求空间角的常用方法
2023年高考数学----空间角问题规律方法与典型例题讲解
2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。
立体几何角度的求法
3)角的边都要垂直于二面角的棱
l
B
A
此 图
×正
O
确 ?
B
10
二面角的平面角的作法:
1、定义法
A
根据定义作出来
O
l
B
2、垂面法 作与棱垂直的平面与
l
O
两半平面的交线得到
γ
A
B
3、三垂线定理法 借助三垂线定理或
其逆定理作出来
A
D
l
O
12
二面角的计算步骤:
1、找到或作出二面角的平面角 2、证明 (指出)1中的角就是所求的 角 3、计算出此角的大小
斜线和平面所成的角(或斜线和平面的夹角) • 直线和平面垂直<=>直线和平面所成的角是直角 • 直线和平面平行或在平面内<=>直线和平面所成的
角是0°
思考
• 直线与平面所成的角θ的取值范围
是: 0≤θ≤π/2
。
• 斜线与平面所成的角θ的取值范围
是: 0<θ<π/2
。
斜线和平面所成的角的求法
(1)射影法:在线上取一点作面的垂线,斜 足与垂足的连线与斜线所成的角即为所求。 问题2.正方体ABCD-A1B1C1D1中,E、F分别为BB1 、
这两个半平面叫做二面角的面。
二面角的范围
[00,1800]
3
角
二面角
图形
顶点
A 边
O
边B
从一点出发的两
定义 条射线所组成的
图形叫做角。
构成
边—点—边
(顶点)
表示法
∠AOB
A 棱a 面
B面
从一条直线出发的 两个半平面所组成 的图形叫做二面角。
空间角的求法
空间角的求法一、异面直线所成角的求法 平移法常见三种平移方法:直接平移;中位线平移(尤其是图中出现了中点);补形平移法。
“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
(1)直接平移法例1 如图,PA ⊥矩形ABCD ,已知PA=AB=8,BC=10,求AD 与PC 所成角的正切值。
(524)(2)中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。
例2 设S 是正三角形ABC 所在平面外的一点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点,求异面直线SM 与BN 所成的角的余弦值。
(510)(3)补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体1111D C B A ABCD -中,E 是1CC 的中点,求直线AC 与ED 1所成角的余弦值。
(510)BMA NCS二、线面角的三种求法1.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。
例1四面体ABCS 中,SA ,SB ,SC 两两垂直,∠SBA=45°,∠SBC=60°,M 为AB 的中点,求:(1)BC 与平面SAB 所成的角;(60°) (2)SC 与平面ABC 所成的角。
(77)(“垂线”是相对的,SC 是面SAB 的垂线,又是面ABC 的斜线。
作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
)2.利用公式lh=θsin :其中θ是斜线与平面所成的角,h 是垂线段的长,l 是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。
3.2.3空间的角的计算
我们知道,两个平面所成的角是用二面角的平面角来度 量.这就是说,空间的二面角最终可以通过转化,用两条相交 直线所成的角来度量.
如何用向量的方法来求空间二面角的大小呢?
1
建构数学
在定义了平面的法向量之后,我们就可以用平面的法向量来求两个 平面所成的角.
方法一:转化为分别是在二面角的两个半平面内且与棱都垂直的两 条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).
如图:二面角 α-l-β 的大小为 θ,A,B∈l,AC α,BD β, AC⊥l,
BD⊥l ,则 θ=< AC , BD >=< CA , DB >.
l
A
ቤተ መጻሕፍቲ ባይዱ
C
B D
2
数学应用
例 3 在正方体 ABCD A1B1C1D1 中, 求二面角 A1 BD C1 的大小.
3
练一练
如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,PA=AB,∠ABC=60°, ∠BCA=90°,点 D,E 分别在棱 PB 和 PC 上,且 DE//BC.
①求证:BC⊥平面 PAC; ②当 D 为 PB 的中点时,求 AD 与平面 PAC 所成的角的大小; ③是否存在点 E,使得二面角 A-DE-P 为直二面角?并说明理由.
4
回顾小结
本节课学习了以下内容: 1.用向量方法解决二面角的计算问题. 2.注重数形结合,注重培养我们的空间想象能力.
5
空间几何中的角度与距离计算
空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。
通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。
本文将介绍空间几何中常用的角度计算方法和距离计算方法。
一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。
常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。
在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。
余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。
2. 矢量法矢量法是一种基于向量运算的角度计算方法。
通过将空间中的两个向量进行运算,可以得到它们之间的夹角。
常见的向量法角度计算包括点乘法和叉乘法。
(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。
可以通过点乘法计算向量之间的夹角。
(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。
可以通过叉乘法计算向量之间的夹角。
3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。
通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。
三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。
二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。
常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。
对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。
欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。
空间角的几何求法
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
空间的角
EC5551tan .===∠∴∠∴⊥∴⊥FB EB EBF EBF ABCD EB ABCD EF ABCD PD 的角的平面角是和底面底面底面 空间的角一 空间的角主要有:(1)异面直线的角(2)直线和平面的角(3)平面和平面的二面角(1)空间角的计算的主要方法是将空间角转化为平面角,而求平面角主要应用解三角形的知识和余弦定理。
(2)求空间角一般分三步走:第一步:通过平移,做垂线等做出空间角的平面角。
第二步:证明做出的角必须验证符合题意。
第三步:计算注意:(1)要有丰富的空间想象能力,能够做出空间角的平面角。
(2) 要有良好的计算能力,特别是解三角形的计算和余弦定理的计算。
二 两条异面直线所成的角:(1)作图要点:通过平移一条或者同时平移两条直线,使得平行线相交构成平面角。
(2)计算:主要是应用余弦定理计算,那么就要计算出三角形三边的长(计算量一般有点大)。
例题1)在正方体ABCD-A ′B ′C ′D ′中,E 是CC ′中点,F 是AD 中点,O 是底面中点,求异面直线D ′F 和OE 所成的角的余弦值。
解:如图2所示:作BC 中点M,连接MC ’, 则FD ’//MC ’。
作MC 中点N ,连接NE 则NE//MC ’//FD ’因此异面直线D ′F 和OE 所成的角的 平面角是∠EONCos ∠EON=NO EO ENNO EO ∙-+2222 =515三 直线和平面所成的角:平面的一条斜线和他在平面上的射影所成的锐角,叫做这条斜线和平面所成的角。
(1)作图要点:在直线上取适当一点,再过点做平面的垂线,连接斜线在平面的交点和垂足所成的直线为射影,则斜线上的店交点和垂足构成一个直角三角形,再用解三角形的知识解出。
例题2)如图:在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,E是PC 的中点。
求EB 与底面ABCD 所成的角的正切值。
解:作CD 的中点F ,连接EF 。
高中空间几何求各种角的公式
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
空间角的求法
PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。
CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。
求异面直线1AB与1BC 所成角的余弦值。
【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
空间角的求法
空间角求法空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.●锦囊妙计空间角的计算步骤:一作、二证、三算1.异面直线所成的角范围:0°<θ≤90°方法:①平移法;②补形法.2.直线与平面所成的角范围:0°≤θ≤90°方法:关键是作垂线,找射影.3.二面角方法:①定义法;②三垂线定理及其逆定理;③垂面法.注:二面角的计算也可利用射影面积公式S′=S cosθ来计算[例1]在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(1)求证:四边形B′EDF是菱形;(2)求直线A′C与DE所成的角;(3)求直线AD与平面B′EDF所成的角;(4)求面B′EDF与面ABCD所成的角.命题意图:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★级题目.知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.错解分析:对于第(1)问,若仅由B′E=ED=DF=FB′就断定B′EDF是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B′、E、D、F四点共面.技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.1二面角α-l-β内有一点P,若P到面αβ的距离分别为5,8且P在面αβ内的射影的距离为7,则二面角α-l-β的度数是解:设P在平面α,β的内的射影分别为A和B,过A作α与β交线的垂线,垂足为C,连接BC,∵PA=5,PB=8,AB=7,∴cos∠APB= 1/2即∠APB=60°而∠ACB即为二面角α-l-β的平面角,∵∠ACB与∠APB互补,∴∠ACB=120°,故选C.三垂线定理及其逆定理定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
空间角的求法
空间角的求法一、异面直线所成的角:1、定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上2、异面直线所成的角的范围:2,0(π3、求异面直线所成的角的方法:(1)直接平移法:在一条直线上找一点,过该点做另一直线的平行线;例1、如图PA ⊥矩形ABCD ,已知PA=AB=8,BC=10,求AD 与PC 所成的角正切值。
(2)中位线平移法:构造中位线,利用中位线性质,将异面直线所成角转化为平面角,解三角形求之例2、设S 是正三角形ABC 所在平面外一点,SA=SB=SC ,且∠ASB=∠BSC=∠CSA=2π,M 、N 分别是AB 和SC 的中点,求异面直线SM 与BN 所成角的余弦值.(3)补形平移法:在已知图形外补作一个相 同的几何体,以利于找出平行线。
例3、已知正三棱柱ABC-A 1B 1C 1的底面边长8,侧棱长为6,D 为AC 的中点。
求异面直线AB 1与BC 1所成角的余弦值.(4).向量法: CDAB CD AB →→=.cos θ二、直线和平面所成的角1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、范围:[0,2π]。
当直线垂直平面时,所成的角θ=2π,当直线平行平面或在平面内,所成角为θ=0。
3、求直线与平面所成的角的方法:(1).直接法:斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
①经过斜线上一点作面的垂线;②找出斜线在平面内的射影,从而找出线面角;③解直角三角形。
例4、在四面体ABCS 中,SA ,SB ,SC 两两垂直,∠SBA=45°,∠SBC=60°,M 为AB 的中点,求:(1)BC 与平面SAB 所成的角;(60°) (2)SC 与平面ABC 所成的角。
求空间角的常用方法
a2
3 2
a
7a 2
EF
FD2 ED2
a 2
2
3 2
a
2
a
PE 2 EF 2 PF 2
cos PEF 2PF·EF
7 2
2
a
a2
a 2
2
2 7 aa
=
7 4
+1-
1 4
=
5
7
2
7
14
∴二面角P-AB-F的平面角的余弦值为 5 7 14
点评 这里由已知条件很容易找到二面角的棱AB的垂面,故运用垂面法可顺利找 出二面角的平面角.
即 tan θ1 tan θ2 1
1 tan θ1·tan θ2
x x
亦即
2 1
12
x·x
1
2 12
整理得x2 10x 24 0 解得x1 4,x2 6
故异面直线AC与BD之间的距离是4cm或6cm. 点评 本题是将两条异面直线的距离转化为异面直线所在的两个平行平面的距离来 解决的.
3.体积法
2.转化法
常用的方法有将线面距离转化为点面距离,将线线距离转化为线面距离或面面
距离.还有,甲点到平面 的距离可以转化为与其相关的乙点到平面 的图1-13,正方体ABCD- A1B1C1D1 的棱长为1,O是底面
A1B1C1D1 的中心,则O到平面 ABC1D1 的距离为( ).
3
(D) 6 3
解 设O到平面ABC的距离为h. ∵AB,AC,CB的球面距离均为 2
∴∠AOB=∠AOC=∠COB= 2
∵球半径为l, ∴AO=BO=CO=1,AB=AC=BC= 2
· ∴
VO ABC
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
空间角的概念与计算
空间角的概念与计算在几何学中,角是一个基本的概念,用于描述物体之间的相对方向。
而空间角则是在三维空间中描述物体之间方向关系的重要指标。
本文将介绍空间角的概念及其计算方法。
一、空间角的概念空间角是用来描述三维空间中两个矢量之间的夹角关系。
在二维空间中,我们可以通过一条射线和一条直线之间的夹角来描述角度,而在三维空间中,空间角则需要考虑更多的因素。
具体而言,对于任意两个非零矢量a和b,它们之间的空间角被定义为它们的夹角θ,满足0 ≤ θ ≤ π。
其中,θ=0时表示a和b共线,θ=π/2时表示a和b正交,θ=π时表示a和b反向。
二、空间角的计算1. 余弦定理计算空间角余弦定理是空间角计算中常用的方法之一。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:cosθ = (a·b) / (|a|·|b|)其中,·表示矢量的点积,|a|和|b|分别表示矢量a和b的模长。
通过求解上式,我们可以得到空间角θ的值。
2. 向量叉积计算空间角另一种常用的空间角计算方法是利用向量的叉积。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:sinθ = |a×b| / (|a|·|b|)其中,×表示矢量的叉积。
通过求解上式,我们可以得到空间角θ的正弦值,进而计算出空间角的值。
三、实例演示下面通过一个实例来演示如何计算空间角。
假设有两个矢量a = (1, 2, 3)和b = (4, 5, 6)。
我们希望计算出它们之间的空间角θ。
首先,我们可以通过求解余弦定理来计算空间角的余弦值:cosθ = (1×4 + 2×5 + 3×6) / √(1² + 2² + 3²) × √(4² + 5² + 6²)= (4 + 10 + 18) / √14 × √77= 32 / √1078 ≈ 0.979然后,通过反余弦函数可以求得空间角的弧度值:θ = arccos(0.979) ≈ 0.199 rad最后,将弧度值转换为度数,即可得到空间角的度数表示:θ ≈ 0.199 × (180/π) ≈ 11.4°因此,矢量a和b之间的空间角约为11.4°。
空间角的求法方法归纳
空间角的求法方法归纳
空间角的求法方法归纳
在数学和物理学中,空间角是一种非常重要的概念。
物体在空间中的角度关系经常被用到各种计算和分析中。
因此,求解空间角的方法也变得尤为重要。
本文将按类划分,总结空间角的求法方法。
立体角的求法
立体角是三维空间中用来描述四面体的角度大小的量,并且与其各个顶点相对应。
求解四面体的立体角可以通过以下公式进行计算:
V5 = 1/3(arccos(A1) + arccos(A2) + arccos(A3) - π )
其中V5指四面体的立体角,A1、A2、A3为三个向量的夹角余弦,pi 为圆周率。
平面角的求法
平面角是在二维平面中两个射线之间的角度大小,于是端点重合,两条射线叫做角的顶点,并记为O。
平面角的计算公式如下:
cosθ = a·b / |a||b|
其中,a和b分别表示两个向量,|a|和|b|表示向量的模,lala和lblb都为0,则cosθ没有定义。
球面角的求法
球面角是指在球面上相互靠近的两条弧(或线)之间的角度大小。
求解球面角需要先计算其对应的球面扇形的面积,然后进行换算即可,具体公式如下:
S = R²θ
其中R表示球体半径,θ表示对应的球面角。
总结
空间角的求法方法主要包括立体角、平面角和球面角三种。
其中立体角的求解需要根据四面体的三个向量夹角余弦值计算,平面角的计算需要先计算两个向量的点积并除以其模,而球面角的求解则需要先计算出对应的球面扇形面积。
这些空间角的求法方法可以帮助我们更准确地分析并解决各类问题。
空间角的求法
(3)求直线PD与平面PAC所成角的余弦值.
P
解:(3)连结DB,交AC于点O, ∵ ………… ∴ AC⊥平面 PBD 又∵AC ⊂平面PACHຫໍສະໝຸດ DOAC B
∴ 平面PDB ⊥平面 PAC 连结PO,过D作DH⊥PO于点H, ∵ …………
∴ DH ⊥平面 PAC
∴PH是直线PD在平面PAC的射影
∴∠DPH是直线PD与平面PAC所成的角
在PBM中, cosPBM 5 ∴直线AC与PB所成角的余弦值为 5 5
5
M
“作” “证” “算” “答”
【方法点评】求异面直线所成的角,最关键的就是通过 平移把异面直线转化为相交直线,即空间问题平面化.
而平移的方法通常是通过构造平行四边形或三角形的 中位线等,平移到端点处或中点处相交.
跟踪训练5.(1)
D1
C1
A1
B1
D
C
M
H
A
F
B
∠HMB是二面角B-FC1-C的平面角
(2)
P
MH
C
B
A (i)∠PCB
P
C
B
A
【方法点评】求直线与平面所成的角,最关键的就是要
找出斜线在平面内的射影, 而要找到射影也就是要找到该 平面的垂线,有时还要利用面面垂直来构造线面垂直, 从而找到该平面的垂线.
跟踪训练2.(1)
P
A
C
OD
B
∠PAO
跟踪训练2.(2)
C
H
S
B
M
A
平面SCM ⊥平面 ABC SH ⊥平面 ABC ∠SCH
空间角的求法
例1.四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为矩 形,且PD=DC=2AD,求直线AC与PB所成角的余弦值。
空间角的求法
空间角的求法一、异面直线所成角的求法平移法常见三种平移方法:直接平移;中位线平移(尤其是图中出现了中点);补形平移法。
“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
(1)直接平移法4J2例1如图,PA_矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的正切值。
()5(2 )中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA = SB= SC,且.ASB = . BSC = . CSA =—,2M、N分别是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
()5(3 )补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABC^ A1B1C1D1中,E是CC1的中点,求直线AC与ED i所成角的余弦值。
、线面角的三种求法1. 直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。
例1四面体 ABCS 中,SA ,SB ,SC 两两垂直,/ SBA=45,/ SBC=60 , M 为AB 的中点,求:质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的 垂线。
)h U2. 利用公式si =:其中。
是斜线与平面所成的角, h 是垂线段的长,I 是斜线段的长,其中求l 出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂 线段的长。
例2长方体ABCD-A i B i C i D i 中AB=3 , BC=2 ,A I A= 4,求AB 与面AB i C i D 所成的角的正弦值。
角度计算方法
角度计算方法角度是我们在日常生活和工作中经常需要计算的一个量,它在几何学、物理学、工程学等领域都有着重要的应用。
在不同的情境下,我们需要使用不同的方法来计算角度,本文将介绍几种常见的角度计算方法。
一、直接测量法。
直接测量法是最直接的一种角度计算方法,它适用于需要测量实际物体或空间中角度的情况。
通常使用量角器或者测角仪器来进行测量,将其放置在需要测量的角度上,读取仪器上的刻度即可得到角度值。
这种方法简单直接,适用于日常生活中的各种测量工作。
二、三角函数法。
三角函数法是数学中常用的角度计算方法,它利用三角函数的性质来计算角度。
根据三角函数的定义和性质,我们可以通过已知的边长或角度来计算其他角度的数值。
例如,利用正弦定理、余弦定理和正切定理,我们可以在不知道角度具体数值的情况下,通过已知的边长和角度来计算出所需的角度数值。
三、向量法。
在物理学和工程学中,向量法是常用的角度计算方法之一。
通过向量的性质和运算规则,我们可以计算出向量之间的夹角,从而得到所需的角度数值。
这种方法在空间向量、力学分析、电路分析等领域有着广泛的应用,它能够准确地描述物体或系统之间的角度关系。
四、数值计算法。
数值计算法是利用计算机和数值计算软件来进行角度计算的方法。
通过数值计算软件,我们可以输入已知的参数和条件,利用数值计算方法来得到所需的角度数值。
这种方法在复杂的工程计算和科学研究中经常被使用,它能够快速准确地得到角度的数值结果。
五、图像处理法。
图像处理法是利用计算机图像处理技术来进行角度计算的方法。
通过对图像进行处理和分析,我们可以得到图像中物体之间的角度关系。
这种方法在机器视觉、遥感技术、医学影像等领域有着广泛的应用,它能够实现对图像中角度信息的自动化提取和分析。
综上所述,角度计算方法有着多种多样的形式,我们可以根据具体的情况和需求来选择合适的方法进行计算。
在实际应用中,我们需要根据具体的情况来灵活运用这些方法,以便得到准确、可靠的角度数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求空间角的常用方法(两课时)
张一生
1.定义法————根据定义,把空间角转化为平面角求解.
例1.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;
(Ⅱ)求二面角B AP C --的正弦值大小; (Ⅲ)求点C 到平面APB 的距离.
[
3
] 例2. 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,,
60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明AE ⊥平面PCD ;
(Ⅲ)求二面角A PD C --的正弦值大小.
2.选点平移法——选择适当的点,通过作平行线,构造出所要求的空间角.
例3.如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD
=
,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥
AD ,AD =2AB =2BC =2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的正切值;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD
的距离为
AQ QD 的值;若不存在,请说明理由.
3.垂线法————当已知条件中出现二面角中一个半平面内一点到另一个半平面垂线时(或虽未给出这样的垂线,但由已知条件能作出这样的线),可依据三垂线定理或其逆定理作出它的平面角,然后再求解.
例4.如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点
E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ;(Ⅱ)求二面角1A DE B --的正切.
A
B
D
P
A
C
D
P
E
A
B C
D E A 1
B 1
C 1
D 1
F
H G
例5. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的正弦值.
例6.如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的正弦.
4.垂面法————在求解二面角的问题中,若能找到或者作出棱的垂面,则垂面与两个半平面的交线所成的角即为二面角的平面角.
例7. 如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC
平面⊥PA ABCD,32,2,3===AB AD PA ,BC =6.求二面角A BD P --的大小.
例8.如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==,(1)求证:1,,,E B F D 四点共面;(2)若点G 在BC 上,2
3
BG =
,点M 在1BB 上,
GM BF ⊥,垂足为H ,求证:EM ⊥面11BCC B ;(3)用θ表示截面1EBFD 和面11BCC B 所成锐二面角大小,求tan θ.
1
D
1
A
A
B
C
D
1
C 1
B
M
E
F H
G
A
B C D
1
A 1
C
1
B
O F
G。