九年级暑假-第1讲:相似形与比例线段 - 教师版
北师大版九年级上册数学教案-相似三角形的性质
![北师大版九年级上册数学教案-相似三角形的性质](https://img.taocdn.com/s3/m/aaf9b2ca5ebfc77da26925c52cc58bd631869374.png)
4.7.第1课时相似三角形中的对应线段之比教学目标:(一)知识目标:经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。
利用相似三角形的性质解决一些实际问题.(二)能力目标:培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识.在探索过程中发展学生类比的数学思想及全面思考的思维品质.(三)情感与价值观目标:在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样性.三、教学过程分析本节课设计了五个教学环节:第一环节:探究相似三角形对应高的比.;第二环节:类比探究相似三角形对应中线的比、对应角平分线的比;第三环节:学以致用(相似三角形性质的应用);第四环节:课堂小结(初步升华所学内容);第五环节:布置作业。
第一环节:探究相似三角形对应高的比.引入语:在前面我们学习了相似三角形的定义和判定条件,知道相似三角形的对应角相等,对应边成比例。
那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将研究相似三角形的其他性质.内容:探究活动一:(投影片)在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A/B/C/,CD和C/D/分别是它们的立柱。
(1)试写出△ABC与△A/B/C/的对应边之间的关系,对应角之间的关系。
(2)△ACD与△A/C/D/相似吗?为什么?如果相似,指出它们的相似比。
(3)如果CD=1.5cm,那么模型房的房梁立柱有多高?(4)据此,你可以发现相似三角形怎样的性质?[生]解:(1)B A AB ''=C B BC ''=C A AC ''=21 /A A ∠=∠/,B B ∠=∠///,B C A ACB ∠=∠(2)△ACD ∽△A ′C ′D ′∵////,B A D C AB CD ⊥⊥∴0///90,=∠=∠C D A ADC∵/A A ∠=∠∴△ACD ∽△A ′C ′D ′(两个角分别相等的两个三角形相似) ∴//C A AC =//D A AD =//D C CD =21 (3)∵D C CD ''=21,CD=1.5cm ∴C /D /=3cm(4)相似三角形对应高的比等于相似比目的:通过学生熟悉的建筑模型房入手,激发学生学习兴趣,层层设问,引发学生思维层层递进,从相似三角形的最基本性质展开研究.使学生明确相似比与对应高的比的关系.效果:通过层层设问,引导学生剥开问题的表面看到了相似三角形的性质:对应高的比等于相似比.第二环节:类比探究相似三角形对应中线的比、对应角平分线的比过渡语:刚才我们利用相似的判定与基本性质得到了相似三角形中一种特殊线段的关系,即对应高的比等于相似比,相似三角形中除了高是特殊线段,还有哪些特殊线段?它们也具有特殊关系吗?下面让我们一起探究:内容:探究活动二:(投影片)如图:已知△ABC ∽△A ′B ′C ′,相似比为k ,AD 平分∠B AC ,A /D /平分∠B /A /C /;E 、E /分别为BC 、B /C /的中点。
新北师大版九年级数学上册《四章 图形的相似 1 成比例线段 成比例线段与比例的基本性质》公开课教案_8
![新北师大版九年级数学上册《四章 图形的相似 1 成比例线段 成比例线段与比例的基本性质》公开课教案_8](https://img.taocdn.com/s3/m/a7ad624ef242336c1eb95ec7.png)
4、如果 ,那么 =____
5、把 写成比例式,写错的是()
6、已知a:b:c=2:3:4,且a+b+c=15,则a=___,b=___,c=___.
5、教学反思
教师可以根据学生的实际情况进行适当调整,设置出适合个人教学的情境。书上的情境设置应该是适用于广大地区的,老师也可以根据自己身边的熟悉的事物来设置情境,或是就用教科书上的情境。具有地方特色的教学资源,不仅丰富了学生对家乡风景的认识和了解,也上学生感受到数学知识在生活中的应用。
2.想一想:两条线段长度的比与所采用的长度单位有没有关系?
3、教学过程
一次备课
二次备课
1.请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什ห้องสมุดไป่ตู้不同?
2.引入线段的比:如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比(ratio)AB:CD=m:n,或写成 其中,AB,CD分别叫做这个线段比的前项和后项.如果把 表示成比值k,那么 ,或AB=k·CD.两条线段的比实际上就是两个数的比。
3.想一想:两条线段长度的比与所采用的长度单位有没有关系?
4.做一做:
如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,CD,EH,EF的长度分别是多少?分别计算值。
你发现了什么?
四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.
上图中AB,EH,AD,EF是成比例线段,AB,AD,EH,EF也是成比例线段。
初中数学相似三角形基础知识精讲--比例线段
![初中数学相似三角形基础知识精讲--比例线段](https://img.taocdn.com/s3/m/05f3ff2c43323968011c9227.png)
A
E
F
B
D
C
作业
姓名: 作业等级: . 1.美是一种感觉,当人体下半身长与身高的比值越接近 0.618 时,越给人一种美感.如图,某女士 身高 165cm,下半身长 x 与身高 l 的比值是 0.60,为尽可能达到好的效果,她应穿 的高跟鞋的高度大约为( ) A.4cm B.6cm C.8cm D.10cm
3.在△ABC 中,AB=12,AC=10,BC=9,AD 是 BC 边上的高.将△ABC 按如图所示的方式折叠, 使点 A 与点 D 重合,折痕为 EF,则△DEF 的周长为( ) A.9.5 B.10.5 C.11 D.15.5
10.在△ABC 中,D 是 BC 上一点,若 AB=15 cm,AC=10 cm,且 BD∶DC=AB∶AC, BD-DC=2cm,求 BC.
◆----平行线分线段成比例定理 质定理(推论):平行于三角形一边的直线截其他两边(或两边的 延长线) ,所得的对应线段成比例。 2、三角形一边的平行线的判定定理 1:如果一条直线截三角形的两边(或两边的延长线)所 得的对应线段成比例,那么这条直线平行于三角形的第三边。 3、三角形一边的平行线的性质定理 2:平行于三角形的一边,并且和其他两边(或两边的延 长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 例 、 如 图 5, 在 △ABC 中 , D 是 BC 上 的 点 , E 是 AC 上 的 点 , AD 与 BE 交 于 点 F, 若 AE:EC=3:4, BD:DC=2:3,求 BF:EF 的值。
1 2
a b c ,则 x 的值一定是( bc ac ab 1 3 B、-1 C、 或-1 D、 2 2
)
2.已知一次函数 y kx 1 中,比例系数 k 满足 k 试求直线 y kx 1 与 x 轴的交点坐标.
沪教版 上海九年级数学暑假课程规划目录大全
![沪教版 上海九年级数学暑假课程规划目录大全](https://img.taocdn.com/s3/m/e01080c20722192e4536f6e8.png)
暑期衔接-锐角三角比 暑期衔接-解直角三角形 暑期衔接-解直角三角形的应用 暑期衔接-二次函数的概念
一次函数-图像与性质 一次函数-解析式
一次函数-几何应用 一次函数-实际应用 代数方程-整式方程与分式方程 代数方程-无理方程与二元二次方程组 平行四边形-多边形 平行四边形-平行四边形
平行四边形-矩形 平行四边形-菱形 平行四边形-正方形 平行四边形-梯形 平行四边形-三角形与梯形的中位线
沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版 沪教版
暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假 暑假
九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级 九年级
理解二次函数的概念,知道二次函数的一般形式 掌握二次函数的图像与性质
第一讲 相似形和比例线段有关概念及性质
![第一讲 相似形和比例线段有关概念及性质](https://img.taocdn.com/s3/m/6b365c89a6c30c2259019eb1.png)
发生同样和差变化比例仍成立.如:
a bc db aaa b
a b
d c
c cd cd
.
5.等比性质:(分子分母分别相加,比值不变.)
a
如果
b
c d
e f
m (b d n
f
n
0)
,那么
a b
c d
e f
m n
a
.
b
注意:
(1)此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对 应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1. 比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a、b 的长度分别是 m、n,那么就说这两条线
区的实际面积是
平方米.
例题 3、(1)已知 x∶y∶z=3∶4∶5,①求 x y 的值;②若 x+y+z=6,求 x、y、z. z
(2)已知
a、b、c、d
是非零实数,且
b
a c
d
a
b c
d
b
c a
d
a
d b
c
k
,
求 k 的值.
(3) 若 a 、 b 、 c 是 非 零 实 数 , 并 满 足 a b c a b c a b c , 且
c
b
a
x (a b)(b c)(c a) ,求 x 的值.
abc
例题 4、(1)已知线段 AB=a,在线段 AB 上有一点 C,若 AC= 3 5 a ,则点 C 是线段 2
初中数学.相似三角形的性质与判定.教师版
![初中数学.相似三角形的性质与判定.教师版](https://img.taocdn.com/s3/m/ebbc0e743186bceb18e8bb19.png)
中考内容中考要求ABC图形的相似了解比例的基本性质,了解线段的比、成比例线段,会判断四条线段是否成比例,会利用线段的比例关系求未知线段;了解黄金分割;知道相似多边形及其性质;认识现实生活中物体的相似;了解图形的位似关系会用比例的基本性质解决有关问题;会利用图形的相似解决一些简单的实际问题;能利用位似变换将一个图形放大或缩小相似三角形了解两个三角形相似的概念会利用相似三角形的性质与判定进行简单的推理和计算;会利用三角形的相似解决一些实际问题三角形的相似是平面几何中极为重要的内容,是北京中考数学中的重点考察内容,近几年的中考题虽然以直接证相似为结论的题目在减少,但作为一种解决问题的工具,在解题中必不可少。
相似性应用广泛,与三角形、平行四边形联系紧密。
估计北京中考的填空题、选择题将注重“相似三角形的判定与性质”等基础知识的考查,将年份 2010年 2011年 2012年 题号 3 4,20 11,20 分值4分9分9分考点相似三角形的简单计算根据三角形相似求比例;三角形相似与圆、解直角三角形的综合根据三角形相似求比例;三角形相似与圆、解直角三角形的综合中考考点分析中考内容与要求相似三角形的 性质与判定比例的性质 示例剖析(1)基本性质:(0)a cad bc bd b d =⇔=≠3223a ba b =⇔= (2)反比性质:(0)a c b dabcd b d a c =⇔=≠()23023a b ab a b =⇔=≠ (3)更比性质:a c a b b d c d =⇔=、(0)d cabcd b a =≠2233a b a b =⇔=或()302b ab a =≠※(4)合比性质:(0)a c a b c dbd b d b d ++=⇔=≠22555a a b b b ++=⇔=()0b ≠ (5)分比性质:(0)a c a b c dbd b d b d --=⇔=≠44333a a b b b --=⇔=()0b ≠ (6)合分比性质:()a c a b c d c d a b b d a b c d++=⇔=≠≠-- 443343a ab b a b ++=⇔=--()0,0b a b ≠-≠ ※(7)等比性质:312123k ka a a ab b b b ====121121k k a a a a b b b b +++⇒=+++ (其中k 为正整数,且1230k b b b b ++++≠)①12345123451a b c d e a b c d e a ++++====⇒=++++ ②345a b c==,当0a b c ++≠时 345345a b c a b c++===++ 模块一 成比例线段知识导航知识互联网三、平行线分线段成比例定理及推论定理:三条平行线截两条直线,所得的对应线段成比例.如图1,所示,如果123l l l ∥∥,则AB DE BC EF =,AB DE AC DF =,BC EFAC DF=. 推论:平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.如图2,所示,若DE BC ∥,则有AD AE DB EC =,AD AE AB AC =,DB ECAB AC =. 如图3,若AB DE ∥,则有AB AC BCDE CE CD==. l 3l 2l 1ED FC A BEDCABED CB A图⑴ 图⑵ 图⑶建议老师使用面积法证明相关结论.(学生版不加这句话)【例1】 ⑴ 若(0)23x y x =≠,则2x y x +=( ) A .12 B .83 C .73 D .72⑵ 已知(0)a cabcd b d =≠,则下列等式中不成立的是( )A .b d a c =B .a b c d b d --=C .a c a b c d =++ (0a b +≠且0c d +≠)D .a d a b c b+=+⑶ 已知457x y z==,则x y y z +=+ .⑷ 在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 m .⑸ 已知b 是a 、c 的比例中项,且cm a 3=,cm c 6=,则=b _____cm .【解析】 ⑴ D .⑵ D .⑶ ∵457x y z ==,∴4557x y y z++=++,∴93124x y y z +==+.⑷ 100;⑸32. 【例2】 ⑴ 在ABC △中,DE BC ∥交AB 于D ,交AC 于E ,下列不能成立的比例式是( )A .AD AE DB EC = B .AB AC AD AE = C .AC EC AB DB = D .AD AE EC DB=⑵ 如图,已知32AB AC BC AD AE DE ===,则 ①CE AE= ; ②若10cm BD =,则AD = cm ,③若ADE △的周长为16cm ,则ABC △的周长为 . ⑶ 如图,ABC △中有菱形AMPN ,如果12AM MB =,则BP BC 的 值为 . ⑷ 如图,已知DE BC ∥,EF AB ∥,现得到下列结论:①AE BF EC FC =;②AD AB BF BC =;③EF DE AB BC =;④CE EA CF BF =, 其中正确比例式的个数有( ) A .4个 B .3个C .2个D .1个【解析】 ⑴ D ;⑵ 52;4;24cm ;⑶ 23;⑷ B.夯实基础F E D CB AP NMC B AE D A B C定 义示例剖析相似图形:形状相同的图形叫做相似图形. 两个正方形是相似图形相似多边形:我们把形状相同,大小不同的多边形,叫做相似多边形.放大后的图形和放大前的图形是相似多边形.相似三角形: 对应角相等、对应边成比例的三角形叫做相似三角形,相似三角形对应边的比叫做相似比(或相似系数)相似三角形的性质:⑴ 相似三角形的对应角相等,对应边成比例. 相似三角形对应的高线、中线、角平分线的 比等于相似比;(需要证明)⑵ 相似三角形的周长之比等于相似比.⑶ 相似三角形的面积比等于相似比的平方.若ABC DEF △∽△, 则AB BC AC k DE EF DF ===(k 为相似比) ABC DEF C k C =△△,2ABC DEFSk S =△△【例3】 ⑴ 手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中每个图案花 边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是 ( )A B C D⑵ 如图,ABC △中,点D 在线段BC 上,且ABC DBA △∽△, 则下列结论一定正确的是( )A .AB AD AD CD ⋅=⋅ B .2AB AC BD =⋅ C .2AB BC BD =⋅ D .AB AD BD BC ⋅=⋅夯实基础知识导航模块二 相似的相关知识点D CB A⑶ 如图,在平行四边形ABCD 中,10AB =,6AD =,E是AD 的中点,在AB 上取一点F ,使CBF CDE △∽△, 则BF 的长是( ) A. 5 B. 8.2 C. 6.4 D. 1.8⑷如图,ABC AED △∽△,点D 、E 分别在AB 、AC 上, 且∠ABC =∠AED .若DE =4,AE =5,BC =8;则AB 的长 为 .(2012湖北随州)【解析】 ⑴ D. ⑵ C. ⑶ D. ⑷10.相似三角形的判定定理⑴有两个角对应相等的两个三角形相似;⑵两边对应成比例且夹角相等的两个三角形相似; ⑶三边对应成比例的两个三角形相似.由⑴得到① 任何两个等边三角形都相似;② 任何顶角相等的两个等腰三角形都相似;③ 三角形的中位线截三角形得到的小三角形与原三角形相似; ④ 一个锐角相等的两个直角三角形相似.【例4】 ⑴如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确...的是( ) A .∠ABD =∠C B .∠ADB =∠ABC C .CD CB BD AB = D .ACABAB AD =(2012海南)⑵ 给出以下条件:①ABC △的两个角分别是58°和70°,A B C '''△的两个角分别是58°和52°.夯实基础知识导航模块三 相似三角形的判定DCBAE CBF DEAD C B AA DEB②ABC △的两边长分别为4cm 和3cm 2,夹角为40°,A B C '''△的两边长分别为4cm 3和1cm 2,夹角为40°. ③ABC △的边长分别是5cm 、6cm 、8cm ,A B C '''△的边长分别是5cm 2、3cm 、4cm . ④ABC △中,90C ∠=°,3AC =,4BC =,A B C '''△中,90C '∠=°,6A C ''=,8B C ''=.其中能判定ABC △和A B C '''△相似的条件有( )A .1个B .2个C .3个D .4 个(北京三帆中学期中试题)【解析】 ⑴ ADC ACB ∠=∠或ACD B ∠=∠或AB ACAC AD=(答案不唯一); ⑵ D .【例5】 ⑴ 如图,在正方形网格上有6个斜三角形:①ABC △,②BCD △,③BDE △,④BFG △,⑤FGH △,⑥EFK △,其中②~⑥中,与三角形①相似的是( )A .②③④B .③④⑤C .④⑤⑥D .②③⑥⑵ 如图,在已建立直角坐标系的4×4正方形方格纸中, ABC △是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P 、A 、B 为顶点的三角形与ABC △相似(全等除外),则格点P 的坐标是 .⑶ ︒=∠=∠90E C ,3=AC ,4=BC ,2=AE ,则=AD .(2012新疆)【解析】 ⑴ B ;⑵()114P ,、()234P ,. ⑶310.K H GF EDCBA ⑥⑤④③②①【例6】 如图,E 是矩形ABCE 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H . (1) 求证:△ABE ∽△ECF ;(2) 找出与△ABH 相似的三角形,并证明;(3) 若E 是BC 中点,AB BC 2=,2=AB ,求EM 的长.(2012山东泰安)CBEH MG FD ARC BEHM GFD A【解析】(1) 证明:∵四边形ABCD 是矩形,∴∠ABE =∠ECF =90°.∵AE ⊥EF ,∠AEB +∠FEC =90°.∴∠AEB +∠BEA =90°,∴∠BAE =∠CEF ,∴△ABE ∽△ECF .(2) △ABH ∽△ECM .证明:∵BG ⊥AC ,∴∠ABG +∠BAG =90°,∴∠ABH =∠ECM , 由(1)知,∠BAH =∠CEM ,∴△ABH ∽△ECM . (3) 解:作MR ⊥BC ,垂足为R ,∵AB =BE =EC =2,∴AB :BC =MR :RC =2,∠AEB =45°,∴∠MER =45°,CR =2MR ,∴21==ER MR ,32=RC ,∴3222==MR EM .【备选1】 如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°.点E 为底AD 上一点,将△ABE沿直线BE 折叠,点A 落在梯形对角线BD 上的G 处,EG 的延长线交直线BC 于点F .(1) 求证:△ABG ∽△BFE ;(2) 设AD =4,AB =3,当四边形EFCD 为平行四边形时,求BC 的长度.(2012湖北宜昌)【解析】 (1) 证明:∵AD ∥BC ;∴∠AEB =∠EBF ;∵由折叠知△EAB ≌△EGB , ∴∠AEB =∠BEG ,∠EBF =∠BEF ;能力提升EGDCF BA∴FE =FB ,△FEB 为等腰三角形;∵∠ABG +∠GBF =90°,∠GBF +∠EFB =90°; ∴∠ABG =∠EFB ; 在等腰△ABG 和△FEB 中,()2180÷∠-︒=∠ABG BAG ,()2180÷∠-︒=∠EFB FBE ;∴∠BAG =∠FBE ; ∴△ABG ∽△BFE ;(2) ∵四边形EFCD 为平行四边形, EF ∥DC ;∵由折叠知,∠DAB =∠EGB =90°,∠DAB =∠BDC =90°; 又∵AD ∥BC ,∴∠ADB =∠DBC ; ∴△ABD ∽△DCB ; ∴CBDBDB AD =; ∵AD =4,AB =3, ∴BD =5;∴BC554=; 即BC=425.【备选2】 如图,直角梯形ABCD 中,90ADC =︒∠,AD BC ∥,点E 在BC 上,点F 在AC 上,DFC AEB =∠∠.⑴求证:ADF CAE △∽△.⑵当8AD =,6DC =,点E 、F 分别是BC 、AC 的中点时,求直角梯形ABCD 的面积.【解析】 ⑴ 在梯形ABCD 中,AD BC ∥∴DAF ACE =∠∠∵DFC AEB =∠∠ ∴DFA AEC ∠=∠ ∴ADF CAE △∽△⑵ ∵8AD =,6DC =,90ADC =︒∠∴10AC =又∵F 是AC 的中点,∴5AF = ∵ADF CAE △∽△∴AD AFCA CE=F E D C B A∴8510CE =,∴254CE = ∵E 是BC 的中点∴252BC =∴直角梯形ABCD 的面积12512386222⎛⎫=⨯+⨯= ⎪⎝⎭.【例7】 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.(1) 如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G .若m EF AF =,求CGCD的值. (2) 拓展迁移:如图2,梯形ABCD 中,DC //AB ,点E 是BC 的延长线上一点,AE 和BD 相交于点F .若a CD AB =,b BE BC=()0 0>,>b a ,则EFAF 的值是__________(用含a ,b 的代数式表示) . (2012河南)【解析】 (1)2m作EH ∥AB 交BG 于点H ,则EFH ∆∽AFB ∆∴,AB AFm AB mEH EH EF=== ∵AB =CD ,∴CD mEH =EH ∥AB ∥CD ,∴BEH ∆∽BCG ∆∴2CG BCEH BE==,∴CG =2EH ∴.22CD mEH mCG EH == (2) ab ,过点E 作EH ∥AB 交BD 的延长线于点H .探索创新图1D GF CE BA图2BA FCE D H图3D GF CE BAH图4BAFC EDF A CDEMMECB A【备选3】⑴ 如图所示,AD 是ABC △的中线,点E 在AD 上,F 是BE 的延长线与AC 的交点.① 如果E 是AD 的中点,求证:12AF FC =;② 由①知,当E 是AD 的中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(如图所示,E 与A 、D 不重合),上述结论是否成立?若成立,请写出证明;若不成立,请说明理由.CDEFBAABFEDC⑵ 如图所示,在ABC △中,M 是AC 的中点,E 是AB 上一点,且14AE AB =,连接EM 并延长,交BC 的延长线于点D ,求BCCD 的值. (北京师范大学附属中学期中测试)【解析】 ⑴过点D 、E 、F 作平行线均可构造出平行线的基本图形,然后利用这些基本图形的性质来解题.①如图所示,过点D 作BF 的平行线,交AC 于点H . 由BD DC =可得FH HC =, 由AE ED =可得AF FH =, 则12AF FC =; ②结论依然成立,解法同上.⑵ 如图所示,过点C 作DE 的平行线交AB 于点F .因为AM MC =,CF DE ∥, 则AE EF =.而14AE AB =, 故2BF EF=. 又因为CF DE ∥, 则2BC BF CD EF==.H A BCDE F下列命题中,假命题是 ( )A .若两个直角三角形中,各有一个角是50°,则两三角形相似B .若两个等腰三角形中,各有一个角是60°,则两三角形相似C .若两个等腰三角形中,各有一个角是70°,则两三角形相似D .若两个等腰三角形中,各有一个角是110°,则两三角形相似(北京八中期中试题)【解析】 C ._____________________如图,F 是ABC △的AB 边上一点,那么下面四个命题中错误的命题是( )A .若AFC ACB ∠=∠,则ACF ABC △∽△B .若ACF B ∠=∠,则ACF ABC △∽△ C .若2AC AF AB =⋅,则ACF ABC △∽△D .若::AC CF AB BC =,则ACF ABC △∽△【解析】 D ._____________________F CBA第04讲精讲:作平行线构造相似三角形方法探究 引入新的概念:线段的分点与公共分点;线段的分点:已知线段AB ,在直线AB 上有一点C ,若AC 与BC 之间具有特殊的比例关系,则将点A 、B 、C 称为线段AB 的三个不同的分点;公共分点:不在同一条直线上的具有特殊比例关系的两条线段的共同的分点; 过公共分点作平行线,构造基本相似模型,来沟通题设所给的两个特殊比例关系是常见的相似解题方法;基本相似模型为“A 字型”和“8字型”.【探究1】如图,一条直线与△ABC 的边AB 、AC 及BC 的延长线交于D 、E 、F 三点.若CFBFEC AE =,试说明:D 是AB 的中点.【分析】结论AD =BD ,我们可视A 、B 、D 为线段AB 的三个不同的分点;条件CFBFEC AE =,我们可视A 、E 、C 为线段AC 的三个不同的分点.两者结合可得:A 为公共分点,过A 作BF 的平行线交FD 的延长线于点G .图中就可以出现与条件和结论都有密切联系的两个“8字型”的基本构图,如下图所示;类似地:过点A 作DF 的平行线交BF 的延长线于点H ,我们可以得到两个“A 字型”的基本构图,如下图所示;FCE DA【探究2】已知:如图,在△ABC 中,3:2:=DB AD ,E 为CD的中点,AE 的延长线交BC 于点F .求BFFC.【分析】由3:2:=DB AD 可知:A 、D 、B 为线段AB 的三个分点;由CE =DE 可知:C 、D 、E 为线段CD 的三个分点;由BFFC可知:B 、C 、F 为线段BC 的三个分点, 故此共有三个公共分点:点D 、点B 、点C .过这三个公共分点均可作两条平行线构造与条件和结论有联系的基本构图, 因此本题至少共有六种不同的求法. 辅助线如下图所示;方法一:过点D 作AC 的平行线交BC 与点G ; 方法二:过点D 作BC 的平行线交AF 与点G ;方法三:过点B 作AF 的平行线交CD 的延长线于点G ; 方法四:过点B 作DC 的平行线交AF 的延长线于点G ; 方法五:过点C 作AB 的平行线交AF 的延长线于点G ; 方法六:过点C 作AF 的平行线交BA 的延长线于点G .G FEDCBA G FE DCBAGFEDCBAGFEDCBAGFEDCBAG FE DAFEDA训练1. ⑴ 已知243a b c b c a c a b+-+-+-==,则4::2a b c = . ⑵ 已知:a b b c c ax c a b+++===,求x 的值.【解析】 ⑴ 设243a b c b c a c a bk +-+-+-===,∴243a b c k b c a k c a b k +-=⎧⎪+-=⎨⎪+-=⎩①②③ ∴①+②+③:9a b c k ++= ∴52372a k b k c k⎧=⎪⎪=⎨⎪⎪=⎩∴4::210:3:7a b c =.⑵因为等比性质的条件是“0b d n +++>”,所以要分“0c a b ++=”和“0c a b ++≠”两种情况讨论.当0c a b ++≠时,()22c a b a b b c c a x c a b c a b+++++=====++; 当0c a b ++=时,有a b c +=-,所以1a b cx c c+-===-.点评:在运用等比性质时,要注意“0b d n +++=”,否则会造成错误.训练2. 如图所示,在ABC △中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O . ⑴当12AE AC =时,求AO AD的值; ⑵当13AE AC =、14时,求AO AD的值; ⑶试猜想11AE AC n =+时AOAD的值,并证明你的猜想.【解析】 ⑴ 过点D 作DF BE ∥交AC 于F ,∴1CD CFBD EF ==当12AE AC =时,∴1AE EC =,∴23AE AF =,23AO AD =. ⑵ 过点D 作DF BE ∥交AC 于F ,∴1CD CFBD EF== 当13AE AC =时,∴12AE EC =,∴1AE EF =,12AO AD =. 当14AE AC =时,∴13AE EC =,∴11.5AE EF =,25AO AD =. 思维拓展训练(选讲)E D C BAO F ED C AOBE CA D⑶ 当11AE AC n =+时,22AO AD n=+, 如图所示,过点D 作DF BE ∥交AC 于点F . 因为DF BE ∥,BD CD =,则EF FC =.因为11AE AC n =+,故CE nAE =,122n EF CE AE ==. 因为DF BE ∥,故222AO AE AO OD EF n AD n==⇒=+.训练3. 已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB . ⑴ 当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; ⑵ 当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长. 【解析】 ⑴ ;22 ⑵ ⋅724训练4. 已知:AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 延长线于F ,求证:2FD FB FC =⋅.EFC D B AAB DC FE【解析】 连接AF .∵EF 为AD 的中垂线∴AF DF =,ADF DAF =∠∠又∵BAD ABD ADF +=∠∠∠,DAC FAC DAF +=∠∠∠ 又∵AD 平分BAC ∠ ∴ABD CAF =∠∠ 在ACF △和BAF △中 AFC BFACAF ABF =⎧⎨=⎩∠∠∠∠ ∴ACF BAF △∽△ ∴CF AF AF BF=,即2AF BF CF =⋅ ∴2FD FB FC =⋅.知识模块一 成比例线段 课后演练 【演练1】 如图,在ABC △中,AB AC <,延长AB 到D ,在AC 上取CE BD =,连结DE 与BC交于F ,求证:AB EFAC FD=. AB CEDFF DH E CBA【解析】 过E 作EH BC ∥交AD 于H .在DHE △中,有EF BH FD BD =, EC BD =,∴EF BHFD EC=①. 在ABC △中,∵EH BC ∥,∴BH ABEC AC=②. 由①②得AB EFAC FD=.知识模块二 相似的相关知识点 课后演练 【演练2】 如图,在ABC △中,D 、E 两点分别在AB 、AC 边上,DE BC ∥.若23DE BC =∶∶,则ADE ABC S S △△∶为( )A .49∶B .94∶C .23∶D .32∶ 【解析】 A .知识模块三 相似三角形的判定 课后演练 【演练3】 如图,D 、E 是ABC △的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠. 【解析】 ∵AD AC AE AB ⋅=⋅,∴AD AEAB AC=∵DAE BAC ∠=∠∴DAE △∽BAC △,∴ADE B ∠=∠.实战演练E DCBAMF D CBEAED CBA【演练4】梯形ABCD中,AB CD∥,2AB DC=,E、F分别为AB与BC中点.求证:⑴EDM FBM△∽△;⑵9BD=,求BM的长.【解析】⑴∵E为AB的中点,且2AB DC=∴CD BE=又∵CD BE∥∴四边形BCDE是平行四边形∴BC DE∥∴DEM MFB=∠∠又∵DME BMF=∠∠∴EDM FBM△∽△;⑵由⑴知2DE BC BF==由∵EDM FBM△∽△∴12 BF BMDE DM==∵9BD=,∴133BM BD==.【演练5】直线DE与ABC△的AB边相交于点D,与AC边相交于点E,下列条件:①DE BC∥;②AED B∠=∠;③AE AC AD AB⋅=⋅;④AE EDAC BC=中,能使ADE△与ABC△相似的条件有()A.1个B.2个C.3个D.4个【解析】C.测试1. 已知:()20a c e b d f b d f ===++≠,则a c eb d f ++++= ;⑵2323ac eb d f -+-+= . 【解析】 ∵2ac eb d f===,∴2a b =,2c d =,2e f =∴⑴()22222b d f a c e b d f b d f b d f b d f++++++===++++++ ⑵()223232462232323b d f a c e b d f b d f b d f b d f-+-+-+===-+-+-+.测试2. 如图,平行四边形ABCD 中,E 是AB 延长线上一点,连接DE ,交BC 于F ,交AC 于G ,那么图中相似三角形(不含全等三角形)共有( )对. A. 6 B. 5 C. 4 D. 3【解析】 B .测试3. 如图,在平行四边形ABCD 中,过点A 作AE BC ⊥,垂足为E ,连接DE ,F 为线段DE 上一点,且AFE B =∠∠. ⑴ 求证:ADF DEC △∽△.⑵ 若4AB =,33AD =,3AE =,求AF 的长.【解析】 ⑴ ∵四边形ABCD 是平行四边形∴AD BC ∥,AB CD ∥∴ADF CED =∠∠,180B C +=︒∠∠ ∵180AFE AFD +=︒∠∠,AFE B =∠∠ ∴AFD C =∠∠∴ADF DEC △∽△;⑵ ∵四边形ABCD 是平行四边形∴AD BC ∥,4CD AB == 又∵AE BC ⊥∴AE AD ⊥在Rt ADE △中,()22223336DE AD AE =+=+=∵ADF DEC △∽△ ∴AD AF DE CD = ∴334AF =∴23AF =.课后测FEDCBAGFEDC B A。
九年级数学上册第四章图形的相似1成比例线段名师e线帮你把好知识关素材北师大版
![九年级数学上册第四章图形的相似1成比例线段名师e线帮你把好知识关素材北师大版](https://img.taocdn.com/s3/m/33d80ff14431b90d6d85c7a6.png)
帮你把好知识关为了帮助同学们更好地掌握本期的内容,下面就本期内容涉及的知识点进行详细讲解,供同学们学习时参考.知识点一:线段的比例1 线段a,b,c,d的长度如下,试判断它们能否组成比例线段。
(1)a=4 cm,b=3 cm,c=10。
5 cm,d=14 cm.(2)a=8 cm,b=0.05 m,c=0.6 dm,d=10 cm.分析:将四条线段的长度化为同一单位后,再按由小到大或由大到小的顺序排列起来,然后比较第一与第二,第三与第四两对线段长度的比是否相等或比较最大和最小的两条线段长度的乘积与另两条线段长度的乘积是否相等.解:(1)先把四条线段的长度按从小到大的顺序排列b=3 cm,a=4 cm,c=10.5 cm,d=14 cm,再求第一与第二,第三与第四两对线段长度的比.因为b∶a=3∶4,c∶d=10。
5∶14=3∶4,所以b∶a=c∶d.故这四条线段能组成比例线段.(2)把四条线段的长度化成同一单位,则a=8 cm,b=0。
05 m=5 cm,c=0。
6 dm=6 cm,d=10 cm.并按从小到大的顺序排列为b,c,a,d.因为bd=5×10=50,ac=6×8=48.所以bd≠ac。
故这四条线段不能组成比例线段。
跟踪训练 1 已知线段a=0.4 m,b=30 cm,c=20 cm,d=0。
6 m。
试判断这四条线段是否成比例线段.知识点二:比例的三条性质1.依据基本性质求值例2 已知(x+y)∶(x-y)=5∶2,则x∶y=_________.解析:根据比例的基本性质,得2(x+y)=5(x-y).所以2x+2y=5x—5y。
即3x=7y。
故x∶y=7∶3.跟踪训练2 已知(x +2y )∶(x -y )=5∶2,则x ∶y=___。
2.依据合比性质求值例3 已知45=y x ,则yy x +=______________。
解析:由比例的合比性质可得yy x +=445+=49. 跟踪训练3 已知43=y x ,求yy x -的值. 3。
4.1第1课时线段的比和比例的基本性质-北师大版九年级数学上册习题课件
![4.1第1课时线段的比和比例的基本性质-北师大版九年级数学上册习题课件](https://img.taocdn.com/s3/m/c43cf063daef5ef7bb0d3cba.png)
ACB=90°,AC=3,BC=4.∴AB=5.∵S = AB·CD= BC·AC,∴CD= = 15.如图,在△ABC中,AD⊥BC,BE⊥AC.
△ABC
2 2 AB 15.如图,在△ABC中,AD⊥BC,BE⊥AC.
第一课时 线段的比和比例的基本性质
2.4,∴在 Rt△ADC 中,AD= 试判断线段AD、BE、AC、BC是否成比例,并说明理由.
15.如图,在△ABC中,AD⊥BC,BE⊥AC.
17.【核心素养题】如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为D,已知AC=3,BC=4.
17.【核心素养题】如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为D,已知AC=3,BC=4.
15.如图,在△ABC中,AD⊥BC,BE⊥AC.
第一课时 线段的比和比例的基本性质
AC2-CD2=1.8,∴BD=AB-AD=3.2,∴AD∶CD
试判断线段AD、BE、AC、BC是否成比例,并说明理由.
=CD∶BD=3∶4,即线段 15.如图,在△ABC中,AD⊥BC,BE⊥AC.
注意:求两条线段的比时,长度单位必须统一.
AD、CD、CD、BD
是成比例线段.
(2)比例尺 在地图或工程图纸上,图上长度与它所表示的实际长度的比通
常称为比例尺.比例尺是两条线段的比的一种. 注意:求两条线段的比时,长度单位必须统一.
知识点 2 比例线段的定义 四条线段 a、b、c、d 中,如果 a 与 b 的比等于 c 与 d 的比,即ab=dc,那么这四 条线段 a、b、c、d 叫做成比例线段,简称比例线段. (1)a、b、c、d 分别叫做比例的第一、二、三、四比例项; (2)a、d 叫做比例外项,b、c 叫做比例内项. 提示:判断给定的四条线段是否成比例的方法:先将四条线段统一单位,再按 大小顺序排列好,看前两条线段之比与后两条线段之比是否相等;也可看最长线段 与最短线段长度的乘积与剩余两条线段长度的乘积是否相等,若相等则成比例,否 则不成比例.
九年级秋季班-第1讲相似性与比例线段-教师版
![九年级秋季班-第1讲相似性与比例线段-教师版](https://img.taocdn.com/s3/m/d3d54a81caaedd3382c4d332.png)
相似形与比例线段内容分析放缩与相似形是九年级上学期第一章第一节的内容,主要对相似多边形的概念和性质进行讲解,重点是理解相似形的相关概念和相似多边形性质的运用.通过对相似多边形的学习,为后面学习相似三角形的知识奠定基础.比例线段是九年级上学期第一章第二节的内容,主要讲解比例线段的有关概念和性质,以及三角形一边的平行线的相关性质和判定.比例线段的知识点,重点在于理解不同概念和性质之间的联系和区别,熟练比例线段之间的转换,并能结合具体图形,运用比例线段的性质进行解题.对比例线段的学习之后,我们进一步学习三角形一边的平行线分线段成比例的相关性质和判定.三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线性质定理及推论和三角形一边平行线判定定理及推论,以及平行线分线段成比例定理.重点是掌握这两个定理及其推论,分清两个定理及其推论之间的区别和联系,难点是理解该定理和推论的推导过程中所蕴含的分类讨论思想和转化思想,并认识“A ”字型和“X ”字形这两个基本图形,最后灵活运用本节的三个定理及两个推论,理解和掌握“作平行线”这一主要的作辅助线的方法,为学习相似三角形的性质和判定做好准备.知识结构模块一:放缩与相似形知识精讲1、相似形的概念相似形:我们把形状相同的两个图形称为相似的图形,简称相似形.2、相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例.当两个相似的多边形是全等形时,它们对应边的长度的比值为 1.例题解析【例1】下列说法中错误的是()A.同一底片先后两次冲印出的照片是相似形B.同一颗树在太阳光下先后两次形成的影子是相似形C.放在投影仪上的图片及其在屏幕上显示的图片是相似形D.放在复印件上的图片及其复印后得到的图片是相似形【难度】★【答案】B【解析】不同的时刻下,阳光与树射入的夹角不同,形成的影子大小不同,即不是相似形.【总结】考查相似形的定义,抓住相似形的基本定义即形状完全相同才是相似形.【例2】有以下命题:1 邻边之比为2 : 3 的两个平行四边形相似;2 有一个角是40°的两个菱形相似;3 两个矩形相似;4 两个正方形相似,其中正确的是()A.1和2 B.2和4 C.3 和4 D.1 和3【难度】★★【答案】B【解析】邻边之比固定,但邻边的夹角不确定,形状不一定相同,①错误;矩形每个角都是90 度,但长宽之比不确定,即对应边不一定成比例,③错误;故选B.【总结】考查相似形的定义,根据相似形的性质可知对应角相等,对应边成比例才是相似形.b 甲乙ba 甲b 乙【例3】如果两个矩形相似,已知一个矩形的两边长分别为5 cm 和4 cm,另一边矩形的边长为6 cm,则另一边长为.【难度】★★【答案】4.8cm 或7.5cm .【解析】设矩形另一边长为xcm ,根据相似形的定义,对应边成比例,可知5=4或5=4,6 x x 6解得:x = 4.8 或x = 7.5 .【总结】考查相似图形的性质,对应边成比例,但要注意好对应关系,题目未指明的要进行分类讨论.【例4】在平面内,两个形状相同、大小不一定相同的图形称作相似形.我们可以把这一概念推广到空间:如果两个几何体的形状完全相同,大小不一定相同,我们称它们为相似体.如图,甲乙两个不同的正方体,它们是相似体.若两个正方体的棱长分别为a 和b,则称这两个相似体的相似比为a : b.我们不难发现它们的一些基本性质:设S甲、S乙分别表示这两个正方体的表面积,则S甲=S乙6a26b2⎛a ⎫2= ⎪;⎝⎭设V甲、V乙分别表示这两个正方体的体积,则V=a3=V b3⎛a ⎫3⎪.⎝⎭(1)下列几何体中,一定属于相似体的是()A.两个圆柱体B.两个圆锥体C.两个球体D.两个长方体(2)请归纳出相似体的三条主要性质:①两个相似体的对应线段或对应弧长的比等于;②两个相似体表面积的比等于;③两个相似体体积的比等于.(3)某海岛周围海域出产一种鱼,在体长10 厘米之后的生长过程中,体型可以近似地看作相似体.若体长20 厘米的鱼质量为0.2 千克,则体长为60 厘米的鱼质量为多少?当地市场上出售这种鱼价格与体长成正比,购买哪种鱼更划算?60【难度】★★★【答案】(1)C ;(2)相似比,相似比的平方,相似比的立方;(3) 5.4kg , 60cm 划算 【解析】(1)和圆一样,球只有一个基本量,即半径,所有球体都是相似体,类似所有圆都是相似形,其它的几何体都是至少两个基本量,不能确定相似;(2)表面积是进行平方运算,体积是进行立方运算,由正方体相似进行归纳总结,由此可得相似体对应线段比是相似比,表面积比是相似比的平方,体积比是相似比的立方; (3)鱼的体型可看作相似体,可知其体积比即为相应相似比的立方,即鱼体长比的立方,设60cm 长鱼体重mkg ,则有0.2 m ⎛ 20 ⎫3= ⎪ ,解得m = 5.4 ,这种鱼的价格与体长成正比,⎝ ⎭可知体型越大,这种鱼的单价越低,由此可知60cm 体长的鱼划算.【总结】阅读题,主要考查归纳总结的能力,要用题目中的条件分析清楚,进行类比,即可解决问题.知识精讲1、比和比例一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作a : b (或表示为a);b如果a : b = c : d (或 a = c),那么就说a 、b 、c 、 d 成比例.b d 2、比例的性质(1)基本性质:如果 a = c,那么ad = bc ;b d 如果 a =c ,那么 b =d , a = b , c = d.b d (2)合比性质: ac cd a b 如果 a = c ,那么 a + b = c + d;b d b d 如果 a =c ,那么 a - b = c - d.b d b d(3)等比性质: 如果 a = c = k ,那么 a + c = a = c= k (如果是实数运算,要注意强调b + d ≠ 0 ).b d 3、比例线段的概念b + d b d对于四条线段a 、b 、c 、d ,如果 a : b = c : d (或表示为 a = c ),那么a 、b 、c 、db d叫做成比例线段,简称比例线段. 4、黄金分割如果点 P 把线段 AB 分割成 AP 和 PB ( AP > PB )两段(如下图),其中 AP 是 AB 和 PB 的比例中项,那么称这种分割为黄金分割,点 P 称为线段 AB 的黄金分割点.其中, AP = AB5 - 1 ≈ 0.618 ,称为黄金分割数,简称黄金数. 2 模块二:比例线段APB2 ⎩ ⎩【例 5】把ab = 1cd 写成比例式,不正确的写法是()2A . a = dB . a = dC . 2a = dD . c =2ac 2b 2c b c b b d【难度】★ 【答案】B【解析】应用比例的基本性质,可知 B 选项即为ab = 2cd ,与原条件不符,故选 B . 【总结】考查比例式的变形,应用比例的基本性质转化为等积式,看能不能得到原本题目条件乘积式即可.【例 6】已知线段 x 、y 满足(x + y ): (x - y ) = 3 :1 ,那么 x : y 等于()A .3 : 1B .2 : 3C .2 : 1D .3 : 2【难度】★ 【答案】C⎧x + y = 3k 【解析】令⎨x - y = k ⎧x = 2k ,可解得⎨ y = k ,即得 x : y = 2k : k = 2 :1 .【总结】比例运算中,可应用设“ k ”法计算相应字母比例关系.【例 7】等腰直角三角形中,一直角边与斜边的比是 .【难度】★【答案】 2 : 2 .【解析】设三角形直角边长为 a ,根据勾股定理可知斜边长为 2a ,直角边与斜边比为a : 2a = 1: = 2 : 2 .【总结】考查应用勾股定理解决等腰直角三角形三边比,注意结果要进行化简.例题解析5【例 8】已知 a = c,则下列式子中正确的是()b d A . a : b =c 2 :d 2C .a :b = (a +c ): (b +d ) B . a : d = c : bD .a :b = (a - d ): (b - d )【难度】★★ 【答案】C【解析】根据比例的合比性,可知 C 正确.【总结】考查比例的性质的变形应用,本题根据合比性即可很快得出答案.【例 9】若 a = 8 cm ,b = 6 cm ,c = 4cm ,则 a 、b 、c 的第四比例项 d =cm ;a 、c 的比例中项 x = cm .【难度】★★【答案】3, 4 2 .【解析】根据第四比例项和比例中项的基本定义,可得 a = c , a = x,代入即可分别求得d = 3cm , x = 4 2cm .【总结】考查比例定义中的相关基本概念.【例10】已知点C 是线段AB 的黄金分割点,AC = 5 b d x c - 5 ,且AC > BC ,则线段AB = ,BC = .【难度】★★【答案】10,15 - 5 5 .【解析】根据黄金分割点的概念,且 AC > BC ,可知 AC=AB5 - 1, AC = 5 2- 5 代入可得AB = 10 ,则 BC = AB - AC = 15 - 5 .【总结】考查黄金分割点的概念,以及相关的黄金比.5 53【例 11】已知三个数 2、 3 、5,填一个数,使这四个数能组成比例,这个数可能是.【难度】★★★【答案】 5 3 或10 3 或 2 3 .2 3 5【解析】设这个数是 x ,根据比例的基本性质,转化后,可以得到三种情况,即2x = 5 ,3x = 5 ⨯ 2 , 5x = 2 ,分别解得 x =5 3, x = 10 3 , x = 2 3. 2 3 5【总结】考查对比例基本性质的应用,一定要注意题目条件的说明是否需要进行分类讨论的情况,通过转换为乘积的形式,可以做到不重不漏.【例 12】已知实数 a 、b 、c 满足 b + c = c + a = a + b ,求 b + c的值.a b c a 【难度】★★★ 【答案】2 或-1【解析】当 a + b + c ≠ 0 时,根据比例的等比性质,可得b +c = b + c + c + a + a + b= 2 ; a a + b + c当 a + b + c = 0 时,则有b + c = -a ,由此 b + c = -a= -1 .a a故 b + c 的值为 2 或-1 .a【总结】考查比例的等比性质,注意等比性质在实数运算中运用的条件,要根据分母是否为 0 进行分类讨论.3AlDEBCAD E BC1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.如图,已知∆ABC ,直线 l // BC ,且与 AB 、AC 所在直线交于点 D 和点 E ,那么 AD = AE.DB EC2、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点 D 、 E 分别在∆ABC 的边 AB 、 AC 上,DE // BC ,那么 DE = AD = AE.BC AB AC3、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 4、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.5、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在∆ABC 中,直线l 与 AB 、 AC 所在直线交于点 D 和点 E ,如果 AD = AE ,那DB EC 么l // BC .模块三:三角形一边的平行线知识精讲AlEDBCAl DEB C6、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例.如图,直线l // l // l ,直线m 与直线 n 被直线l 、l 、l 所截,那么 DF= EG.1 2 3 1 2 3FB GC7、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【例 13】如图,DE // BC ,AD = 5,BD = 2,AE = 3,BC = 8,求线段 AC 、DE 的长. 【难度】★ 【答案】 AC =21 , DE = 40 . 5 7【解析】AD = 5,BD = 2,可得 AB = AD + BD = 7 ,由 DE // BC ,根据三角形一边平行线性质定理的推论,可得 AE = DE = AD,AC BC AB即 3 = DE = 5 ,可求得: AC = 21 , DE = 40 . AC 8 7 5 7【总结】考查三角形一边平行线性质定理推论的应用,注意解题中适当应用边的关系和相关比例的性质.D EFGBC例题解析AEDBC ADEB CADEB CC EADB3 【例 14】如图, ∆ABC 中,DE // BC ,AD = EC ,BD =4 cm ,AE = 3 cm ,则 AB = .【难度】★★【答案】(4 + 2 3)cm .【解析】设 AD = xcm ,由 DE // BC ,可得 AD = AE ,又 A D E C = ,AB ACADE 则该式即为 x = 3,整理得 x 2 = 12 ,由此得 x = 2 ,x + 4 3 + x BCAB = AD + BD = (4 + 2 3)cm .【总结】考查三角形一边平行线性质定理的应用,注意好题目中对相关条件的应用,改写成比例式解决问题.【例 15】∆ABC 中,∠A = 90︒ ,点 D 在 AB 上,点 E 在 BC 上,若 DE = BD,那么 DEAC BA平行于 AC .(填“一定”、“不一定”或者“一定不”) 【难度】★★ 【答案】不一定.【解析】根据三角形一边平行线的判定定理,可知一条直线截三角形两边所得的线段对应成比例,可判定平行,本题中对应成比例的并不是截三角形两边所得线段对应成比例,即 不可判定平行,在 AB 上固定一点 D ,作 E D ⊥A B 交 BC 于点 E ,以点 D 为圆心,ED 长 为半径画圆,与边 AB 还会有另外一个交点,即不一定能判定平行.【总结】考查三角形一边平行线判定定理的条件,只能根据所截得的两边线段对应成比例判定平行,而不能根据这条直线对应成比例关系判定平行.【例 16】如图,两条相交于点 O 的直线被另外三条直线所截,交点分别为 A 、B 、C 和 D 、 E 、F ,则下列说法中正确的有( )(1)若 AD // BE // FC ,则 AB = BC;DE EF OF AC(2)若 AD // BE // FC ,则 =; OC DF(3)若 AB = DE,则 AD // FC ;BC EF (4)若 BC = BO,则 BE // FC ;EF EO (5)若 BE = BO,则 BE // FC .FC OCA .1 个B .2 个C .3 个D .4 个【难度】★★ 【答案】B【解析】根据平行线分线段成比例定理,知(1)正确;同时 OF = OD = OF + OD = DF,OC OA OC + OA AC知(2)错误;根据平行线分线段成比例定理,由于题目中没有给出有直线与 BE 平行的条件,则不能证明平行,(3)错误;根据三角形一边平行线的判定定理,BC = BO,EF EO根据比例的基本性质变形可得 BO = OE,即可证平行,可知(4)正确,(5)错误.OC OF 【总结】考查平行线分线段成比例相关的性质定理和判定,注意前提条件再进行判断.【例 17】如图, ∆ABC ,DE // BC ,若 AD = 2,则 S : S =()DB 3∆CDE ∆BDCA .2 : 3B .2 : 5C .4 : 15D .6:15【难度】★★ 【答案】B【解析】根据 DE // BC ,可得 AE = AD = 2,三角形为同EC DB 3高三角形,则有 S ∆ADE = AE = 2,可设 S = 2a ,则S ∆CDE EC 3∆ADE有 S = 3a , S= 5a ,同理 S ∆ACD = AD = 2 , ∆CDE ∆ACDS ∆BCD BD 3可得 S ∆BCD = 15 a ,则有 S 2∆CDE : S ∆BDC = 3a : 15 a = 2 : 5 . 2【总结】结合三角形一边平行线性质定理,考查三角形中的同高三角形,面积比即为其底边长度之比.ADB E O FCA DEB C【例 18】如图,DF // AC ,DE // BC ,下列各式正确的是( )A . AD = BE BC CF 【难度】★★ 【答案】DB . AE = CE DE BC C . AE = BD CE AD D . AD =AB DE BC 【解析】由 DE // BC ,根据三角形一边平行线的性质定理的推论,可得 AD =DE ,变形即为 AB BC AD = AB,D 正确. DE BC 【总结】考查三角形一边平行线性质定理的应用,利用比例变形可以将对应边成比例转化为一个三角形中对应边的比例关系,利用相关性质等积转化即可进行判断.【例 19】如图,阳光通过窗口照到室内,在地上留下 2.7 米宽的亮区 DE ,如果亮区一边到窗下墙脚的距离 CE = 8.7,窗口高 AB = 1.8 米,那么窗口底边离地面的高度 BC = .【难度】★★ 【答案】4m .【解析】射入的光线平行,则有 AB = DE ,代入可求得AC CEA C = 5 . 8m , BC = AC - AB = 4m .【总结】考查三角形一边平行线性质定理的应用,在路灯、太阳光线中经常用到.【例 20】如图,AD // EG // BC ,AF = 12,FC =3,BC = 10,AD = 5,那么 EG 的长是 .【难度】★★ 【答案】9【解析】由 AD // EG // BC ,根据三角形一边平行线的性质定理的推论,可得 AF = EF ,AC BC CF = FG ,代入即为AC ADEF = 12 , FG = 3 ,求得 EF = 8 , FG = 1, 10 15 5 15 即得: EG = EF + FG = 9 .【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.AD EBFCA BE DCC G FD B EAD C EOFA B【例 21】如图,已知 ABCD 是梯形,其中 AB // CD ,对角线 AC 与 BD 交于 O ,过 O 作 AB的平行线交 AD 于点 E ,交 BC 于点 F ,若 AO : OC = 2 : 1,且 CD = 1.8,CF = 0.8,那么 AB = ,BC = .【难度】★★ 【答案】3.6 , 2.4 .【解析】由 AB / /CD / /EF ,根据三角形一边平行线的性质定理及推论,可得 AB = AO = OB = BF= 2 ,由此可CD OC OD CF求得:AB = 3.6 ,BF = 1.6 ,故 BC =BF +C F = 2.4 .【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.【例 22】如图,已知梯形 ABCD 中,AD // BC ,MN // BC ,且交对角线 BD 于 O ,AD = DO =p ,BC = BO = q ,则 MN 为( )A . pq p + q C .p + q pqB .2 pq p + q D .p + q 2 pq【难度】★★ 【答案】B【解析】由 AD // MN // BC ,根据三角形一边平行线的性质定理的推论,可得 MO = BO,AD BDON = DO ,由 AD = DO = p ,BC = BO = q ,代入即为 MO = q , ON = p , BC BDp p + q q p + q 求得: MO =pq p + q , ON = pqp + q,即得: MN = MO + ON =2 pq . p + q 【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.A D MONB CAC 2 + BC 2 【例 23】如图,直角∆ABC 中两条直角边 CA = 4,CB = 3,点 E 为斜边 AB 上的一个动点,ED ⊥ BC 于 D ,设 AE = x ,BD = y ,则 y 关于 x 的函数解析式为 .【难度】★★ 【答案】 y = 3 - 3x .5【解析】由勾股定理,可得 AB = = 5 ,AE = x ,则 BE = 5 - x ,由 ED ⊥ BC , ∠C = 90︒ ,可得 DE / / AC ,根据三角形一边平行线性质定理,则有 BD = BE,BC AB即 y = 5 - x ,即可得 y = 3 - 3 x . 3 5 5【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.【例 24】如图,在平行四边形 ABCD 中,E 是 AB 延长线上的一点,求证:(1) AE = AB ;(2) GD 2 = GF GE .AD CF 【难度】★★ 【答案】略【解析】证明:(1) 四边形 ABCD 是平行四边形,∴ AB / /CD , AD / /BC , AB = CD∴ DC = GC =CF AE AG AD ∴AB = CF AE AD即 得 AE =AB AD CF(2)同样地,由 AD / /CF , DC / / AE ,可得: GD = AG = GE .GF GC GD∴ GD 2 = GF GE .【总结】考查三角形一边平行线性质定理的基本应用,考查在有平行线的图形中的基本图形, “A ”字型和“8”字型,“A ”字型和“8”字型有叠合的时候可进行等比例转化.D CGFAB EA EB DC【例 25】如图,在∆ABC 中,AB > AC ,AD ⊥ BC 于 D ,点 F 是 BC 中点,过点 F 作 BC 垂线交 AB 于点 E ,BD : DC = 3 : 2,则 BE : EA = .【难度】★★★ 【答案】5 :1.【解析】由 BD : DC = 3 : 2,F 为 BC 中点,即可得B F + B F - F D = 3 ,则 B F F D 2= 5F D ,由 EF ⊥BC ,AD ⊥ BC ,可得: EF / / AD ,根据三角形一边平行线性质定理, 即可得: BE : EA = BF : FD = 5 :1 .【总结】考查三角形一边平行线性质定理的综合应用,过程中注意比例转化.【例 26】如图,在∆ABC 中,E 、F 分别是 BC 、AC 的中点,AE 、BF 交于点 G ,过 G 作GD // AC 交 BC 于点 D ,若 ED = 5,则 BC 的长为 .【难度】★★★ 【答案】30.【解析】∵E 、F 分别是 BC 、AC 的中点,∴G 是∆ABC 的重心.GE 1 ∴ = . AE 3 ∵GD // AC ,∴可得 ED = GE = 1,EC AE 3由此 EC = 3ED = 15 , BC = 2EC = 30 .【总结】考查重心性质的证明,构造平行线,结合三角形一边平行线性质定理即可解决问题.A EB F D CAFG BE DC1 【例 27】如图,AD // OM // BC ,AC 、BD 相交于点 O .求 证 : 1 + 1 = 1.AD BC OM 【难度】★★★ 【答案】略【解析】证明: AD / /OM / /BC ,O M B M OM AM ∴ = , A D A B = . BC AB ∴ O M + O M = B M + A M =. A D B C A B A B即 得 : 1 + 1 = 1.AD BC OM【总结】考查三角形一边平行线性质定理的应用,尤其图形中“A ”字型等基本图形有部分叠加图形的情况下可进行等比例转化.【例 28】如图,已知:在∆ABC 中, BD = 1 , AF = 2 ,求 AE的值.CD 3 DF AC 【难度】★★★1【答案】 .3【解析】过点 D 作 DG / / BE 交 AC 于点G ,根据三角形一边平行线的性质定理, 可 得 EG = BD = 1 , AE = AF = 2 ,GC CD 3 EG DF 则有 AE = 2 ,则有 AE= 2 = 1 ,GC 3 EC 1 + 3 2根据比例的合比性,则有 AE = 1.AC 3【总结】考查三角形一边平行线性质定理的应用,构造平行线,构造出“A ”字型等相关基本图形进行等比例转化解决问题.CDOAM BAEFG BDC【例 29】如图,已知 AM 是 ∆ABC 的中线,P 是 BC 边上的一个动点,过点 P 作 AM 的平行线分别交 AB 、AC 所在直线与点 Q 、R ,求证:PQ + PR 为定值. 【难度】★★★ 【答案】略.【解析】证明: PR / / AM ,∴ PQ = BP , PR = PC . AM BM BM = CM ,AM MC∴ PQ + PR = BP + PC = BC AM BM BM= 2 .即得: PQ + PR = 2AM ,即证 PQ + PR 为定值.【总结】考查三角形一边平行线性质定理推论的应用,注意观察图形中的基本图形,本题中即用到两个“A ”字型.【例 30】如图,在四边形 ABCD 中,AC 与 BD 相交于点 O ,直线 l 平行于 BD ,且与 AB 、DC 、BC 、AD 及 AC 的延长线分别相交于点 M 、N 、R 、S 和 P . 求证: PM 【难度】★★★ 【答案】略【解析】证明: .BD / /MS∴ BO = AO , DO = AO MP AP ∴ BO = DO PM PS PS AP∴ PS = DO PM BO同时由OB / /PR , OD / /PN , ∴ OB = OC , OD = OC PR CP ∴ OB = OD PR PN ∴PN = DO =PN CP PSPR BO PM即证 PM 【总结】考查三角形一边平行线性质定理的应用,找准图形中的“A ”字型和“8”字型等基本图形进行等比例转化即可.AB O DMC N PR SPN = PR PS PN = PR PSR AQBP MCDEM N PFQ【例 31】(1)如图 1,在∆ABC 中,点 D 、E 分别在 AB 、AC 上满足 DE // BC ,点 P 为 BC上的任意一点,AP 交 DE 于点 Q ,求证: DQ = BP.QE PC (2)试参考(1)的方法解决下列问题:如图 2,M 、N 为边 BC 上的两点,且满足 BM = MN= NC ,一条平行于 AC 的直线分别交 AB 、AM 和 AN 的延长线于点 D 、E 和 F . 求 EF : DE 的值.ABC【难度】★★★【答案】(1)略;(2) 3 :1 . 【解析】(1)证明: DE / /BC ,∴ DQ = AQ , QE = AQ . BP AP ∴ DQ = QE .BP PC ∴ DQ = BP . QE PCPC AP(2)过点 B 作 BQ / /DF 交 AF 延长线于点Q ,交 AM 延长线于点 P ,则有 BQ / /DF / / AC ,BM = MN = NC ,∴ BP = BM = 1 , BQ = BN = 2 . AC MC 2 AC NC ∴ BP = 1 ,即得: BP = 1 . BQ 4 PQ 3由(1)的结论即可得 EF : DE = PQ : BP = 3:1.【总结】考查三角形一边平行线的应用,“8”字型的叠合,可以进行相应等量转化确定相关线段之间的比例关系解决问题.图 1图 2AD QE BP C⎩⎩【习题 1】如果图形 A 与图形 B 相似,图形 B 与图形 C 相似,那么图形 A 与图形 C相似.(填“一定”、“不一定”或“一定不”) 【难度】★ 【答案】一定.【解析】根据相似形定义,可知图形 A 与图形 B 形状相同,图形 B 与图形 C 形状相同,则必有图形 A 与图形 C 形状相同,即两图形相似. 【总结】考查相似形具有传递性.【习题 2】若(x + y ): y = 8 : 3 ,则 x : y =.【难度】★ 【答案】5 : 3 .⎧x + y = 8k【解析】令⎨ y = 3k⎧x = 5k ,可解得: ⎨ y = 3k ,即得 x : y = 5k : 3k = 5 : 3 .【总结】比例运算中,可应用设“ k ”法计算相应字母比例关系,也可直接利用比例的合比性质进行求解.【习题 3】如图,DE // BC ,下列比例式成立的是( )A . AD = AC AB AE 【难度】★ 【答案】CB . DE = DA BC AB C . EA =DA AB AC D . DA =AE AB AC【解析】根据三角形一边平行线性质定理的推论,由 DE // BC ,可得: DA = EA,可知 C 正确.AC AB 【总结】考查三角形一边平行线的性质定理.随堂检测DEAB C5 5 【习题 4】有以下命题,其中正确的判断有( )个(1)如果线段 d 是线段 a 、b 、c 的第四比例项,则有 a = c ;b d (2)如果点 C 是线段 AB 的中点,那么 AC 是 AB 、BC 的比例中项;(3)如果点 C 是线段 AB 的黄金分割点,且 AC > BC ,那么 AC 是 AB 与 BC 的比例中项;(4)如果点 C 是线段 AB 的黄金分割点,AC > BC ,且 AB = 2,则 AC = -1 .A .1B .2C .3D .4【难度】★★ 【答案】C【解析】根据比例相关定义,可知(1)正确; C 是 AB 中点时,则有 AC = BC = 1AB ,此2时 AB ≠ AC ,(2)错误;根据黄金分割点的基本定义,可知(3)正确,同时黄金比 AC BC 为 5 - 1 ,即 AC = 5 - 1 ,可得 AC = -1,(4)正确;(1)(3)(4)正确. 2 AB 2综上所述,故选 C .【总结】考查比例中的相关概念,以及黄金分割等基本知识.【习题 5】如图,已知菱形 BEDF 内接于∆ABC ,点 E 、D 、F 分别在 AB 、AC 和 BC 上,若AB = 15 cm ,BC = 12 cm ,则菱形边长为 .【难度】★★【答案】 20cm .3【解析】根据三角形一边平行线的性质定理,则有 DE = AE,BC AB则有 BE + AE = BE + DE= 1 ,由 AB = 15 cm ,BC = 12 cm ,AB AB AB BCDE = BE ,即为 DE + DE = 1 ,解得: DE = 20,即菱形边长.15 12 3 【总结】考查三角形一边平行线性质定理的应用.AEDB FC【习题 6】如图,在∆ABC 中,DE // BC ,EF // CD ,AF = 3,FD = 2,求 AB 的长. 【难度】★★【答案】 25.3【解析】AF = 3,FD = 2,可得 AD = AF + FD = 5 ,由 DE // BC ,EF // CD ,可得 AF = AE = AD ,即得 3 = 5 ,求得 AB = 25.AD AC AB 5 AB 3 【总结】考查三角形一边平行线性质定理的应用,注意利用基本“A ”字型,尤其有叠合的图形进行等比例转化.【习题 7】如图,在平行四边形 ABCD 中,AB = 24,X 、Y 是对角线 AC 上的三等分点,联结 DX 并延长,交 AB 于 P ,再联结 PY 并延长,交 DC 于 Q ,则 CQ 的长为【难度】★★ 【答案】6.【解析】由四边形 A B C D 是平行四边形, 可知AB / /CD ,根据三角形一边平行线的性质定理,可得 DC = XC = 2 , CQ = CY = 1 ,由此可得 AP AX AP AY 2 CQ = 1 ,即得CQ = 1 CD = 1AB = 6 . CD 4 4 4【总结】考查三角形一边平行线性质定理的应用,注意找到图形中的“X ”字型.AF DE BCDQC YXAP B矩形DEFC 【习题 8】如图,在矩形 ABCD 中,截去一个矩形 ABFE (图中阴影部分),余下的矩形 DEFC与原矩形 ABCD 相似.(1)设 AB = 6 cm ,BC = 8 cm ,求矩形 DEFC 的面积;(2)若截去的矩形 ABFE 是正方形,求 AB的值.BC 【难度】★★【答案】(1) 27cm 2 ;(2)5 - 1 .2【解析】(1)余下矩形与原矩形相似,根据相似形的性质,则有 DE = EF ,代入即为 DE = 6 ,求得 DE = 4.5cm , AB BC 6 8则有 S = DE ⋅ EF = 27cm 2;(2)同(1)有 D E =E F ,设原矩形宽为 a ,则有 AE = EF = BF = a ,代入即为 BC - a = a,A B B C⎛ a ⎫2a a BC整理得: a 2 + aBC - BC 2 = 0 ,两边同除以 BC 2,即得 ⎪ ⎝ BC ⎭ +- 1 = 0 ,解方程得 BCa = 5 - 1 ,即 AB = 5 - 1 ,此时为黄金比. BC 2 BC 2 【总结】考查相似形的基本性质的应用.【习题 9】如图,平行四边形 ABCD 中,对角线交点为 O ,E 为 AD 延长线上一点,OE 交CD 于 F ,交 AB 于 G ,交 CB 的延长线与 H ,试求 AB - AD的值.DF DE【难度】★★★ 【答案】2.【解析】由平行四边形的性质,则有 DO = OB ,由此可得DF = GB ,又 DC / / AB ,则有 AG = AE,则有DF DEEDF COA B A D A +G G B -A E ⎛D E⎫A G ⎛ ⎫ A E AGBD F - = - = + 1⎪ - - 1⎪ = . DE DF D E ⎝ D ⎭F ⎝ D ⎭ EH【总结】考查三角形一边平行线性质定理的应用,注意找准图形中的“A ”字型和“8”字 型等基本图形进行比例转化,同时应用好平行四边形的相关性质.AE DF C33 5 - 2 3【习题 10】如图,已知在∆ABC 中, ∠C = 90︒ ,以 BC 为边向外作正方形 BCDE ,联结 AE 交 BC 于 F ,作 FG // AC ,交 AB 于 G . (1)试判断∆FCG 的形状,并加以证明;(2)若正方形 BCDE 边长为 1, ∠AEB = 30︒ ,求 AB 的长. 【难度】★★★【答案】(1)等腰直角三角形;(2) 5 - 2 3 .【解析】(1) ∆FCG 是等腰直角三角形. 证明 四边形 BCDE 是正方形,∴ BC / /DE , BE / /CD / /FG .∴ CF = AF , DE AE ∴ CF = FG . DE BE ∴CF = FG . FG / / AC ,FG = AF . BE AE ∴∠CFG = ∠ACB = 90︒ . 即证∆FCG 是等腰直角三角形. (2) BE = BC = 1 , ∠AEB = 30︒ ,∴ BF =BE =3 .3∴ FG = CF = 1 - 3.3由 FG / / AC ,可得 FG = BF = AC BC根据勾股定理,即可得 AB = 3,则 AC = 3=3FG = -1,= .【总结】考查三角形一边平行线性质定理的应用,结合归纳猜想进行解题.AC 2+ BC 2( 3 - 1)2+ 12 DECFAGB【作业 1】下列说法正确的是()A .边数相同的多边形相似B .对应边成比例的多边形相似C .对应角相等的多边形相似D .全等的多边形相似 【难度】★ 【答案】D【解析】根据相似形的概念和性质,形状大小完全相同,即对应角相等,对应边对应成比例同时满足,可知 ABC 错误,全等的图形是特殊的相似形,可知 D 正确. 【总结】考查相似形的基本概念和性质.【作业 2】已知 x - y = y,则 x + y 的值为.13 7y【难度】★【答案】 27.7【解析】由 x - y = y ,则有 x - y = 13 ,根据比例的合比性, x + y = 13 + 7 + 7 = 27.13 7 y 7 x 7 7【总结】考查相关比例的转化,可利用比例的性质进行求解.【作业 3】如图,已知 AD // BE // CF ,下列比例式成立的有( )(1) AB = AC ;(2) AB = DE ;(3) AC = DF ;(4) BC = EF .DE DF EF BC EF BC AC DFA .1 个B .2 个C .3 个D .4 个【难度】★ 【答案】B【解析】根据平行线分线段成比例定理,可得 AB = DE,BC EF结合比例的合比性,即得 AB = DE , BC = EF,AC DF AC DF(1)正确,(2)错误,(3)错误,(4)正确,综上所述,故选 B . 【总结】考查平行线分线段成比例定理,结合比例基本性质进行等比例转化.课后作业ADB EO FC。
九年级数学上册 第四章 图形的相似 1 成比例线段 如何利用比的性质确定三角形的形状?素材 北师大版
![九年级数学上册 第四章 图形的相似 1 成比例线段 如何利用比的性质确定三角形的形状?素材 北师大版](https://img.taocdn.com/s3/m/34929034856a561253d36f97.png)
九年级数学上册第四章图形的相似1 成比例线段如何利用比的性质确定三角形的形状?素材(新版)北师大版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第四章图形的相似1 成比例线段如何利用比的性质确定三角形的形状?素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第四章图形的相似 1 成比例线段如何利用比的性质确定三角形的形状?素材(新版)北师大版的全部内容。
如何利用比的性质确定三角形的形状?
难易度:★★★★★
关键词:线段的比-三角形形状
答案:
综合利用比的性质求出三角形各边的关系或各边的长度,再确定三角形的形状。
【举一反三】
典题:已知a、b、c是△ABC的三边满足==,且a+b+c=17,
试判断△ABC的形状。
思路导引:由已知给出的关系式,求出a、b、c的长度,再确定△ABC的形状。
标准答案:解:根据比例性质:因为==,所以
==,又因为a+b+c=17,所以==3
即a=7,b=5,c=5,所以△ABC是等腰三角形。
2024年北师大版九年级上册教学第四章 图形的相似成比例线段
![2024年北师大版九年级上册教学第四章 图形的相似成比例线段](https://img.taocdn.com/s3/m/8dd99888370cba1aa8114431b90d6c85ed3a8857.png)
第1课时成比例线段课时目标1.了解相似图形、线段的比的概念;会求两条线段的比,运用线段的比解决实际问题.2.掌握比例的基本性质,提高解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.学习重点理解成比例线段的概念并会求解.学习难点了解比例的基本性质及其简单应用.课时活动设计情境引入通过用幻灯片展示生活中的图片,突出每组图片形状相同的特点.设计意图:引发学生思考每组图片的特征,激发学生的学习兴趣.探究新知1.你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?教师提出问题,学生以小组的形式进行讨论交流,教师随机选取学生回答问题,引出学生线段的比的必要性.形状相同而大小不同的两个平面图形,较大的图形可以看作是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”.因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.2.归纳小结.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成ABCD =mn.其中,AB,CD分别叫做这个线段比的前项和后项.如果把mn 表示成比值k,那么ABCD=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm.AB∶A'B'=5∶3,53就是线段AB与线段A'B'的比,这个比值刻画了这两个五边形的大小关系.3.想一想.两条线段长度的比与所采用的长度单位有没有关系?通过上面的活动学生应该对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关.4.做一做.如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,AD,EF,EH的长度分别是多少?分别计算ABEF ,ADEH,ABAD,EFEH的值.你发现了什么?学生独立解答,师生共同订正答案,然后教师引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab =cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.在图中AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段.5.议一议.如果a,b,c,d四个数成比例,即ab =cd,那么ad=bc吗?反过来,如果ad=bc,那么a,b,c,d四个数成比例吗?学生在小组内交流,教师及时给予提示,最后进行总结归纳.小结:比例的基本性质:如果ab =cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于0),那么ab =cd .设计意图:通过发现这些形状相同的图形的不同点,引出线段的比的概念.学生实际操作并进行讨论后得出:两条线段长度的比与所采用的长度单位没有关系.引入成比例线段的概念,进而研究比例的基本性质.典例精讲如图,一块矩形绸布的长AB=a m,宽AD=1 m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AEAD =ADAB,那么a的值应当是多少?解:根据题意可知,AB=a m,AE=13a m,AD=1 m.由AEAD =ADAB,得13 a 1=1a ,即13a2=1.∴a2=3.开平方,得a=√3(a=-√3舍去).设计意图:通过教材上的例题,让学生利用所学的知识来解决实际生活中的问题.巩固训练1.一条线段的长度是另一条线段长度的5倍,则这两条线段之比是5∶1.2.一条线段的长度是另一条线段长度的35,则这两条线段之比是3∶5.3.已知a,b,c,d是成比例线段,a=4 cm,b=6 cm,d=9 cm,则c= 6 cm.4.如果2x=5y,那么xy =52.5.把mn=pq写成比例式,错误的是(D)A.mq =pnB.pm=nqC.qm=npD.mn=pq6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=103,b=5,c=203.7.判断下列四条线段是否成比例.(1)a=2,b=√5,c=√15,d=2√3;(2)a=√2,b=3,c=2,d=√3;(3)a=4,b=6,c=5,d=10;(4)a=12,b=8,c=15,d=10.解:(1)否;(2)否;(3)否;(4)是.设计意图:通过有梯度的练习,巩固课堂上所学的知识,加深学生对线段的比和成比例线段的认识.课堂小结这节课我们学习了哪些知识?你有什么收获?你有什么发现、探索?设计意图:让学生回顾本节课的学习内容,提高学生归纳总结的能力.课堂8分钟.1.教材第79页习题4.1第1,2题.2.七彩作业.第1课时成比例线段1.两条线段的比.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成ABCD =mn.其中,AB,CD分别叫做这个线段比的前项和后项.2.成比例线段.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab =cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.比例的基本性质.如果ab =cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于0),那么ab =cd .教学反思第2课时等比性质课时目标1.理解比例的等比性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力.2.经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识.3.通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系.学习重点让学生理解并掌握比例的性质及其简单应用.学习难点运用比例的性质解决有关问题.课时活动设计复习回顾复习:1.成比例线段的定义;2.比例的基本性质;3.若3m=2n,你可以得到mn 的值吗?nm呢?设计意图:学生思考回顾上节课的内容,更好地进入本节课的学习.探究新知1.如图,已知BDAD =CEAE=12,你能求出BD+ADAD与CE+AEAE的值吗?它们有怎样的关系?如果ABBD =ACCE,那么AB-BDBD与AC-CECE有怎么样的关系?在求解过程中,你有什么发现?教师提出问题,学生先独立完成计算,再在小组内交流自己的计算结果及发现,组内达成共识后在班内展示,教师给予正确引导.议一议:已知a,b,c,d,e,f六个数.如果ab =cd,那么a+bb=c+dd和a-bb=c-dd成立吗?为什么?学生独立完成,教师随机选择学生进行回答.2.如图,ABHE ,BCEF,CDFG,ADHG的值相等吗?AB+BC+CD+ADHE+EF+FG+HG的值又是多少?在求解过程中,你有什么发现?议一议:已知a,b,c,d,e,f六个数.如果ab =cd=ef(b+d+f≠0),那么a+c+eb+d+f=ab成立吗?为什么?学生独立完成,教师随机选择学生进行回答.如果ab =cd=…=mn(b+d+…+n≠0),那么a+c+…+mb+d+…+n=ab吗?学生尝试总结a,b,…,n之间的关系,教师多媒体展示.注意事项:要强调等比性质中,分母b+d+…+n≠0.设计意图:通过由特殊到一般的方法归纳出合比性质与等比性质,加深对成比例线段的理解.典例精讲 1.已知a b =23,求a+b b与a -b b的值.解:∵a b =23,∴a+b b=a b +1=23+1=53.∵a b =23,∴a -b b =ab -1=23-1=-13.2.在△ABC 与△DEF 中,若AB DE =BC EF =CA FD =34,且△ABC 的周长为18 cm,求△DEF 的周长.解:∵AB DE =BC EF =CA FD =34, ∴AB+BC+CA DE+EF+FD =AB DE =34.∴4(AB +BC +CA )=3(DE +EF +FD ),即DE +EF +FD =43(AB +BC +CA ). 又∵△ABC 的周长为18 cm,即AB +BC +CA =18 cm,∴DE +EF +FD =43(AB +BC +CA )=43×18=24(cm),即△DEF 的周长为24 cm . 设计意图:学到的知识要会应用升华,在这个环节中,让学生灵活运用比例的合比性质及等比性质.解决实际问题.师生互动,主要还是学生的动,要体现教师的主导作用,学生的主体作用.让学生会主动学习,遇到问题,要善于分析思考.巩固训练1.已知a b =c d =23(b +d ≠0),求a+cb+d 的值. 解:a+c b+d =23. 2.若x+y y =179,则x y = 89 .3.若a b =14,则3a+b 2b的值为 78 .4.已知a 3=b 5=c7. (1)求a+b+c b的值; (2)求a+2b -3c a+c的值.解:(1)∵a 3=b 5=c7, ∴a b =35,c b =75. ∴a+b+c b =a b +1+cb =3.(2)设a3=b5=c7=k,∴a=3k,b=5k,c=7k.∴a+2b-3ca+b =3k+2×5k-3×7k3k+5k=-8k8k=-1.5.如图,已知每个小方格的边长均为1,求AB,DE,BC,DC,AC,EC的长,并计算△ABC与△EDC的周长比.解:由勾股定理,得AB=2√5,DE=√5,BC=2√10,DC=√10,AC=2√13,EC=√13,△ABC的周长=AB+BC+AC=2(√5+√10+√13),△EDC的周长=DE+DC+EC=√5+√10+√13,所以△ABC与△EDC的周长比等于2∶1.设计意图:通过有针对性的练习,加深学生对合比性质与等比性质的理解,进一步巩固本堂课所学知识,提高应用能力.课堂小结谈谈本节课的收获,与同伴进行交流.设计意图:复习比例的基本性质,合比性质,等比性质,巩固本节课所学的内容.课堂8分钟.1.课本第81页习题4.2第3题.2.七彩作业.第2课时等比性质合比性质如果ab =cd,那么a±bb=c±dd等比性质如果ab=cd=…=mn(b+d+…+n≠0),那么a+c+…+mb+d+…+n=ab教学反思。
九年级同步第1讲:相似形与比例线段 - 教师版
![九年级同步第1讲:相似形与比例线段 - 教师版](https://img.taocdn.com/s3/m/f6fe1c9bf90f76c661371a96.png)
放缩与相似形是九年级上学期第一章第一节的内容,主要对相似多边形的概念和性质进行讲解,重点是理解相似形的相关概念和相似多边形性质的运用.通过对相似多边形的学习,为后面学习相似三角形的知识奠定基础.比例线段是九年级上学期第一章第二节的内容,主要对比例线段的有关概念和性质进行讲解,重点是理解不同概念和性质之间的联系和区别,熟练比例线段之间的转换,并能结合具体图形,运用比例线段的性质进行解题.通过对比例线段的学习,一方面为之后学习平行线分线段成比例做好准备,另一方面服务于之后相似三角形知识的学习.相似形与比例线段内容分析知识结构1、相似形的概念相似形:我们把形状相同的两个图形称为相似的图形,简称相似形. 2、相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例.当两个相似的多边形是全等形时,它们对应边的长度的比值为1.【例1】相似的图形,它们的形状相同,它们的大小相同.(选填“一定”或“不一定”或“一定不”)【难度】★【答案】一定,不一定.【解析】相似图形是形状相同的两个图形,由其定义可得出结论. 【总结】考查相似图形的概念,注意全等图形是特殊的相似图形.【例2】在下边的方格图中,分别画出ABC 和四边形ABCD 的一个相似图形. 【难度】★ 【答案】略.【解析】答案不唯一.如图是其中一种.【总结】考查对于相似图形定义的把握,可以采用全等是特殊的相似画图,若要画比例选段,将各边长分别在横向和纵向等比例分解即可.模块一:相似形的概念及性质知识精讲例题解析【例3】下列给出的图形中,不是相似形的是()(A)由同一张底片印出来大小不同的照片(B)一张巨幅画像和用照相机把它拍出来的照片(C)小明在平面镜和在哈哈镜里看到的他自己的像(D)五星红旗上的大五角星和小五角星【难度】★【答案】C【解析】哈哈镜反映人像及物件的扭曲面貌,呈现出与原物不同的像,即不是相似形.【总结】考查相似图形的特征,形状完全相同.【例4】下列说法不一定正确的是()(A)所有的等边三角形都相似(B)有一个角是100 的等腰三角形都相似(C)所有等腰直角三角形都相似(D)所有的直角三角形都相似【难度】★★【答案】D【解析】直角三角形两个锐角角度不固定,形状不一定相同.【总结】对于三角形而言,只要三角形的角大小都相同,三角形即相似.【例5】下列各组中的两个图形一定相似的有()(1)两个等腰三角形;(2)两个直角三角形;(3)两个等腰直角三角形;(4)两个等边三角形;(5)两个矩形;(6)两个菱形;(7)两个正方形;(8)两个等腰梯形;(9)两个圆.(A)3组(B)4组(C)5组(D)6组【难度】★★【答案】B【解析】相似的是(3)(4)(7)(9)【总结】考查相似图形的特征,形状完全相同,对于三角形来说,三个角大小相等即可,对于其它多边形来说,除了考虑角的大小,还要考虑边的大小对应.【例6】已知四边形ABCD 和四边形''''A B C D 是相似的图形,并且点A 与点'A 、点B 与 点'B 、点C 与点'C 、点D 与点'D 分别是对应顶点,已知4BC =, 3.6CD =,'' 3.3A B =,''3B C =,75B ∠=︒,105C ∠=︒,95D ∠=︒,求AB ,''C D 的长和'A ∠的度数.【难度】★★【答案】'''4.4 2.785AB C D A ==∠=︒,,.【解析】相似形形状完全相同,由此相似形各内角对应相等,各边对应成比例.有''''''43AB CD BC A B C D B C ===,将''3.6 3.3CD A B ==,代入,求得:''4.4 2.7AB C D ==,,根据四边形内角和,可求得:360360751059585A B C D ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,相似图形对应角相等可知'85A A ∠=∠=︒.【总结】考查相似图形的定义,注意相应的边角对应关系.【例7】如图,ABC ∆和ADE ∆是相似形,顶点A 、B 、C 分别与点A 、D 、E 对应,已知35A ∠=︒,65B ∠=︒, 1.2AE =, 2.5AB =,2AC =,1ED =.求AD 、BC 的长和AED ∠的度数. 【难度】★★【答案】51.53AD BC ==,,80AED ∠=︒.【解析】相似形形状完全相同,由此相似形各内角对应相等,各边对应成比例. 有 1.2325AD AE DE AB AC BC ====,将2.51A B E D ==,代入,可求得51.53AD BC ==,,根据三角形内角和为180°,可求得:180180356580C A B ∠=︒-∠-∠=︒-︒-︒=︒, 根据相似图形对应角相等可知80AED C ∠=∠=︒. 【总结】考查相似图形的定义,注意相应的边角对应关系.B C【例8】已知ABC ∆的三边长分别是3、4、5,与其相似的'''A B C ∆的最大边长是15,求'''A B C ∆的最小边长. 【难度】★★【答案】最小边长为9.【解析】15395⨯=.【总结】考查三角形三边的对应关系,两个相似三角形中最长边对应最长边,最短边对应最短边.【例9】已知甲、乙两个三角形相似,甲三角形的三边长分别为4、6、8,乙三角形其中一边的长为2,求乙三角形的另外两边的长.【难度】★★★ 【答案】3,4或43,83或1,32. 【解析】分类讨论.(1)乙三角形中边长为2的边对应甲三角形中边长为4的边时,边长对 应比值为2142=,则另两边长分别为11636422⨯=⨯=,;(2)乙三角形中边长为2的边对应甲三角形中边长为6的边时,边长对应比值为2163=,则另两边长分别为1418483333⨯=⨯=,;(3)乙三角形中边长为2的边对应甲三角形中边长为4的边时,边长对应比值为2184=,则另两边长分别为113416442⨯=⨯=,. 【总结】三角形中,注意三边的对应关系,对题目指代不明确的,需进行分类讨论.【例10】如图,矩形ABCD 中,2AB CD =,线段10EF =,在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN 与矩形ABCD 相似,且点M 与点A 、点F 与点B ,点G 与点C ,点N 与点D 分别是对应顶点,令MN x =.求出矩形EMNH 的面积S 与x 的函数关系式. 【难度】★★★【答案】()221005S x x x =-+<<.【解析】根据矩形MFGN 与矩形ABCD 相似,可对应得222MF GF MN x ===,因此102EM x =-,进而可求得:()2102210S MN EM x x x x =⋅=-=-+.【总结】考查简单的函数对应关系,找准线段关系即可进行准确表示相关结果.N C B A D EH G F1、比和比例一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作:a b (或表示为a b); 如果::a b c d =(或a cb d=),那么就说a 、b 、c 、d 成比例. 2、比例的性质(1)基本性质:如果a cb d =,那么ad bc =;如果a cb d =,那么b d ac =,a b cd =,c d a b=. (2)合比性质: 如果a c b d =,那么a b c db d ++=; 如果a cb d =,那么a bc db d--=. (3)等比性质: 如果a c k b d ==,那么a c a ck b d b d +===+.【例11】下列各组线段中,成比例的一组是( )(A )23a =,5b =,32c =,15d = (B )8a =,0.05b =,0.6c =,10d =(C )3a =,4b =,5c =,6d = (D )9a =,6b =,3c =,4d =【难度】★ 【答案】A【解析】只有A 选项满足ac bd =可知其成比例.【总结】考查成比例的定义,根据比例的基本性质即可确定.模块二:比例的性质知识精讲例题解析【例12】(1(2)若1x +,x ,4x +的第四比例项是4,求x . 【难度】★【答案】(1(2)2±.【解析】(1)根据比例的基本性质可得第四比例项=;(2)依题意有()()1:4:4x x x +=+,根据比例的基本性质()()441x x x +=+,整理得24x =,解得2x =±.【总结】考查比例的基本性质和比例中相关定义.【例13】(1)6是a 和b=;(2)b 是9和4的比例中项,则b =;(3)线段6a =厘米,16b =厘米,则线段a 和b 的比例中项是 .【难度】★ 【答案】(1)356;(2)6±;(3).【解析】(1)由题意可知26ab =6135666=-=; (2)由题意可知29436b =⨯=,可解得6b =±;(3)a 、b 【总结】考查比例中项的定义,注意线段比例中项和数字比例中项的区别.【例14】(1)若23x y =,则x yy-= ; (2)若45a b =,则2a ba b +=- ;(3)若250x y -=,则()()3:43x y x y +-=.【难度】★★【答案】(1)13-;(2)13-;(3)17:14.【解析】(1)根据比例的合比性,23133x y y --==-; (2)由45a b =,可得45a b =,原式=4251345b bb b ⨯+=--; (3)由250x y -=,可得52x y =,原式=553:4317:1422y y y y ⎛⎫⎛⎫⨯+⨯-= ⎪ ⎪⎝⎭⎝⎭.【总结】考查比例性质运用中的基本计算,确定单位“1”再准确计算.【例15】(1)已知:23a b a -=,求243a ba b -+的值; (2)已知:357x y z==,求332y z y z +-的值;(3)已知:32x y z ==,求22x y zx y z-++-的值.【难度】★★【答案】(1)15;(2)26;(3)11.【解析】(1)令23a b k a -==,得3a k b k ==,,原式=2341335k k k k ⨯-=⨯+; (2)令357x y z k ===,得357x k y k z k ===,,,原式=537263527k kk k+⨯=⨯-⨯; (3)令32x y z k ===,得32k k x y z k ===,,,原式=23211232k kkk k k -+=⨯+-. 【总结】考查换元思想,也可采用【例14】确定单位“1”的思想.【例16】设线段x 、y 、z 满足23418x y z x y zx y z +++⎧==⎪⎨⎪++=⎩,求x 、y 、z 的值.【难度】★★ 【答案】2610x y z =⎧⎪=⎨⎪=⎩.【解析】由(1)可得()2234234x y z x y z x y z +++++===++,再结合(2)18x y z ++=,可得:21842349x y z x y z +++⨯====,由此可得到81216x y z x y z +=⎧⎪+=⎨⎪+=⎩,结合(2)式可解得2610x y z =⎧⎪=⎨⎪=⎩. 【总结】考查比例的等比性质的应用.【例17】设()()23a b b c c aa b b c c a +++==---,求895a b c ++的值. 【难度】★★ 【答案】0.【解析】根据分式基本性质,得()()()()()()632666a b b c c a a b b c c a +++==---,令()()()()()()632666a b b c c a k a b b c c a +++===---,则有()()66a b k a b +=-,()()36b c k b c +=-,()()26c a k c a +=-,三式相加,即得8950a b c ++=.【总结】考查比例的性质的综合应用.【例18】若333333x y y z z xm z x y+++===,求m 的值. 【难度】★★★ 【答案】6或3-.【解析】(1)0x y z ++≠时,根据比例的等比性3333336x y y z z xm z x y+++++==++;(2)0x y z ++=时,可得x y z +=-,则()333x y zm zz+-===-. 【总结】考查比例的等比性质,但需要注意对式子用等比性时一定要注意根据分母是否为0进行分类讨论.【例19】已知a b ck b c a c a b ===+++,则一次函数3y kx =-的图像一定经过第几象限?【难度】★★★ 【答案】三、四.【解析】(1)0a b c ++≠时,根据比例的等比性()122a b c k a b c ++==++,此时一次函数132y x =- 经过一、三、四象限;(2)0a b c ++=时,可得b c a +=-,则1a k a ==--,此时一次函数3y x =--经过二、三、四象限;综上所述,函数必经过三、四象限.【总结】考查比例的等比性质,注意根据分母是否为0分类讨论,同时考查一次函数所在象限与系数的关联.1、比例线段的概念对于四条线段a 、b 、c 、d ,如果::a b c d =(或表示为a cb d=),那么a 、b 、c 、d 叫做成比例线段,简称比例线段. 2、黄金分割如果点P 把线段AB 分割成AP 和PB (AP PB >)两段(如下图),其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB 的黄金分割点.其中,0.618AP AB =≈,称为黄金分割数,简称黄金数.模块三:比例线段知识精讲【例20】在比例尺为1:40000的地图上,量得A 与B 两地的距离是24厘米,则A 与B 两地的实际距离是.【难度】★ 【答案】9.6km .【解析】实际距离=图上距离÷比例尺,可知两地实际距离为24400009600009.6cm km ⨯==,注意单位的转化.【总结】考查应用比例尺的定义,比例尺=图上距离÷实际距离,公式转化.【例21】东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,则这张地图的比例尺是()(A )1:5(B )1:500000(C )1:5000000 (D )500000:1【难度】★ 【答案】B【解析】比例尺=图上距离÷实际距离,比例尺=6.5132.5100000500000=⨯. 【总结】考查比例尺的定义,注意单位的换算.【例22】(1)若0.1AB =,0.75CD =,则:AB CD = ; (2)若1AB m =,25CD cm =,则:AB CD = ; (3)若AB m =,CD n =,则():AB AB CD +=.【难度】★【答案】(1)2:15;(2)4:1;(3)():m m n +.【解析】(1)0.1:0.752:15=;(2)1:25100:254:1m cm cm cm ==;(3)():m m n +.例题解析ADE BFC【总结】考查比例的化简计算,注意比例中的项带有单位时,注意单位的统一.【例23】小智发现自己的数学辅导书的宽与长之比为黄金比,已知这本书的长为20厘米,则它的宽约为 .(精确到百分位)【难度】★ 【答案】12.36cm .【解析】这本书的宽约为2012.36cm ≈. 【总结】考查黄金比的定义及其相关比值.【例24】如图,已知在四边形ABCD 中,点E 、F 分别在AB 、CD 上,AB DCAE DF=. 求证:(1)AB DC EB FC =;(2)AB DC AB DC EB FC EB FC+-=+-. 【难度】★ 【答案】略. 【解析】证明:(1)AB DCAE DF=, AE EB DF FCAE DF++∴=. 根据比例的合比性质,EB FC AE DF ∴=,AE DFEB FC∴=. 根据比例的合比性质,AE EB DF FC EB FC ++∴=,即AB DCEB FC=. 根据比例的合比性质,AB DC AB DC AB DC EB FC EB FC EB FC+-===+-. 【总结】考查比例的合比性质的应用.【例25】如果ABC ∆和'''A B C ∆面积相等,且:''9:25AB A B =,那么边AB 与边''A B 上的高的比为( )(A )9:25 (B )25:9(C )3:5(D )5:3【难度】★ 【答案】B【解析】面积相等的条件下,高与底边成反比,可知高之比为25:9. 【总结】考查成反比的相关计算.【例26】已知有三条线段的长分别为3cm ,6cm ,9cm 的线段,请再添一条线段,使这四条线段成比例,求所添线段的长度.【难度】★★【答案】18cm 或4.5cm 或2cm .【解析】设添加的线段长度为acm ,将a 当作一个比例外项,根据比例的基本性质有: (1)对应的外项是3cm 时,69318a cm =⨯÷=; (2)对应的外项是6cm 时,396 4.5a cm =⨯÷=; (3)对应的外项是9cm 时,6392a cm =⨯÷=【总结】考查比例的计算,在顺序不确定的情况下,必须进行分类讨论.【例27】在ABC ∆中,点D 、E 分别在边AB 、AC 上,且34AD AE DE AB AC BC ===, 则AEEC= ,若ADE ∆的周长为90厘米,则ABC ∆的周长为 厘米.【难度】★★【答案】(1)3;(2)120.【解析】(1)由34AE AC =,可得43AC AE =,即43AE EC AE +=,故13EC AE =,3AE EC=; (2)根据比例的等比性,34AD AE DE AD AE DE AB AC BC AB AC BC ++====++, 即34ADE ABCC C=, 代入求得120ABCCcm =.【总结】考查比例的合比性和等比性的综合应用.ABCDO【例28】如图,在梯形ABCD 中,AD //BC ,对角线AC 、BD 相交于点O . (1)图中有哪几对三角形的面积相等?为什么?(2)求证:AO DOCO BO =. 【难度】★★ 【答案】(1)ABDACDSS=,ABCBCDSS=,ABO CDOSS=,同底等高,减去公共部分面积相等;(2)略. 【解析】(1)ABDACDSS=,ABCBCDSS=,同底等高,故ABDAODACDAODSSSS-=-,即ABO CDOSS=;(2)证明:AOD 和AOB 同高,AOD AOBSDOSBO∴=. 同理AOD CODS AOSCO=,又ABOCDOS S=,∴AO DOCO BO=. 【总结】考查梯形中的面积相等,基本图形面积的计算,等高条件下面积之比等于其高之比.【例29】如图,在ABC ∆中,BD AC ⊥,垂足为D ,E 是BC 边上的一点,EF AC ⊥,垂足为F ,:2:3ABD ABED S S ∆=四边形,求:AD AF 的值. 【难度】★★【答案】:2:3AD AF =. 【解析】:2:3ABD ABED S S ∆=四边形, :2:1ADBEDBSS∴=.又BD AC ⊥,EF AC ⊥,BD ∴//EF . BDFEDBSS∴=,:1:2BDFADBSS∴=.即()():1:2FD BD AD BD ⋅⋅=,:1:2FD AD ∴=.ABCD EF()():2:21AD AD FD ∴+=+,即:2:3AD AF =.【总结】考查等高或同高三角形面积之比等于其底边之比.【例30】已知线段AB 的长度为l ,点P 在线段上,PB APAP AB=,求线段AP 的长. 【难度】★★【答案】AP =.【解析】根据题意,即有l AP AP AP l -=,解得AP =,P 点是AB 黄金分割点. 【总结】考查黄金分割点的定义.【例31】(1)点P 是线段AB 的黄金分割点,AP BP >,6AB =厘米,求BP 的长;(2)已知点P 是线段AB 的黄金分割点,1AB ,求AP 的值. 【难度】★★【答案】(1)(9BP cm =-;(2)2AP =或1AP =.【解析】(1)根据黄金分割点定义,且AP BP >,可知AP AB =,此时(69BP AB cm ===-;(2,故2AP ==或1AP ==. 【总结】注意黄金分割点和黄金分割的区别,一条线段的黄金分割点有两个,满足黄金分割黄金比的只有一个.【例32】如图,乐器上的一根弦80AB =厘米,两个端点A 、B 固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,求CD 的长. 【难度】★★【答案】()160cm .ADCBAA CDDF NP【解析】根据黄金分割点定义,知AC AB =,故1AD AB ⎛== ⎝⎭,)2CD AC AD AB AB =-==,得CD=()160cm -.【总结】考查线段的黄金分割点有两个.【例33】如图,在矩形ABCD 中截取正方形ABMN ,已知MN 是BC 和CM 的比例中项,3CM =AD 的长.【难度】★★ 【答案】2.【解析】由22MN BC CM BM =⋅=,即()2BC CM BC CM ⋅=-,可得CM =,代入即得2AD BC ==.【总结】考查黄金比的综合应用.【例34】如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD .在BA 的延长线上取点F ,使PF PD =.以AF 为边作正方形AMEF ,点M 在AD 上. (1)求线段AM 、DM 的长; (2)求证:2AM AD DM =⋅; (3)请指出图中的黄金分割点. 【难度】★★★【答案】(1)1AM =,3DM =(2)略;(3)M 是线段AD 的黄金分割点,A 是线段BF 的黄金分割点【解析】(1)P 是AB 的中点,2AB =,可知1AP =,根据勾股定理得:PD =则PF PD =1AM AF PF AP ==-=,3DM AD AM =-= (2)证明:)(221623AM AD DM ==-⨯=⋅,即证;(3)根据定义可知M 是线段AD 的黄金分割点,类似的,我们可以得到24AB BF AF =⋅=, 可知A 是线段BF 的黄金分割点.【总结】考查黄金比的综合应用,黄金分割题目中容易出现别的黄金分割.AA CDNM【习题1】对一个图形进行放缩时,下列说法中正确的是( )(A )图形中线段的长度与角的大小都保持不变 (B )图形中线段的长度与角的大小都会改变 (C )图形中线段的长度保持不变、角的大小可以改变 (D )图形中线段的长度可以改变、角的大小保持不变 【难度】★ 【答案】D【解析】根据相似形的定义,在缩放的过程中,图形始终保持与原图形相似,可知其线段长度可以改变,角度保持不变. 【总结】考查相似的定义.【习题2】在下图中,画出四边形ABCD 的相似四边形1111A B C D ,使11:1:2A B AB . 【难度】★ 【答案】略【解析】如图即为所示. 【总结】注意把握好相似图形的定义,形状完全相同,各对应边比例相等,在不能计算的情况下将图形分别在横向和纵向进行分解即可.随堂检测【习题3】已知:a 、b 、c 、d 是四条线段,它们的长度分别是1a mm =,0.8b cm =,0.02c cm =, 0.4d dm =,它们是不是成比例线段?【难度】★ 【答案】是【解析】将线段长度单位都转化为mm ,18a mm b mm ==,,0.240c mm d mm ==,,由::a c d b =,可知线段a 、b 、c 、d 是成比例线段. 【总结】讨论成比例线段时要注意单位的统一性.【习题4】已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得的距离为2厘米的A 、B 两地的实际距离为千米.【难度】★ 【答案】4.【解析】同一张地图上比例尺相等,则有5210cm cmkm AB=,可得4AB km =. 【总结】考查应用比例尺的定义,比例尺=图上距离÷实际距离,公式转化应用.【习题5】已知点D 是边BC 上一点,且ABC ∆与DAC ∆是相似形,点A 、B 、C 分别与点D 、A 、C 对应,:3:2CB CA =,求:CD DB 的值.【难度】★★ 【答案】4:5. 【解析】依题意可得32CA CB CD CA ==,则23CD CA =,32CB CA =,56DB CB CD CA =-=, 故25::4:536CD DB CA CA ==.【总结】考查相似形的对应关系.【习题6】若()()::a b x y x y =+-,则:x y = .【难度】★★【答案】()():a b a b +-.【解析】根据比例的基本性质,()()b x y a x y +=-,去括号得bx by ax ay +=-,移项,得()()a b x a b y -=+,故:x y =()():a b a b +-. 【总结】考查比例的基本性质.【习题7】直线l 上顺次有四点A 、B 、C 、D ,且3AB AD BC DC ==,则BCAD= ;ABCD= .【难度】★★【答案】16,32.【解析】3AB BC=,得3AB BC =,3ADDC =,得34AD DC DC AB BC DC BC ==++=+, 即得2DC BC =,故6AD BC =,则BC AD =16,AB CD =32. 【总结】学会根据比例关系进行线段比例的转化.【习题8】点P 是线段AB 的黄金分割点,求APAB的值. 【难度】★★★.【解析】根据黄金分割点的定义,2AP BP AB =⋅,即()2AP AB AP AB =-⋅,两边同时除以2AB ,可解得AP AB 2BP AP BC =⋅,类似的可得AP AB .【总结】注意线段的黄金分割点有两个.【作业1】举出日常生活中相似的图形的实例. 【难度】★【答案】答案不唯一.例:镜子中的虚像和人体的实像. 【解析】考查相似图形的特征是形状完全相同的图形. 【总结】考查相似图形的特征,注意多观察.【作业2】若()()2:321:2x y x y -+=,则:2x y = .【难度】★ 【答案】2.【解析】根据()()2:321:2x y x y -+=,由比例的基本性质,则有()3222x y x y +=-,整理得:4x y =,故:24:22x y y y ==.【总结】考查比例的基本性质.【作业3】下列各组四边形中是相似多边形的是()(A )一组邻边为2厘米和5厘米与一组邻边为3厘米和6厘米的矩形 (B )有一个内角为30︒的两个菱形 (C )边长分别为3厘米和4厘米的两个菱形 (D )两个高相等的等腰梯形 【难度】★★ 【答案】B【解析】菱形一个内角确定,则每个内角都可以确定下来,同时,菱形四边相等,对应成比课后作业例,可知B 选项正确;A 选项边不对应成比例,C 选项菱形有不稳定性,形状不固定,D 选项等腰梯形形状不固定.【总结】考查相似图形的特征.【作业4】已知ABC ∆的三边长分别是4、5、6,与其相似的'''A B C ∆的最小边长是12, 求'''A B C ∆的周长.【难度】★★【答案】45.【解析】两三角形对应相似,则必有最短边对应最短边,最长边对应最长边,即ABC ∆中边长为4的边对应中边长为'''A B C ∆12的边,根据比例的等比性,可以得到'''41123ABC A B C C C ∆∆==,由45615ABC C ∆=++=,可得'''345A B C ABC C C ∆∆==. 【总结】实际上,根据比例的等比性可知相似三角形周长比等于对应边之比.【作业5】7a cm =,0.08b m =, 1.5c dm =,求线段a 、b 、c 的第四比例项.【难度】★★ 【答案】1207cm . 【解析】将单位都转化为cm ,则815b cm c cm ==,,根据比例的基本性质,ad bc =,可知线段a 、b 、c 的第四比例项1207bc d cm a ==. 【总结】成比例线段问题中注意单位的统一.【作业6】舞台的形状是一个矩形,宽AB 为12米,如果主持人站立的位置是宽AB 的黄金 分割点,那么主持人从台侧点A 沿AB 走到主持的位置至少需走 米.【难度】★★【答案】(18m -或()5m .()126m =;另一个比例则为1=,主持人需走的路程为(1218m =-. 【总结】注意线段的黄金分割点有两个,与黄金比是不同的含义.【作业7】若222222b c a c a b k a b c +++===,求直线y kx k =+经过的象限. 【难度】★★★【答案】一、二、三或二、三、四.【解析】(1)0a b c ++≠时,根据比例的等比性()44a b c k a b c ++==++,此时一次函数44y x =+ 经过一、二、三象限;(2)0a b c ++=时,可得b c a +=-,则()222b c a k a a +-===-,此时一次函数22y x =--经过二、三、四象限. 【总结】考查比例的等比性,注意根据分母是否为0分类讨论,同时考查一次函数所在象限与系数的关联.【作业8】已知a 、b 、c 是非零实数,且满足a b c a b c a b c c b a +--+-++==, 求()()()a b b c c a abc+++的值. 【难度】★★★【答案】8或1-. 【解析】设a b c a b c a b c k c b a+--++-===. (1)当0a b c ++≠时,根据比例的等比性1a b c k a b c ++==++, 此时有1a b c a b c a b c c b a+--++-===, 可得222a b c a c b b c a +=+=+=,,,代入所求代数式,可得:()()()2228a b b c c a c a b abc abc+++⋅⋅==; (2)当0a b c ++=时,可得b c a +=-,b c a +=-,a c b +=-,代入所求代数式,可得:()()()()()()1a b b c c a c a b abc abc +++-⋅-⋅-==-.【总结】考查比例的等比性,注意根据分母是否为0分类讨论.。
九年级数学下册图形的相似和比例线段(教师版)知识点+详细答案
![九年级数学下册图形的相似和比例线段(教师版)知识点+详细答案](https://img.taocdn.com/s3/m/1d508519aeaad1f347933f7e.png)
图形的相似和比例线段【学习目标】1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特征:对应角相等,对应边的比相等.明确相似比的含义;3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.【要点梳理】要点一、比例线段1.线段的比:如果选用同一长度单位量得两条线段a、b长度分别是m、n,那么就说这两条线段的比是a:b=m:n,或写成a mb n .2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.3.比例的基本性质:(1)若a:b=c:d,则ad=bc;(2)若a:b=b:c,则2b =ac(b称为a、c的比例中项).要点二、相似图形在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;要点三、相似多边形相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.【典型例题】类型一、比例线段1. 下列四组线段中,成比例线段的有( )A.3cm、4cm、5cm、6cm B.4cm、8cm、3cm、5cmC.5cm、15cm、2cm、6cm D.8cm、4cm、1cm、3cm【答案】C.【解析】四个选项中只有,故选C.2. 求证:如果,那么.【答案】∵,在等式两边同加上1,∴,∴.【总结】比例有合比性质如果,;分比性质如果,a b c db d--=;更比性质如果,a bc d =.举一反三:1、判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=,c=,d=.【答案】(1) ∵,,∴,∴线段a、b、c、d不是成比例线段.(2) ∵,,∴,∴线段a、b、c、d是成比例线段.2、已知线段a、b、c、d,满足a cb d=,求证:a c ab d b+=+.【答案】证明:设a cb d==k∴=,=a bk c dk∴+=+=(b+d)a c bk dk k∴+c(+)=== b+d+a kb d akb d b类型二、相似图形3. 指出下列各组图中,哪组肯定是相似形__________:(1)两个腰长不等的等腰三角形(2)两个半径不等的圆(3)两个面积不等的矩形(4)两个边长不等的正方形【答案】(2) (4).【解析】(1)等腰三角形的形状不一定相同,因此两个腰长不等的等腰三角形不一定相似;(3)中面积不等的两个矩形,虽然它们的边数相同,对应角相等,但对应边的比不一定相等,所以无法确定它们一定相似;(2)(4)中两个半径不等的圆与两个边长不等的正方形都是形状完全相同的图形,是相似形.举一反三:如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比都是1:2,虽然它们的摆放方法、位置不一样,但这并不会影响到它们相似性.类型三、相似多边形4. 如图,已知四边形相似于四边形,求四边形的周长.【答案】∵四边形相似于四边形∴,即∴∴四边形的周长.5. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?【答案】解:∵矩形MFGN与矩形ABCD相似当时,S有最大值,最大值为.举一反三:1、已知四边形与四边形相似,且.四边形的各边长.【答案】∵四边形与四边形相似,且.又∵四边形的周长为26即四边形的四边长为:.2、如图所示的相似四边形中,求未知边x、y的长度和角的大小.【答案】根据题意,两个四边形是相似形,得,解得.3、某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.【答案】设小路宽为x米,则小路的外边缘围成的矩形的长为(20+2x)米,宽为(10+2x)米,将两个矩形的长与宽分别相比,得长的比为,而宽的比为,很明显,所以做不到.4、等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.【答案】∵等腰梯形与等腰梯形相似【巩固练习一】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3 cm的两地,它们的实际距离为()A.3 kmB.30 kmC.300 kmD.3 000 km2. 下列四条线段中,不能成比例的是()A.a=2,b=4,c=3,d=6B.a=,b=,c=1,d=C.a=6,b=4,c=10,d=5D.a=,b=2,c=,d=23. 下列命题正确的是( )A.所有的等腰三角形都相似B.所有的菱形都相似C.所有的矩形都相似D.所有的等腰直角三角形都相似4. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是相似图形,如图所示,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b) C.(-2b,-2a) D.(-2a,-b)5.一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则此三角形其它两边的和是()A.19 B.17 C.24 D.216. .△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.7. 两地实际距离为1 500 m ,图上距离为5 cm ,这张图的比例尺为_______. 8. 若,则________9.判定两个多边形相似的方法是:当两个多边形的对应边_______,对应角_______时,两个多边形相似.2=,3x y 则_____,_____,______.x y x x y y x y x y+-===++ 11.两个三角形相似,其中一个三角形两个内角分别是40°,60°,则另一个三角形的最大角为______,最小角为____________.12. 如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则______.AEBE=三 综合题 13. 已知357a b c ==,求23a b c a c+-+的值.14. 如图,依次连接一个正方形各边的中点所形成的四边形与正方形相似吗?若相似,求出相似比;若不相似,说明理由.15. 市场上供应的某种纸有如下特征:每次对折后,所得的长方形均和原长方形相似,则纸张(矩形)的长与宽应满足什么条件?【答案与解析】1.【答案】B .【解析】图上距离︰实际距离=比例尺. 2.【答案】C .【解析】求出最大与最小的两数的积,以及余下两数的积,看所得积是否相等来鉴别它们是否成比例. 3.【答案】 D 4.【答案】 A【解析】 由图可知,小鱼和大鱼的相似比为1:2,若将小鱼放大1倍,则小鱼和大鱼关于原点对称.5.【答案】C【解析】相似三角形对应边的比相等 6.【答案】A【解析】 相似比AB ︰A 1B 1=,A 1B 1︰A 2B 2=,计算出AB ︰A 2B 2.二、填空题7.【答案】.1:30 000【解析】比例尺=图上距离︰实际距离. 8.【答案】【解析】由可得,故填.9.【答案】成比例;相等. 10.【答案】521,,.355-【解析】提示:设2.3,.x k y k ==即可得 11.【答案】80°,40°. 12.【答案】32. 【解析】因为梯形ADFE 相似于梯形EFCB ,所以AD EFEF BC=,即EF=3所以3223AE AD BE EF === 三、 解答题 13.【解析】设357a b c ===k 则=3,=5,=7a k b k c k∴23a b c a c +-+=3+10-213+7k k k k k=4-514.【解析】要探究正方形是否与四边形相似,需知道四边形是否是正方形,若是正方形,则两正方形一定相似,若不是正方形,则不相似,因为所有的正方形都是相似的.设正方形的边长为,由题意可知, 同理 由,可得同理45°,,四边形是正方形∴正方形与正方形相似,即两正方形的相似比是.15.【解析】如图,为了方便分析可先画出草图,根据题意知两个矩形的长边之比应等于短边之比.设矩形的长为,宽为,由相似多边形的特征得:2:a b 2:.【巩固练习二】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm 的两地,它们的实际距离为( ) A .3 km B .30 km C .300 km D .3 000 km2. 已知线段a 、b 、c 、d 满足=ab cd 把它改写成比例式,其中错误的是( ) A.::b c d a = B.::a b c d = C.::c b a d = D.::a c d b =3. 已知△ABC 的三边长分别为6cm 、7.5cm 、9cm ,△DEF 的一边长为4cm ,当△DEF 的另两边的长是下列哪一组时,这两个三角形相似( )A .2cm ,3cmB .4cm ,5cmC .5cm ,6cmD .6cm ,7cm 4.△ABC 与△A 1B 1C 1相似且相似比为,△A 1B 1C 1与△A 2B 2C 2相似且相似比为,则△ABC 与△A 2B 2C 2的相似比为 ( ) A .B .C .或D .5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤两个菱形;⑥ 两个正五边形.其中一定相似的有( ) A. 2组 B. 3组 C. 4组 D. 5组 6.一个钢筋三角架三边长分别是20cm ,50cm ,60cm ,现要做一个与其相似的三角架,只有长30cm ,50cm 的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( )二. 填空题 7. 小明有一张的地图,他想绘制一幅较小的地图,若新地图宽为30cm ,则新地图长为_________cm. 8. △ABC 的三条边长分别为、2、,△A′B′C′的两边长分别为1和,且△ABC 与△A′B′C′相似,那么△A′B′C′的第三边长为____________ 9. 如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则______.AEBE=-3=,=____;4x y xy y则若5-4=0,x y 则x :y =___. 11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________.12. 用一个放大镜看一个四边形ABCD ,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B 是原来∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等, 则正确的有 . 三.综合题a b c dk b c d a c d a b d a b c====++++++++,一次函数y kx m =+经过点(-1,2),求此一次函数解析式.14. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?15. 从一个矩形中剪去一个尽可能大的正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长与宽的比.【答案与解析】一、选择题1.【答案】B【解析】图上距离︰实际距离=1:1 000 000.2.【答案】B3.【答案】C【解析】设△DEF的另两边的长分别为xcm,ycm,因为△ABC与△DEF相似,所以有下列几种情况:当时,解得;当时,解得;当时,解得;所以选C.4.【答案】A【解析】相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.5.【答案】A【解析】只有两个正方形和正五边形相似.6.【答案】B二、填空题 7.【答案】40. 【解析】提示:两地图形状相同,是相似形,所以它们对应边的比相等 8.【答案】 【解析】提示:△A′B′C′已知两边之比为1:,在△ABC 中找出两边、,它们长度之比也为1︰,根据相似三角形对应边的对应关系,求出相似比.9.【答案】 32. 【解析】因为梯形ADFE 相似于梯形EFCB ,所以AD EF EF BC=,即EF=23, 所以33.223AE AD BE EF === 10.【答案】74;.4511.【答案】1:3;1:2;1:2;2:1;1:3.12.【答案】 ③三、解答题13.【解析】∵a b c d k b c d a c d a b d a b c====++++++++ ∴+1=+1=+1=+1=+1++++++++ca b c d k b c d a c d a b d a b ∴++++++++++++====+1++++++++ca b c d a b c d a b c d a b c d k b c d a c d a b d a b 则分两种情况:(1)+++=0a b c d ,即+1=0k ,=-1k(2)++=++=++=++b c d a c d a b d a b c ,即===,a b c d 1=3k 则所以当=-1k ,过点(-1,2)时,=-+1y x当1=3k ,过点(-1,2)时,17=+33y x .14.【解析】∵矩形MFGN 与矩形ABCD 相似 当时,S 有最大值,为.15.【解析】根据矩形相似的性质找出相应的解析式求解.设原矩形的长为x,宽为y,则剩下矩形的长为y,宽为x-y由题意,得令则,.又,∴原矩形的长与宽之比为.。
九年级数学上册图形的相似成比例线段 比例的性质课件新版北师大版
![九年级数学上册图形的相似成比例线段 比例的性质课件新版北师大版](https://img.taocdn.com/s3/m/fff2d4a90975f46527d3e1a8.png)
。
2).等比性质:
如果 a b
c d
m(b d n 0),
n
那么 a c m a b d n b
例1、已知
x+y 3y
5 =4
,求
x y.
解: ∵
x+y 3y =
54,
∴
x+y y=
145,
∴
x+y–y y=
15–4 4
,
∴
x 11 y= 4.
例2、已知 a:b:c=2:5:6,
cd f 7
bd f
3、若 x y 17 , y9
x y
8 ___9___;
4、如果
a c
c d
e f
52,那么
ace bd f
2 5
1 3。
。
.
试一试
已知 a:b:c=2:5:6, 求 2a+5b的–值c .
解: 设
a 2
=
b 5
=
c 6
3a–2b+c = k,
则 a=2k, b=5k, c=6k,
你有什么发现?
解:∵
AB HE
BC EF
CD FG
AD HG
2
AB=2HE, Bc=2EF , CD=2FG, AD=2HG
AB BC CD AD 2HE 2EF 2FG 2HG 2(HE EF FG HG) 2
HE EF FG HG HE EF FG HG
HE EF FG HG
(3)判断下列四条线段a、b、c、d是否成比例
1)a 4, b 6, c 5, d 10; 2)a 12, b 8, c 15, d 10.
探索新知
九年级数学上册第四章图形的相似4.1成比例线段第1课时课件新版北师大版
![九年级数学上册第四章图形的相似4.1成比例线段第1课时课件新版北师大版](https://img.taocdn.com/s3/m/a155cdfdd5bbfd0a795673d4.png)
������������ ������������
=
k
,或AB= kCD
和
后项
.如果把
������ ������
.两条线段的比实际
上就是两个数的比.
2.四条线段a,b,c,d中,如果a与b的比等于c与d的比,
即
������ = ������
������ ������
,那么这四条线段a,b,c,d叫做成比例线段,简称
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
第四章 图形的相似
1.成比例线段
第一课时
1.如果选用同一个长度单位量得两条线段AB,CD的长度分别是
m,n,那么就说这两条线段的比AB∶CD=m∶n,或写成
������������ ������������
=
������ ������
.
线段AB,CD分别叫做这个线段比的 前项
表示成比值k,那么
C.������������
=
2 3
B.3������
=
2 ������
D.2������
=
������ 3
北师大版数学九年级上册《成比例线段》图形的相似(第1课时)
![北师大版数学九年级上册《成比例线段》图形的相似(第1课时)](https://img.taocdn.com/s3/m/45177bf3a5e9856a561260f9.png)
,
A
AB = 15 , AC = 10 , BD = 6.
D
E
则 AAED=AADB –ACBD =9151–0 6=69.
AB
15
B
C
则
课堂小结
线段的比
成比例线段
成比例 线段
如果选用同一长度单位量得两条线段AB,CD的长
度分别是m,n,那么这两条线段的比就是它们长
度的比,即AB:CD=m:n,或写成
同的三面矩形彩旗,且使才裁出的每面彩旗的宽与长的比与原绸布的宽与长
的比相同,即
AE AD
AD AB
,那么a的值应当是多少?
1
解由:AA根DE 据 题AADB意,可得知A13E1a=
3
am,
1. a
1 a2 1
a 3.
即3
开平方,得
DF
C
AE
B
当堂练习
1.一把矩形米尺,长1m,宽一练
1.已知:
线且段b=a、4,b、那c么满a足c=关_系__1式_6_ba_.
b c
,
2.已知
a b
3 2
,那么
ab b
a
、a b
各等于多少?
解: a 3 , a b a 1 5 .
b2
bb
2
b 2 , a b 1 b 1 , a 3.
a3 a
a 3 ab
典例精析
例:判断下列线段a、b、c、d是否是成比例线段:
《成比例线段》图形的相似 (第1课时)
北师大版数学九年级上册
超多互动!超多素材!总有你喜欢的。为教学插上翅膀!
学习目标
1.知道线段的比的概念,会计算两条线段的比;(重点) 2.理解成比例线段的概念;(重点) 3.掌握成比例线段的判定方法.(难点)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级暑假数学最新讲义相似形与比例线段内容分析放缩与相似形是九年级上学期第一章第一节的内容,主要对相似多边形的概念和性质进行讲解,重点是理解相似形的相关概念和相似多边形性质的运用.通过对相似多边形的学习,为后面学习相似三角形的知识奠定基础.比例线段是九年级上学期第一章第二节的内容,主要对比例线段的有关概念和性质进行讲解,重点是理解不同概念和性质之间的联系和区别,熟练比例线段之间的转换,并能结合具体图形,运用比例线段的性质进行解题.通过对比例线段的学习,一方面为之后学习平行线分线段成比例做好准备,另一方面服务于之后相似三角形知识的学习.知识结构1、相似形的概念相似形:我们把形状相同的两个图形称为相似的图形,简称相似形.2、相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例.当两个相似的多边形是全等形时,它们对应边的长度的比值为1.【例1】相似的图形,它们的形状相同,它们的大小相同.(选填“一定”或“不一定”或“一定不”)【难度】★【答案】一定,不一定.【解析】相似图形是形状相同的两个图形,由其定义可得出结论.【总结】考查相似图形的概念,注意全等图形是特殊的相似图形.【例2】在下边的方格图中,分别画出ABC和四边形ABCD的一个相似图形.【难度】★【答案】略.【解析】答案不唯一.如图是其中一种.【总结】考查对于相似图形定义的把握,可以采用全等是特殊的相似画图,若要画比例选段,将各边长分别在横向和纵向等比例分解即可.模块一:相似形的概念及性质知识精讲例题解析ADA【例3】下列给出的图形中,不是相似形的是()(A)由同一张底片印出来大小不同的照片(B)一张巨幅画像和用照相机把它拍出来的照片(C)小明在平面镜和在哈哈镜里看到的他自己的像(D)五星红旗上的大五角星和小五角星【难度】★【答案】C【解析】哈哈镜反映人像及物件的扭曲面貌,呈现出与原物不同的像,即不是相似形.【总结】考查相似图形的特征,形状完全相同.【例4】下列说法不一定正确的是()(A)所有的等边三角形都相似(B)有一个角是100 的等腰三角形都相似(C)所有等腰直角三角形都相似(D)所有的直角三角形都相似【难度】★★【答案】D【解析】直角三角形两个锐角角度不固定,形状不一定相同.【总结】对于三角形而言,只要三角形的角大小都相同,三角形即相似.【例5】下列各组中的两个图形一定相似的有()(1)两个等腰三角形;(2)两个直角三角形;(3)两个等腰直角三角形;(4)两个等边三角形;(5)两个矩形;(6)两个菱形;(7)两个正方形;(8)两个等腰梯形;(9)两个圆.(A)3组(B)4组(C)5组(D)6组【难度】★★【答案】B【解析】相似的是(3)(4)(7)(9)【总结】考查相似图形的特征,形状完全相同,对于三角形来说,三个角大小相等即可,对于其它多边形来说,除了考虑角的大小,还要考虑边的大小对应.【例6】已知四边形ABCD 和四边形''''A B C D 是相似的图形,并且点A 与点'A 、点B 与 点'B 、点C 与点'C 、点D 与点'D 分别是对应顶点,已知4BC =, 3.6CD =, '' 3.3A B =,''3B C =,75B ∠=︒,105C ∠=︒,95D ∠=︒,求AB ,''C D 的长和'A ∠的度数.【难度】★★【答案】'''4.4 2.785AB C D A ==∠=︒,,.【解析】相似形形状完全相同,由此相似形各内角对应相等,各边对应成比例.有''''''43AB CD BC A B C D B C ===,将''3.6 3.3CD A B ==,代入,求得:''4.4 2.7AB C D ==,,根据四边形内角和,可求得:360360751059585A B C D ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,相似图形对应角相等可知'85A A ∠=∠=︒.【总结】考查相似图形的定义,注意相应的边角对应关系.【例7】如图,ABC ∆和ADE ∆是相似形,顶点A 、B 、C 分别与点A 、D 、E 对应,已知35A ∠=︒,65B ∠=︒, 1.2AE =, 2.5AB =,2AC =,1ED =.求AD 、BC 的长和AED ∠的度数. 【难度】★★【答案】51.53AD BC ==,,80AED ∠=︒.【解析】相似形形状完全相同,由此相似形各内角对应相等,各边对应成比例. 有 1.2325AD AE DE AB AC BC ====,将 2.51AB ED ==,代入,可求得51.53AD BC ==,,根据三角形内角和为180°,可求得:180180356580C A B ∠=︒-∠-∠=︒-︒-︒=︒, 根据相似图形对应角相等可知80AED C ∠=∠=︒. 【总结】考查相似图形的定义,注意相应的边角对应关系.【例8】已知ABC∆的三边长分别是3、4、5,与其相似的'''A B C∆的最大边长是15,求'''A B C∆的最小边长.【难度】★★【答案】最小边长为9.【解析】15395⨯=.【总结】考查三角形三边的对应关系,两个相似三角形中最长边对应最长边,最短边对应最短边.【例9】已知甲、乙两个三角形相似,甲三角形的三边长分别为4、6、8,乙三角形其中一边的长为2,求乙三角形的另外两边的长.【难度】★★★【答案】3,4或43,83或1,32.【解析】分类讨论.(1)乙三角形中边长为2的边对应甲三角形中边长为4的边时,边长对应比值为2142=,则另两边长分别为11636422⨯=⨯=,;(2)乙三角形中边长为2的边对应甲三角形中边长为6的边时,边长对应比值为2163=,则另两边长分别为1418483333⨯=⨯=,;(3)乙三角形中边长为2的边对应甲三角形中边长为4的边时,边长对应比值为2184=,则另两边长分别为113416442⨯=⨯=,.【总结】三角形中,注意三边的对应关系,对题目指代不明确的,需进行分类讨论.【例10】如图,矩形ABCD中,2AB CD=,线段10EF=,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN与矩形ABCD相似,且点M与点A、点F与点B,点G与点C,点N与点D分别是对应顶点,令MN x=.求出矩形EMNH的面积S与x的函数关系式.【难度】★★★【答案】()221005S x x x=-+<<.【解析】根据矩形MFGN与矩形ABCD相似,可对应得222MF GF MN x===,因此102EM x=-,进而可求得:()2102210S MN EM x x x x=⋅=-=-+.【总结】考查简单的函数对应关系,找准线段关系即可进行准确表示相关结果.1、比和比例一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作:a b (或表示为a b); 如果::a b c d =(或a cb d=),那么就说a 、b 、c 、d 成比例. 2、比例的性质(1)基本性质:如果a cb d =,那么ad bc =;如果a cb d =,那么b d ac =,a b cd =,c d a b=. (2)合比性质: 如果a c b d =,那么a b c db d ++=; 如果a cb d =,那么a bc db d--=. (3)等比性质: 如果a c k b d ==,那么a c a ck b d b d +===+.【例11】下列各组线段中,成比例的一组是( )(A )23a =,5b =,32c =,15d = (B )8a =,0.05b =,0.6c =,10d =(C )3a =,4b =,5c =,6d = (D )9a =,6b =,3c =,4d =【难度】★ 【答案】A【解析】只有A 选项满足ac bd =可知其成比例.【总结】考查成比例的定义,根据比例的基本性质即可确定.模块二:比例的性质知识精讲例题解析【例12】(12310(2)若1x +,x ,4x +的第四比例项是4,求x . 【难度】★【答案】(115(2)2±.【解析】(1)根据比例的基本性质可得第四比例项310152⨯=;(2)依题意有()()1:4:4x x x +=+,根据比例的基本性质()()441x x x +=+,整理得24x =,解得2x =±.【总结】考查比例的基本性质和比例中相关定义.【例13】(1)6是a 和b ab ab= ;(2)b 是9和4的比例中项,则b =;(3)线段6a =厘米,16b =厘米,则线段a 和b 的比例中项是 .【难度】★ 【答案】(1)356;(2)6±;(3)46cm . 【解析】(1)由题意可知26ab =6ab 135666ab ab=-=; (2)由题意可知29436b =⨯=,可解得6b =±;(3)a 、b 61646cm ⨯ 【总结】考查比例中项的定义,注意线段比例中项和数字比例中项的区别.【例14】(1)若23x y =,则x yy -= ; (2)若45a b =,则2a ba b +=- ;(3)若250x y -=,则()()3:43x y x y +-=.【难度】★★【答案】(1)13-;(2)13-;(3)17:14.【解析】(1)根据比例的合比性,23133x y y --==-; (2)由45a b =,可得45a b =,原式=4251345b bb b ⨯+=--; (3)由250x y -=,可得52x y =,原式=553:4317:1422y y y y ⎛⎫⎛⎫⨯+⨯-= ⎪ ⎪⎝⎭⎝⎭.【总结】考查比例性质运用中的基本计算,确定单位“1”再准确计算.【例15】(1)已知:23a b a -=,求243a ba b -+的值; (2)已知:357x y z==,求332y z y z +-的值;(3)已知:32x y z ==,求22x y zx y z -++-的值.【难度】★★【答案】(1)15;(2)26;(3)11.【解析】(1)令23a b k a -==,得3a k b k ==,,原式=2341335k k k k ⨯-=⨯+; (2)令357x y z k ===,得357x k y k z k ===,,,原式=537263527k kk k+⨯=⨯-⨯; (3)令32x y z k ===,得32k k x y z k ===,,,原式=23211232k kkk k k -+=⨯+-. 【总结】考查换元思想,也可采用【例14】确定单位“1”的思想.【例16】设线段x 、y 、z 满足23418x y z x y zx y z +++⎧==⎪⎨⎪++=⎩,求x 、y 、z 的值.【难度】★★ 【答案】2610x y z =⎧⎪=⎨⎪=⎩.【解析】由(1)可得()2234234x y z x y z x y z +++++===++,再结合(2)18x y z ++=,可得:21842349x y z x y z +++⨯====,由此可得到81216x y z x y z +=⎧⎪+=⎨⎪+=⎩,结合(2)式可解得2610x y z =⎧⎪=⎨⎪=⎩. 【总结】考查比例的等比性质的应用.【例17】设()()23a b b c c aa b b c c a +++==---,求895a b c ++的值. 【难度】★★ 【答案】0.【解析】根据分式基本性质,得()()()()()()632666a b b c c a a b b c c a +++==---,令()()()()()()632666a b b c c a k a b b c c a +++===---,则有()()66a b k a b +=-,()()36b c k b c +=-,()()26c a k c a +=-,三式相加,即得8950a b c ++=. 【总结】考查比例的性质的综合应用.【例18】若333333x y y z z xm z x y+++===,求m 的值. 【难度】★★★ 【答案】6或3-.【解析】(1)0x y z ++≠时,根据比例的等比性3333336x y y z z xm z x y+++++==++;(2)0x y z ++=时,可得x y z +=-,则()333x y zm zz+-===-. 【总结】考查比例的等比性质,但需要注意对式子用等比性时一定要注意根据分母是否为0进行分类讨论.【例19】已知a b ckbc a c a b===+++,则一次函数3y kx=-的图像一定经过第几象限?【难度】★★★【答案】三、四.【解析】(1)0a b c++≠时,根据比例的等比性()122a b cka b c++==++,此时一次函数132y x=-经过一、三、四象限;(2)0a b c++=时,可得b c a+=-,则1aka==--,此时一次函数3y x=--经过二、三、四象限;综上所述,函数必经过三、四象限.【总结】考查比例的等比性质,注意根据分母是否为0分类讨论,同时考查一次函数所在象限与系数的关联.1、比例线段的概念对于四条线段a、b、c、d,如果::a b c d=(或表示为a cb d=),那么a、b、c、d 叫做成比例线段,简称比例线段.2、黄金分割如果点P把线段AB分割成AP和PB(AP PB>)两段(如下图),其中AP是AB和PB 的比例中项,那么称这种分割为黄金分割,点P称为线段AB的黄金分割点.其中,510.6182APAB-=≈,称为黄金分割数,简称黄金数.模块三:比例线段知识精讲【例20】在比例尺为1:40000的地图上,量得A 与B 两地的距离是24厘米,则A 与B 两地的实际距离是.【难度】★ 【答案】9.6km .【解析】实际距离=图上距离÷比例尺,可知两地实际距离为24400009600009.6cm km ⨯==,注意单位的转化.【总结】考查应用比例尺的定义,比例尺=图上距离÷实际距离,公式转化.【例21】东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,则这张地图的比例尺是()(A )1:5(B )1:500000(C )1:5000000 (D )500000:1【难度】★ 【答案】B【解析】比例尺=图上距离÷实际距离,比例尺=6.5132.5100000500000=⨯. 【总结】考查比例尺的定义,注意单位的换算.【例22】(1)若0.1AB =,0.75CD =,则:AB CD = ; (2)若1AB m =,25CD cm =,则:AB CD = ; (3)若AB m =,CD n =,则():AB AB CD +=.【难度】★【答案】(1)2:15;(2)4:1;(3)():m m n +.【解析】(1)0.1:0.752:15=;(2)1:25100:254:1m cm cm cm ==;(3)():m m n +. 【总结】考查比例的化简计算,注意比例中的项带有单位时,注意单位的统一.例题解析【例23】小智发现自己的数学辅导书的宽与长之比为黄金比,已知这本书的长为20厘米,则它的宽约为.(精确到百分位)【难度】★ 【答案】12.36cm . 【解析】这本书的宽约为512012.36cm -≈. 【总结】考查黄金比的定义及其相关比值.【例24】如图,已知在四边形ABCD 中,点E 、F 分别在AB 、CD 上,AB DCAE DF=. 求证:(1)AB DC EB FC =;(2)AB DC AB DCEB FC EB FC+-=+-. 【难度】★ 【答案】略.【解析】证明:(1)AB DCAE DF=Q , AE EB DF FCAE DF++∴=. 根据比例的合比性质,EB FC AE DF ∴=,AE DFEB FC∴=. 根据比例的合比性质,AE EB DF FC EB FC ++∴=,即AB DCEB FC=. 根据比例的合比性质,AB DC AB DC AB DCEB FC EB FC EB FC+-===+-. 【总结】考查比例的合比性质的应用.【例25】如果ABC ∆和'''A B C ∆面积相等,且:''9:25AB A B =,那么边AB 与边''A B 上的高的比为( )(A )9:25 (B )25:9(C )3:5(D )5:3【难度】★ 【答案】B【解析】面积相等的条件下,高与底边成反比,可知高之比为25:9. 【总结】考查成反比的相关计算.【例26】已知有三条线段的长分别为3cm ,6cm ,9cm 的线段,请再添一条线段,使这四条线段成比例,求所添线段的长度.【难度】★★【答案】18cm 或4.5cm 或2cm .【解析】设添加的线段长度为acm ,将a 当作一个比例外项,根据比例的基本性质有: (1)对应的外项是3cm 时,69318a cm =⨯÷=; (2)对应的外项是6cm 时,396 4.5a cm =⨯÷=; (3)对应的外项是9cm 时,6392a cm =⨯÷=【总结】考查比例的计算,在顺序不确定的情况下,必须进行分类讨论.【例27】在ABC ∆中,点D 、E 分别在边AB 、AC 上,且34AD AE DE AB AC BC ===, 则AEEC= ,若ADE ∆的周长为90厘米,则ABC ∆的周长为厘米.【难度】★★【答案】(1)3;(2)120.【解析】(1)由34AE AC =,可得43AC AE =,即43AE EC AE +=,故13EC AE =,3AE EC=; (2)根据比例的等比性,34AD AE DE AD AE DE AB AC BC AB AC BC ++====++, 即34ADE ABC C C =V V , 代入求得120ABC C cm =V .【总结】考查比例的合比性和等比性的综合应用.【例28】如图,在梯形ABCD中,AD//BC,对角线AC、BD相交于点O.(1)图中有哪几对三角形的面积相等?为什么?(2)求证:AO DOCO BO=.【难度】★★【答案】(1)ABD ACDS S=V V,ABC BCDS S=V V,ABO CDOS S=V V,同底等高,减去公共部分面积相等;(2)略.【解析】(1)ABD ACDS S=V V,ABC BCDS S=V V,同底等高,故ABD AOD ACD AODS S S S-=-V V V V,即ABO CDOS S=V V;(2)证明:AODQV和AOBV同高,AODAOBS DOS BO∴=VV.同理AODCODS AOS CO=VV,又ABO CDOS S=V V,∴AO DOCO BO=.【总结】考查梯形中的面积相等,基本图形面积的计算,等高条件下面积之比等于其高之比.【例29】如图,在ABC∆中,BD AC⊥,垂足为D,E是BC边上的一点,EF AC⊥,垂足为F,:2:3ABD ABEDS S∆=四边形,求:AD AF的值.【难度】★★【答案】:2:3AD AF=.【解析】Q:2:3ABD ABEDS S∆=四边形,:2:1ADB EDBS S∴=V V.又BD AC⊥,EF AC⊥,BD∴//EF.BDF EDBS S∴=V V,:1:2BDF ADBS S∴=V V.即()():1:2FD BD AD BD⋅⋅=,:1:2FD AD∴=.()():2:21AD AD FD∴+=+,即:2:3AD AF=.【总结】考查等高或同高三角形面积之比等于其底边之比.【例30】已知线段AB 的长度为l ,点P 在线段上,PB APAP AB=,求线段AP 的长. 【难度】★★ 【答案】51AP l -=. 【解析】根据题意,即有l AP AP AP l -=,解得51AP l -=,P 点是AB 黄金分割点. 【总结】考查黄金分割点的定义.【例31】(1)点P 是线段AB 的黄金分割点,AP BP >,6AB =厘米,求BP 的长;(2)已知点P 是线段AB 的黄金分割点,51AB =+,求AP 的值. 【难度】★★【答案】(1)()935BP cm =-;(2)2AP =或51AP =-. 【解析】(1)根据黄金分割点定义,且AP BP >,可知51AP AB -=,此时 ()35356935BP AB cm --==⨯=-; (2)线段的黄金分割点有两个,与原线段比例分别为51-和35-, 故512AP AB -==或3551AP AB -==-. 【总结】注意黄金分割点和黄金分割的区别,一条线段的黄金分割点有两个,满足黄金分割黄金比的只有一个.【例32】如图,乐器上的一根弦80AB =厘米,两个端点A 、B 固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,求CD 的长.【难度】★★【答案】()805160cm -.【解析】根据黄金分割点定义,知51AC AB -=,故51351AD AB AB ⎛⎫--=-= ⎪ ⎪⎝⎭,()513552CD AC AD AB AB AB --=-=-=-,得CD =()805160cm -.【总结】考查线段的黄金分割点有两个.【例33】如图,在矩形ABCD中截取正方形ABMN,已知MN是BC和CM的比例中项,35CM=-,求AD的长.【难度】★★【答案】2.【解析】由22MN BC CM BM=⋅=,即()2BC CM BC CM⋅=-,可得35CM BC-=,代入即得2AD BC==.【总结】考查黄金比的综合应用.【例34】如图,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD.在BA的延长线上取点F,使PF PD=.以AF为边作正方形AMEF,点M在AD上.(1)求线段AM、DM的长;(2)求证:2AM AD DM=⋅;(3)请指出图中的黄金分割点.【难度】★★★【答案】(1)51AM=-,35DM=-;(2)略;(3)M是线段AD的黄金分割点,A是线段BF的黄金分割点【解析】(1)P是AB的中点,2AB=,可知1AP=,根据勾股定理得:225PD AD AP=+=,则5PF PD==,51AM AF PF AP==-=-,35DM AD AM=-=-;(2)证明:()()2251625235AM AD DM=-=-=⨯-=⋅,即证;(3)根据定义可知M是线段AD的黄金分割点,类似的,我们可以得到24AB BF AF=⋅=,可知A是线段BF的黄金分割点.【总结】考查黄金比的综合应用,黄金分割题目中容易出现别的黄金分割.【习题1】对一个图形进行放缩时,下列说法中正确的是( )(A )图形中线段的长度与角的大小都保持不变 (B )图形中线段的长度与角的大小都会改变 (C )图形中线段的长度保持不变、角的大小可以改变 (D )图形中线段的长度可以改变、角的大小保持不变 【难度】★ 【答案】D【解析】根据相似形的定义,在缩放的过程中,图形始终保持与原图形相似,可知其线段长度可以改变,角度保持不变. 【总结】考查相似的定义.【习题2】在下图中,画出四边形ABCD 的相似四边形1111A B C D ,使11:1:2A B AB . 【难度】★ 【答案】略【解析】如图即为所示. 【总结】注意把握好相似图形的定义,形状完全相同,各对应边比例相等,在不能计算的情况下将图形分别在横向和纵向进行分解即可.随堂检测【习题3】已知:a、b、c、d是四条线段,它们的长度分别是1a mm=,0.8b cm=,0.02c cm=,0.4d dm=,它们是不是成比例线段?【难度】★【答案】是【解析】将线段长度单位都转化为mm,18a mmb mm==,,0.240c mmd mm==,,由::a c d b=,可知线段a、b、c、d是成比例线段.【总结】讨论成比例线段时要注意单位的统一性.【习题4】已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得的距离为2厘米的A、B两地的实际距离为千米.【难度】★【答案】4.【解析】同一张地图上比例尺相等,则有5210cm cmkm AB=,可得4AB km=.【总结】考查应用比例尺的定义,比例尺=图上距离÷实际距离,公式转化应用.【习题5】已知点D是边BC上一点,且ABC∆与DAC∆是相似形,点A、B、C分别与点D、A、C对应,:3:2CB CA=,求:CD DB的值.【难度】★★【答案】4:5.【解析】依题意可得32CA CBCD CA==,则23CD CA=,32CB CA=,56DB CB CD CA=-=,故25::4:536CD DB CA CA==.【总结】考查相似形的对应关系.【习题6】若()()::a b x y x y =+-,则:x y = .【难度】★★【答案】()():a b a b +-.【解析】根据比例的基本性质,()()b x y a x y +=-,去括号得bx by ax ay +=-,移项,得()()a b x a b y -=+,故:x y =()():a b a b +-. 【总结】考查比例的基本性质.【习题7】直线l 上顺次有四点A 、B 、C 、D ,且3AB AD BC DC ==,则BCAD= ;ABCD= .【难度】★★【答案】16,32.【解析】3AB BC=,得3AB BC =,3ADDC =,得34AD DC DC AB BC DC BC ==++=+, 即得2DC BC =,故6AD BC =,则BC AD =16,AB CD =32. 【总结】学会根据比例关系进行线段比例的转化.【习题8】点P 是线段AB 的黄金分割点,求APAB的值. 【难度】★★★ 51-35-. 【解析】根据黄金分割点的定义,2AP BP AB =⋅,即()2AP AB AP AB =-⋅,两边同时除以2AB ,可解得AP AB 51-2BP AP BC =⋅,类似的可得AP AB 35-. 【总结】注意线段的黄金分割点有两个.21 / 23【作业1】举出日常生活中相似的图形的实例.【难度】★【答案】答案不唯一.例:镜子中的虚像和人体的实像.【解析】考查相似图形的特征是形状完全相同的图形.【总结】考查相似图形的特征,注意多观察.【作业2】若()()2:321:2x y x y -+=,则:2x y =. 【难度】★【答案】2.【解析】根据()()2:321:2x y x y -+=,由比例的基本性质,则有()3222x y x y +=-,整理 得:4x y =,故:24:22x y y y ==. 【总结】考查比例的基本性质.【作业3】下列各组四边形中是相似多边形的是( )(A )一组邻边为2厘米和5厘米与一组邻边为3厘米和6厘米的矩形(B )有一个内角为30︒的两个菱形(C )边长分别为3厘米和4厘米的两个菱形(D )两个高相等的等腰梯形【难度】★★【答案】B【解析】菱形一个内角确定,则每个内角都可以确定下来,同时,菱形四边相等,对应成比例,可知B 选项正确;A 选项边不对应成比例,C 选项菱形有不稳定性,形状不固定,D 选项等腰梯形形状不固定.【总结】考查相似图形的特征.课后作业22 / 23【作业4】已知ABC ∆的三边长分别是4、5、6,与其相似的'''A B C ∆的最小边长是12, 求'''A B C ∆的周长.【难度】★★【答案】45.【解析】两三角形对应相似,则必有最短边对应最短边,最长边对应最长边,即ABC ∆中边长为4的边对应中边长为'''A B C ∆12的边,根据比例的等比性,可以得到'''41123ABC A B C C C ∆∆==,由45615ABC C ∆=++=,可得'''345A B C ABC C C ∆∆==. 【总结】实际上,根据比例的等比性可知相似三角形周长比等于对应边之比.【作业5】7a cm =,0.08b m =, 1.5c dm =,求线段a 、b 、c 的第四比例项.【难度】★★ 【答案】1207cm . 【解析】将单位都转化为cm ,则815b cm c cm ==,,根据比例的基本性质,ad bc =,可知线段a 、b 、c 的第四比例项1207bc d cm a ==. 【总结】成比例线段问题中注意单位的统一.【作业6】舞台的形状是一个矩形,宽AB 为12米,如果主持人站立的位置是宽AB 的黄金 分割点,那么主持人从台侧点A 沿AB 走到主持的位置至少需走 米.【难度】★★ 【答案】(1865m -或()655m . 51-,主持人需走的路程为 ()5112656m -=;另一个比例则为51351--=,主持人需走的路程为(35121865m -=-. 【总结】注意线段的黄金分割点有两个,与黄金比是不同的含义.23 / 23 【作业7】若222222b c a c a b k a b c +++===,求直线y kx k =+经过的象限. 【难度】★★★【答案】一、二、三或二、三、四.【解析】(1)0a b c ++≠时,根据比例的等比性()44a b c k a b c ++==++,此时一次函数44y x =+ 经过一、二、三象限; (2)0a b c ++=时,可得b c a +=-,则()222b c a k a a+-===-,此时一次函数22y x =--经过二、三、四象限. 【总结】考查比例的等比性,注意根据分母是否为0分类讨论,同时考查一次函数所在象限与系数的关联.【作业8】已知a 、b 、c 是非零实数,且满足a b c a b c a b c c b a +--+-++==, 求()()()a b b c c a abc+++的值. 【难度】★★★【答案】8或1-. 【解析】设a b c a b c a b c k c b a+--++-===. (1)当0a b c ++≠时,根据比例的等比性1a b c k a b c ++==++, 此时有1a b c a b c a b c c b a+--++-===, 可得222a b c a c b b c a +=+=+=,,,代入所求代数式,可得:()()()2228a b b c c a c a b abc abc+++⋅⋅==; (2)当0a b c ++=时,可得b c a +=-,b c a +=-,a c b +=-,代入所求代数式,可得:()()()()()()1a b b c c a c a b abc abc +++-⋅-⋅-==-.【总结】考查比例的等比性,注意根据分母是否为0分类讨论.。