《概率论》第3章
概率论第三章 多维随机变量及其分布
![概率论第三章 多维随机变量及其分布](https://img.taocdn.com/s3/m/1341bac3f111f18582d05ae9.png)
1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R
概率论第三章
![概率论第三章](https://img.taocdn.com/s3/m/22c433d376eeaeaad1f3303f.png)
一、数学期望的概念 二、数学期望的性质 三、应用实例
回
停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .
数学期望, 记为EX, 即
E X
xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为
1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.
《概率论》第3章§3条件分布
![《概率论》第3章§3条件分布](https://img.taocdn.com/s3/m/28879e6e58fafab069dc029c.png)
G
第三章 多维随机变量及其分布
§3
条件分布
12/17 12/17
设 ( X ,Y) 服从圆域 G : x2 + y 2 ≤ 1 上的均匀分布. 服从圆域 上的均匀分布. 求条件概率密度 f X|Y (x | y) f X |Y (x | y)表示固定 Y = y时 ( X ,Y)的密度及 Y的边缘密度分别为 y 2 , 1 y 2 ) ~ y 2 X y 2 U( 1 1/ π, x + ≤1 1 f (x, y) = y 其它 0,
p13 P{X =1| Y = 3 = p. = 0 = 0 } 3 7/ 48 p23 P{X = 2| Y = 3 = p. = 0 = 0 } 3 7/ 48 即在 Y = 3的条件下 ,Y = 3} = p33 = 1/12 = 4 P{ X = 3| X的条件分布律为 p.3 7/ 48 7 X=k 1 p43 2 3 4 1/163/ 73 P{{X=k | YY 3}3 = p.0 =4/ 7 = PX = 4| = = } 0 第三章 48 7 3 7/ 多维随机变量及其分布
P(B)
在形式上很相似! 在形式上很相似!
f (x, y) fY| X ( y | x) = f X (x)
(∞ < y < ∞)
F | X ( y | x) = ∫∞ fY| X (v | x)dv (∞< y < ∞) Y
x
第三章 多维随机变量及其分布
§3
f X |Y (x | y) ≥ 0
y
y=x
y {x>0.5,0.5<0.5 x y<
∫∫ f (x, y)dxdy
∫∫
x 1dxdy
概率论第三章
![概率论第三章](https://img.taocdn.com/s3/m/6d5f58146c175f0e7cd137dd.png)
若二维随机变量( 若二维随机变量(X,Y)具有概率密度 ) 1 1 x − µ1 2 f (x, y) = exp{− ) 2 [( 2 2(1− ρ ) σ1 2πσ1σ2 1− ρ x − µ1 y − µ2 y − µ2 2 )( ) +( ) ]} − 2ρ( 其中
µ1, µ2,σ1,σ2, ρ
3.1.2、二维随机变量的联合分布函数 、 维随机变量的联合 联合分布函数
二维随机变量( 二维随机变量(X,Y) ) ( X , Y )的联合分布函数 )的联合分布函数
一维随机变量X 一维随机变量 X的分布函数 的分布函数
F(x, y) = P(X≤ x,Y ≤ y) − ∞ < x, y < ∞
xi ≤3yj ≤2
求:F(3,2) = P(X≤ 3,Y ≤ 2) = ∑∑pij
1 1 1 1 = + 0+ 0+ + + 0 = 4 8 8 2
例2 设随机变量 Y ~ E (1) ,随机变量
0 , 若Y ≤ k ( k = 1,) 2 Xk = 1 , 若Y > k 的联合概率分布列。 求 X 1 和 X 2 的联合概率分布列。
第三章 多维随机变量及其分布
到现在为止, 到现在为止,我们只讨论了一维随机变量 及其分布. 及其分布. 但有些随机现象用一个随机变量来 描述还不够, 描述还不够,而需要用几个随机变量来描述 在打靶时, 在打靶时,命中点的位置是由一 对随机变量(两个坐标)来确定的. 对随机变量(两个坐标)来确定的. 飞机的重心在空 中的位置是由三个随 机变量(三个坐标) 机变量(三个坐标)来 确定的等等. 确定的等等.
1/ 4 x 1 1 解: (3)P( X < ,Y < ) = ∫0 [∫0 3xdy]dx 4 2
《概率论》第3章§4相互独立的随机变量
![《概率论》第3章§4相互独立的随机变量](https://img.taocdn.com/s3/m/7832723743323968011c92ce.png)
§4
A, B 相互独立 X , Y 相互独立
相互独立的随机变量
11/19
P( A | B) P( A), P( B | A) P( B)
f ( x, y) f X ( x) fY ( y) (a.e) f ( x, y ) f X |Y ( x | y ) = f X ( x) ( a.e) fY ( y )
§4
相互独立的随机变量
1/19
随机变量的独立性
离散型、连续型随机变量的独立性的判断
利用随机变量的独立性进行相关概率的 计算
第三章 多维随机变量及其分布
§4
A, B 相互独立
相互独立的随机变量
A, B 之间没有任何关系
P( AB) P( A) P( B)
2/19
怎样定义 r.v X , Y 之间的独立性 若
FX ( x2 ) FY ( y2 ) FX ( x1 ) FY ( y2 ) FX ( x2 ) FY ( y1 ) FX ( x1 ) FY ( y1 )
[ FX ( x2 ) FX ( x1 )] [ FY ( y2 ) FY ( y1 )]
P{x1 X x2 }P{ y1 Y y2 }
X ~ U (0,1), Y ~ U (0,1)
X , Y 独立,故联合密度为
1, 0 x 1, 0 y 1 f ( x, y ) f X ( x ) f Y ( y ) 其它 0,
故两信号互相干扰的概率为
P{ | X Y | 1 }
120
1
y
y x
1 2 1 2 1
2
( x ) 1 exp{ [ 21 2 1 2(1 )
概率论第三章二维随机变量
![概率论第三章二维随机变量](https://img.taocdn.com/s3/m/849ffec6aa00b52acfc7ca57.png)
取下列数组中的值:(0,0),( :(0,0),(例2 二维离散型随机向量 ( X ,Y ) 取下列数组中的值:(0,0),(-1,1) 1,2),(2,0);且相应的概率依次为 且相应的概率依次为:1/6, (-1,2),(2,0);且相应的概率依次为:1/6, 1/3, 1/12, 5/12. 的联合概率分布 分布. 求X与Y的联合概率分布.
X Y y1
y2
⋯
yj
⋯
Hale Waihona Puke x1 p11 x 2 p21 ⋮ ⋮ xi pi1 ⋮ ⋮ 联合分布律 联合分布律的性质 (1) p ij ≥
p12 ⋯ p1 j p22 ⋯ p2 j ⋮ ⋮ pi 2 ⋯ pij ⋮ ⋮ 0 ; (2) ∑ ∑
⋯ ⋯ ⋯
p ij = 1
i ≥1 j ≥1
边缘分布 分布律 2. 边缘分布律 二维离散型随机变量的边缘分布律可列于联合分布 二维离散型随机变量的边缘分布律可列于联合分布 可列 的两侧: 表的两侧 Y y y ⋯ y ⋯
型随机变量(X,X, 的分布律,或随机变量X 型随机变量(X,X,)的分布律,或随机变量X与Y的联合 (X,X 分布律 分布律.可记为
, ( X ,Y) ~ pij = P( X = xi ,Y = y j ) (i, j =1,2,⋯ )
二维离散型随机变量的联合分布律可列表如下: 二维离散型随机变量的联合分布律可列表如下 可列表如下
p12 1/ 4 p22 1/ 2 p32 1/ 4 1/ 2 1/ 2 1
3. 求联合分布的步骤与方法 求联合分布的步骤与方法 分布 先画出二向表的表头,并确定X 的取值; (1) 先画出二向表的表头,并确定X与Y的取值; 求联合分布表的中的概率项. (2) 求联合分布表的中的概率项.
概率论第三章
![概率论第三章](https://img.taocdn.com/s3/m/873518e2524de518964b7dea.png)
8 July 2010
联合密度函数的基本性质 (1) p(x, y) ≥ 0. (非负性) (2) (正则性)
注意: P{(X,Y) ∈D} = ∫∫ p(x, y)dxdy
D
8 July 2010
3.1.5
一,多项分布
常用多维分布 常用多维分布
若每次试验有r 种结果:A1, A2, ……, Ar 记 P(Ai) = pi , i = 1, 2, ……, r 记 Xi 为 n 次独立重复试验中 Ai 出现的次数. 则 (X1, X2, ……, Xr)的联合分布列为:
2x
+∞
1 2x +∞ 1 3y +∞ = A e × e 2 0 3 0
=A/6 所以, A=6
8 July 2010
例3.1.4
6e(2x+3y) , x ≥ 0, y ≥ 0 若 (X, Y) ~ p( x, y) = 其 它 0,
试求 P{ X< 2, Y< 1}.
8 July 2010
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ), 则 XN( ), YN( ).
二维均匀分布的边际分布不一定是一维均匀分布.
8 July 2010
例3.2.1 设 (X, Y)服从区域 D={(x, y), x2+y2 <1} 上的均匀分布,求X 的边际密度p(x). 解: 由题意得
e y , 0 < x < y p( x, y) = 其 他 0,
求概率P{X+Y≤1}. 解: P{X+Y≤1}=
1/2
1x x
y=x
x+y=1
= ∫ dx∫
《概率论》第3章§5两个随机变量的函数的分布
![《概率论》第3章§5两个随机变量的函数的分布](https://img.taocdn.com/s3/m/91bb93ea998fcc22bcd10d9c.png)
= P{X ≤ z,Y ≤ z}
则
Fmax (z) = F (z)
F (z) = P{min(X ,Y) ≤ z} min = FX1 (z)FX,2 (z)z} FXn (z) = 1 P{min(X Y) > F (z) =1P{{min(,Y 1,zX2 ,, Xn ) ≤ z } = P X > z X> } min n = 1∏ > } P(z > [ =1 P{X1zFXi {Y )] z} i =1 =1 ,[1,,{X 独立同分布于 F(x)时有 X1 X2 P Xn ≤ z}][1 P{Y ≤ z}] 特别当 n = 1[1 FX (z)][1 F (z)] n Y
z
2σ 2
∴
z e ,z ≥0 2 fZ (z) = σ 分布) (瑞利Rayleigh分布) 0 , z第三章 多维随机变量及其分布 <0
ρ d 2 =1 e 2σ2 2σ 2
z 2σ 2
(z ≥ 0)
§5 两个随机变量的函数的分布
11/15 11/15
设 X ~ FX (x),Y ~ F ( y) ,且 X,Y 相互独立 ,则 Y F (z) = P{max(X ,Y) ≤ z} max
∵ Fmax (z) = F (z) ∴ fmax (z) = 2 f (z)F(z)
2
= 2 f (z)∫∞ f (t)dt ∵ Fmin (z) = 1[1 F(z)]2
∴ fmax (z) = 2 f (z)[1 F(z)]
= 2 f (z)[1 ∫∞ f (t)dt]
(完整版)概率论第三章第四章习题及答案
![(完整版)概率论第三章第四章习题及答案](https://img.taocdn.com/s3/m/5c6bd79df78a6529657d5323.png)
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,
《概率论》第3章§2边缘分布解析
![《概率论》第3章§2边缘分布解析](https://img.taocdn.com/s3/m/2a034e9df705cc1754270931.png)
(关X ,于Y ) 的 第三Y章 多边维缘随密机变度量(及函其数分)布
例 设随机变量 X 和Y 具有联合概率密度
6, x2 y x,
f (x, y) 0,
其他.
求边缘概率密度 fX ( x), fY ( y).
解
fX (x)
f (x, y)d y
y
(1,1)
当 0 x 1时,
y x
p11 p21 pi1
p12 p22 pi 2
p1 j
p2 j pij
P{ X xi } pij , i 1,2,; P{Y y j } pij , j 1,2,.
j 1
i 1
2020年11月24日星期二
§2 边缘分布
6/29
设 从r.v X 四1个, 2数,3,中4 等可能取值,又设
2020年11月24日星期二
例 设( X ,Y ) 的联合密度为
f
(x,
y)
kxy,
0,
0 x y,0 y 1, 其他
其中k 为常数. 求
(1)常数 k ;
(2) P ( X + Y 1) , P ( X < 0.5); (3) 联合分布函数 F (x,y); (4) 边缘密度与边缘分布函数
1
0.5
y
dy 1 y
8xydx
5
/
6.
y
1
y=x
yy 11
0.5 00
y y==x x xx
0
0.5
2020年11月24日星期二
P( X 0.5)
x
0.5
1
0 dxx8xydy 7 /16.
的分段区域 y
x0
概率论第三章ch3_2
![概率论第三章ch3_2](https://img.taocdn.com/s3/m/2ef68035a2161479171128ea.png)
例题:已知二维随机变量( X , Y )的联合概率密度为
求关于X,Y 的边缘概率密度 fX(x), fY ( y ) .
解:
对称区间上的 奇函数!
仅由概率密度 函数无法确定 联合概率密度 函数!但是如 果还有它们之 间联系的条件 则可能!
例题:已知二维随机变量( X , Y )的边缘分布律为
并且P{XY=0}=1,求关于X,Y 的联合分布律。 解:
所以 X服从正态分布即
同理可得Y的分布密度:
二元正态分布的边缘分布是一元正态分布并且与 参数ρ无关。
例题:已知二维随机变量( X , Y )的联合概率密度为
求关于Y 的边缘概率密度 fY ( y ) . 解:
当0<y<1与y>1 时被积函数非0 区域不同!
二维随机变量( X , Y )的联合概率密度图
解:X=1,2,3,4,而 Y=1,。。。,X
故所求的边缘分布律与联合分布律为:
边缘密度函数的求法
若已知连续型随机向量(X,Y)的联合概率密度函数f(x,y), 则也可求出它的边缘概率密度函数。事实上:
例4:设区域D是由曲线y=x2与直线y=x围成,并且随机向量 (X,Y)服从D上的均匀分布,求联合概率密度与边缘概率 密度函数。
二维随机变量( X , Y )的联合概率密度图
function bbb
[x,y]=meshgrid(0:0.1:4);
z=f(x,y); mesh(x,y,z);
function z=f(x,y) z=zeros(size(x));
l=(x>=1&y>1./x&y<=x);
z(l)=1./(2*x(l).^2.*y(l));
概率论第三章(3,4,5)
![概率论第三章(3,4,5)](https://img.taocdn.com/s3/m/24a486e8700abb68a982fbbe.png)
e x y
y
x0
对y>0 P{ X>1| Y=y }
1
ex y dx e x y
1 y
y 1
e
例3 设( X, Y )服从单位圆上的均匀分布, 概率密度为:
1 2 2 , x y 1 f ( x , y ) 0, 其它
2
求 fY |X ( y | x ) y 1 x 解:
体重X 的分布
身高Y 的分布
现在若限制1.7<Y<1.8(米), 在这个条件下 去求X的条件分布,这就意味着要从该校的学 生中把身高在1.7米和1.8米之间的那些人都挑 出来,然后在挑出的学生中求其体重的分布. 容易想象,这个分布与不加这个条件 时的分布会很不一样.
一、离散型r.v.的条件分布 定义1: 设 (X,Y) 是二维离散型随机变量,
f ( x, y) f X ( x) fY ( y)
故X和Y不独立 .
对于正态分布有如下结论:
二维随机变量 ( X , Y ) ~ N (1, 2 ,1, 2 , ),
则X,Y相互独立 0
n维随机变量的边缘分布与独立性
1.边缘分布
设n维随机变量(X1,X2,...,Xn)的分布函数为 F(x1,x2,...,xn), (X1,X2,...,Xn)的k(1k<n)维 边缘分布函数就随之确定,
P( X xi |Y y j ) 0,
i = 1,2, …
i 1
P( X xi | Y y j ) 1
例1 一射手进行射击,击中目标的概率为 p,(0<p<1), 射击进行到击中目标两次为 止。以 X 表示首次击中目标所进行的射击次数, 以 Y 表示总共进行的射击次数。试求 X 和 Y 的联合分布及条件分布.
概率论第三章练习答案
![概率论第三章练习答案](https://img.taocdn.com/s3/m/c83462d3192e45361166f500.png)
(C)
A.97
B.79
C.61
D.29
7.设已知随机变量 与 的相关系数 = 0 ,则 与 之间的关系为:
(D
)
A. 独立
B. 相关
C. 线性相关
D. 线性无关
8.设 X, Y 为两个独立的随机变量, 已知 X 的均值为 2, 标准差为 10, Y 的均值为 4, 标
准差为 20, 则与 Y − X 的标准差最接近的是[ D ]
3.已知(X,Y)的联合密度为 (x) =
(B ) A、0
B、0.25
C、0.5
4xy 0
0 x, y 1
其它
,则 F(0.5,2)=
D、0.1
F(0.5,2)= PX 0.5,Y 2
=
0.5
1
4xydxdy = 4
0.5
xdx
1
ydy
=
1 (利用图像)
00
0
0
4
4.如果 X 与 Y 满足 D(X+Y)=D(X-Y),则必有 ( ) A.X 与 Y 独立 B.X 与 Y 不相关 C.D(Y)=0 D .D ( X) D( Y) = 0
A 10
B 15
C 30
D 22
D(Y − X)= DX + DY = 100 + 400 = 500
400 500 900, 20 500 30
9.设随机变量 X~N(-3,1),Y~N(2,1),且 X 与 Y 独立,设 Z=X-2Y+7,
则 Z~
(A)
A.N(0,5) B.N(0,-3) C.N(0,46)
+ +(x,y)dxdy = 1 − −
即 + + ce−(x+ y)dxdy = 1 c = 1 00
概率论第三章习题及答案
![概率论第三章习题及答案](https://img.taocdn.com/s3/m/3182745a69dc5022abea0067.png)
则称
p i j P X x i , Y y j i , j 1 , 2 ,
为二维离散 X , Y 型 的随 (机 联变 合量
2021/7/1
14
第三章 习题课
二维离散型随机变量的联合分布律
X,Y的联合分布下 律表 也表 可示 以
布的关系,了解条件分布。 3 掌握二维均匀分布和二维正态分布。 4 要理解随机变量的独立性。 5 要会求二维随机变量的和及多维随机变返回主目3 录
第三章 习题课
1 二维随机变量的定义 设 E 是一个随机试验,它的样本空间是 S={e}, 设 X=X(e) 和 Y=Y(e) 是定义在 S 上的随机变量。 由它们构成的一个向量 (X, Y) ,叫做二维随机 向量,或二维随机变量。
2021/7/1
返回主目17 录
4) F ( x 2 , y 2 ) F ( x 2 , y 1 ) F ( x 1 , y 1 ) F ( x 1 , y 2 ) 0 .
2021/7/1
y y2
(x1 , y2)
(X, Y )
y1 (x1 , y1)
o x1
(x2 , y2)
(x2 , y1)
10
x2
x
第三章 习题课
说明
Y X
y1
y2
…
yj
…
x1
p11
p12
…
p1 j
…
x2
p 21
p 22
p2 j
…
xi
pi1
2021/7/1
…
返回主目15 录
第三章 习题课
二维离散型随机变量联合分布律的性质
概率论课后习题第3章答案
![概率论课后习题第3章答案](https://img.taocdn.com/s3/m/db5bccf8f424ccbff121dd36a32d7375a417c6f3.png)
第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
《概率论》数学3章课后习题详解
![《概率论》数学3章课后习题详解](https://img.taocdn.com/s3/m/d489444bc77da26924c5b047.png)
概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104× 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。
解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得ka +1.5(2)由(1)与(2)解得a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/1887. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi12. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()22020222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe e x e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ16. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE144275144251225)(22=-=-=ξξξE E D3613311121311270=⨯+⨯+⨯=ηE1083731121912=+⨯=ηE129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论》期中测试题参考解答1、(10分)设A B C 、、表示三个随机事件,试用事件A B C 、、的运算分别表示下列各事件:(1)A 不发生而B C 、都发生; 表示为:ABC(2)A B C 、、三个事件至少有一个发生; 表示为:AB C ;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C 、、三个事件至多有一个发生; 表示为:ABCABC ABC ABC(4)A B C 、、恰有两个不发生; 表示为:ABCCAB BAC ;(5)A B C 、、都不发生; 表示为:ABC(6)A B C 、、三个事件不少于两个发生; 表示为:ABBC AC ;或表示为:ABC ABC ABC ABC(7)A B C 、、同时发生; 表示为:ABC(8)A B C 、、三个事件不多于两个发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(9)A B C 、、不全发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生.或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P AB ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--= (3)()()()()0.40.60.10.9P AB P A P B P AB =+-=+-=;(4)()()1()10.90.1P AB P A B P A B ==-=-=;(5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-;(7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率.解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。
《概率论与数理统计》第三章
![《概率论与数理统计》第三章](https://img.taocdn.com/s3/m/63a9f1d97e21af45b207a8a5.png)
§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,
《概率论》第3章§3.1-随机变量及分布函数分解
![《概率论》第3章§3.1-随机变量及分布函数分解](https://img.taocdn.com/s3/m/a2cf806d0a4c2e3f5727a5e9856a561253d3217a.png)
§3.1 随机变量及分布函数 40/9
指数分布 泊松分布
E
第三章 连续型随机变量
§3.1 随机变量及分布函数 41/9
排队论是研究排队系统(又称随机服务系统)的 数学理论和方法,是运筹学的一个重要分支。
通过对服务对象到来及服务时间的统计研究,得 出这些数量指标(等待时间、排队长度、忙期长短 等)的统计规律。
x
x
③ F(x)是ⅹ的不减函数;
④ F(x)至多有可列个间断点,而在其间 断点上是右连续的。
第三章 连续型随机变量
§3.1 随机变量及分布函数 29/9
1 离散型随机变量的分布函数的图形是阶梯曲线. 2 它在ξ的一切有概率的点都有一个跳跃(这个
点为间断点,右连续)
3 其跃度为ξ取值的概率. 4 在分布函数的任何一个连续点上,取值的概 率都是零.
ξ可以取[4,10]上的一切实数,“4≤ξ≤10”是一个必 然事件,P(4≤ξ≤10)=1.
若[c,d] [4,10],有P(c≤ξ≤d)=λ(d-c),
λ为比例常数.
取c=4,d=10,P(4≤ ξ≤10)=λ(10-4)=6λ,
而已知P(4≤ξ≤10)=1,因此λ=1/6.
第三章 连续型随机变量
§3.1 随机变量及分布函数 22/9
0 , x 1,
F ( x)
0.3, 0.5,
1 x 2, 2 x 3,
1, x 3
P(1 2.5) P(1 2.5)
F(2.5) F(1) P( 1) 0.5 0.3 (F(1) F(1 0))
0.5 0.3 (0.3 0) 0.5
解 ξ可取值0,1,2
∴
P(=k)=
ξ的分布列为:
C2k
《概率论》第3章§2边缘分布
![《概率论》第3章§2边缘分布](https://img.taocdn.com/s3/m/f3aff2bf1a37f111f1855bcf.png)
F (x,y) =
2x2–x4 , 0 x <1, y 1 y4 , x 1, 0 y < 1 1, x 1, y 1
2013年8月5日星期一
(4)
0, 2x2–x4 , 1, 0,
x < 0, 0 x < 1, x1 y<0
FX ( x) F ( x,) =
FY ( y ) F (, y ) =
y4 ,
1,
0 y < 1,
y1
2013年8月5日星期一
4 x 4 x , 0 x 1 f X ( x) 其他 0,
3
4 y , 0 y 1 fY ( y ) 其他 0,
3
2013年8月5日星期一
当然也可直接由联合密度求边缘密度,例 如
6/29
§2
故 X , Y的联合分布律为
Y X
P{X i, Y j} P{Y j | X i} P{X i} 1 1 (1 j i) i 4
1 1/ 4 0 0 0
1 4
1 2 3 4
pi
2 1/ 8 1/ 8 0 0
1 4
3 1/12 1/12 1/12 0
y
故 r.v X的密度函数为 同理 Y的分布函数为
Y的密度函数为
( x )
FY ( y ) f ( x, v)dxdv
fY ( y ) f ( x, y )dx
( y )
称 f X ( x)为 ( X , Y )关于 X的边缘密度(函数) 称 f Y ( y) 为 ( X , Y )关于 Y 的边缘密度(函数) 第三章 多维随机变量及其分布
概率论第3章习题详解
![概率论第3章习题详解](https://img.taocdn.com/s3/m/c803deaf910ef12d2af9e7d6.png)
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y x u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y x DP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i }0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度; (2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z Pz Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图 (3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U 于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求{=2|=2},{=3|=0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V的分布律为V =max(X ,Y ) 0 1 2 3 4 5 P 00.040.160.280.240.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是U =min(X ,Y ) 0 1 2 3 P 0.28 0.30 0.25 0.17 W =X +Y 0 1 2 3 4 5 6 7 8 P0.020.060.130.190.240.190.120.05(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处. y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= YX而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为1 0 110 1 a 0 0.20.1 b 0.2 0 0.1 c其中a ,,为常数,且的数学期望()=0.2,{≤0|≤0}=0.5,记=+.求:X Y(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z Z 2 1 0 1 2P0.2 0.1 0.3 0.3 0.1(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 连续型随机变量
第三章 连续型随机变量
§3.1 随机变量及分布函数
离散型随机变量的分布函数F(x)的性质
3/9
① 0≤F(x)≤1,对一切ⅹ∈(-∞,+∞)成立;
② F( )= lim F(x)=0, F(+ )= lim F(x)=1;
x x
③ F(x)是ⅹ的不减函数; ④
F(x)至多有可列个间断点,而在其间 断点上是右连续的。
§3.1 随机变量及分布函数
1/9
第三章 连续型随机变量
§3.1 随机变量及分布函数
求ξ的分布函数:
2/9
p
解
0 0.1
1 0.6
2 0.3
F ( x)=P( x)
0 0.1 = 0.7 1 x0 0 x 1 1 x 2 x2
F ( x)
1
0 1 2 x
第三章 连续型随机变量
§3.1 随机变量及分布函数
18/9
排队论中的研究内容之一:“等待时间”的统计规律
第三章 连续型随机变量
§3.1 随机变量及分布函数
19/9
第三章 连续型随机变量
§3.1 随机变量及分布函数
指数分布
20/9
等待时间、两次通话间的间隔时间、顾客相继 到达时间间隔、服务时间、灯泡寿命等。
第三章 连续型随机变量
§3.1 随机变量及分布函数
服务对象 病人 要求的服务 就诊
17/9
服务机构 医生
打电话
待降落的飞机 到达港口的货船 进入餐馆的顾客 未到路口的汽车 来到车站的乘客
通话
降落 装货或卸货 就餐 通过路口 乘车
交换台
跑道指挥机构 码头 餐位服务员 交通管理员或红绿灯 公交车管理员
F (12) F (6) 1 1/ 3 2 / 3
F(x)
1
0
4
10
x
第三章 连续型随机变量
§3.1 随机变量及分布函数
指数分布 泊松分布
15/9
E
第三章 连续型随机变量
§3.1 随机变量及分布函数
16/9
排队论是研究排队系统(又称随机服务系统)的 数学理论和方法,是运筹学的一个重要分支。 通过对服务对象到来及服务时间的统计研究,得 出这些数量指标(等待时间、排队长度、忙期长短 等)的统计规律。
§3.1 随机变量及分布函数
11/9
P(a b) F (b) F (a)
P(a b) P(a b) P(a b)
第三章 连续型随机变量
§3.1 随机变量及分布函数 连续型随机变量的分布函数的图形特点:
12/9
1 连续型随机变量的分布函数的图形是一 个 不减有界的连续函数 2 在整个数轴上没有一个跳跃点. 3 最大值为1,最小值为0
第三章 连续型随机变量
§3.1 随机变量及分布函数
4/9
1 离散型随机变量的分布函数的图形是阶梯曲线. 2 它在ξ的一切有概率的点都有一个跳跃(这 个点为间断点,右连续) 3 其跃度为ξ取值的概率. 4 在分布函数的任何一个连续点上,取值的概 率都是零.
P(a b) F (b) F (a) P( c) F (c 0) F (c 0) F (c) F (c 0)
第三章 连续型随机变量
§3.1 随机变量及分布函数
13/9
例 在区间[4,10]上任意抛掷一个质点,用ξ表 示这个质点与原点的距离,则ξ是一个随机变量 .如果这个质点落在[4,10]上任一子区间内的概 率与这个区间长度成正比,求ξ的分布函数。 解:根据题意 ξ可以取[4,10]上的一切实数,“4≤ξ≤10”是一个必 然事件,P(4≤ξ≤10)=1. 若[c,d] [4,10],有P(c≤ξ≤d)=λ(d-c), λ为比例常数. 取c=4,d=10,P(4≤ ξ≤10)=λ(10-4)=6λ, 而已知P(4≤ξ≤10)=1,因此λ=1/6.
F ( x)
1
0 1 2 x
第三章 连续型随机变量
§3.1 随机变量及分布函数
5/9
0 F ( x)=P( x)= 1
x<a xa
第三章 连续型随机变量
§3.1 随机变量及分布函数
6/9
第三章 连续型随机变量
§3.1 随机变量及分布函数
7/9
连续型随机变量的分布函数
第三章 连续型随机变量
( x) P( x)
第三章 连续型随机变量
§3.1 随机变量及分布函数
9/9
第三章 连续型随机变量
§3.1 随机变量及分布函数
离散型随机变量的分布函数F(x)的性质
①
10/9
0≤F(x)≤1, 对一切ⅹ∈(-∞,+∞)成立;
x
第三章 连续型随机变量
§3.1 随机变量及分布函数
21/9
离散型、连续型、均匀分布、指数分布、 分布函数图形特点、分布函数性质
第三章 连续型随机变量
§3.1 随机变量及分布函数
一个半径为 2 米的圆盘靶子 , 设击 中靶上任一同心圆盘上的点的概率与该圆 盘的面积成正比 , 且射击都能中靶 , 记 X 表 示弹着点与圆心的距离.求 X 的分布函数. 解:显然当 x 0 时,
② F( )= lim F(x)=0,
F(+ )= lim F(x)=1;
x
③ F(x)是ⅹ的不减函数; ④ F(x)至多有可列个或有限个间断点,间断点是 右连续的。 ④ F(x)处处连续。
P( c) F (c) F (c 0) P( c) 0
第三章 连续型随机变量
第三章 连续型随机变量
§3.1 随机变量及分布函数
0, 1 F(x)=P( x)= (x-4), 6 1, x4 4 x 10 x 10
14/9
P(2 5)
F (5) F (2) 1/ 6 0
F(x)的图形如下
P(6 12)
F ( x) P(0 X 2) 1
y
即 X 的分布函数为
1
0 , x 0, 2 F ( x) x / 4, 0 x 2, 1 , x 2 第三章
F ( x)
x
O
1
2
3
连续型随机变量
§3.1 随机变量及分布函数
23/9
作业:p186 3.7、 3.9
F ( x ) P( X x ) 0
22/9
R 2 m
X
若 0 x 2, 由题意有 F ( x) P( X x) P(0 X x) k. x 2 F ( x) P(0 X 2) 1 k 1/ 4 2 1 F ( x) P( X x) P(0 X x) x x 2 4 4 若 x 2, 由题意有,