北师大八年级下数学第一次月考试卷
北师大版八年级数学下册第一次月考试卷(含答案)
![北师大版八年级数学下册第一次月考试卷(含答案)](https://img.taocdn.com/s3/m/ffd8418dbe23482fb4da4cd2.png)
八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。
北师大版八年级数学第一次月考数学试卷含答案
![北师大版八年级数学第一次月考数学试卷含答案](https://img.taocdn.com/s3/m/158236825a8102d277a22f90.png)
北师大版八年级数学第一次月考数学试卷含答案一、选择题(共10小题;共30分)1. 小芳有两根长度为和的木条,他想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择的木条的长度只能是C. D.2. 如图所示,要使,下面给出的四组条件中,错误的一组是A. ,B. ,C. ,D. ,3. 如图,已知,,则下列条件中不能判定的是A. B. C. D.4. 等腰三角形的一边长等于,一边长等于,则它的周长是A. B. C. 或 D.5. 等腰三角形中一个角为,则它的底角的度数为A. B. C. 或 D.6. 如图,已知为直角三角形,,若沿图中虚线剪去,则A. B. C. D.7. 有下列条件:① ;② ;③;④ .其中能确定是直角三角形的有A. 个B. 个C. 个D. 个8. 一个多边形的内角和是A. B. C. D.9. 如图,锐角的高,相交于,若,,,则的长为A. B. C. D.10. 如图,,平分,平分,且,下列结论:① 平分;② ;③ ;④.其中正确的个数为A. 个B. 个C. 个D. 个二、填空题(共6小题;共18分)11. 五边形的内角和为,过其中的一个顶点可以作条对角线,共有条对角线.12. 一个三角形的三边长分别为,,,那么的取值范围是.13. 如图,,,与交于点,那么图中全等的三角形共有对.14. 如图,,分别平分,,,则的度数为.15. 如图,在中是上的一点,,点是的中点,设,,的面积分别为,,,且,则.16. 如图,已知:四边形中,对角线平分,,,并且,那么的度数为.三、解答题(共9小题;共102分)17. 若,,是的值.18. 如图,在中,是边上的高,是的平分线,,,求的度数.19. 如图,,点,分别在射线,上移动,是的平分线,的反向延长线与平分线相交于点,试问:的大小是否发生变化?如果保持不变,请给出证明;如果随点,移动发生变化,请求出变化范围.20. 已知:如图A,各角的平分线,,交于点.(1)试说明;(2)如图B,过点作于,试判断与的大小关系(大于,小于或等于),并说明理由.21. 如图,点,,,在同一直线上,,,.求证:.22. 如图,,,,求证:.23. 如图,,分别是的边和上的高,点在的延长线上,,点在上,.求证:(1);(2).24. 如图所示,,相交于点,,.(1)若平分交于,平分交于,求的度数;(2)若直线平分交于,平分交直线于,求的度数.25. 如图,在平面直角坐标系中,的顶点,,于交轴于点.(1)求证:;;(2)如图,将线段绕点顺时针旋转后得线段,连接,求的面积.(3)如图,点为轴正半轴上一动点,点在第三象限内,,且,过点作垂直于轴于,求的值.答案第一部分1. D2. A3. B4. B5. A6. C7. D8. A9. B10. C第二部分11. ,,12.13.14.15.16.第三部分17. ,,是的三边,,,,18. ,是边上的高,,,,,是的平分线,,.19. 的大小保持不变.理由:因为,平分,平分,所以,即,又,所以,故的大小不发生变化,且始终保持.20. (1),分别平分,,,,(2).理由如下:各角的平分线,,交于点,,,,于,,,.21. ,,在和中,..22. ,,即,在和中,,.23. (1),(已知),,,(直角三角形两个锐角互余),(等角的余角相等),在和中,,(全等三角形对应边相等).(2)由()可得(全等三角形对应角相等),(已知),即(直角三角形两锐角互余),(等量代换),即,(垂直定义).24. (1),,,,,,.平分交于,平分交于,,.,,,.(2),平分交直线于,,,,25. (1),,,,,,,在和中,,.(2),,线段绕点顺时针旋转后得线段,,,为等腰直角三角形,.,(3)作于,如图四边形为矩形,,,,,而,,在和中,,第1页(共11 页)。
新北师大版八年级数学下册第一次月考试题(1).doc
![新北师大版八年级数学下册第一次月考试题(1).doc](https://img.taocdn.com/s3/m/6def6bb57375a417876f8f77.png)
13{x x ≥≤八年级数学下册第一次月考试题一、选择题(24分)。
1、下列条件中能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠B =∠E ,∠C =∠FC .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF2、下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等3、已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )A .5B .6C .7D .84、至少有两边相等的三角形是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .锐角三角形5、函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( )A .x>0B .x<0C .x<2D .x>26、已知x y >,则下列不等式不成立的是( )A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+7、将不等式组 的解集在数轴上表示出来,应是( ) A8、如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx+b>ax 的解集是( )A .x>1B .x<1C .x>2D .x<2A CB D二、填空题(18分)。
1、在△ABC中,AB=AC,∠A=44°,则∠B=度。
2、“直角三角形两条直角边的平方和等于斜边的平方”的逆定理是。
北师大数学八年级下第一次月考试卷
![北师大数学八年级下第一次月考试卷](https://img.taocdn.com/s3/m/4c2eba5d58fafab069dc0266.png)
A.x< B.x>-
C.x<3
D.x≥
2、使不等式2x>x+1成立的值中,最小的整数是( )
A.0
B.1 C.2
D.3
3、在数轴上表示不等式≥-2的解集,正确的是( )
A.
B.
C. D
4、要使代数式有意义,则的取值范围是(
)
A、
B、
C、
D、
5、如右图,当时,自变量 的取值范围是(
)
A、
班级 一、填空
八年级数学月考试卷
姓名
考场
考号
1、用不等式表示:m的2倍与n的差是非负数:
2、当
时,代数式 x-5 的值是非负数。
3、不等式5x≥-10的解是
.
4、不等式x-1<2的正整数解是
5、不等式的解集是,则a的取值范围是
。
6、不等式组 的解集是
;
7、点A(-5,)、B(-2,)都在直线上,则与的关系是
(B)(a-2)(
m2-m)
(C)m(a-2)(m-1)
(D)m(a-2)(m+1)
8、若>,则下列不等式中正确的是:( )
A、-<0 B、 C、+8< -8 D、
9、下列多项式中,能用公式进行因式分解的是( )
A. B. C. D.
10、如果不等式组的解集是,则n的取值范围是( )
A、
B、
C、
D、
11、下列各分式中,最简分式是( )
A、
B、 C、
D、
12、=成立的条件是(
)
A、x≠0 B、x≠1 C、x≠0且x≠1 D、x为任意实数
13、若,则分式( )
北师大八年级下第一次月考数学试卷含解析
![北师大八年级下第一次月考数学试卷含解析](https://img.taocdn.com/s3/m/48ce2151e518964bcf847c4d.png)
八年级(下)第一次月考数学试卷一.选择题(共12小题)1.三角形中,到三个顶点距离相等的点是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点2.等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55°C.55°或70°D.70°3.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或234.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠BAD=∠BDA5.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④6.不等式﹣2x+6>0的正整数解有()A.无数个B.0个 C.1个 D.2个7.一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123…y2…﹣3﹣113…则关于x的不等式kx+b>mx+n的解集是()A.x>2 B.x<2 C.x>1 D.x<18.不等式x﹣1>0 的解在数轴上表示为()A.B.C.D.9.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.10.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个 B.6个 C.4个 D.3个11.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个 B.4个 C.7个 D.10个12.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二.填空题(共4小题)13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).14.一等腰三角形一个外角是110°,则它的底角的度数为15.不等式组的解集是.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.三.解答题(共7小题)17.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数.(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.19.如图,AB∥CD,点E、N在AB上,点F在CD上,∠EFD的平分线FM交AB 于点G,且GM=GN,若∠EFD=68°,求∠M的度数.20.已知直线y=﹣2x+b经过点(1,1),求关于x的不等式﹣2x+b≥0的解集.21.已知关于x的方程﹣=m的解为非负数,求m的取值范围.22.(1)解不等式≤.(2)解不等式组并将它的解集在数轴上表示出来.23.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?参考答案与试题解析一.选择题(共12小题)1.三角形中,到三个顶点距离相等的点是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:根据到线段两端的距离相等的点在线段的垂直平分线上,可以判断:三角形中,到三个顶点距离相等的点是三边垂直平分线的交点.故选D.2.等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55°C.55°或70°D.70°【解答】解:分为两种情况:①当顶角的外角是110°时,顶角是180°﹣110°=70°,则底角是×(180°﹣70°)=55°;②当底角的外角是110°时,底角是180°﹣110°=70°;即底角为55°或70°,故选C.3.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或23【解答】解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选D.4.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠BAD=∠BDA【解答】解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,选项C正确;∵AB≠BD,∴∠BAD=∠BDA不成立,选项D错误;故选:D.5.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选D6.不等式﹣2x+6>0的正整数解有()A.无数个B.0个 C.1个 D.2个【解答】解:移项,得:﹣2x>﹣6,系数化为1,得:x<3,则不等式的正整数解为2,1,故选:D.7.一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123…y2…﹣3﹣113…则关于x的不等式kx+b>mx+n的解集是()A.x>2 B.x<2 C.x>1 D.x<1【解答】解:根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x的增大而增大.且两个函数的交点坐标是(2,1).则当x<2时,kx+b>mx+n.故选B.8.不等式x﹣1>0 的解在数轴上表示为()A.B.C.D.【解答】解:x﹣1>0,x>1,在数轴上表示为,故选C.9.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.10.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个 B.6个 C.4个 D.3个【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过格点.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A.11.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个 B.4个 C.7个 D.10个【解答】解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO 交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选D.12.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④【解答】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=∠ABC,∠CAP=(90°+∠ABC)=45°+∠ABC,在△ABP中,∠APB=180°﹣∠BAP﹣∠AB P,=180°﹣(45°+∠ABC+90°﹣∠ABC)﹣∠ABC,=180°﹣45°﹣∠ABC﹣90°+∠ABC﹣∠ABC,=45°,故本小题正确;②∵PF⊥AD,∠APB=45°(已证),∴∠APB=∠FPB=45°,∵∵PB为∠ABC的角平分线,∴∠ABP=∠FBP,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴AB=BF,AP=PF;故②正确;③∵∠ACB=90°,PF⊥AD,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP,∵PF⊥AD,∴∠APH=∠FPD=90°,在△AHP与△FDP中,,∴△AHP≌△FDP(AAS),∴DF=AH,∵BD=DF+BF,∴BD=AH+AB,∴BD﹣AH=AB,故③小题正确;④∵PF⊥AD,∠ACB=90°,∴AG⊥DH,∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小题错误,综上所述①②③正确.故选A.二.填空题(共4小题)13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是②(填序号).【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②14.一等腰三角形一个外角是110°,则它的底角的度数为70°或55°【解答】解:①当110°外角是底角的外角时,底角为:180°﹣110°=70°,②当110°外角是顶角的外角时,顶角为:180°﹣110°=70°,则底角为:(180°﹣70°)×=55°,∴底角为70°或55°.故答案为:70°或55°.15.不等式组的解集是﹣3<x≤1.【解答】解:解不等式﹣2x<6,得:x>﹣3,解不等式3(x﹣2)≤x﹣4,得:x≤1,则不等式组的解集为﹣3<x≤1,故答案为:﹣3<x≤1.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x<﹣.【解答】解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.三.解答题(共7小题)17.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数.(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?【解答】解:(1)∵△ABC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵BD=BA,CE=CA.∴∠BAD=(180°﹣45°)÷2,∠CAE=45°÷2,∴∠DAE=90°﹣∠BAD+∠CAE=45°.(2)不变.∠DAE=90°﹣+∠ACB=(∠B+∠ACB)=45°,从上式可看出当AB和AC不相等时,∠B+∠ACB也是定值为90°.所以不变.18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.【解答】证明:(1)过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,如图,∵在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,∴PQ=PT,PS=PT,∴PQ=PS,∴AP平分∠DAC,即PA平分∠BAC的外角∠CAM;(2)∵PA平分∠BAC的外角∠CAM,∴∠DAE=∠CAE,∵CE⊥AP,∴∠AED=∠AEC=90°,在△AED和△AEC中∴△AED≌△AEC,∴CE=ED.19.如图,AB∥CD,点E、N在AB上,点F在CD上,∠EFD的平分线FM交AB 于点G,且GM=GN,若∠EFD=68°,求∠M的度数.【解答】解:∵AB∥CD,∴∠EGF=∠GFD,∵∠EFD的平分线FM,∴∠EFG=∠GFD=∠EFD=34°,∴∠EFG=∠EGF=34°,∴∠MGN=34°,∵GM=GN,∴∠M=∠GNM=73°.20.已知直线y=﹣2x+b经过点(1,1),求关于x的不等式﹣2x+b≥0的解集.【解答】解:∵直线y=﹣2x+b经过点(1,1),∴1=﹣2×1+b,解得b=3,∵﹣2x+3≥0,解得x≤.21.已知关于x的方程﹣=m的解为非负数,求m的取值范围.【解答】解:2(5x+m)﹣3(x﹣1)=6m,10x+2m﹣3x+3=6m,7x=4m﹣3,∴.∵原方程的解为非负数,∴,∴,∴m的取值范围是.22.(1)解不等式≤.(2)解不等式组并将它的解集在数轴上表示出来.【解答】解:(1)去分母,得:3(x﹣2)≤2(7﹣x),去括号,得:3x﹣6≤14﹣2x,移项,得:3x+2x≤14+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣7,则不等式组的解集为﹣7<x≤1,将解集表示在数轴上如下:23.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?【解答】(1)解:设x人加工G型装置,y人加工H型装置,由题意可得:解得:,6×32÷4=48(套),答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2) 由题意可知:3(6x+4m)=3(80﹣x)×4,解得:.‚×4=240(个),6x+4m≥2406×+4m≥240.解得:m≥30.答:至少需要补充30名新工人才能在规定期内完成总任务.。
北师大版八年级下册数学第一次月考试卷
![北师大版八年级下册数学第一次月考试卷](https://img.taocdn.com/s3/m/79983b054b35eefdc8d3336c.png)
北师大版八年级下册数学第一次月考试卷一.选择题(共10小题)1.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°2.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C .D.85.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC 的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.66.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E、D两点,CE=4,△ABC的周长是25,则△ABD的周长为()A.13 B.15C.17 D.197.如图,等腰三角形ABC中,AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于()A.80°B.70°C.50°D.60°8.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点9.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,则∠C为()A.25°B.35°C.40°D.50°10.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=4,△ABC的面积是()第1页(共7页)A.25 B.84 C.42 D.21二.填空题(共10小题)11.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=.13.如图,点A为△PBC的三边垂直平分线的交点,且∠P=72°,则∠BAC=.14.不等式3x﹣4≥4+2(x﹣2)的最小整数解是.15.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.16.写出不等式5x+3<3(2+x)所有的非负整数解.17.已知方程=1﹣的解也是不等式2x﹣3a<5的一个解,则满足条件的整数a的最小值是.18.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:CD=9:7,则D到AB的距离为.19.如图,AB∥CD,BP和CP分别平分∠ABC 和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.20.如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=7,DE=4,则△BCE的面积等于.三.解答题(共20小题)21.如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE ∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.第2页(共7页)22.如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA延长线于点E,若∠E=35°,求∠BDA 的度数.23.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.24.如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB和BC 于点D,E,且AE平分∠BAC.(1)求∠C的度数;(2)若CE=1,求AB的长.25.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.26.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=BC=8,若S△ABC=28,求DE的长.第3页(共7页)27.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.28.在Rt△ABC中,AC=8,BC=6,∠C=90°,AD是∠CAB的角平分线,交BC于点D.(1)求AB的长;(2)求CD的长.29.如图所示,在△ABC中,∠A=30°,BE平分∠ABC,交AC于E,DE 垂直平分AB于D.(1)求∠ABE度数;(2)求∠C度数;(3)求证:BE+DE=AC.30.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.31.如图,BD是∠ABC的平分线,DE⊥AB于E,△ABC的面积为36cm2,AB=18cm,BC=12cm,求DE的长.32.已知:如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.(1)求证:AM平分∠DAB.(2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.第4页(共7页)33.(1)计算:()2﹣2﹣1×(﹣6)(2)解不等式:5x+2≤3(2+x),并把解在数轴上表示出来.34.某商场准备销售甲、乙两种商品共80件,已知3件甲商品和5件乙商品的销售额相同,且2件乙商品的销售额比1件甲商品的销售额多160件.(1)问:甲、乙两种商品销售单价分别为多少元?(2)若甲、乙两种商品的销售总额不低于48000元,则至少销售甲商品多少件?35.“五一”期间,文具店老板购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)老板如何进货,能使进货款恰好为1350元?(2)要使销售文具所获利润不少于500元,那么老板最多能购进A型文具多少只?36.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.第5页(共7页)37.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D 为垂足,连结EC.求∠ECB的度数.38.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.39.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.40.如图,AB=AC,AB的垂直平分线DE交BC的延长线于点E,交AC于点F,∠A=50°,AB+BC=6.求:(1)△BCF的周长;(2)∠E的度数.第6页(共7页)初中数学组卷参考答案一.选择题(共10小题)1.B;2.B;3.B;4.B;5.B;6.C;7.D;8.B;9.B;10.C;二.填空题(共10小题)11.16;12.2;13.144°;14.4;15.16;16.0,1;17.0;18.14;19.4;20.14;三.解答题(共20小题)21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;第7页(共7页)。
北师大版八年级数学下第一次月考数学试卷
![北师大版八年级数学下第一次月考数学试卷](https://img.taocdn.com/s3/m/cfe06405cec789eb172ded630b1c59eef9c79a41.png)
北师大版八年级数学第一次月考数学试卷(考试时间:100分钟,分值:120分)一.选择题(3×10=30分)1.下列不等式中,属于一元一次不等式的是()A.x>1B.3x2﹣2<4C.<2D.4x﹣3<2y﹣7 2.如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处第2题第 4题第7题第8题3. 将不等式组{4x>−83x−5≤1的解集在数轴上表示出来,则下列选项正确的是()A.B.C.D.4.如图,BE=CF,AE⊥BC,DF⊥BC,要直接根据“HL”证明Rt△ABE≅Rt△DCF,则还要添加一个条件是()A.∠A=∠D B.∠B=∠C C.AE=BF D.AB=DC5. 下列不一定成立的是()A.若a<b,则 c−a>c−b .B. 若ac2<bc2,则 a<bC. 若a−c<b−c,则 a<b.D. 若a< b,则 ac2<bc2.6. 郑州市出租车的收费标准是:起步价10元(即行驶距离不超过3千米都需付10元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为18元,依题意,可列出不等式()A.10+2x<18 B.10+2x≤18 C.10+2(x-3)≤18 D.10+2(x-3)<18 7.如图,直线y1=kx+b,y2=mx﹣n交于点P(1,m),则不等式mx﹣b>kx+n的解集是()A.x>0 B.x<0 C.x>1 D.x<18. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=28°,则∠CBD=()A.15°B.16°C.18°D.20°9. 关于x的不等式组{x−a>02x−5<1−x有且仅有5个整数解,则a的取值范围是()A.﹣5<a≤﹣4B.﹣5≤a<﹣4C.﹣4<a≤﹣3D.﹣4≤a<﹣310.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9 C.6 D.3二、填空题(3×5=15分)11 . 假期里全家去旅游,爸爸开小型客车走中间车道,你给爸爸建议车速为km/h.12.已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设.13. 若(m-1)x>m-1的解集为x<1,则m的取值范围是.14.如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=15. 小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.第14题第15题二、解答题16(10分)下面是小明同学解不等式x−13≥x−32+1的过程.去分母,得2(x-1)≥3(x−3)+1.①去括号,得2x-2≥3x−9+1. ②移项、合并同类项得﹣x≥﹣6.③两边都除以﹣1,得x≥6.④(1)他的解题过程中在第步和第步有错误,请你分别指出错误原因:;。
2020-2021学年度(北师大版)八年级下学期数学第一次月考试卷及答案
![2020-2021学年度(北师大版)八年级下学期数学第一次月考试卷及答案](https://img.taocdn.com/s3/m/70af19bef5335a8103d2205d.png)
八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共15小题,共45.0分)1.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A. 3B. 4C. 5D. 62.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A. 6B. 5C. 4D. 33.下列说法正确的是()A. 若a<b,则3a<2bB. 若a>b,则ac2>bc2C. 若−2a>2b,则a<bD. 若ac2<bc2,则a<b4.不等式3(1−x)>2−4x的解在数轴上表示正确的是()A. B.C. D.5.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°6.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为()A. AB>AC=CEB.AB=AC>CEC. AB>AC>CED. AB=AC=CE7.小明准备用节省的零花钱买一台复读机,他已存有45元,计划从现在起以后每月节省30元,直到他至少有300元,设x月后他至少有300元,则符合题意的不等式是()A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3008.x≥3的最小值是a,x≤−5的最大值是b,则a+b=()A. 1B. −1C. 2D. −29.已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A. 9B. 12C. 15D. 1810.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A. 9B. 6C. 4D. 311.不等式3(x−2)≤x+4的非负整数解有()个A. 4B. 5C. 6D. 无数个12.不等式组{x>−2 3x−4≤8−2x的最小整数解为()A. −1B. 0C. 1D. 413.如图,坐标平面内一点A(2,−1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 514.“双11”期间,某商店计划用160000元购进一批家电,其进价和售价如下表:类别彩电(元/台)冰箱(元/台)洗衣机(元/台)进价200016001000售价220018001100若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,则商店销售完这批家电后获得的利润最大为()A. 17000元B. 17200元C. 17400元D. 17600元15.若不等式组{2x−a<1−1<x<1,则(a−3)(b+3)的值为()x−2b>3的解集为A. 1B. −1C. 2D. −2二、填空题(本大题共5小题,共25.0分)16.如图,直线a,b过等边三角形ABC顶点A和C,且a//b,∠1=42°,则∠2的度数为______.17.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为______.18.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______度.19.在实数范围内规定新运算“△”,其规则是:a△b=2a−b.已知不等式x△k≥1的解集在数轴上如图表示,则k的值是______.20.定义:对于实数a,符号[a]表示不大于a的最大整数,例如:[4.7]=4,[−π]=−4,+1]=−5,则x的取值范围为______.[3]=3,如果[x+23三、解答题(本大题共7小题,共80.0分)21.(8分)若关于x的方程1+x2−x =2mx2−4的解也是不等式组{1−x2>x−22(x−3)≤x−8的一个解,求m的取值范围.22.(8分)如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,∠B=30°,∠BAC=80°,且BC+AC=12cm,(1)求∠CAE的度数;(2)求△AEC的周长.23.(10分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连结AM.(1)求证:EF=12AC;(2)若∠BAC=45°,求线段AM,DM,BC之间的数量关系.24.(12分)某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?25.(12分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元.A,B两种产品原来的运费和现在的运费(单位:元/件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?26.(14分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.27.(16分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN?如存在,请求出此时M、N运动的时间.答案1.A2.D3.D4.A5.D6.D7.B8.D9.B10.D11.C12.B13.C14.C15.D16.102°17.x≤118.3419.k=−320.−20≤x<−1721.解:原分式方程变形得:1−xx−2=2m(x−2)(x+2),方程两边同乘以最简公分母(x+2)(x−2)得:(x+2)(x−2)−x(x+2)=2m,x2−4−x2−2x=2m,−2x=2m+4,∴x=−m−2,∵不等式组{1−x2>x−2①2(x−3)≤x−8②,由①得:1−x>2x−4,−3x>−5,∴x<53,由②得:2x−6≤x−8,∴x≤−2,∴不等式组的解集为x≤−2,∵x=−m−2,∴−m−2≤−2,∴m≥0,∵关于x的方程1+x2−x =2mx2−4有意义,∴x≠±2,∴−m−2≠±2,∴m≠−4且m≠0,∴m>0.22.解:∵AB的垂直平分线分别交AB,BC于点D,E,∴BE=AE,∴∠BAE=∠B=30°,又∵∠BAC=80°,∴∠CAE=∠BAC−∠BAE=80°−30°=50°;(2)∵AE=BE,∴AE+CE+AC=BC+AC=12cm.即△AEC的周长为12cm.23.(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∴△AEC 为直角三角形, ∵点F 为AC 的中点, ∴EF =12AC ;(2)解:BC =AM +DM.理由如下: ∵∠BAC =45°,CE ⊥BD , ∴△AEC 是等腰直角三角形, ∵点F 为AC 的中点, ∴EF 垂直平分AC , ∴AM =CM ,∵CD =CM +DM =AM +DM ,CD =CB , ∴BC =AM +DM .24.解:(1)设A 、B 两种型号的扫地车每辆每周分别可以处理垃圾a 吨、b 吨,{a +2b =1002a +b =110, 解得,{a =40b =30,答:(1)求A 、B 两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨; (2)设购买A 型扫地车m 辆,B 型扫地车(40−m)辆,所需资金为y 元, {25m +20(40−m)≤91040m +30(40−m)≥1400,解得,20≤m ≤22, ∵m 为整数, ∴m =20,21,22, ∴共有三种购买方案,方案一:购买A 型扫地车20辆,B 型扫地车20辆; 方案二:购买A 型扫地车21辆,B 型扫地车19辆; 方案三:购买A 型扫地车22辆,B 型扫地车18辆; ∵y =25m +20(40−m)=5m +800, ∴当m =20时,y 取得最小值,此时y =900,答:方案一:购买A 型扫地车20辆,B 型扫地车20辆所需资金最少,最少资金是900万元.25.解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:{45x +25y =120030x +20y =1200−300,解得:{x =10y =30,答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件, (2)设增加m 件A 产品,则增加了(8−m)件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m)件,B 产品的数量为30+(8−m)=(38−m)件, 根据题意得:W =30(10+m)+20(38−m)=10m +1060, 由题意得:38−m ≤2(10+m), 解得:m ≥6, 即6≤m ≤8,∵一次函数W 随m 的增大而增大 ∴当m =6时,W 最小=1120,答:产品件数增加后,每次运费最少需要1120元.26.解:设购买A 型号笔记本电脑x 台时的费用为w 元,(1)当x =8时,方案一:w =90%a ×8=7.2a ,方案二:w =5a +(8−5)a ×80%=7.4a ,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元;(2)若x ⩽5,方案一每台按售价九折销售,方案二每台按售价销售,所以采用方案一购买合算; 若x >5,方案一:w =90%ax =0.9ax ,方案二:当x >5时,w =5a +(x −5)a ×80%=5a +0.8ax −4a =a +0.8ax , 则0.9ax >a +0.8ax , x >10,∴x 的取值范围是x >10且x 为正整数27.解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,x +12=2x , 解得:x =12;(2)设点M 、N 运动t 秒后,可得到等边三角形△AMN ,如图①,AM=t×1=t,AN=AB−BN=12−2t,∵三角形△AMN是等边三角形,∴t=12−2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵{AC=AB∠C=∠B∠AMC=∠ANB,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y−12,NB=36−2y,CM=NB,y−12=36−2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
新北师大版八年级数学下第一次月考试卷
![新北师大版八年级数学下第一次月考试卷](https://img.taocdn.com/s3/m/6b00c85e86c24028915f804d2b160b4e767f81b8.png)
1、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A、三条中线的交点;B、三边垂直平分线的交点;C、三条高的交战;D、三条角平分线的交点;2、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cm C.11cm 或7.5cm D.以上都不对3、下列命题中正确的是( )A、有两条边相等的两个等腰三角形全等B、两腰对应相等的两个等腰三角形全等C、两角对应相等的两个等腰三角形全等D、一边对应相等的两个等边三角形全等4、已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<0 5、不等式2x+3>0的最小整数解是()A.-1 B.1 C.0 D.26、足球比赛的记分规则是胜一场得3分,平一场得1分,负一场得0分.一个队共进行14场比赛,得分不少于20分,则该队至少胜了………………()A.3场 B.4场 C.5场 D.6场7、如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CDB. ∠DAC=∠BC. ∠C>2∠BD. ∠B+∠ADE=90°8、已知一个等腰三角形的两内角的度数的比为1︰4,则这个等腰三角形顶角的度数为( )A. 20°B. 120°C. 20°或120°D. 36°9、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打………………( ) A .6折 B .7折 C .8折 D .9折10、如图,已知AB=AC ,∠A=36°,AC 的垂直平分线MN 交AB 于D ,AC 于M ,以下结论:①△BCD 是等腰三角形;②射线CD 是△ACB 的角平分线; ③△BCD 的周长C △BCD =AB+BC ;④△ADM≌△BCD。
八年级数学下册第一次月考试卷北师大版
![八年级数学下册第一次月考试卷北师大版](https://img.taocdn.com/s3/m/6873dc0f763231126edb11c1.png)
八年级数学下册第一次月考试卷北师大版班级————————姓名__________一、选择题(共20分)1.用不等式表示“x2是非负数”正确的是()A.x2<0B.x2﹥0C.x2 ≤0D.x2≥0 2.下列各式是不等式的有()个。
①—3<0②4x+3y>0 ③x=4 ④x+y ⑤x≠5 ⑥x+2>y+3 A.1 B.2 C.3 D.43.已知x>y,下列不等式一定成立的是()A.x—6<y—6B.3x<3yC. —2x>—2yD.2x+1>2y+14.不等式组25xx>-⎧⎨⎩≤的解集在数轴上可表示为A B C D5. 下列各等式从左到右的变形是因式分解的是()A.6a2b=3a2·2b B.mx+nxy-xy=mx+xy(n-1) C.am-a=a(m-1) D.(x+1)(x-1)=x2-16.()是不等式x—4≥0的解。
A. 1B.2C.3D.47.长度为3,7,x的三条线段可以围成一个三角形,则x可以是()。
A. 3B.4C.5D.108.不等式x+3≥0,有()个负整数解。
A. 1B.2C.3D.49.19992+1999能被()整除。
A. 1995B.1996C.2000D.200110.已知ab=7,a+b=6,则多项式a2b+ab2的值是()。
A. 13B.1C.42D.14二.填空题。
(共20分)11.用不等式表示“x+1是负数”:___________。
12.已知a<b,则a—3______b—3.13. 不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。
14.将不等式x+3﹤—1化成“x>a”或“x<a”的形式:_____________。
15.不等式2x—3≤0的解集为_____________。
16.不等式4(x+1)≤64的正整数为_____________。
17.已知y1= —x+3,y2=3x—4,当x______时,y1>y2.18.多项式2x2+x3—x中各项的公因式是_____________。
北师大八年级(下)第一次月考数学试卷含答案
![北师大八年级(下)第一次月考数学试卷含答案](https://img.taocdn.com/s3/m/26e9afca26fff705cc170ae3.png)
八年级(下)第一次月考数学试卷一.选择题:(每题3分,共36分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n22.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF3.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或175.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个6.等腰三角形一腰上的高与底边的夹角为40°,则顶角的度数为()A.40°B.80°C.100° D.80°或100°7.不等式组的解集在数轴上可表示为()A.B.C.D.8.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣110.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④11.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每题3分,共12分)13.如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是.(写出一种情况即可)14.已知关于x的不等式组无解,则a的取值范围是.15.某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为.16.命题“两直线平行,同位角相等.”的逆命题是.三.解答题(7个大题,共52分)17.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.18.如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.19.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.20.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?21.如图,△ABC,△CDE是等边三角形.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系.并加以证明.参考答案与试题解析一.选择题:(每题3分,共36分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.2.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【分析】首先运用角平分线的性质得出DE=DF,再由HL证明Rt△ADE≌Rt△ADF,即可得出AE=AF;根据SAS即可证明△AEG≌△AFG,即可得到OE=OF.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;∵AD是△ABC的角平分线,∴∠EAO=∠FAO,在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴OE=OF;故选C.3.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.4.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个【考点】等腰三角形的性质.【分析】等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.【解答】解:①等腰三角形的两腰相等;正确;②等腰三角形的两底角相等;正确;③等腰三角形底边上的中线与底边上的高相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.6.等腰三角形一腰上的高与底边的夹角为40°,则顶角的度数为()A.40°B.80°C.100° D.80°或100°【考点】等腰三角形的性质.【分析】首先根据题意画出图形,然后根据直角三角形两锐角互余求出底角的度数,再根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵BD⊥AC,∠CBD=40°,∴∠C=50°,∵AB=AC,∴∠ABC=∠C=50°,∴∠A=180°﹣∠ABC﹣∠C=80°,即顶角的度数为80°.故选B.7.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选C.8.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣1【考点】一次函数与一元一次不等式.【分析】观察函数图象得到,当x<﹣1时,直线y=k2x都在直线y=k1x+b,的上方,于是可得到不等式k2x>k1x+b的解集.【解答】解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选D.10.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【考点】等腰三角形的判定.【分析】根据等腰三角形的判定逐一进行判断即可.【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选C.11.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题3分,共12分)13.如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是AB=DC.(写出一种情况即可)【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知∠A=∠D=90°,隐含的条件是BC=BC,那么只需添加一个条件即可.添边的话可以是AB=DC,符合HL.【解答】解:所添加条件为:AB=DC,∵∠A=∠D=90°,∴在Rt△ABC和△RtDCB中,∵,∴△ABC≌△DCB(HL).故答案为AB=DC.(答案不唯一)14.已知关于x的不等式组无解,则a的取值范围是a≥10.【考点】不等式的解集.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.15.某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为17.【考点】一元一次不等式的应用.【分析】设要参加复试,初试的答对题数至少为x道,根据某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试,可列出不等式求解.【解答】解:设要参加复试,初试的答对题数至少为x道,4x﹣(25﹣x)≥60x≥17.若要参加复试,初试的答对题数至少为17道.故答案为:17.16.命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.三.解答题(7个大题,共52分)17.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【考点】一元一次不等式组的整数解;在数轴上表示不等式的解集;解一元一次不等式;解一元一次不等式组.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.18.如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.【考点】线段垂直平分线的性质;等边三角形的判定与性质;含30度角的直角三角形.【分析】(1)根据旋转的性质得到△ACD是等边三角形,根据线段垂直平分线的概念判断即可;(2)根据直角三角形的性质计算即可.【解答】(1)证明:∵线段AC绕点A顺时针旋转60°得到线段AD,∴AD=AC,∠CAD=60°,∴△ACD是等边三角形,∵∠BAC=30°,∴∠DAB=30°,∴∠BAC=∠DAB,∴AO⊥CD,又CO=DO,∴AB垂直平分CD;(2)解:∵AB垂直平分CD,∴BD=BC,∠ADB=∠ACB=90°,∴BD=AB=3.19.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【考点】等腰三角形的判定;角平分线的性质.【分析】由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C,∴△ABC为等腰三角形.20.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?【考点】二元一次方程组的应用.【分析】(1)设每台电脑机箱进价为x元、每台液晶显示器的进价为y元,然后根据购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,购进电脑机箱两台和液晶显示器5台,共需要资金4120元列出组求解即可;(2)设购买电脑机箱x台,则购买液晶显示器(50﹣x)台,然后根据两种商品的资金不超过22240元,且利润不少于4100元列不等式组求解,从而可求得x 的范围,然后根据x的取值范围可确定出进货方案,并求得最大利润.【解答】解:(1)设每台电脑机箱进价为x元、每台液晶显示器的进价为y元.根据题意得:,解得:.答:设每台电脑机箱进价为60元、每台液晶显示器的进价为800元.(2)设购买电脑机箱x台,则购买液晶显示器(50﹣x)台.根据题意得:.解得:24≤x≤26.经销商共有三种进货方案:①购买电脑机箱24台,购买液晶显示器26台;②购买电脑机箱25台,购买液晶显示器25台;③购买电脑机箱26台,购买液晶显示器24台.第①种进货方案获利最大,最大利润=10×24+160×26=4400元.21.如图,△ABC,△CDE是等边三角形.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系.并加以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AE=BD,只要证明△ACE≌△BCD(SAS)即可.(2)欲证明CM=CN,只要证明△BCM≌△ACN(ASA)即可.(3)结论:MN∥BE.只要证明△MNC是等边三角形,即可推出∠CMN=∠BCM,推出MN∥BE.【解答】(1)证明:∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠BCD=∠ACE=120°,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴AE=BD.(2)证明:∵△ACE≌△BCD,∴∠CBD=∠CAE,又∵BC=AC,∠BCM=∠ACN=60°,在△BCN和△ACN中,,∴△BCM≌△ACN(ASA)∴CM=CN(3)结论:MN∥BE.理由:∵∠BCA=∠DCE=60°,∴∠MCN=180°﹣60°﹣60°=60°,∵CM=CN,∴△CMN是等边三角形,∴∠CMN=∠BCM=60°,∴MN∥BE.。
【北师大版】八年级下册数学第一次月考卷01(第一章、第二章)附答题卡
![【北师大版】八年级下册数学第一次月考卷01(第一章、第二章)附答题卡](https://img.taocdn.com/s3/m/ca7622406d85ec3a87c24028915f804d2b1687c4.png)
2023-2024学年八年级数学下学期第一次月考卷01基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章、第二章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列数学表达式中:①20-<,②230x y +>,③2x =,④222x xy y ++,⑤3x ≠,⑥12x +>中,不等式有( ) A .1个B .2个C .3个D .4个2.下列说法不正确的是( ) A .若a b >,则22a b +>+ B .若a b >,则1122a b -<- C .若a b >,则22ac bc >D .若22a b >,则a b >3.不等式组10240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.若不等式组12x x k <≤⎧⎨>⎩有解,则k 的取值范围是( )A .12k ≤<B .2k ≥C .1k <D .2k <5.用反证法证明命题钝角三角形中必有一个内角小于45°时,首先应该假设这个三角形中( ) A .每一个内角都大于等于45° B .每一个内角都小于45° C .有一个内角大于等于45°D .有一个内角小于45°6.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的顶角为( ) A .50︒B .130︒C .50︒或130︒D .140︒7.用三角尺可按下面方法画角平分线:如图摆放使得三角板刻度相同,即PM PN =,画射线OP ,则OP 平分AOB ∠.作图过程用了OMP ONP ≌△△,那么OMP ONP ≌△△所用的判定定理是( )A .SSSB .AASC .HLD .ASA8.到三角形三个顶点距离都相等的点是( ) A .三角形的三条角平分线的交点 B .三角形的三边垂直平分线的交点 C .三角形的三条高线的交点 D .三角形的三条中线的交点9.如图,在ABC 中,90,30C B ∠=︒∠=︒,以A 为圆心、任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M 、N 为圆心、大于MN 的长的一半为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,给出下列说法:①AD 是BAC ∠的平分线;②120ADB ∠=︒;③点D 在AB 的垂直平分线上;④D 点是线段BC 的中点.其中正确的个数是( )A .1B .2C .3D .410.如图所示三角形纸片ABC 中,B C ∠=∠,将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD . 再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF ,若2AE =,则ABC 的周长为13,则AF 长为( )A .1.2B .1.5C .1.4D .111.一次函数1y ax b =+与2y cx d =+的图象如图所示,下列结论:①当0x >时,10y >,20y >;②函数y ax d =+的图象不经过第一象限;③3d ba c --=;④d a b c <++.其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .16B .10C .8D .2第II 卷二、填空题(本题共6小题,每小题3分,共18分.)13.已知a 、b 为常数,且0a ≠,如果不等式0ax b +<的解集是1x >,那么不等式ax b >-的解集是 .14.如图,在ABC 中,9060C BAC ADC ∠=︒∠=∠=︒,,则CD 与BD 的数量关系是 .15.我们用[]a 表示不大于a 的最大整数,例如:[]1.51=,[]2.32=,若[]41x +=,则x 的取值范围是 .16.如图,ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,MN 经过点O ,与AB ,AC 相交于点M 、N ,且MN BC ∥,7cm AB =,9cm AC =,则AMN 的周长为 .17.关于x 的不等式组36152x m x x >-⎧⎨-<+⎩的整数解仅有4个,则m 的取值范围是 .18.如图,M N ,为44⨯方格纸中格点上的两点,若以MN 为边(P 在格点上),使得MNP △为等腰三角形,则点P 的个数为 个.三、解答题(本题共8小题,共66分.第19-20题每题6分,第21-23题每题8题,其他每题10分,解答应写出文字说明、证明过程或演算步骤.) 19.解不等式:()3312x x ---≤,并把它的解集在数轴上表示出来.20.解不等式组()211212x x x ⎧-<+⎪⎨+>⎪⎩,并求不等式组的正整数解.21.如图,已知ABC ,(1)根据要求作图,在边BC 上求作一点D .使得点D 到点AB 、AC 的距离相等,在边AB 上求作一点E .使得点E 到A 、D 的距离相等;(不要求写作法,但需要保留作图痕迹和结论) (2)在第(1)小题所作的图中,求证:∥DE AC .22.如图,在四边形ABCD 中,90,A B E ∠=∠=︒是AB 上的一点,且AD BE ==,12DE CE ∠=∠、.(1)求证:Rt Rt ADE BEC △≌△; (2)若30AED ∠=︒,求CD 的长.23.西安某校计划购买A ,B 两种树木共100棵,进行校园绿化,经市场调查:购买A 种树木3棵,B 种树木4棵,共需470元,购买A 种树木5棵,B 种树木2棵,共需410元. (1)求A ,B 两种树木每棵各多少元?(2)布局需要,决定再次购进A ,B 两种树木共50棵,恰逢该供应商对两种树木的售价进行调价,A 种树木售价比第一次购买时提高了8%,B 种树木按第一次购买时售价的9折出售.如果这所学校此次购买A ,B 两种树木的总费用不超过3260元,那么该校最多可购买多少B 种树木? 24.如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()1,5C ,且与x 轴相交于点()6,0B ,与一次函数26y x =-的图象相交于点A ,点A 的横坐标为4.(1)求k ,b 的值;(2)请直接写出关于x 的不等式26kx b x +>-的解集;(3)设点E 在直线y kx b =+上,且2BCD BDE S S =△△,求点E 的坐标.25.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =.(1)求证:DB DE =;(2)过点A 作AF BC ∥,交ED 延长线于点F ,交AB 于M ,连接BF . ①若12EM =,则BD = . ②求证:AB 垂直平分DF .26.如图①,在ABC 中,延长AC 到D ,使CD AB =,E 是AD 上方一点,且A BCE D ∠=∠=∠,连接BE .(1)求证:BCE 是等腰三角形;(2)如图①,若90ACB ∠=︒,将DE 沿直线CD 翻折得到DE ',连接BE '和CE ',BE '与CE 交于F ,若BE ED '∥,求证:F 是BE '的中点;(3)在如图②,若90ACB ∠=︒,AC BC =,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,交CD 于G ,若AC a =,()0AB b b a =>>,求线段CG 的长度.12023-2024学年八年级数学下学期第一次月考卷·答题卡一、单项选择题(本题共12小题,每小题3分,共36分。
北师大版八年级数学第一次月考试卷
![北师大版八年级数学第一次月考试卷](https://img.taocdn.com/s3/m/f5d31febeefdc8d377ee32d1.png)
北师大版八年级(下)第一次月考数学试卷班级姓名一、选择题(每小题4分,共40分)1.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.2.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.3.一个等腰三角形的顶角是100°,则它的底角度数是()A .30°B.60°C.40°D.不能确定4.不等式x﹣4<0的正整数有()A.1个B.2个C.3个D.无数多个5.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BD C.AC=AD且BC=BD D.以上都不正确6.在数轴上与原点的距离小于5的点对应的x满足()A.﹣5<x<5 B.x<5 C.x <﹣5或x>5 D.x>57.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>28.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°9.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()1 / 12A.6 B.7 C.8 D.9二、填空题:(每小题4分,共20分)11.不等式组的解集是x>2,那么m的取值范围.12.等腰三角形ABC中∠A=40°,则∠B=.13.直角三角形中,两直角边长分别为12和5,则斜边中线长是.14.不等式组的整数解是.15.不等式组的解集是x<m﹣2,则m的取值应为.三、画图题(5分)16.在角AOB内部求作一点P,使PC=PD,并且点P到角AOB两边的距离相等。
【新】北师大版八年级下册第一次月考数学试卷含答案 (2)
![【新】北师大版八年级下册第一次月考数学试卷含答案 (2)](https://img.taocdn.com/s3/m/4a37089ee45c3b3566ec8b28.png)
八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。
北师大版 八年级数学第一次月考测试卷试题
![北师大版 八年级数学第一次月考测试卷试题](https://img.taocdn.com/s3/m/f4fe9fc91711cc7930b7169d.png)
1八年级数学一、二、三章测试卷试题考号________班级________姓名_________成绩___________一、选择题(本大题共12小题每题3分,共36分)1. 已知直角三角形的一条直角边和斜边的长分别为3和5,则第三条边的长为( )A. 4B. 5C. 3D. 都不对2. 如图,字母B 所代表的正方形的面积是( )A .12 B. 144 C. 13 D. 1943、如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A. 8米B. 9米C. 10米D. 11米 4、一直角三角形的两直角边长为12和16,则斜边长为( )A. 12B. 16C. 18D. 20 3. 下列各组数中,不能满足勾股定理的逆定理是()A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,10 4. 三角形的三边长为a ,b ,c ,且满足(a +b )2=c 2+2ab ,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形 5. 若x -3是4的平方根,则x 的值为( )A. 2B. ±2C. 1或5D. 166. 若点A (a ,a +5)在x 轴上,则点A 到原点的距离为( )A. -5B. 0C. 5D. 不能确定7.下列各数中,是无理数的是( )A.8 B .0 C. 4 D .-47138.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 9.在平面直角坐标系中,点(4,-5)关于x 轴对称的点的坐标为( )A .(4,5)B .(-4,-5)C .(-4,5)D .(5,4)10.点P (m +3,m +2)在直角坐标系的y 轴上,则点P 的坐标为( )A .(0,-1)B .(1,0)C .(3,0)D .(0,-5)11.若一个正数的平方根是x -5和x +1,则x 的值为( )A .2B .-2C .0D .无法确定 12.计算12×13+5×3的结果在( ) A .4至5之间 B .5至6之间 C .6至7之间 D .7至8之间二、填空题(每小题每题4分,共24分) 1.如图是某校的平面示意图的一部分,若用“(0,0)”表示图书馆的位置,“(0,-3)”表示校门的位置,则教学楼的位置可表示为________.2.若第二象限内的点P (x ,y )满足|x |=2,y 2=36,则点P 的坐标是________. 3.如果a -1+2-b =0,那么1a+6b=________.4、一个三角形的三边的比是3∶4∶5,它的周长是24,则它的面积是____________. 5在实数①,②,③3.14,④,⑤π中,是无理数的有______;(填写序号)6、在平面内,确定物体位置,一般需要 ______个数据。
最新北师大版八年级数学下册第一次月考试题
![最新北师大版八年级数学下册第一次月考试题](https://img.taocdn.com/s3/m/a5b354f9915f804d2a16c147.png)
北师大版八年级数学下册第一次月考试题一.选择题(36分)1.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,72.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或223.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.64.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠BAD=∠BDA5.已知a>b,则在下列结论中,正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.|a|>|b| D.a2>b26.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道7.若x+a<y+a,ax>ay,则()A.x>y ,a>0 B.x>y,a<0 C.x<y,a>0 D.x<y,a<08.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条9.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC 长是()A.9 B.8 C.7 D.610.如图,在△ABC中,边BC的垂直平分线l与AC相交于点D,垂足为E,如果△ABD的周长为10cm,BE=3cm,则△ABC的周长为()A.9 cm B.15 cm C.16 cm D.18 cm11.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a <0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④12.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.二.填空题(共4小题,12分)13.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.14.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN= .15.如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.三.解答题(共8小题,72分)17.(8分)解下列不等式(组),并用数轴表示解集(1)(3y﹣1)﹣<y+1(2).18.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数.(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?19.(8分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE ⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.20.(8分如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D 的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.(8分)某公司保安部去商店购买同一品牌的应急灯和手电筒,查看定价后发现,购买一个应急灯和5个手电筒共需50元,购买3个应急灯和2个手电筒共需85元.(1)求出该品牌应急灯、手电筒的定价分别是多少元?(2)经商谈,商店给予该公司购买一个该品牌应急灯赠送一个该品牌手电筒的优惠,如果该公司需要手电筒的个数是应急灯个数的2倍还多8个,且该公司购买应急灯和手电筒的总费用不超过670元,那么该公司最多可购买多少个该品牌应急灯?22.(8分)如图,已知直线y=kx﹣3经过点M,直线与x轴,y轴分别交于A,B 两点.(1)求A,B 两点坐标;(2)结合图象,直接写出kx﹣3>1的解集.23.(8分)△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD 为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB 于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,判断△BEF的形状并说明理由.(2)若∠BAC=∠DAE≠60°如图2,当点D在线段BC上移动,判断△BEF的形状,不必说明理由24.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?。
2020新北师大版八年级数学(下)第一次月考试卷
![2020新北师大版八年级数学(下)第一次月考试卷](https://img.taocdn.com/s3/m/473c777b0242a8956bece491.png)
八年级数学月考试卷一、(本大题共8小题,每小题2分,共16分.每小题给出四个答案,其中只有一个是正确的).1、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A、三条中线的交点;B、三边垂直平分线的交点;C、三条高的交战;D、三条角平分线的交点;2、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cm C.11cm 或7.5cm D.以上都不对3、下列命题中正确的是( )A、有两条边相等的两个等腰三角形全等B、两腰对应相等的两个等腰三角形全等C、两角对应相等的两个等腰三角形全等D、一边对应相等的两个等边三角形全等4、已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<05、不等式2x+3>0的最小整数解是()A.-1 B.1 C.0 D.26、如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CDB. ∠DAC=∠BC. ∠C>2∠BD. ∠B+∠ADE=90°7、已知一个等腰三角形的两内角的度数的比为1︰4,则这个等腰三角形顶角的度数为()A. 20°B. 120°C. 20°或120°D. 36°8、如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M,以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;=AB+BC;④△ADM≌△BCD。
正确的有()③△BCD的周长C△BCDA. ①②B. ①③C. ①②③D. ③④二、(本大题共8小题,每小题3分,共24分.请你把答案填在横线的上方).9、用不等式表示“x 与8的差是非负数”_______________.10、如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是_________11、若不等式()11a x a ->-的解集是1x <,则a 的取值范围是_________. 12.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中——————————13.如图,在Rt △ABC 中,∠ABC=90°,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,∠BAE=20°,则∠C=------------------14.如图,在△ABC 中,BI 、CI 分别平分∠ABC 、∠ACF ,DE 过点I ,且DE ∥BC .BD=8cm ,CE=5cm ,则DE 等于——————第13题图 第14题图 第16题图15. 如果不等式2-0x m ≥的负整数解是-1,-2,则m 的取值范围是_________16.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是————————三、(本大题共3小题,每小题5分,共15分)17、解下列不等式(1)x x 5632-≥- (2)14-x <22x -(3)-3(x -2)<-2(x -3)四、(本大题共4小题,每小题7分,共28分). 18.如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)19、如图,已知等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,求∠APE 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学月考试卷第1页
枣林中学2012—2013学年下学期第一次月考试卷
八 年 级 数 学
一、填空题(每空3分,共21分)
1、请写出一个不等式,使它的解集是x >-1 : .
2、已知三角形的两边为3和4,则第三边a 的取值范围是________.
3、写出下图所表示的不等式的解集是 .
4、分解因式=-x x 422____________________.
5、322236129xy y x y x -+中各项的公因式是__________.
6、如果不等式组⎩⎨
⎧<+>-0
0b x a x 的解集是35x <<,那么a b -=________,
7、小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔. 二、选择题(每题3分,共24分)
8、不等式360x -+>的正整数解有 ( )
A.1个
B.2个
C.3个
D.无数多个
9、“x 的2倍与3的差不大于8”列出的不等式是 ( )
A.2x -3≤8
B.2x -3≥8
C.2x -3<8
D.2x -3>8
10、下列各式从左到右的变形,是因式分解的是: ( )
A 、x x x x x 6)3)(3(692
+-+=+- B 、2
(5)(2)310x x x x +-=+-
学校 考场 考号 班级 姓名
装 订 线 内 不 要 答 题 ◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆
八年级数学月考试卷第2页
C 、22816(4)x x x -+=-
D 、211(1)x x x x x
++=++
11、下列多项式,不能运用平方差公式分解的是 ( )
A 、42+-m
B 、22y x --
C 、122-y x
D 、22()()m a m a --+
12、若不等式组⎩⎨
⎧>≤11
x m x 无解,则m 的取值范围是 ( )
A.m <11
B.m >11
C. m ≤11
D. m ≥11
13、若 2294x kxy y ++ 是一个完全平方式,则 k 的值为 ( )
A 、6
B 、±6
C 、12
D 、±12 14、不等式组⎩⎨
⎧->≤2
3x x 的解集,在数轴上表示正确的是 ( )
A B C D
15、对于任何整数m ,多项式2(45)9m +-都能 ( ) A 、被8整除 B 、被m 整除 C 、被(1)m -整除 D 、被(21)m -整除 三、解答题(共41分)
16、用简便方法计算(每小题3分,共9分)
(1)22
6.4 3.6- (2)2.89×29-2.89×17+2.89×88
(3)先分解因式,然后再计算求值,22
9124x xy y ++,其中43
x =
,12
y =-
八年级数学月考试卷第3页
17、解下列不等式(组)。
并把解集用数轴表示出来。
(每小题4分,共16分) (1)5(2)4(21)x x ->- (2)112
4
x x -+≥
(3 ⎪
⎩⎪
⎨⎧->+≥--13
214
)2(3x x x x (4)123541x x x x +>+⎧⎨≤-⎩
18、把下列各式分解因式。
(每小题4分,共16分) (1) 2
2194
a b - (2) 2
()10()25x y x y +-++
(3) 323612ma ma ma -+- (4) )()(2x y y x x -+-;
八年级数学月考试卷第4页
四、应用题:(每题7分,共14分)
19、登山前,登山者要将矿泉水分装在旅行包内带上山。
若每人2瓶,则剩余3瓶,若每人带3
瓶,则有一人所带矿泉水不足2瓶。
求登山人数及矿泉水的瓶数。
20、五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠
方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元,
(1)分别表示出甲旅行社收费y 1 ,乙旅行社收费y 2与旅游人数x 的函数关系式;
(2) 随着团体人数的变化,哪家旅行社的收费更优惠?
装
订
线
内
不
要
答
题
◆◆◆◆◆◆◆◆◆◆◆
装
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
线
◆◆◆◆◆◆◆◆◆◆◆◆◆◆。