2011年中考数学复习精品课件:第7讲 一次方程组

合集下载

中考一次方程(组)及其应用复习课件(16张PPT)

中考一次方程(组)及其应用复习课件(16张PPT)
复习目标
1.回顾方程、一元一次方程,二元一次方程的 定义。
2.复习并运用等式的性质解方程。 3.熟练掌握解方程(组)的方法与步骤。 4.运用方程解决实际问题。
目标一:
1、什么是方程? 含有未知数的等式叫做方程.
注意: 判断一个式子是不是方程,要看:
一是等式;二是含有未知数。
2、什么是一元一次方程和方程的解? ⑴只含有一个未知数(元) ; ⑵未知数的次数都是1 ; ⑶等号两边都是整式.
方程的解:使方程中等号左右两边相等的未知数的值
3、什么是二元一次方程组? 有两个未知数,含有每个未知数的项的次数 都是1,并且一共有两个方程
方程的解:使方程中等号左右两边相等的未知数的值
目标二:
等式性质有哪些?
等式性质1: 如果a=b ,那么a+c=b+c
需注意:同加或减“同一 个数,或同一个式子”。
系 数 化 为 1 注意分子、分母位置,不要漏掉符号
2.二元一次方程组的解
解的运用:

x

y

m是关于x,y的二元一次方程
n
ax by
பைடு நூலகம்
0
的解,则
am bn 0
若 则

x y

m n
是关于x,y的二元一次方程组
am bn 0
ax by cx dy
5.工程问题: 工作总量=工作效率×工作时间 6.利润问题: 商品利润=商品进价×商品利润率
(或商品利润=商品售价-商品进价)
小结
1.一元一次方程及其有关概念。 2.等式的性质及其应用。 3.解一元一次方程的一般步骤及其依据。 4.体会运用方程解决实际问题的一般过程。

中考数学专项提升复习——一次方程(组)及其应用(共75张PPT)

中考数学专项提升复习——一次方程(组)及其应用(共75张PPT)

1 .张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。现有5立方米的木料, 那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少 张方桌?
增长率问题 增长率问题:原量×(1+增长率)=增长后的量
行程问题 三个基本量的关系:
路程s=速度v×时间t 时间t=路程s÷速度V 速度V=路程s÷时间t 三大类型: ① 相遇问题:快行距+慢行距=原距 ② 追及问题:快行距-慢行距=原距 ③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度 顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程
a
②当 a 0, b 0时 ,方程有无穷多个解
③当 a 0, b 0 时,方程无解
方程的解与解方程
步骤
具体做法
变形依据
去分母
在方程两边都乘以各分母的最小公倍数
等式的性质2
去括号
先去小括号,再去中括号,最后去大括号
去括号法则
移项
把含有未知数的项都移到方程的一边,其他项都移到方 程的另一边(记住:移项要变号)
等式的性质 1
合并同类项
把方程化成ax=b(a≠0)的形式
合并同类项法则
系数化成1 在方程两边都除以未知数的系数a,得到方程的解x=··· 等式的性质2
验根
检验此时的根是否具有实际意义
实际意义
18.������为何值时,关于������的方程4������ − 2������ = 3������ − 1的解是������ = 2������ − 3������的解的2倍

一元一次方程组

一元一次方程组

一元一次方程组一元一次方程组是由两个或多个一元一次方程组成的方程组。

一元一次方程是指最高次项是一次幂(即x的指数为1)的方程。

而方程组则是一组方程的集合,其中的方程可以有一个或多个未知数。

在一元一次方程组中,每个方程都可以用以下形式表示:a₁x + b₁ = 0a₂x + b₂ = 0...aₙx + bₙ = 0其中a₁,a₂,...,aₙ,b₁,b₂,...,bₙ是已知的常数,x是未知数。

一元一次方程组的解是使得方程组中所有方程同时成立的未知数的值。

解的个数可以有三种情况:1. 方程组有唯一解:方程组中的所有方程是相容的,即可以通过代数运算将方程组化简为只含一个未知数的方程,并得到唯一解。

2. 方程组没有解:方程组中的方程是不相容的,即无法通过代数运算将方程组化简为只含一个未知数的方程。

3. 方程组有无穷多解:方程组中的方程是相容的,即可以通过代数运算将方程组化简为只含一个未知数的方程,并得到一个含有未知参数的方程。

解一元一次方程组的常用方法有消元法、代入法、加减乘除法等。

下面我们将分别介绍这几种方法。

1. 消元法:消元法是一种通过消去某些未知数的系数,从而化简方程组的方法。

具体步骤如下:a) 将方程组按照系数相同的未知数排列,将其转化为一个增广矩阵的形式。

b) 选取一个方程作为基准方程,通过线性组合将其他方程的某个未知数的系数消为0。

c) 重复b)步骤,直至将方程组化简为只含一个未知数的方程。

d) 求解得到唯一解或无解。

2. 代入法:代入法是一种通过将某个已知解代入其他方程中,从而求得未知数的值的方法。

具体步骤如下:a) 选择一个方程,将其中一个未知数表示为其他未知数的函数。

b) 将已知解代入该方程,得到关于其他未知数的方程。

c) 解这个关于其他未知数的方程,得到其他未知数的值。

d) 将其他未知数的值代入方程组中的其他方程,逐步求解得到未知数的值。

e) 检验解是否满足方程组中的所有方程。

3. 加减乘除法:加减乘除法是一种通过将多个方程进行相加、相减、相乘或相除,从而消去某些未知数的系数,从而化简方程组的方法。

初三复习 一次方程和方程组PPT课件

初三复习 一次方程和方程组PPT课件

2.解方程的依据------等式的性质
(1)等式的两边都加上(或减去)同一个数或同一个 整式,所得结果仍是等式. (2)等式两边都乘以或除以(除数不为0)同一个数或 整式,所得结果仍是等式.
3.解一元一次方程的一般步骤:
①去分母 ②去括号 ③移项 ④合并同类项⑤系数化为1
4.方程组的常用解法:
①代入消元法 ②加减消元法 ③换元法
4.方程 yy212y32的解是________
5.方程组
x
y 12x 2y7
0
的解是________
6.方程组
2
方程组
ax by 2 ax by 4
的解,
求a、b的值
例1
(1)写出一个以x=-1为根的一元一次方程
{ (2)写出一个以
x 1 为解的二元一次方程组
y 2
(3)王老师在课堂上给出了二元方程x-y=-xy,让
同学们写出它的解,你会写吗?
例2 解方程
(1)2x-(13-x)=3
(2)1.5x1 x 0.5 3 0.6
例3.解方程组
{(1)
3x+y=8 2x-y=7
(2)250((32x3y))58((x23y))2207
3
例4
已知方程2x+3m=4x+1和方程 5x+3m=4x+1的解相同,求m的值.
1.关于x的方程2(x-1)-a=0的根是3,则a的值为( )
A.4
B.-4 C.5 D.-5
2.已知x+y=5,且x-y=1,则xy=______
3.当x=______时,代数式3x-4和2(x-3)互为相反数.
一 次方程与方程组
1.主要概念:

中考数学总复习考点知识讲解课件5---一次方程(组)及其应用

中考数学总复习考点知识讲解课件5---一次方程(组)及其应用

❹等式的基本性质 (1)等式两边加(或减)同一个数(或式子),结果仍相等.即如果a=b,那
么a±c=__b_±__c__.
(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即如果
b
a=b,那么ac=__b_c__, a =__c__(c≠0).
c
❺解一元一次方程时,目标是把原方程化为x=c的形式,一般步骤为: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)未知数的系数化为1.
命题角度❶ 列一次方程(组) 例2 (2018·江西)中国的《九章算术》是世界现代数学的两大源泉之一, 其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八 两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2 头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金 x两、y两,依题意,可列出方程组为 .
中考数学总复习考点知识讲解课件 一次方程(组)及其应用
知识点一 一元一次方程及其解法
❶方程:含有__未__知__数___的等式叫做方程.
❷方程的解:使方程左、右两边的值相等的__未__知__数___的值,叫做方程的 解.
❸一元一次方程:只含有_一__个__个未知数(元),未知数的次数都是__1__, 等号两边都是整式,这样的方程叫做一元一次方程.
选择代入消元法或加减消元法的技巧
知识点三 一次方程(组)的应用
❶常见问题及基本关系式
实际问题巧设未知数 (1)题设中给出A是B的倍数或A比B多(少)时,常设B,再表示A; (2)题干中给出a个甲和b个乙;m个甲和n个乙时,常设甲为x,乙为y; (3)题干中给出甲与乙的和,a个甲和b个乙,可分别设甲为x,乙为y.
例1 (2015·河北)利用加减消元法解方程组 法正确的是( ) A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(-5) C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(-5)+②×2

(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析

(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析

中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。

人教版中考数学专题课件:一次方程(组)

人教版中考数学专题课件:一次方程(组)

皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组) 考点3
定义
一元一次方程的定义及解法
一 个未知数,且未知数的最高次数是________ 一 次的整 只含有______
式方程,叫做一元一次方程.
+b=0(a≠0) 一般形式 ax ______________.
最小公倍数 ; 1.去分母:在方程两边都乘以各分母的____________
方程 2x+a-9=0 得 4+a-9=0,解得 a=5.故选 D.
皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组)
根据方程的解的概念,用代入法把方程的解代入方程建 立关于字母系数的方程,通过解关于字母系数的方程求解.
皖考解读
考点பைடு நூலகம்焦
皖考探究
当堂检测
一次方程(组)
1.1-4x 1.3-3x 5x-0.4 例 3 [教材母题] 解方程: - = . 0.6 0.2 0.3
2.去括号:运用去括号法则和乘法分配律; 解一元一 次方程的 一般步骤 3.移项: 把含有未知数的项移到方程的一边, 其他项移到另一边,
符号 ; 注意移项要改变________
4.合并同类项:把方程化成 ax=b(a≠0)的形式;
系数 ,得到方程 5.系数化为 1:方程两边同除以未知数 x 的________
二元一次 方程 二元次方 程组的解 二元一次 方程组的 解法
皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组)
考点5 一次方程(组)的应用 1.审 审清题意,分清题中的已知量、未知量. 设未知数,设其中某个未知量为 x ,并注意单 列方程 2.设 位.对于含有两个未知数的问题,需要设两个未 (组)解 知数. 应用题 3.列 根据题意寻找等量关系列方程. 的一般 4.解 解方程(组). 步骤 5.验 检验方程(组)的解是否符合题意. 6.答 写出答案(包括单位). 1.基本关系:路程=速度×时间; 常见 行 2.相遇问题: 全路程=甲走的路程+乙走的路程; 重要 程 3.追及问题:若甲为快者,则被追路程=甲走的 关系 问 路程-乙走的路程; 式 题 4.水上航行问题:v 顺=v 静+v 水;v 逆=v 静-v 水.

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)
2x a x a x 1 3 2
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3

组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5

中考数学 第一部分 教材知识梳理 第二章 第一节 一次方程(组)课件

中考数学 第一部分 教材知识梳理 第二章 第一节 一次方程(组)课件

拓展题2(’15 咸宁)如果实数x、y满足方程组
x
y=
1 2
则 x2 2x- y22的y 值5,为___ _54______.
【解析】方程组第二个方程变形得:2(x+y)=5,即x
+y= 5 , x y 1 , x 2 y 2 = x y x y 5 .
2
2
4
类型二 一次方程(组)的应用
2. 一次方程(组)的应用常考类型及关系式
常考类型
重要的关系式
销售打 折问题
销售额=售价×销量
利润=售价-成本
利润率=
利润 成本价
100%
售价=标价×折扣
工程问题 工作量=工作效率×工作时间
相遇问题:总路程=速度和×相遇时间 追及问题:追及路程=速度差×追及时间 行程问题 航行问题: 顺水(风)速度=船速+静水(风)速度 逆水(风)速度=船速-静水(风)速度
考点五 一次方程(组)的应用
1. 列方程(组)解应用题的一般步骤: (1)审:即审清题意,分清题中的已知量、未知量; (2)设:即设关键的未知数; (3)列:即找出等量关系,列方程(组); (4)解:即解方程(组); (5)验:即检验所解答案是否正确或是否符合题意; (6)答:即规范作答,注意单位名称.
2. 解一元一次方程的一般步骤
步骤 去分母
具体做法
若方程中未知数的 系数为分数,方程 两边同乘以分母的
⑥__最__小__公__倍__数___
注意事项
不要漏乘不含分母 的项
去括号 移项
若方程中有括号,应先去 括号前是负号
括号.去括号顺序为先去 时,去括号后
小括号,再去中括号,最 括号内各项均
后去大括号
第一部分 教材知识梳理

华东师大版七年级下册数学第7章《一次方程组》复习课件

华东师大版七年级下册数学第7章《一次方程组》复习课件

解:林场面积x公顷,牧场面积y公顷 根据题意得: x+y=162
y = 20%x
解得: x 135,
y
27
经检验,符合题意.
答:林场面积135公顷,牧场面积27公顷
4、某厂第二车间的人数比第一车间的人数的 4 少30 人.如果从第一车间调10人到第二车间,那么第二车5 间的
人数就是第一车间的 3.问这两个车间各有多少人? 4
解:甲每天做x个零件,乙每天做y个零件.
2x +2(x+y) -2 =418 根据题意得: 3y +2(x+y) +8 =418
解得:
x 80,
y
50
经检验,符合题意.
答:甲每天做80个零件,乙每天做50个零件
3、 为改进富春河的周围环境,县政府决定,将该河 上游A地的一部分牧场改为林场.改变后,估计林场和牧 场共有162公顷,牧场面积是林场面积的20%.请你算一 算,完成后林场、牧场的面积各为多少公顷?
它的解是唯一的
•4.二元一次方程组的解:合适二元一次方 程组里各个方程的一对未知数的值,叫做这 个方程组里各个方程的公共解,也叫做这个 方程组的解
5.同解方程组:
如果第一个方程组的解都是第二个方程组的 解,而第二个方程组的解也都是第一个方程组的 解,即两个方程组的解集相等,就把这两个方程 组叫做同解方程组
根据题意得: x+y=22 50x +200y =1400
解得:
x 20,
y
2
经检验,符合题意.
答:二级工20名,三级工2名
2、 有一批机器零件共418个,若甲先做2天,乙 再加入合作,则再做2天可超产2个,若乙先做3天,然 后两人再共做2天,则还有8个未完成.问甲、乙两人每 天各做多少个零件?

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。

中考数学复习课件: 一次方程(组)及其应用(共34张PPT)

中考数学复习课件: 一次方程(组)及其应用(共34张PPT)

思路点拨 本题的等量关系是标价×折扣率-进价=利润.此时可
设进价为x元,根据等量关系列出方程,然后解方程即可.
第5课时
一次方程(组)及其应用
考点演练
考点四
方法归纳
利用一次方程(组)解决实际问题
利润问题涉及的量有标价、销售价、进价、折扣、利 润率、利润等,它们之间的关系为售价-进价=利润, 标价×折扣率=售价,进价×利润率=利润.
考点演练
考点一 一次方程(组)的相关定义
例1 (2016·毕节)已知关于x、y的方程 x2 mn2 4 y m n16 是二元一次方程,则m、n的值为 ( A
A. 1、-1
思路点拨
)
D.
1 4 、 3 3 “含有两个未知数,且含有未知数的项的次数都是1”
B. -1、1
1 4 C. 3 、 3
思路点拨
“按照去分母、去括号、移项、合并同类项、系数化
为1的步骤将方程转化为“x=a”的形式.
第5课时
一次方程(组)及其应用
考点演练
考点二
误区警示
解一次方程(组)
解一元一次方程时要注意以下几点:(1) 去分母时 不要漏乘常数项.(2) 分数线起到括号的作用,去分母 后分子要作为整体添上括号.(3) 去括号时,要防止漏
第一部分 数与代数
二 方程、不等式及其应用
第5课时
一次方程(组)及其应用
课时目标
1.能根据具体问题中的数量关系列出方程,体会方程是 刻画现实世界数量关系的有效模型.
2.掌握等式的基本性质.
3.会估算方程的解,能解一元一次方程. 4.掌握代入消元法和加减消元法,能解二元一次方程组. 5.能根据具体问题的实际意义,检验方程的解是否合理.

中考数学复习5:一次方程(组)及其应用(共34张PPT)

中考数学复习5:一次方程(组)及其应用(共34张PPT)

考点3 二元一次方程组的解(考查频率:★★☆☆☆) 命题方向:(1)含字母系数的二元一次方程组的解的问题; (2)方程组的解与解方程的综合.
考点4 解二元一次方程组(考查频率:★★★★☆) 命题方向:(1)解二元一次方程组与整体思想的综合; (2)直接考查二元一次方程组的计算问题.
D
考点5 二元一次方程组的应用(考查频率:★★★☆☆) 命题方向:(1)从实际问题中列二元一次方程组,常以选择题的形式出现; (2)二元一次方程组的应用问题,以解答题的形式出现.
加减消元法的解题步骤: (1)方程组的两个方程中,如果同一个未知数的系数既不互为 相反数又不相等,那么就用适当的数乘方程的两边,使同一个未 知数的系数互为相反数或相等; (2)两个方程组的两边分别相加或相减,消去一个未知数,得 到一个一元一次方程; (3)解这个一元一次方程,求出一个未知数的值; (4)把这个求得的未知数的值代入原方程组中的任意一个方程 中,求出另一个未知数的值,并把求得的未知数的值用“{”联立起 来,即得方程组的解.
1个
1次
两 1次
无数
代入消元法
加减消元法
考点1 一元一次方程的解(考查频率:★★★☆☆) 命题方向:(1)判断等式性质使用是否正确;(2)求简单的一 元一次方程的解;(3)通过一元一次方程的解,确定一元一次方 程的字母系数.
B
B D
考点2 一元一次方程的应用(考查频率:★★★★☆) 命题方向: (1)以填空或选择的形式考查一元一次方程的常规题 型,可能列式,也可能直接求结果;(2)折纸等操作过程中的一元 一次方程;(3)一元一次方程解决利润和行程问题是考查重点. 4.(2013四川绵阳)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3 个还剩3个,如果每人2个又多2个,请问共有多少个小朋友( B ) A.4个 B.5个 C.10个 D.12个 5.(2013山东淄博)把一根长100cm的木棍锯成两段,使其中一段的 长比另一段的2倍少5cm,则锯出的木棍的长不可能为( A ) A.70cm B.65cm C.35cm D.35cm或65cm 6.(2013山东枣庄)某种商品每件的标价是330元,按标价的八折 销售时,仍可获利10%,则这种商品每件的进价为(A ) A.240元 B.250元 C.280元 D.300元

中考数学复习分类精品课件:第二单元《方程与不等式》

中考数学复习分类精品课件:第二单元《方程与不等式》


(2)已知 A,B 两件服装的成本共 500 元,鑫洋服装店老板分别以 30% 和 20%的利润率定价后进行销售,该服装店共获利 130 元,问 A,B 两件 服装的成本各是多少元?
解:设 A 服装的成本为 x 元,根据题意,得 30%x+20%(500-x)=130.解得 x=300. 则 500-x=200. 答:A,B 两件服装的成本分别为 300 元,200 元.
的关系;
(2)设:设关键未知数(可设直接或间接未知数);
(3)列:根据题意寻找⑲ 等量关系
列方程(组);
(4)解:解方程(组);
(5)验:检验所解答案是否正确,是否符合题意和实际情况;
(6)答:规范作答,注意单位名称.
2.常见的应用题类型及基本数量关系:
常见类型
基本数量关系
路程=速度×时间
相遇

甲走的路程+乙走的路程=两地距离.
(2)面积问题常见图形:
(3)利润问题; (4)握手问题.
7.(1)某药品经过两次降价,每瓶零售价由 100 元降为 81 元.已知两 次降价的百分率都为 x,那么 x 满足的方程是 100(1-x)2=81 ;
(2)某机械厂七月份营业额为 1 000 万元,第三季度总的营业额为 3 990 万元.设该厂八、九月份平均每月的营业额增长率为 x,那么 x 满足的方程 是1 000+1 000(1+x)+1 000(1+x)2=3 990 .
3.解下列方程: (1)2(x+3)=5x; 解:去括号,得 2x+6=5x. 移项,得 2x-5x=-6. 合并同类项,得-3x=-6. 系数化为 1,得 x=2.
(2)x+2 1-2=x4. 解:去分母,得 2(x+1)-8=x. 去括号,得 2x+2-8=x. 移项,得 2x-x=8-2. 合并同类项,得 x=6.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录 首 页 上一页 下一页 末 页
宇轩图书
【解析】选D.根据题意可找到等量关系:(1)班与(5)班得分 比为6∶5,(1)班得分比(5)班得分的2倍少40分.利用等量关 系可列方程组 5xx==26yy-40.
目 录 首 页 上一页 下一页 末 页
宇轩图书
4.用四个全等的矩形和一个小正方形拼
4
目 录 首 页 上一页 下一页 末 页
宇轩图书
3.(2010·丹东中考)某校春季运动会比赛中,八年级(1)班、 (5)班的竞技实力相当,关于比赛结果,甲同学说: (1)班与(5)班得分比为6∶5;乙同学说:(1)班得分比(5) 班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根 据题意所列的方程组应为( )
目 录 首 页 上一页 下一页 末 页
宇轩图书
【解析】假设A的浓度是a,B的浓度是b,倒出了X千克, 则混合后由浓度相等得
(注意到两种饮料的总质量没变) 化简后得到120a-120b=5aX-5bX 所以X=120/5=24,即倒出24千克. 答案:24
目 录 首 页 上一页 下一页 末 页
宇轩图书
宇轩图书
方法二:设今年第一块田的花生产量为x千克,第二块田的花 生产量为y千克,根据题意,得
答:该农户今年第一块田的花生产量是20千克,第二块田的 花生产量是37千克.
目 录 首 页 上一页 下一页 末 页
宇轩图书
13.(12分)已知方程组
,由于甲同学看错了
方程组中的a,得到方程组的解为
x= y=
3 1
;乙同学看错了方
程组中的b,得到方程组的解为
x=5
y=4
,若按正确的a、b计算,
则原方程组的解是什么?
目 录 首 页 上一页 下一页 末 页
宇轩图书
【解析】把
分别代入4x-by=-2、
ax+5y=15可得:a=-1,b=10.
∴原方程组为:
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
【解析】由题意得A=B+C,A+B=3C,解得A=2C,即1个 砝码A与2个砝码C的质量相等. 答案:2
目 录 首 页 上一页 下一页 末 页
宇轩图书
9.(2010·重庆中考)含有同种果蔬但浓度不同的A,B两种饮 料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中 各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒 出的部分与另一种饮料余下的部分混合.如果混合后的两种 饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同重 量是_____千克.
目 录 首 页 上一页 下一页 末 页
宇轩图书
【解析】方法一:设去年第一块田的花生产量为x千克,第二 块田的花生产量为y千克,根据题意,得 100×(1-80%)=20,370×(1-90%)=37 答:该农户今年第一块田的花生产量是20千克,第二块田的 花生产量是37千克.
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
(A)0.8元/支,2.6元/本 (B)0.8元/支,3.6元/本 (C)1.2元/支,2.6元/本 (D)1.2元/支,3.6元/本
目 录 首 页 上一页 下一页 末 页
宇轩图书
【解析】选D.设笔的价格为x元/支, 笔记本的价格为y元/本. 找到等量关系: 5支笔和10本笔记本共花了42元钱,10支笔和 5本笔记本共花了30元钱.利用等量关系列方程组
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
7.如图所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是____g.
【解析】设每块巧克力、果冻的质量分别为x、y,由图可列 方程组: 答案:20
目 录 首 页 上一页 下一页 末 页
宇轩图书
8.(2010·威海中考)如图①,在第一个天平上,砝码A的质量 等于砝码B加上砝码C的质量.如图②,在第二个天平上,砝码 A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A 与_____个砝码C的质量相等.
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
一、选择题(每小题6分,共30分)
1.如果x=3,y=2是方程6x+by=32的解,则b的值是( )
(A)-7
(B)7
(C)1
(D)-1
【解析】选B.把x=3,y=2代入原方程得18+2b=32,
解得b=7.
目 录 首 页 上一页 下一页 末 页
宇轩图书
2.若关于x,y的二元一次方程组
x+y=5k x y=9k
的解也是二元一
次方程2x+3y=6的解,则k的值为( )
【解析】选B.解方程组得: xy==7代k2k入方程2x+3y=6得:14k- 6k=6解得:k= 3.
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
11.(12分)已知a、b是实数,且 x的方程:(a+2)x+b2=a-1. 【解析】由题意得: 代入方程得:-x+2=-3-1,解得:x=6.
=0,解关于
目 录 首 页 上一页 下一页 末 页
宇轩图书
12.(12分)(2010·晋江中考)2010年春季我国西南大旱,导致 大量农田减产,下图是一对农民父子的对话内容,请根据对 话内容分别求出该农户今年两块农田的花生产量分别是多少 千克?
成如图所示的大正方形,已知大正方形
的面积是144,小正方形的面积是4,若
用x,y表示矩形的长和宽(x>y),则下
列关系式中不正确的是( )
(A)x+y=12
(B)x-y=2
(C)xy=35
(D)x2+y2=144
【解末 页
宇轩图书
5.(2010·嘉兴中考)根据以下对话,可以求得小红所买的笔 和笔记本的价格分别是( )
即笔的价格是1.2元/支,笔记本的价格是 3.6元/本.
目 录 首 页 上一页 下一页 末 页
宇轩图书
二、填空题(每小题6分,共24分) 6.已知3x2m-1+yn-3=7是二元一次方程,则m=_____,n=_____. 【解析】由题意得: 答案:1 4
目 录 首 页 上一页 下一页 末 页
宇轩图书
三、解答题(共46分) 10.(10分)(1)(2010·衢州中考)解方程组 (2)(2010·日照中考)解方程组: 【解析】(1)方法一:①+②得5x=10,∴x=2. 把x=2代入①,得4-y=3,∴y=1. ∴方程组的解是 xy==12.
目 录 首 页 上一页 下一页 末 页
宇轩图书
方法二:由①,得y=2x-3③
把③代入②,得3x+2x-3=7,∴x=2.
把x=2代入③,得y=1,
∴方程组的解是
x=2 y=1.
(2)


由①得:x=3+2y ③
把③代入②得,3(3+2y)-8y=13,
化简得,-2y=4,∴y=-2,
把y=-2代入③,得x=-1, ∴方程组的解为 xy==.--21
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
宇轩图书
目 录 首 页 上一页 下一页 末 页
相关文档
最新文档