见的命题形式有求异面直线所成的角、求直线与平面所成的角、求二面角及其余弦值.此类题目对同学们的空间想象与逻辑思维能力有较高的要求.解答此类问题的常用技巧主要有巧用定义和构造向量.一、巧用定义空间角包括异面直线所成的角、直线和平面所成的角及二面角.运用定义法求解空间角问题,需首先仔细观察几何图形,根据异面直线所成的角、直线和平面所成的角、二面角的定义添加辅助线,确定对应的平面角,然后运用勾股定理、正余弦定理求出空间角的大小.例1.在三棱锥P -ABC 中,△ABC 为等腰直角三角形,AB =AC =1,PB =PC =5.设点E 为PA 的中点,D 为AC 的中点,F 为PB 上一点,且PF =2FB ,PA ⊥AC ,求直线CE 与平面PBC 所成角的正弦值.解:因为AB =AC =1,PB =PC =5,PA =PA ,所以△PAB ≅△PAC ,因为PA ⊥AC ,所以PA ⊥AB ,PA =PC 2-AC 2=2,所以PA ⊥平面ABC ,过点E 作EH ⊥平面PBC 于点H ,连接CH ,则∠ECH 即为直线CE 与平面PBC 所成角,易知BC =2,设点A 到平面PBC 的距离为h ,由V P -ABC =V A -PBC 得13∙S △ABC ∙PA =13∙S △PBC ∙h ,解得h =23,因为点E 为PA 的中点,所以EH =12h =13,因为CE =2,所以sin ∠ECH =EH CE =.解答本题,需首先明确各个点、线段、平面的位置及其关系,然后根据直线与平面所成角的定义,过点E 作EH ⊥平面PBC 于点H ,连接CH ,便可找到直线CE 与平面PBC 所成角对应的平面角∠ECH .然后根据等体积法求得EH 、CE ,再根据正弦函数的定义就能求得问题的答案.二、构造向量对于空间角问题,我们也可以采用向量法来求解.在建立空间直角坐标系或选定基底后,求得各个点的坐标、各个向量的方向向量,便可通过向量的坐标运算求得空间角的大小.对于异面直线所成的角,只需求得两条直线的方向向量,运用数量积公式求解;对于直线与平面所成的角,需求得直线的方向向量和平面的法向量,运用数量积公式求得其夹角,则该夹角的余角即为所求的角;对二面角,需分别求得两个半平面的法向量,则其夹角或补角即为二面角的平面角.例2.如图,在三棱柱ABC -A 1B 1C 1中,CA =CC 1=2CB ,求直线BC 1与直线AB 1夹角的余弦值.解:设 AC =a , CB =b , CC 1=c,且||a =||c =2,||||b =1,则 AB 1= AB + BB 1=a +b+c ,BC 1=c -b ,则|| AB 1=(a +b +c )2=a 2+b 2+c 2+2a b +2a c +2b c ,因为2a b =2b c =2a c =0,所以||AB 1=3.同理可得 BC 1=(c -b )2=5,又 AB 1∙BC 1=(c -b )∙(a +b +c )=3故cos < AB 1, BC 1>= AB 1∙BC 1||AB 1|| BC 1=>0,所以 AB 1与 BC 1的夹角的余弦值,即为直线 AB 1与直线BC 1夹角的余弦值.我们以 AC 、 CB 、 CC 1为基底,将 AB 1与 BC 1用三个基底表示出来,便可直接运用向量的数量积公式求得两异面直线所成角的余弦值.一般来说,定义法的适用范围较广,向量法的适用范围较窄.在使用向量法时,需特别注意题目中所给的图形是否方便建立空间直角坐标系.有时解答空间角问题可以同时运用上述两种方法.(作者单位:江苏省射阳中学)52。
空间角(异面直线所成角,线面角,二面角)
第四讲 空间角(异面直线所成角线面角二面角)A 组题一、选择题1.下面正确的序号是①两直线的方向向量所成的角就是两条直线所成的角.②直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ③两个平面的法向量所成的角是这两个平面所成的角.④两异面直线夹角的范围是(00,90⎤⎦,直线与平面所成角的范围是0090⎡⎤⎣⎦,,二面角的范围是[0,1800] ( ).A.①B.②C.③D.④【答案】D【解析】对于①,因为两异面直线夹角的范围是(00,90⎤⎦,而两直线的方向向量所成的角可能为钝角. 所以①错. 对于②,直线的方向向量和平面的法向量所成的角是直线与平面所成的角或其补角. 所以②错.对于③,两个平面的法向量所成的角是这两个平面所成的角是这两个平面所成的角或其补角. 所以③错. 故选D .2.如图,在正方体ABCD -A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与C N 所成的角是( ). A.90° B.75° C.60° D.45°【答案】A【解析】取AA′的中点Q ,连接QN ,B Q ,且B Q 与B′M 相交于点H ,则QN 綉AD 綉BC ,从而有四边形NQ BC 为平行四边形,所以N C ∥Q B ,则有∠B′H B 为异面直线B′M 与C N 所成的角. 又∵B′B =BA ,∠B′B M =∠BA Q =90°,B M =A Q ,∴△B′B M ≌△BA Q , ∴∠M B′B =∠Q B M .而∠B′M B +∠M B′B =90°,从而∠B′M B +∠Q B M =90°,∴∠MH B =90°.故选A. 3.如图,在四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形,则异面直线CD 与P B 所成角的大小为( ) A.90° B.75° C.60° D.45°【答案】 A【解析】如图,过点B 作直线B E ∥CD ,交DA 的延长线于点E ,连接PE .∴∠P B E (或其补角)是异面直线CD 与P B 所成角.∵△P AB 和△P AD 都是等边三角形,∴∠P AD =60°,DA =P A =AB=P B =A E ,∴∠P A E =120°.设P A =AB =P B =A E =a ,则PE .又∠ABC =∠BAD =90°,∴∠BA E =90°,∴B E a ,∴在△P B E 中,P B 2+B E 2=PE 2,∴∠P B E =90°.即异面直线CD 与P B 所成角为90°.故选A.4.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线B E 与CD 1所成角的余弦值为( )B.15 D.35【答案】C【解析】如图,连接BA 1,因为BA 1∥CD 1,所以∠E B A 1是异面直线B E 与CD 1所成角,设AB =1,则111,EB A E A B ===,作EF ⊥BA 1, 11A E AB EF A B ⋅==FB =∠E B A 1.选C.5. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB, 则异面直线A P 与BC 所成角的大小; A.90°B. 60°C. 75°D.45°【答案】B【解法】∵P C ⊥平面ABC ,⊂A B 平面ABC , ∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .过点A 作A F //BC ,且A F =BC ,连结PF ,C F . 则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F ,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AFPF==3,∴异面直线P A 与BC 所成的角为60°.选B.6. 如图,正方形ABCD 所在平面与正方形,AB EF 所在平面成60ο角,求异面直线AD 与B F 所成角的余弦值. A.42 B.2C. 3D.【答案】A 【解析】∵CB ∥AD, ∴∠CB F 为异面直线AD 与B F 所成的角.连接C F 、C E 设正方形ABCD 的边长为α,则B F =a 2∵CB ⊥AB, E B ⊥AB ∴∠C E B 为平面ABCD 与平面AB EF所成ABC DPE F的角,∴∠CB E =∠60ο ∴C E =a F C =a 2 ,∴cos ∠CB F =42,选A. 7. 如图,已知棱柱1111D C B A ABCD -的底面是菱形,且⊥1AA 面ABCD , 60=∠DAB ,1AA AD =,F 为棱1AA 的中点,M 为线段1BD 的中点,则面1BFD 与面ABCD 所成二面角的大小. A .30° B .45° C .60° D .90°【答案】C【解析】 底面是菱形, BD AC ⊥∴ 又⊥B B 1 面ABCD ,⊂AC 面ABCD B B AC 1⊥∴,⊥∴AC 面11B BDD 又AC MF // ⊥∴MF 面11B BDD 延长F D 1、DE 交于点E ,F 是A A 1的中点且ABCD 是菱形AB AE DA ==∴ 又 60=∠DAB 90=∠∴DBE ∴BE B D ⊥1 BD D 1∠∴为所求角 在菱形ABCD 中, 60=∠DAB BD BC 3=∴ 3t a n 11==∠BDDD BD D 601=∠∴BD D ,选C .8.在一个45°的二面角的一个面内有一条直线与二面角的棱成45°,则此直线与二面角的另一个面所成的角为( ) A .30° B .45° C .60° D .90° 【答案】A【解析】如图,二面角α-l -β为45°,β,且与棱l 成45°角,过A 作A O ⊥α于O ,作A H ⊥l 于H .连接OH 、O B ,则∠A HO 为二面角α-l -β的平面角,∠AB O 为AB 与平面α所成角.不妨设A HRt △A OH 中,易得A O =1;在Rt △AB H 中,易得AB =2.故在Rt △AB O 中,sin ∠AB O =12AO AB =,∴∠AB O =30°,为所求线面角.选A. 二、填空题9. 如图所示,在正四面体S -ABC 中,D 为S C 的中点,则BD 与S A所成角的余弦值是A BC DA 1B 1C 1D 1F MOE________.【解析】取AC 中点E ,连接D E ,B E ,则BD 与D E 所成的角即为BD 与S A 所成的角.设S A =a ,则BD =B Ea ,D E =2a .由余弦定理知cos ∠BD E.10. 如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小的正切为23,则该正四棱柱的高等于____________.【答案】【解析】由题意得11122tan 33DD DBD DD BD ∠===⇒=. 11. A 、B 是直二面角α-l -β的棱l 上的两点,分别在α,β内作垂直于棱l 的线段AC ,BD ,已知AB =AC =BD =1,那么CD 的长为【解析】如图,由于此题的二面角是直角,且线段AC ,BD 分别在α,β内垂直于棱l ,AB =AC =BD =1,作出以线段AB ,BD ,AC 为棱的正方体,CD 即为正方体的对角线,由正方体的性质知,CD三、解答题 12. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB .(1) 求证:AB ⊥平面P CB ;(2 求异面直线A P 与BC 所成角的大小;(3π) 【解析】(1) ∵P C ⊥平面ABC ,⊂A B 平面ABC ,BDPE∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .(2) 过点A 作A F //BC ,且A F =BC ,连结PF ,C F .则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F .由三垂线定理,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AF PF ==3, ∴异面直线P A 与BC 所成的角为3π.13.如图所示,在多面体111A B D DCBA 中,四边形11AA B B,11,ADD A ABCD均为正方形,点E 为11B D的中点,过点1A ,D ,E 的平面交1CD 于点F .(1)求证:1//EF B C ;(2)求二面角11EA DB ﹣﹣余弦值.【解析】(1)证明:由题可得1//AD B C ,又因为1A D ⊄平面11B CD ,1B C ⊂平面11B CD ,所以1//A D 平面11B CD .又平面1A DEF平面11B CD EF =,所以1//A D EF .又因为11//A D B C ,所以1//EF B C .(2)将原图形补全成正方体,如图所示,则平面1A CD 即为平面1A EFD ,所以求二面角11E A D B --的余弦值可以转化为求二面角111C A D B --的余弦值。
2023年高考数学----空间角问题规律方法与典型例题讲解
2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。
补上一课 空间角的大小比较及最值(范围)问题
补上一课 ,空间角的大小比较及最值(范围)问题)1.空间角的大小比较是每年高考的常考题型,以选择题的形式考查,主要类型有线线角间的大小比较、线面角间的大小比较、面面角间的大小比较及线线角、线面角、面面角间的大小比较,主要方法有计算法、元素比较法、三角函数值比较法及利用最小角定理(线面角是最小的线线角,二面角是最大的线面角)等方法. 2.立体几何动态问题中空间角的最值及范围也是常见到的题型,常与图形翻折、点线面等几何元素的变化有关,常用方法有几何法、函数(导数)法,不等式法等.题型一 空间角的大小比较 角度1 同类角间的大小比较【例1-1】 (1)(2021·嘉兴测试)已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,AA 1=a ,AB =b ,且a >b ,侧棱CC 1上一点E 满足CC 1=3CE ,设异面直线A 1B 与AD 1,A 1B 与D 1B 1,AE 与D 1B 1的所成角分别为α,β,γ,则( ) A .α<β<γ B .γ<β<α C .β<α<γ D .α<γ<β(2)(2017·浙江卷)如图,已知正四面体D -ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQQC =CRRA =2,分别记二面角D -PR-Q ,D -PQ -R ,D -QR -P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α 答案 (1)A (2)B解析 (1)以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,∵长方体ABCD -A 1B 1C 1D 1的底面为正方形,AA 1=a ,AB =b ,且a >b ,侧棱CC 1上一点E 满足CC 1=3CE ,∴A 1(b ,0,a ),B (b ,b ,0),A (b ,0,0),D 1(0,0,a ),B 1(b ,b ,a ),E (0,b ,a 3),A 1B →=(0,b ,-a ),AD 1→ =(-b ,0,a ),D 1B 1→ =(b ,b ,0),AE → =(-b ,b ,a 3),cos α=|A 1B → ·AD 1→||A 1B → |·|AD 1→|=a 2a 2+b 2·a 2+b 2=a 2a 2+b 2,cos β=|A 1B → ·D 1B 1→||A 1B → |·|D 1B 1→ |=b 2a 2+b 2·b 2+b2,cos γ=|AE → ·D 1B 1→||AE → |·|D 1B 1→ |=0,∵a >b >0,∴cos α>cos β>cos γ=0,∴α<β<γ,故选A.(2)如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO . 由图可知它们的对边都是DO , ∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心.设点O 到△QRP ′三边的距离为a ,则OG =a , OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a , OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a , ∴OF <OG <OE ,∴OD tan β<OD tan γ<ODtan α,∴α<γ<β.角度2 不同类型角间的大小比较【例1-2】 (1)(2019·浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P -AC -B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β(2)(一题多解)(2018·浙江卷)已知四棱锥S -ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S -AB -C 的平面角为θ3,则( ) A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1 C .θ1≤θ3≤θ2 D .θ2≤θ3≤θ1 答案 (1)B (2)D解析 (1)由题意,不妨设该三棱锥的侧棱长与底面边长相等.因为点P 是棱VA 上的点(不含端点),所以直线PB 与平面ABC 所成的角β小于直线VB 与平面ABC 所成的角,而直线VB 与平面ABC 所成的角小于二面角P -AC -B 的平面角γ,所以β<γ;因为AC ⊂平面ABC ,所以直线PB 与直线AC 所成的角α大于直线PB 与平面ABC 所成的角β,即α>β.故选B.(2)法一 由题意知四棱锥S -ABCD 为正四棱锥,如图,连接AC ,BD ,记AC ∩BD =O ,连接SO ,则SO ⊥平面ABCD ,取AB 的中点M ,连接SM ,OM ,OE ,易得AB ⊥SM ,则θ2=∠SEO ,θ3=∠SMO ,易知θ3≥θ2.因为OM ∥BC ,BC ⊥AB ,SM ⊥AB ,所以θ3也是OM 与平面SAB 所成的角,即BC 与平面SAB 所成的角,再根据最小角定理知θ3≤θ1,所以θ2≤θ3≤θ1,故选D.法二 如图,不妨设底面正方形的边长为2,E 为AB 上靠近点A 的四等分点,E ′为AB 的中点,S 到底面的距离SO =1,以EE ′,E ′O 为邻边作矩形OO ′EE ′,则∠SEO ′=θ1,∠SEO =θ2,∠SE ′O =θ3.由题意得tan θ1=SO ′EO ′=52,tan θ2=SO EO =152=25,tan θ3=1,此时tan θ2<tan θ3<tan θ1,可得θ2<θ3<θ1,当E 在AB 中点处时,θ2=θ3=θ1,故选D.【训练1】 (2021·宁波适考)在正四面体S -ABC 中,点P 在线段SA 上运动(不含端点).设PA 与平面PBC 所成角为θ1,PB 与平面SAC 所成角为θ2,PC 与平面ABC 所成角为θ3,则( ) A .θ2<θ1<θ3 B .θ2<θ3<θ1 C .θ3<θ1<θ2 D .θ3<θ2<θ1 答案 D解析 由题意可得,正四面体S -ABC 的四个顶点在正方体上,如图所示,不妨设点A (1,0,0),B (0,1,0),C (0,0,1),S (1,1,1),且AP → =λAS →,0<λ<1,则点P (1,λ,λ),所以平面PBC 的一个法向量为a =(1-2λ,1,1),平面SAC 的一个法向量为b =(1,-1,1),平面ABC 的一个法向量为c =(1,1,1).因为PA→=(0,-λ,-λ),PB → =(-1,1-λ,-λ),PC →=(-1,-λ,1-λ).所以sin θ1=|PA →·a ||PA →||a |=24λ2-4λ+3,sin θ2=|PB → ·b ||PB → ||b |=23λ2-3λ+3,sin θ3=|PC →·c ||PC → ||c |=2λ3λ2-3λ+3,所以θ1>θ2>θ3,故选D.题型二 空间角的最值【例2】 (1)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点P 是棱AB 上的动点(P 点可以运动到端点A 和B ),设在运动过程中,平面PDB 1与平面ADD 1A 1所成的最小角为α,则cos α=________.(2)(一题多解)(2021·浙江名师预测二)在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P ,Q 分别为直线AC 1,BB 1上的动点,则平面APQ 与平面BCC 1B 1所成二面角的最小值为( ) A.π6 B.π4 C.π3 D.π2 答案 (1)63 (2)A解析 (1)以点D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,AP =a (0≤a ≤1),则易得D (0,0,0),P (1,a ,0),B 1(1,1,1),则DP → =(1,a ,0),DB 1→=(1,1,1),设平面PDB 1的法向量为n =(x ,y ,z ),则{DP →·n =x +ay =0,DB 1→·n =x +y +z =0,令x =a ,得平面PDB 1的一个法向量为n =(a ,-1,-a +1),易得平面ADD 1A 1的一个法向量为m =(0,1,0),由图易得平面PDB 1与平面ADD 1A 1所成的二面角为锐角,设其为θ,则其余弦值为cos θ=|n ·m|n ||m ||=|-1|a 2+(-1)2+(-a +1)2=12(a -12)2 +32,易得当二面角取得最小值α时,a =12,此时有cos α=63.(2)法一 如图,因为点P ∈AC 1,所以平面APQ 即为平面AC 1Q ,根据二面角与线面角的大小关系知,当Q 运动到点B 时,动平面AC 1Q 与平面BCC 1B 1所成二面角的最小值即为直线AC 1与平面BCC 1B 1所成角∠AC 1B .由题意得AB =1,AC 1=2,所以sin ∠AC 1B =12,所以∠AC 1B =π6,故平面APQ 与平面BCC 1B 1所成二面角的最小值为π6,故选A.法二 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,由题意可知平面BCC 1B 1的一个法向量为n =(0,1,0),平面APQ 即为平面AC 1Q ,则点A (1,0,0),C 1(0,1,2),Q (1,1,a ),则AC 1→ =(-1,1,2),AQ →=(0,1,a ),设平面AC 1Q 的法向量为m =(x ,y ,z ),则{AC 1→·m =-x +y +2z =0,AQ →·m =y +az =0,解得m =(a -2,a ,-1).设平面AC 1Q 与平面BCC 1B 1所成二面角为θ,则cos θ=|a |(a -2)2+a 2+1=1(3a -63)2 +43,所以当a =322时,(cos θ)max =32,所以θmin =π6,故选A.【训练2】 (1)(2021·义乌市联考)如图,正方体ABCD -A 1B 1C 1D 1,点P 在AB 1上运动(不含端点),点E 是AC 上一点(不含端点),设EP 与平面ACD 1所成角为θ,则cos θ的最小值为( )A.13B.33C.53D.63(2)(2021·金华十校期末调研)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值是________.答案 (1)A (2)25解析 (1)点P 在AB 1上运动(不含端点),点E 是AC 上一点(不含端点),即EP 的运动区域为△AB 1C ,当cos θ取最小值时,θ最大,即为平面AB 1C 与平面AC 1D 所成的角,以点D 为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,DD 1所在的直线为z 轴,建立空间直角坐标系D -xyz 如图所示,平面AB 1C 的一个法向量n =(1,1,-1),平面AC 1D 的一个法向量m =(1,1,1),所以cos θ=|cos 〈m ,n 〉|=|m ·n |m ||n ||=13×3=13,故选A.(2)以A 点为坐标原点,AB ,AD ,AQ 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,设AB =1,则AF →=(1,12,0),E (12,0,0),设M (0,y ,1)(0≤y ≤1),则EM →=(-12,y ,1),∴cos 〈AF → ,EM →〉=-12+12y 1+14·14+y 2+1=-1-y 52·4y 2+5.则cos θ=|cos 〈AF → ,EM→〉|=1-y 52·4y 2+5 =255·1-y 4y 2+5,令t =1-y ,则y =1-t ,∵0≤y ≤1,∴0≤t ≤1, 那么cos θ=255·t 4t 2-8t +9=255t 24t 2-8t +9=25514-8t +9t 2, 令x =1t ,∵0≤t ≤1,∴x ≥1,那么cos θ=25514-8x +9x 2,又∵z =9x 2-8x +4在[1,+∞)上单调递增, ∴x =1时,z min =5,此时cos θ的最大值为255·15=255·55=25.题型三 空间角的范围【例3】 (1)(2021·浙江名师预测四)在矩形ABCD 中,AB =3,BC =1,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.[0,π6]B.[0,π3]C.[0,π2] D.[0,2π3] (2)在正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是( ) A.[π4,π3] B.[π4,π2] C.[π6,π2] D.[π6,π3]答案 (1)C (2)D解析 (1)根据题意,初始状态,直线AD 与直线BC 成的角为0,当BD =2时,AD ⊥DB ,AD ⊥DC ,且DB ∩DC =D ,所以AD ⊥平面DBC ,又BC ⊂平面DBC ,故AD ⊥BC ,直线AD 与BC 成的角为π2,所以在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为[0,π2].(2)建立如图坐标系,设正方体ABCD -A 1B 1C 1D 1棱长为1,则AD 1→=(1,0,-1),A 1C → =(1,1,1).设A 1P → =λA 1C → =(λ,λ,λ),其中0≤λ≤1.则BP →=(λ,λ-1,λ-1).又设BP 与AD 1所成角为θ,所以cos θ=|cos 〈BP → ,AD 1→ 〉|=|BP → ·AD 1→||BP → ||AD 1→|=16(λ-23)2 +43.由0≤λ≤1得12≤cos θ≤32,而0≤θ≤π2,所以π6≤θ≤π3.【训练3】(1)如图,在正三棱柱ABC-A1B1C1中,所有的棱长均为2,M是AB的中点,动点P在底面A1B1C1内,若BP∥平面A1MC,记∠PCC1=α,则sin α的取值范围是________.(2)(2021·杭州二中月考)在等腰梯形ABCD中,已知AB=AD=CD=1,BC=2,将△ABD沿直线BD翻折成△A′BD,如图所示,则直线BA′与CD所成角的取值范围是( )A.[π3,π2]B.[π6,π3]C.[π6,π2]D.[0,π3]答案 (1)[0,217] (2)A解析 (1)如图,取A1B1的中点D,连接BD,C1D,BC1,则BD∥A1M,又A1M⊂平面A1MC,BD⊄平面A1MC,所以BD∥平面A1MC,又C1D∥CM,C1D⊄平面A1MC,CM⊂平面A1MC,所以C1D∥平面A 1MC ,又BD ∩C 1D =D ,所以平面BC 1D ∥平面A 1MC ,所以点P 在线段C 1D 上,点P 的轨迹的长度C 1D =3,连接CD ,在Rt △CDC 1中,0≤α≤∠C 1CD ,CD =7, sin ∠C 1CD =217,所以0≤sin α≤217.(2)取BC 的中点E ,连接AE ,交BD 于点O ,则由AB =AD =CD =1,BC =2得AE ⊥BD ,则点A ′在以点O 为圆心,AO 为半径,垂直于直线BD 的平面内的圆上运动.以点O 为坐标原点,OE ,OD 所在直线为x ,y 轴,过点O 垂直平面BCD 的直线为z 轴建立空间直角坐标系如图所示,易得点A (-12,0,0),B (0,-32,0),C (1,32,0),D (0,32,0).设点A ′(12cos θ,0,12sin θ),θ∈[0,π],则BA ′→=(12cos θ,32,12sin θ),CD →=(-1,0,0),设直线BA ′与直线CD 的夹角为α,则cos α=cos 〈BA ′→ ,CD → 〉=BA ′→ ·CD →|BA ′→ |·|CD →|=-12cos θ∈[-12,12].又因为α∈[0,π2],所以α∈[π3,π2],故选A.1.如图,二面角α-l -β中,P ∈l ,射线PA ,PB 分别在平面α,β内,点A 在平面β内的射影恰好是点B ,设二面角α-l -β、PA 与平面β所成的角、PB 与平面α所成的角的大小分别为δ,φ,θ,则( )A .δ≥φ≥θB .δ≥θ≥φC .φ≥δ≥θD .θ≥δ≥φ答案 A解析 因为点A 在平面β内的射影为点B ,则φ=∠APB ,由二面角的定义易得δ≥φ,设PB 在平面α内的射影为PB ′,则θ=∠BPB ′,则由最小角定理得∠BPB ′≤APB ,则θ≤φ.综上所述,故选A.2.(2015·浙江卷)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α 答案 B解析 ∵A ′C 和BC 都不与CD 垂直,∴∠A ′CB ≠α,故C ,D 错误.当CA =CB 时,容易证明∠A ′DB =α.不妨取一个特殊的三角形,如Rt △ABC ,令斜边AB =4,AC =2,BC =23,如图所示,则CD =AD =BD =2,∠BDH =120°,设沿直线CD 将△ACD 折成△A ′CD ,使平面A ′CD ⊥平面BCD ,则α=90°.取CD 中点H ,连接A ′H ,BH ,则A ′H ⊥CD ,∴A ′H ⊥平面BCD ,且A ′H =3,DH =1.在△BDH 中,由余弦定理可得BH =7.在Rt △A ′HB 中,由勾股定理可得A ′B =10.在△A ′DB 中,∵A ′D 2+BD 2-A ′B 2=-2<0,可知cos ∠A ′DB <0,∴∠A ′DB 为钝角,故排除A.综上可知答案为B.3.(2021·七彩阳光联盟适考)如图1,梯形ABCD 中,AB ∥DC ,AD =DC =BC =AE =12AB ,现将四边形ADCE 沿EC 折起,得到几何图形B -ECD ′A ′(如图2),记直线D ′C 与直线EB 所成的角为α,二面角B -EC -D ′的平面角的大小为β,直线A′E与平面BCE所成角为γ,则( )A.α>γ,β>γB.α<β,β>γC.α>β>γD.β>α>γ答案 A解析 在折叠过程中,由线面角是最小的线线角可知α>γ;由二面角是最大的线面角可知β>γ,故选A.4.(2021·宁波十校联考)正方体ABCD-A1B1C1D1,P是线段BD1(不含端点)上的点.记直线PC与直线AB所成角为α,直线PC与平面ABC所成角为β,二面角P-BC-A的平面角为γ,则( )A.β<γ<αB.α<β<γC.γ<β<αD.γ<α<β答案 A解析 由题意知,二面角P-BC-A为平面D1CB与平面ABCD所成的角,其平面角即为∠D1CD,则γ=∠D1CD.如图,因为直线与平面所成的角是此直线与该平面内的直线所成角中的最小角,而∠D1CD是直线AB与平面D1CB所成的角,PC⊂平面D1CB,则有γ<α.又∠D1CD也是直线CD与平面D1CB所成的角,故β<γ,所以β<γ<α,故选A.5.(2018·衢州二中二模)如图,△BCD是以BC为斜边的等腰直角三角形,在△ABC中,∠BAC=90°,△ABC沿着BC翻折成三棱锥A-BCD的过程中,直线AB与平面BCD所成的角均小于直线AC与平面BCD所成的角,设二面角A-BD-C,A-CD-B的大小分别为α,β,则( )A.α>βB.α<βC.存在α+β>πD.α,β的大小关系不能确定答案 B解析 作AH⊥平面BCD,分别作HM⊥BD,HN⊥CD于M,N两点.由AB与平面BCD所成的角∠ABH总小于AC与平面BCD所成的角∠ACH,则AB>AC.设O为BC的中点,则点H在DO的右侧,所以有HM>HN,故tan α=tan∠AMH=AHHM,tan β=tan∠ANH=AHHN,因此,tan α<tan β,即α<β,故选B.6.已知在矩形ABCD中,AD=2AB,沿直线BD将△ABD折成△A′BD,使得点A′在平面BCD上的射影在△BCD内(不含边界),设二面角A′-BD-C的大小为θ,直线A′D,A′C与平面BCD所成的角分别为α,β,则( )A.α<θ<βB.β<θ<αC.β<α<θD.α<β<θ答案 D解析 设点A′在平面BCD内的射影为点O,过点A′作BD的垂线,垂足为点E,设AB=1,则在Rt△A′BD中易得A′E=63,∠A′DO=α,∠A′CO=β,∠A′EO=θ,且α,β,θ均为锐角,tan∠A′DO=A′OOD,tan∠A′CO=A′OOC,tan∠A′EO=A′OOE,又由翻折及解三角形知识易得当点A′在平面BCD内的射影在△BCD内(不含边界)时,有OE<OC<OD,所以A′OOD<A′OOC<A′OOE,即tan∠A′DO<tan∠A′CO<tan∠A′EO,所以∠A′DO<∠A′CO<∠A′EO,即α<β<θ,故选D.7.(2021·宁波期末)如图,已知在平面四边形ABCD中,∠A=∠C=90°,BC=CD,AB>AD,现将△ABD沿对角线BD翻折得到三棱锥A′-BCD,在此过程中,二面角A′-BC-D,A′-CD-B的大小分别为α,β,直线A′B与平面BCD所成角为γ,直线A′D与平面BCD所成角为δ,则( )A.γ<δ<βB.γ<α<βC.α<δ<βD.γ<α<δ答案 B解析 在平面四边形ABCD中,过点A作BD的垂线,交BD于点H,则易得在翻折的过程中,点A′在底面BCD内的投影点O在直线AH上,连接OB,OD,过点O作CD,BC的垂线,垂足分别为点E,F,则∠A′FO=α,∠A′EO=β,∠A′BO=γ,∠A′DO=δ,则tan α=A′OOF,tan β=A′OOE,tan γ=A′OOB,tan δ=A′OOD.由题设易得OF>OE,OB>OD,所以tan α<tan β,tan γ<tan δ,所以α<β,γ<δ.又由最小角定理得γ<α,δ<β.综上所述,γ<α<β,故选B.8.(2021·杭州二中仿真模拟)空间线段AC⊥AB,BD⊥AB,且AC∶AB∶BD=1∶3∶1,设CD与AB所成的角为α,CD与平面ABC所成的角为β,二面角C-AB-D的平面角为γ,则( )A.β≤α≤γ2B.β≤γ2≤αC.α≤β≤γ2D.α≤γ2≤β答案 A解析 如图所示,过点B作BE∥AC,且BE=AC,连接DE.则可知α=∠DCE,γ=∠DBE.由最小角定理可得β≤α.在△DBE中,DE=2sin γ2.在Rt△DCE中,sinα<tan α=23sinγ2<sinγ2,所以α<γ2.若DB⊂平面ABC,则β=α=γ2=0,所以β≤α≤γ2,故选A.9.(2021·浙江新高考仿真三)在四面体ABCD中,AB⊥BC,BC⊥CD,AB=BC=CD=1,AD=3,点E为线段AB上动点(包含端点),设直线DE与BC所成角为θ,则cos θ的取值范围为( )A.[0,33]B.[0,22]C.[22,53]D.[33,22]答案 D解析 由题意得|AD → |2=(AB → +BC → +CD → )2=|AB → |2+|BC → |2+|CD → |2+2AB → ·BC →+2AB → ·CD → +2BC → ·CD →=3,又因为AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,所以AB → ·CD →=0,则可将四面体ABCD 放到棱长为1的正方体内,如图所示,以点C 为坐标原点,CD 所在直线为x 轴,CB 所在直线为z 轴建立空间直角坐标系,则易得C (0,0,0),B (0,0,1),D (1,0,0),E (0,a ,1),a ∈[0,1],所以BC →=(0,0,-1),DE →=(-1,a ,1),所以|cos θ|=12+a2∈[33,22],故选D.10.(2021·金华十校模拟)设三棱锥V -ABC 的底面是以A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A -VC -B 为γ,则( ) A .α<β,β+γ>π2 B .α<β,β+γ<π2C .α>β,β+γ>π2D .α>β,β+γ<π2答案 C解析 因为VA ⊥底面ABC ,AB 在平面ABC 内,则由最小角定理得α>β,β=∠VMA ,则β+∠MVA =π2.过点A 作AN ⊥VC ,连接BN ,则γ=∠BNA ,tan γ=tan ∠BNA =ABAN , 而tan ∠BVA =ABAV ,AN <AV ,所以tan ∠BVA <tan ∠BNA ,则γ>∠BVA .又因为tan ∠MVA =AMAV,AB >AM ,所以tan ∠MVA <tan ∠BVA ,所以γ>∠BVA >∠MVA ,则β+γ>π2,故选C.11.如图1,在平面多边形ABCDE 中,四边形ABCD 是正方形,△ADE 是正三角形.将△ADE 所在平面沿AD 折叠,使得点E 达到点S 的位置(如图2).若二面角S -AD -C 的平面角θ∈[π6,π3],则异面直线AC 与SD 所成角的余弦值的取值范围是( )A.[216,24]B.[616,24]C.[216,6+216] D.[0,28]答案 D 解析 如图,取AD 的中点O ,BC 的中点G ,连接OS ,OG ,则OG ⊥AD ,以OG 所在直线为x 轴,OD 所在直线为y 轴,过点O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系.设AB =2,则A (0,-1,0),C (2,1,0),D (0,1,0).因为△SAD 为正三角形,O 为AD 的中点,所以SO ⊥AD ,又OG ⊥AD ,所以∠SOG 是二面角S -AD -C 的平面角,即∠SOG =θ,则S (3cos θ,0,3sin θ).因为AC →=(2,2,0),DS →=(3cos θ,-1,3sin θ),所以cos 〈AC → ,DS →〉=23cos θ-222×2.又θ∈[π6,π3], 所以cos θ∈[12,32],所以cos 〈AC → ,DS →〉∈[6-228,28],故异面直线AC 与SD 所成角的余弦值的取值范围是[0,28].12.(2021·金华十校期末调研)如图,在底面为正三角形的棱台ABC -A 1B 1C 1中,记锐二面角A 1-AB -C 的大小为α,锐二面角B 1-BC -A 的大小为β,锐二面角C 1-AC -B 的大小为γ,若α>β>γ,则( )A .AA 1>BB 1>CC 1 B .AA 1>CC 1>BB 1 C .CC 1>BB 1>AA 1D .CC 1>AA 1>BB 1 答案 D解析 分别延长AA 1,BB 1,CC 1交于点D ,过点D 作DO ⊥底面ABC ,过点O 分别作△ABC 三边的垂线,分别交于点M ,N ,P ,则tan α=DO OM,tan β=DO ON ,tan γ=DO OP,因为α>β>γ,所以OM <ON <OP ,则点O 一定在△BEF 内部(不包括边界),所以OB <OA <OC ,又因为AD =OA 2+OD 2,BD =OB 2+OD 2,CD =OC 2+OD 2,所以BD <AD <CD ,所以CC 1>AA 1>BB 1,故选D.13.(2016·浙江卷)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.答案 66解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系, 则A (0,62,0),B(302,0,0),C (0,-62,0),作DH ⊥AC 于H ,连接D ′H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306, 因此可设D ′(-306cos α,-63,306sin α),则BD ′→=(-306cos α-302,-63,306sin α), 与CA →平行的单位向量为n =(0,1,0), 所以cos θ=|cos 〈BD ′→ ,n 〉|=|BD ′→ ·n |BD ′→|·|n ||=639+5cos α,所以cos α=-1时,cosθ取最大值6 6.。
高二数学空间的角试题答案及解析
高二数学空间的角试题答案及解析1.在正方体中,直线与平面所成角的大小为____________.【答案】.【解析】连接,,连接.由正方体的性质可得,且,所以平面,所以可得为直线与平面所成的角.设正方体的棱长为,则,.在中,,从而得到答案为.【考点】直线与平面所成的角;棱柱的结构特征.2.如图是一个正方体的表面展开图,A、B、C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为。
【答案】【解析】试题分析:把正方体的表面展开图还原成正方体,设的中点为,连接,又,则为异面直线AB和CD所成的角,由余弦定理可得。
【考点】(1)异面直线所成角的定义;(2)平行公里;(3)余弦定理的应用。
3.空间四边形ABCD中,M,N分别是AB和CD的中点,AD=BC=6,MN=则AD和BC所成的角是()A.B.C.D.【答案】B【解析】取线段AC的中点P.由于M,N都是中点.所以QN=3,QM=3.又因为.所以三角形MNP是直角三角形.即MP⊥PN,又因为MP∥BC, PN∥AD.所以AD⊥BC.本题主要是应用三角形的中位线的知识.含中点的题一般都的转化为中位线的知识.【考点】1.异面直线所成的角.2.中位线定理.3.空间问题向平面问题转化.4.在正方体中,是的中点,则异面直线与所成角的大小是()A.B.C.D.【答案】D【解析】在正方体中,容易得到平面,又因为平面,故得到.【考点】异面直线所成角.5.在三棱锥中,是边长为2的正三角形,平面平面,,分别为的中点.(1)证明:;(2)求锐二面角的余弦值;【答案】(1)见试题解析;(2).【解析】(1)要证线线垂直,一般可先证线面垂直,而本题中有,是等边三角形,故可以取中点为,则有,,这是等腰三角形的常用辅助线的作法;(2)关键是作出所求二面角的平面角,由已知及(1)中辅助线,可知平面,由于是中点,故只要取中点,则有,也即平面,有了平面的垂线,二面角的平面角就容易找到了。
空间角问题高三数学知识点
空间角问题高三数学知识点空间角问题是高三数学中的重要知识点之一。
在解决空间角问题时,我们需要熟练掌握一系列概念、定理和计算方法。
本文将系统介绍空间角问题的相关内容,包括空间角的定义、分类和性质,以及求解空间角问题的具体方法和技巧。
一、空间角的定义和分类1.1 空间角的定义空间角是在三维空间中由两条射线形成的角。
它可以看作是平面角在立体空间中的推广。
通常用小写的希腊字母表示空间角,如α、β、γ等。
1.2 空间角的分类根据空间角的大小和位置关系,空间角可以分为以下几种类型:1) 零角:两条射线重合,形成的角为零角。
2) 锐角:两条射线夹角小于90度,形成的角为锐角。
3) 直角:两条射线夹角等于90度,形成的角为直角。
4) 钝角:两条射线夹角大于90度但小于180度,形成的角为钝角。
5) 平角:两条射线夹角等于180度,形成的角为平角。
二、空间角的性质空间角具有一系列重要的性质,掌握这些性质有助于我们解决空间角问题。
2.1 垂直性质若两个空间角互为互补角,则它们所对的两条射线垂直。
2.2 同位角性质若两个空间角由相同的两条射线所形成(其中一条射线相互重合),则这两个空间角互为同位角。
同位角具有以下性质:1) 同位角相等:若两个同位角中的一个角为α,则另一个角也为α。
2) 同位角的补角关系:若两个同位角中的一个角为α,则另一个角为180度减α的补角。
2.3 对顶角性质若两个空间角互为对顶角,则它们所对的两条射线互相重合。
三、求解空间角问题的方法和技巧3.1 判断空间角的类型在解决空间角问题时,首先要能够准确地判断空间角的类型。
可以通过观察两条射线的位置关系和夹角的大小来判断空间角是锐角、直角、钝角还是平角。
3.2 应用对顶角和同位角的性质对顶角和同位角的性质在求解空间角问题时经常被应用。
通过利用对顶角和同位角的性质,可以得到空间角的相关信息,进而解决问题。
3.3 运用向量方法在空间角问题的求解中,向量方法也是一种重要的技巧。
高中数学空间角度问题教案
高中数学空间角度问题教案
学科:数学
年级:高中
课时安排:2课时
教学目标:
1. 理解空间角度的概念,能够准确描述和度量空间角度;
2. 能够运用空间角度的知识解决相关问题;
3. 培养学生的空间想象力和逻辑推理能力。
教学步骤:
第一课时:
1. 导入:通过展示一些真实生活中的空间角度问题,引导学生思考空间角度的概念及其重要性。
2. 讲解:介绍空间角度的定义和性质,分别讲解平面角度和空间角度的区别;
3. 案例分析:给出一些实际问题,让学生尝试计算空间角度,并讨论解决方法;
4. 练习:让学生在小组内进行练习,互相讨论并解答问题;
5. 总结:总结本节课所学内容,强调空间角度的重要性及运用。
第二课时:
1. 复习:通过解答一些简单空间角度问题,复习上节课的内容;
2. 练习:给出一些复杂的空间角度问题,让学生自主解答,并制定解题思路;
3. 探究:引导学生思考空间角度问题的不同解法和解题技巧;
4. 实践:让学生在实际情景中应用空间角度知识,解决一些具体问题;
5. 总结:总结本节课的内容,检查学生对空间角度问题的理解和掌握情况。
教学反思:
本节课以空间角度为主题,通过讲解和案例分析,引导学生掌握空间角度的计算方法和应用技巧,帮助他们在实际问题中运用空间角度知识进行思考和解决。
通过本节课的学习,
学生不仅提高了空间角度问题的解决能力,还培养了他们的空间想象力和逻辑推理能力。
希望学生能够在实际生活中运用所学知识,不断提升自己的数学素养。
考点08 空间角的求解问题(解析版)
考点08 空间角的求解问题立体几何是历年高考的必考题,其考查形式主要为空间几何体的有关计算(主要是体积计算),空间线面的位置关系以及空间角和距离的求解。
例如:2022年全国乙卷(理)[18],2022年全国甲卷(理)[18],2022年浙江高考[19],2022年新高考Ⅰ卷[19],2022年新高考Ⅱ卷[20],2022年天津高考[17],2022年北京高考[17]等都对空间几何体的体积进行了考查。
〔1〕平移法求异面直线所成的角求异面直线所成的角的方法为平移法,平移法一般有3种 (1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移; (3)补形平移.〔2〕线面角、二面角1.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,把线面角转化到一个三角形中求解.2.二面角的求法:二面角的大小用它的平面角来度量. 平面角的作法常见的有①定义法;①垂面法。
〔3〕利用空间向量求空间中的角与距离 1.异面直线所成角若异面直线1l ,2l 所成的角为θ,则|||||cos |cos b a b a b a ==θ(注意:两异面直线所成的角为锐角或直角,而不共线的两向量的夹角的取值范围为(0,π),所以公式中要加绝对值),其中a ,b 分别是直线1l ,2l 的方向向量。
2.直线与平面所成角已知直线l 与平面α,A l =α ,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则|||||cos |sin n a n a n a ==θ。
(注意:直线与平面所成角的范围为⎥⎦⎤⎢⎣⎡2,0π,而向量的夹角的取值范围为[]π,0,所以公式中要加绝对值)。
3.二面角设1n 为平面α的法向量,2n 为平面β的法向量,1n ,2n 的夹角为θ,l =βα ,则二面角βα--l 的大小为θ或θπ-。
设二面角βα--l 的大小为ϕ,则|||||cos ||cos |2121n n ==θϕ①①所示。
利用向量方法求空间角 知识点+例题+练习
教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。
高三数学第二轮专题讲座复习:关于求空间的角的问题
张喜林制[选取日期]高三数学第二轮专题讲座复习:关于求空间的角的问题高考要求空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想 重难点归纳空间角的计算步骤 一作、二证、三算1 异面直线所成的角 范围 0°<θ≤90°方法 ①平移法;②补形法2 直线与平面所成的角 范围 0°≤θ≤90° 方法 关键是作垂线,找射影3 二面角方法 ①定义法;②三垂线定理及其逆定理;③垂面法注1 二面角的计算也可利用射影面积公式S ′=S cos θ来计算注2 借助空间向量计算各类角会起到事半功倍的效果 4.三种空间角的向量法计算公式:⑴异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>; ⑶锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。
典型题例示范讲解例1在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点(1)求证 四边形B ′EDF 是菱形;(2)求直线A ′C 与DE 所成的角;(3)求直线AD 与平面B ′EDF 所成的角;(4)求面B ′EDF 与面ABCD 所成的角命题意图 本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强知识依托 平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角 错解分析 对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面技巧与方法 求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法(1)证明 如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG AB A ′B ′知,B ′EGA ′是平行四边形 ∴B ′E ∥A ′G ,又A ′FD G ,∴A ′GDF 为平行四边形∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面故四边形B ′EDF 是菱形(2)解 如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角在△A ′CP 中, 易得A ′C =3a ,C P =DE =25a ,A ′P =213a 由余弦定理得cos A ′CP =1515 故A ′C 与DE 所成角为另法(向量法) 如图建立坐标系,则(0,0,),(,,0),(0,,0),(,,0)2aA a C a a D a E a '(,,),(,,0)2aA C a a a DE a '⇒=-=-15cos ,15||||A C DE A C DE A C DE ''⇒<>==' 故A ′C 与DE 所成角为 (3)解 ∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a则cosADB ′=33故AD 与平面B ′EDF 所成的角是 另法(向量法)∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示 又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线,故直线AD 与平面B ′EDF 所成的角为∠ADB ′, 如图建立坐标系,则 (0,0,0),(,0,),(0,,0)A B a a D a '(0,,0),(,,)DA a DB a a a '⇒=-=-3cos ,3||||DA DB DA DB DA DB ''⇒<>==',故AD 与平面B ′EDF 所成的角是 (4)解 如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心, 再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE ,B故∠OMH 为二面角B ′—DE ′—A 的平面角在Rt △DOE 中,OE =22a ,OD =23a ,斜边DE =25a , 则由面积关系得OM =1030=⋅DEOEOD a 在Rt △OHM 中,sin OMH =630=OM OH 故面B ′EDF 与面ABCD 所成的角为 另法(向量法) 如图建立坐标系,则(0,0,0),(0,0,),(,0,),(0,,0),(,,0)2aA A aB a a D a E a '',所以面ABCD 的法向量为(0,0,),m AA a '==下面求面B ′EDF 的法向量n设(1,,)n y z =,由(,,0),(0,,),22a aED a EB a '=-=- 00221002a a y nED y a z nED y az ⎧-+=⎪⎧==⎧⎪⎪⇒⇒⎨⎨⎨==⎩⎪⎪⎩-+=⎪⎩∴(1,2,1)n =∴6cos ,||||6n m n m n m <>==故面B ′EDF 与面ABCD 所成的角为 例2如下图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°求 (1)AC 1的长;(2)直线BD 1与AC 所成的角的余弦值技巧与方法 数量积公式及向量、模公式的巧用、变形用21111111222111:(1)||()()()()||||||222AC AC AC AA AC AA AC AA AB AD AA AB AD AA AB AD AA AB AA AD AB AD=⋅=++=++++=+++⋅+⋅+⋅解22222111112221:||,||||,,120,,9011cos120,cos120,0,22||2AA b AB AD aAA AB AA AD AB AD AA AB b aab AA AD b a ab AB AD AC a b ===<>=<>=︒<>=︒∴⋅=⋅︒=-⋅=⋅︒=-⋅=∴=+-由已知得12,||ab AC ∴=1111112211(2),||2,()()AC a AC AB AD BD AD BA AA AD AB AC BD AB AD AA AD AB AB AA AD AA AB AD AD AB ==+=+=+-∴⋅=++-=⋅+⋅+⋅+-依题意得21111122222111||()()||||||2222AB AD ab BD BD BD AA AD AB AA AD AB AA AD AB AA AD AB AD AA AB a b -⋅=-=⋅=+-+-=+++⋅-⋅-⋅=+2212||b a BD +=∴111cos ,||||4BD AC BD AC BD AC ⋅<>==∴BD 1与AC例3如图,l αβ--为60°的二面角,等腰直角三角形MPN 的直角顶点P 在l 上,M ∈α,N ∈β,且MP 与β所成的角等于NP 与α (1)求证 MN 分别与α、β所成角相等; (2)求MN 与β所成角(1)证明 作NA ⊥α于A ,MB ⊥β于B ,连接AM ,再作AC ⊥l 于C ,BD ⊥l 于D ,连接NC 、∵NA ⊥α,MB ⊥β,∴∠MPB 、∠NP A 分别是及NP 与α所成角,∠MNB ,∠NMA 分别是MN 与角,∴∠MPB =∠NP A在Rt △MPB 与Rt △NP A 中,PM =PN ,∠MPB =∠NPA ,∴△MPB ≌△NPA ,∴MB =NA在Rt △MNB 与Rt △NMA 中,MB =NA ,MN 是公共边,∴△MNB ≌△NMA ,∴∠MNB =∠NMA ,即(1)结论成立(2)解 设∠MNB =θ,MN =2a ,则PB =PN =a ,MB =NA =2a sin θ,NB =2a cos θ,∵MB ⊥β,BD ⊥l ,∴MD ⊥l ,∴∠MDB 是二面角α—l —β的平面角,∴∠MDB =60°,同理∠NCA =60°,∴BD =AC =3633=MB a sin θ,CN =DM =63260sin 6=︒MB a sin θ, ∵MB ⊥β,MP ⊥PN ,∴BP ⊥PN∵∠BPN =90°,∠DPB =∠CNP ,∴△BPD ∽△PNC ,∴PBBDPN PC ===整理得,16sin 4θ-16sin 2θ+3=0解得sin 2θ=4341或,sin θ=2321或,当sin θ=23时,CN =632a sin θ= 2a >PN 不合理,舍去 ∴sin θ=21,∴MN 与β所成角为30°。
空间角问题
AB n sinα = cos < AB, n > | AB | | n |
A
B
| AB n | sinα = | AB | | n |
线面角等于直线的方向向量与平面的法向量所 成角的余角或补角的余角.
AA1 (0, 0, 2a) AB (0, a, 0) n AA1 0 (1, y, z ) (0, 0, 2a) 0 z 0 (1, y, z ) (0, a, 0) 0 n AB 0 y 0 3 1 n (1, 0, 0) AC1 ( a, a, 2a ) A 2 2
A B
6
例、如图,正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为 2a 1)求AC1和CB1的夹角, 2)求AC1和面ABB1B所成的夹角 3)求二面角B—AB1—C1的大小 4)M是A1B1的中点,求点B1到面C1MB的距离 C1 5)求AM与B1C1的距离 2)直线与平面所成的角 A1 B1 解法2步骤: 1、求出平面的法向量 2、求出直线的方向向量 3、求以上两个向量的夹角, (锐角)其余角为所求角 C 设平面ABB1B的法向量:n (1, y, z )
3 所以B1C1与面AB1C所成的角的正弦值为 。 3
定义:
A
B
从一条直线出发的两个半平面所组成的 这条直线叫做二面角的棱。 图形叫做二面角。 这两个半平面叫做二面角的面。
3
表示方法:
二面角-AB-
A
C
B
D
l
5
B
A 二面角- l-
二面角C-AB- D
第2讲 立体几何中的空间角问题
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
立体几何微重点14 与空间角有关的最值问题
立体几何微重点14与空间角有关的最值问题立体几何动态问题中,空间角的最值及范围问题是高考的常考题型,常与图形翻折、点线面等几何元素的变化有关,常用方法有几何法、函数(导数)法、不等式法等.主要是利用三角函数值比较及最小角定理(线面角是最小的线线角,二面角是最大的线面角)等求解.考点一空间角的大小比较例1(2022·嘉兴质检)已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,AA1=a,AB=b,且a>b,侧棱CC1上一点E满足CC1=3CE,设异面直线A1B与AD1,A1B与D1B1,AE 与D1B1所成的角分别为α,β,γ,则()A.α<β<γB.γ<β<αC.β<α<γD.α<γ<β规律方法(1)最小角定理:直线与平面所成角是直线与平面内所有直线所成角中最小的角(线面角是最小的线线角).(2)最大角定理:二面角是平面内的直线与另一个平面所成角的最大角(二面角是最大的线面角).跟踪演练1设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P -AC-B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β考点二空间角的最值例2(2022·绍兴模拟)已知正方体ABCD-A1B1C1D1的棱长为2,M,N分别是BC,B1C1的中点,点P是截面AB1C1D(包括边界)上的动点,D1P=343,2ME→=EN→,则EP与平面AB1C1D所成最大角的正切值为________.规律方法求空间角最值、范围的两种常用方法(1)利用空间角的定义及几何图形找到空间角,构造三角形,利用三角函数的比值构造函数求最值、范围.(2)建立空间坐标系,利用坐标运算求空间角的三角函数值,构造函数求最值、范围. 跟踪演练2 (2022·内江模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,M 为线段A 1D 的中点,N 为线段CD 1上的动点,则直线C 1D 与直线MN 所成角的正弦值的最小值为( )A.32B.66C.63D.64考点三空间角的范围例3 如图1,在平面多边形ABCDE 中,四边形ABCD 是正方形,△ADE 是正三角形.将△ADE 所在平面沿AD 折叠,使得点E 达到点S 的位置(如图2).若二面角S -AD -C 的平面角θ∈⎣⎡⎦⎤π6,π3,则异面直线AC 与SD 所成角的余弦值的取值范围是( )A.⎣⎡⎦⎤216,24 B.⎣⎡⎦⎤616,24 C.⎣⎢⎡⎦⎥⎤216,6+216 D.⎣⎡⎦⎤0,28 易错提醒 求空间角的范围时,要注意空间角自身的范围;利用坐标法求角时,要注意向量夹角与空间的关系.跟踪演练3 在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在棱CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,233 D.⎣⎡⎦⎤233,1。
空间中的夹角问题
空间中的夹角问题一、空间中夹角的基本概念1. 异面直线所成角- 定义:过空间任一点引两条异面直线的平行线,则这两条相交直线所成的锐角(或直角)叫做异面直线所成的角。
- 范围:(0,(π)/(2)]。
- 题目示例:- 例1:在正方体ABCD - A_1B_1C_1D_1中,求异面直线A_1B与AD_1所成角的大小。
- 解析:- 连接BC_1,因为AD_1∥ BC_1,所以∠ A_1BC_1就是异面直线A_1B 与AD_1所成的角(或其补角)。
- 设正方体棱长为a,在△ A_1BC_1中,A_1B = BC_1=A_1C_1=√(2)a,所以△ A_1BC_1是等边三角形,∠A_1BC_1=(π)/(3),即异面直线A_1B与AD_1所成角为(π)/(3)。
2. 直线与平面所成角- 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角;当直线与平面垂直时,所成角为(π)/(2);当直线在平面内或直线与平面平行时,所成角为0。
- 范围:[0,(π)/(2)]。
- 题目示例:- 例2:在三棱锥P - ABC中,PA⊥底面ABC,AB = AC = 2,PA = 4,求直线PB与底面ABC所成角的正弦值。
- 解析:- 因为PA⊥底面ABC,所以∠ PBA就是直线PB与底面ABC所成的角。
- 在Rt△ PAB中,AB = 2,PA = 4,根据正弦函数定义sin∠PBA=(PA)/(PB)。
- 由勾股定理PB=√(PA^2)+AB^{2}=√(4^2) + 2^{2}=√(20)=2√(5)。
- 所以sin∠PBA=(4)/(2√(5))=(2√(5))/(5)。
3. 二面角- 定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面;在棱上任取一点,分别在两个面内作棱的垂线,则这两条垂线所成的角叫做二面角的平面角。
- 范围:[0,π]。
专题练 第19练 空间向量与空间角
(2)求PD与平面PAB所成的角的正弦值.
由(1)知,DA,DB,DP两两垂直,
如图,以D为原点建立空间直角坐标系, 则 D(0,0,0),A(1,0,0),B(0, 3,0),P(0,0, 3), 则A→P=(-1,0, 3), B→P=(0,- 3, 3), D→P=(0,0, 3).
设平面PAB的法向量为n=(x,y,z), 则有nn··AB→→PP==00,,
以 B 为坐标原点,分别以B→C,B→A,―BB→1的方向为 x,y, z 轴的正方向,建立如图所示的空间直角坐标系, 由(1)知,AE= 2,
所以 AA1=AB=2,A1B=2 2.
因为△A1BC 的面积为 2 2, 所以 2 2=12·A1B·BC,所以 BC=2, 所以A(0,2,0),B(0,0,0),C(2,0,0),A1(0,2,2),D(1,1,1),E(0,1,1), 则B→D=(1,1,1),B→A=(0,2,0).
所以A→M=(0,1,2),―BC→1=(- 3,1,2),
cos〈A→M,―BC→1〉=
→ ―→ AM·BC1 → ―→
=
|AM|| BC1 |
5 5×2
= 2
10 4.
所以 sin〈A→M,―BC→1〉=
1-cos2〈A→M,―BC→1〉=
6 4.
故
AM
与
BC1
所成角的正弦值为
6 4.
(2)(2022·毕节模拟)在正四棱锥 S-ABCD 中,底面边长为 2 2,侧棱长为
跟踪训练3 (2022·重庆调研)如图,在四棱锥P-ABCD中,PA⊥平面ABCD, AC,BD相交于点N,DN=2BN=2 3,PA=AC=AD=3,∠ADB=30°.
空间角的求法
高中数学知识专题系列空间角的求法(1)定义法:求解空间角的大小,一般都是根据有关角的定义(如异面直线所成的角、斜线和平面所成的角、二面角的平面角),把空间角转化为平面角来求解的。
例1、如图,在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( )A 、510 B 、515 C 、54 D 、32解:(方法一)如图2,取11C D 的中点M ,连结MO O 为底面中心,∴O 为BD 中点,从而FO 为DAB ∆的中位线M D AB FO 1//21//∴,∴四边形FOM D 1为平行四边形F D MO 1//∴,故MOE ∠(或其补角)即为异面直线F D 1和OE 所成的角。
在MOE ∆中,2,51221==+==ME F D OMOE 3)2(1222=+=+=OC EC 由余弦定理得:5153522352cos 222=⋅⋅-+=⋅-+=∠OE OM ME OE OM MOE 故选B(方法二)如图3,取C D 1的中点N ,连结NF 、N D 1,易知NF //EO ,FN D 1∠∴(或其补角)即为异面直线F D 1和OE 所成的角。
在FN D 1∆中,3,221,5111=====OE NF C D N D F D ,由余弦定理得: 5153522352cos 1212211=⋅⋅-+=⋅⋅-+=∠NF FD N D NF FD FN D 故选BA 1 图1C A 1图2A 1图3A 1 D 图4高中数学知识专题系列haiPage 2 of 13(方法三) 如图4,设BC 中点为P ,PC 中点为Q ,连结P C 1、EQ 、OQ 、OP ,易知F D P C 11//F D EQ P C EQ 1121//,21//∴OEQ ∠∴(或其补角)即为异面直线F D 1和OE 所成的角。
空间角(空间线线、线面、面面成角问题)练习题(答案)
空间角练习题1.二面角是指( D )A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有( D )A 1条或2条交线B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( B )A 5B 20 CD4.在直二面角α-l-β中,RtΔABC在平面α内,斜边BC在棱l上,若AB 与面β所成的角为600,则AC与平面β所成的角为( A )A 300B 450 C600 D 12005.如图,射线BD、BA、BC两两互相垂直,AB=BC=1,BD=,则弧度数为的二面角是( A )A D-AC-B B A-CD-BC A-BC-D D A-BD-C6.△ABC在平面α的射影是△A1B1C1,如果△ABC所在平面和平面α成θ角,有(B)A S△A1B1C1=S△ABC·sinθB S△A1B1C1=S△ABC·cosθC S△ABC =S△A1B1C1·sinθD S△ABC=S△A1B1C1·cosθ7.如图,若P为二面角M-l-N的面N内一点,PB⊥l,B为垂足,A为l上一点,且∠PAB=α,PA与平面M所成角为β,二面角M-l-N的大小为γ,则有( B )A sinα=sinβsinγB sinβ=sinαsinγC sinγ=sinαsinβD 以上都不对8.在600的二面角的棱上有两点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段,已知:AB=6,AC=3,BD=4,则CD= 7cm 。
9.已知△ABC和平面α,∠A=300,∠B=600,AB=2,ABα,且平面ABC与α所成角为300,则点C到平面α的距离为。
空间角的求法
(3)求直线PD与平面PAC所成角的余弦值.
P
解:(3)连结DB,交AC于点O, ∵ ………… ∴ AC⊥平面 PBD 又∵AC ⊂平面PACHຫໍສະໝຸດ DOAC B
∴ 平面PDB ⊥平面 PAC 连结PO,过D作DH⊥PO于点H, ∵ …………
∴ DH ⊥平面 PAC
∴PH是直线PD在平面PAC的射影
∴∠DPH是直线PD与平面PAC所成的角
在PBM中, cosPBM 5 ∴直线AC与PB所成角的余弦值为 5 5
5
M
“作” “证” “算” “答”
【方法点评】求异面直线所成的角,最关键的就是通过 平移把异面直线转化为相交直线,即空间问题平面化.
而平移的方法通常是通过构造平行四边形或三角形的 中位线等,平移到端点处或中点处相交.
跟踪训练5.(1)
D1
C1
A1
B1
D
C
M
H
A
F
B
∠HMB是二面角B-FC1-C的平面角
(2)
P
MH
C
B
A (i)∠PCB
P
C
B
A
【方法点评】求直线与平面所成的角,最关键的就是要
找出斜线在平面内的射影, 而要找到射影也就是要找到该 平面的垂线,有时还要利用面面垂直来构造线面垂直, 从而找到该平面的垂线.
跟踪训练2.(1)
P
A
C
OD
B
∠PAO
跟踪训练2.(2)
C
H
S
B
M
A
平面SCM ⊥平面 ABC SH ⊥平面 ABC ∠SCH
空间角的求法
例1.四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为矩 形,且PD=DC=2AD,求直线AC与PB所成角的余弦值。
与空间角有关的翻折问题和最值问题
与空间角有关的翻折问题和最值问题下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
与空间角有关的翻折问题和最值问题该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 与空间角有关的翻折问题和最值问题 can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary,word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!翻折问题和最值问题在数学中是常见的问题类型,它们与空间角有关,涉及到不同的数学概念和方法。
空间角问题-高考数学知识点
空间角问题-高考数学知识点
规定为。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
二、直线和平面所成的角
①平面的平行线与平面所成的角:规定为。
②平面的垂线与平面所成的角:规定为。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
三、解题技巧
在解题时,注意挖掘题设中两个主要信息(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、面面角: 二面角的范围: [0, ]
①向量法
n1,n2
n1,n2
n2
n1,n2
n2
n1,n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角
A
O
B
C
例2、如图,在正方体ABCD-A1B1C1D1 中, 求A1B与平面A1B1CD所成的角
D1 A1
C1
B1
O
D A
C B
二、线面角向量法: 范围: [0, ] 2
线面角等于直线的方向向量与平面的法向量
所成角
AB,
n
的余角.
n
cos < AB, n >=
AB n
| AB | | n |
CB//DA,EA=DA=AB=2CB,EA⊥AB,M是EC的 中点,(Ⅰ) 求证:DM⊥EB; (Ⅱ)求二面角M-BD-A的余弦值.
D
C
AM
B
N
E
解: 分别以直线AE,AB,AD为x轴、y轴、z轴,
建立如图所示的空间直角坐标系A-xyz,设CB=a,
则A(0,0,0),E(2a,0,0),B(0, 2a, 0),C(0, 2a,Daz),D(0,0,2(aⅠ),)证所:以DMM(=a(,a,a,a,-) 1….5…a),4a2分
AB n
sinα = cos < AB, n >
| AB | | n |
A
B
sinα = | AB n | | AB | | n |
线面角或等于直线的方向向量与平面的法向量 所成角的补角的余角.
例2、如图,正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为 2a
1)求AC1和CB1的夹角,
A
O
B
当直线与平面垂直时,直
线与平面所成的角是90°
当直线在平面内或
与平面平行时, 直线与平面所成的角是0°
直线与平面所成的角
[ 0°, 90°]
斜线与平面所成的角
( 0°, 90°) 异面直线所成的角
( 0°, 90°]
最小角原理
斜线与平面所成的角,是这条斜线和这个平 面内的直线所成的一切角中最小的角。
所以二面角B1 MA C的余弦值为
6。 6
小结:
1.异面直线所成角:
cos | cos a,b |
C
D
a
a
A
D1
bB
2.直线与平面所成角:
sin | cos n, AB |
B
A
n
O n
3.二面角:
B
A C l
D
cos cos AB,CD AB CD
OB =(1,1,0);OS =(0,0,1);
Cy
B
(2)设面SAB的法向量 n (x, y, z)
显然有 n AB, n SA
x y 0
2x
z
0
A
令x=1,则y=1,z=2;从而 n (1,1,2) x
z
S
O
Cy
B
sin cos OS, n OS n 2 6
|
a
b
a,b
|
结论:
| cos a,b |
已知F1与E1为四等分点,求异面直线
DF1与BE1的夹角余弦值?
z
D1
F1
C1
A1
E1 B1
① 几何法
② 向量法
D A
x
C
B
y
cos< DF ,BE > = 15 1 1 17
cos<
DF1,E1B>
=
-
15 17
质疑:空间向量的夹角与异面直线的夹角有什么
B1
AB1 (1,0,1),AC (1,1,0)
设平面AB1C的法向量为n (x,y,z)
A
D1
C1
y
D
则n AB1 0,n AC 0
B
C
所以
x x
z y
0 ,取x 0
=
1,
得y = z = -1,故n = (1,-1,-1), cos
x
n,B1C1
01 0 1 3
x y z 0 令y=-1,则x=1,
y C
∴ n2 =(1,-1,0)于是cos n1, n2 n1 n2
n1 n2
4 2 2 52 5
又∵所求二面角为< n1, n2 >的补角,
故二面角B1―A1C―C1的余弦值为
22 5
(本小题满分14分) 如图所示的几何体ABCDE中,DA⊥平面EAB,
B1O (1,1, 2)
D O
A(2,0,0),C(0,2,0),M (0,0,1), A
B1(2,2,2),O(1,1,0)。
x
B1O MA 2 0 2 0,B1O MC 0 2 2 0
所以B1O MA , B1O MC 即B1O MA , B1O MC。又MA
6
6
⑶.cos SA,OB SAOB 2 10 SA OB 5 2 5
所以直线SA与OB所成角余弦值为
10
5
z
S
O
Cy
B
练习:在例2中,长方体AC1的棱AB=BC=3,BB1=4,
z
点E是CC1的中点 。 求:二面角B1―A1C―C1的大小。 A1
D1
解:如图,建立空间直角坐标系,
,
0,1),Biblioteka BD1(1 2
,
1 2
,1)
A
By
cos AF1, BD1
AF1 BD1
x
1 1 4
30
| AF1 || BD1 |
5 3 10
42
30
所以 BD1与 AF1 所成角的余弦值为 10
二、线面角 斜线与平面所成的角
平面的一条斜线 和它在这个平面内的射影 所成的锐角
3 3
所以B1C1与面AB1C所成的角的正弦值为
3。 3
定义:
O
B A
A
B
从一条直线出发的两个半平面所组成的 图形叫做二面角。这条直线叫做二面角的棱。
这两个半平面叫做二面角的面。
3
表示方法:
B
∠AOB
O
二面角-AB-
A
A
C
B
l
B
A
二面角- l-
D
二面角C-AB- D
取A1B1、A1C1的中点D1、F1,求BD1与AF1所成的角的余弦值.
解:如图所示,建立空间直角坐标
z
系C xyz,如图所示,设CC1 1则:
C1
F1
D1
B1
A(1, 0, 0), B(0,1, 0),
1
11
F1( 2 , 0,1), D1( 2 , 2 ,1)
A1
C
所以:AF1
(
1 2
B1
C1
由例2知面A1B1C的法向量为 n1 =(0,4,3)
下面我们来求面A1 C1C的法向量 n2
A
E D
设 n2 =(x,y,z),由于 A1C1=(3,3,0), B
CC1 =(0,0,4) 于是n2 A1C1 0 n2 CC1 0
x
3x 3y 0
4z 0
AB CD
n2
一进一出, 二面角等于
法向量的夹
角;
同进同出,
二面角等于
n1
l
法向量夹角 的补角。
n2
l
n1
cos cos n1, n2
cos cos n1, n2
练 习:
z 如图,已知:直角梯形OABC中,OA∥BC,∠AOC=90°,
SO⊥面OABC,且
AA1 AB
0 0
(1, (1,
y, y,
z z
) )
(0, (0,
0, a,
2a) 0) 0
0
z y
0 0
n (1, 0, 0)
31
AC1 (
2
a, a, 2
2a)
A
cos
AC1, n
|
AC1 AC1 |
n | n
|
例4.已知正方体 ABCD A1B1C1D1的边长为2,
O为AC和BD的交点,M为 D的D中1 点
z
(1)求证: 直线B1O 面MAC; (2)求二面角 B1 MA C 的余弦值.
D1
①证明:以 DA、DC、DD1为正交基底, A1 建立空间直角坐标系如图。则可得
M
所以MA (2,0,1),MC (0,2,1),
2)求AC1和面ABB1A1所成角的正弦值
2)直线与平面所成的角
步骤: 1、求出平面的法向量