2015-2016北京市西城区高三期末数学(理)试题及答案
.4.西城.高三数学答案.docx

高中数学学习材料鼎尚图文*整理制作北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(理科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.29n - 16- 11.3 33y x =±12.6 13.21 14.○1○4注:第10,11题第一问2分,第二问3分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为 sin 3sin B C =, 由正弦定理sin sin sin a b cA B C==, 得 3b c =. ………………3分 由余弦定理 2222cos a b c bc A =+-及π3A =,7a =, ………………5分 得 227b c bc =+-,所以 222()733b b b +-=,解得 3b =. ………………7分 (Ⅱ)解:由π3A =,得2π3B C =-. 所以 2πsin()3sin 3C C -=. ………………8分 即31cos sin 3sin 22C C C +=, ………………11分 所以35cos sin 22C C =,所以3tan 5C =. ………………13分16.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分 所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件A , ………………5分由题意,得2325C 37()11C 1010P A =-=-=,因此至少有1人体育成绩在[60,70)的概率是710. ………………9分 (Ⅲ)解:a , b , c 的值分别是为79, 84, 90;或79, 85, 90. ………………13分17.(本小题满分14分)(Ⅰ)证明:由11CC D D 为矩形,得11//CC DD ,又因为1DD ⊂平面1ADD ,1CC ⊄平面1ADD ,所以1//CC 平面1ADD , ……………… 2分 同理//BC 平面1ADD , 又因为1BCCC C =,所以平面1//BCC 平面1ADD , ……………… 3分 又因为1BC ⊂平面1BCC ,所以1//BC 平面1ADD . ……………… 4分 (Ⅱ)解:由平面ABCD 中,//AD BC ,90BAD ∠=,得AB BC ⊥,又因为1AB BC ⊥,1BC BC B =,所以AB ⊥平面1BCC , 所以1AB CC ⊥,又因为四边形11CC D D 为矩形,且底面ABCD 中AB 与CD 相交一点, 所以1CC ⊥平面ABCD , 因为11//CC DD , 所以1DD ⊥平面ABCD .过D 在底面ABCD 中作DM AD ⊥,所以1,,DA DM DD 两两垂直,以1,,DA DM DD 分 别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(4,0,0)A ,(4,2,0)B ,(3,2,0)C ,1(3,2,2)C ,1(0,0,2)D , 所以1(1,2,2)AC =-,1(4,0,2)AD =-. 设平面11AC D 的一个法向量为(,,)x y z =m ,由10AC ⋅=m ,10AD ⋅=m ,得220,420,x y z x z -++=⎧⎨-+=⎩令2x =,得(2,3,4)=-m . ………………8分易得平面1ADD 的法向量(0,1,0)=n . 所以329cos ,||||29⋅<>==-m n m n m n . 即平面11AC D 与平面1ADD 所成的锐二面角的余弦值为32929. ………………10分 (Ⅲ)结论:直线1BC 与CP 不可能垂直. ………………11分证明:设1(0)DD m m =>,1((0,1))DP DC λλ=∈, 由(4,2,0)B ,(3,2,0)C ,1(3,2,)C m ,(0,0,0)D ,ABCDD 1C 1Pyxz得1(1,0,)BC m =-,1(3,2,)DC m =,1(3,2,)DP DC m λλλλ==,(3,2,0)CD =--, (33,22,)CP CD DP m λλλ=+=--. ………………12分 若1BC CP ⊥,则21(33)0BC CP m λλ⋅=--+=,即2(3)3m λ-=-, 因为0λ≠, 所以2330m λ=-+>,解得1λ>,这与01λ<<矛盾.所以直线1BC 与CP 不可能垂直. ………………14分18.(本小题满分13分)(Ⅰ)解:对()f x 求导,得1()(1)e e x x f x x a -'=+-, ………………2分 所以(1)2e e f a '=-=,解得e a =. ………………3分 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:x(,0)-∞0 (0,)+∞()f x ' -0 +()f x↘↗所以函数()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞. ………………5分(Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,设函数2()(1)e 2x g x x kx =--+. ………………6分 求导,得()e 2(e 2)x x g x x kx x k '=-=-.由()0g x '=,解得0x =,或ln(2)x k =. ………………7分 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:x (0,ln(2))kln(2)k (ln(2),)k +∞()g x ' -0 +()g x↘↗所以函数()g x 在(0,ln(2))k 单调递减,在(ln(2),)k +∞上单调递增. ………………9分由2k >,得ln(2)ln 41k >>.又因为(1)20g k =-+<, 所以(ln(2))0g k <.不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,所以101x <<. ………………11分 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <, 可得2ln(2)ln 4x k >>,所以12214||ln 41ln ex x x x -=->-=,即 124||ln ex x ->. ………………13分19.(本小题满分14分)(Ⅰ)解:由题意,椭圆C :221113x y m m+=, ………………1分所以21a m =,213b m=, 故12226a m ==,解得16m =, 所以椭圆C 的方程为22162x y +=. ………………3分因为222c a b =-=, 所以离心率63c e a ==. ………………5分 (Ⅱ)解:设线段AP 的中点为D ,因为||||BA BP =,所以BD AP ⊥, ………………7分 由题意,直线BD 的斜率存在,设点000(,)(0)P x y y ≠,则点D 的坐标为003(,)22x y +,且直线AP 的斜率003AP y k x =-, ………………8分 所以直线BD 的斜率为031AP x k y --=, 所以直线BD 的方程为:000033()22y x x y x y -+-=-. ………………10分 令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-, 由2200162x y +=,得22063x y =-, 化简,得20023(0,)2y B y --. ………………11分 所以四边形OPAB 的面积OPAB OAP OAB S S S ∆∆=+200023113||3||222y y y --=⨯⨯+⨯⨯………………12分 2000233(||||)22y y y --=+ 0033(2||)22||y y =+003322||22||y y ⨯⨯≥ 33=.当且仅当00322y y =,即03[2,2]2y =±∈-时等号成立. 所以四边形OPAB 面积的最小值为33. ………………14分 20.(本小题满分13分)(Ⅰ)解:由题意,数列1,3,5,6和数列2,3,10,7的距离为7. ………………2分 (Ⅱ)解:设1a p =,其中0p ≠,且1p ≠±.由111n n n a a a ++=-,得211p a p +=-,31a p=-,411p a p -=+,5a p =,所以15a a =,因此A 中数列的项周期性重复,且每隔4项重复一次. ………………4分 所以{}n b 中,432k b -=,423k b -=-,4112k b -=-,413k b =(*k ∈N ),所以{}n c 中,433k c -=,422k c -=-,4113k c -=-,412k c =(*k ∈N ). ……………5分由111||||k ki i i i i i b c b c +==--∑∑≥,得项数m 越大,数列{}n b 和{}n c 的距离越大.由417||3i i i b c =-=∑, ………………6分 得34564864117||||86420163i i i ii i b c b c ⨯==-=-=⨯=∑∑.所以当3456m <时,1||2016mi i i b c =-<∑.故m 的最大值为3455. ………………8分 (Ⅲ)证明:假设T 中的元素个数大于或等于17个. 因为数列{}n a 中,0i a =或1,所以仅由数列前三项组成的数组123,,)(a a a 有且只有8个:,0,0)(0,,0,0)(1,,1,0)(0,,0,1)(0,,1,0)(1,,0,1)(1,,1,1)(0,,1,1)(1.那么这17个元素(即数列)之中必有三个具有相同的123,,a a a . ………………10分设这三个数列分别为1234567,,,,,,{}n c c c c c c c c :;1234567,,,,,,{}n d d d d d d d d :;123456,,,,,,{}n f f f f f f f f :,其中111d f c ==,222d f c ==,333d f c ==.因为这三个数列中每两个的距离大于或等于3,所以{}n c 与{}n d 中,(4,5,6,7)i i c d i ≠=中至少有3个成立.不妨设445566,,c d c d c d ≠≠≠.由题意,得44,c d 中一个等于0,而另一个等于1.又因为40f =或1,所以44f c =和44f d =中必有一个成立, 同理,得55f c =和55f d =中必有一个成立,66f c =和66f d =中必有一个成立,所以“(4,5,6)i i f c i ==中至少有两个成立”或“(4,5,6)i i f d i ==中至少有两个成立”中必有一个成立.所以71||2i i i f c =-∑≤和71||2i i i f d =-∑≤中必有一个成立.这与题意矛盾,所以T 中的元素个数小于或等于16. ………………13分。
北京市西城区-第一学期期末考试高三数学理及答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP ,则实数m 的取值范围是( )(A )(4,8) (B )(4,) (C )(0,4)(D )(8,)侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)2 x3ya321258zE FCB A已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p,16q ,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则CAB AB AB ,且A ,B 独立.由上表可知, 1()2P A ,()P B p .所以()()()()P C P AB P AB P AB ……………… 5分111(1)222p pp1122p . ……………… 6分 因为114()225P C p , 所以35p. ……………… 7分 又因为113p q ,0q ≥,所以23p ≤.所以3253p ≤. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >, 所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分) (Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k )8)(8(32)(102212121--++-=x x k x x k x kx 0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k , 所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增.故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
2015西城区高三二模数学(理)试题及答案

北京市西城区2015 年高三二模试卷数学(理科)2015.5本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 1 至2 页,第Ⅱ卷 3 至6 页,共150 分.考试时长120 分钟.考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第I卷(选择题共40 分)1.设集合,集合 ,则A B =()A.(-1‚ 3)B.(1‚ 3]C.[1‚ 3)D.(-1‚ 3]2.已知平面向量,,则实数k =()A.4 B.-4 C.8 D.-83.设命题p :函数在R上为增函数;命题q:函数为奇函数.则下列命题中真命题是()4.执行如图所示的程序框图,若输入的,则输出的s属于()A. {1‚ 2}B.{1‚ 3}C.{2 ‚ 3}D.{1‚ 3‚ 9}5.某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y(万元)与x满足函数关系,若欲使此设备的年平均花费最低,则此设备的使用年限x为()A.3 B.4 C.5 D.66.数列为等差数列,满足,则数列前21 项的和等于()A .B .21C .42D .847.若“ x >1 ”是“不等式2x> a - x 成立”的必要而不充分条件,则实数a 的取值范围是( )A .a >3B .a < 3C .a > 4D .a < 4 8.在长方体,点M 为AB 1 的中点,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP +PQ 的最 小值为( )第Ⅱ卷(非选择题 共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分. 9.复数=____10.双曲线C :的离心率为 ;渐近线的方程为 .11.已知角α的终边经过点(-3,4),则cos α= ;cos 2α= .12.如图,P 为O 外一点,P A 是切线, A 为切点,割线PBC 与O 相交于点B 、C ,且 PC = 2P A , D 为线段 PC 的中点, AD 的延长线交O 于点 E .若PB =34,则P A = ;AD ·DE = .13.现有6 人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有 种.(用数字作答)14.如图,正方形ABCD 的边长为2, O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺 时针方向旋转至OD ,在旋转的过程中,记,OP 所经过的在正方形 ABCD 内的区域(阴影部分)的面积S = f (x ),那么对于函数f (x )有以下三个结论:①;②任意,都有③任意其中所有正确结论的序号是.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13 分)在锐角△ABC 中,角A,B ,C 所对的边分别为a,b ,c ,已知a ,b =3,.(Ⅰ)求角A 的大小;(Ⅱ)求△ABC 的面积.16.(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10 个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)当a =b =3时,记甲型号电视机的“星级卖场”数量为m ,乙型号电视机的“星级卖场”数量为n ,比较m,n 的大小关系;(Ⅱ)在这10 个卖场中,随机选取2 个卖场,记X 为其中甲型号电视机的“星级卖场”的个数,求X 的分布列和数学期望.(Ⅲ)若a =1,记乙型号电视机销售量的方差为s2,根据茎叶图推断b为何值时,s2达到最小值.(只需写出结论)17.(本小题满分14 分)如图1,在边长为4 的菱形ABCD中,于点E ,将△ADE沿DE折起到的位置,使,如图2.⑴求证:平面BCDE ;⑵求二面角的余弦值;⑶判断在线段EB上是否存在一点P ,使平面?若存在,求出的值;若不存在,说明理由.图1 图218.(本小题满分13 分)已知函数,其中a∈R .⑴当时,求f (x)的单调区间;⑵当a>0时,证明:存在实数m >0,使得对于任意的实数x,都有| f (x)|≤m成立.19.(本小题满分14 分)设分别为椭圆E:22221(0)x ya ba b+=>>的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且|AB|=2.⑴若椭圆E 的离心率为,求椭圆E 的方程;⑵设P 为椭圆E 上一点,且在第一象限内,直线与y 轴相交于点Q ,若以PQ 为直径的圆经过点F1,证明:20.(本小题满分13 分)无穷数列P :,满足,对于数列P ,记,其中表示集合中最小的数.(Ⅰ)若数列P :1‚ 3‚ 4 ‚ 7 ‚ …,写出;(Ⅱ)若,求数列P 前n项的和;(Ⅲ)已知=46,求的值.。
北京市西城区高三数学上学期期末试卷 理(含解析)

北京市西城区2015届高三上学期期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合A={﹣1,0,1},B={x|x2﹣x<2},则集合A∩B=()A.{﹣1,0,1} B.{﹣1,0} C.{0,1} D.{﹣1,1}2.(5分)设命题p:∀平面向量和,|﹣|<||+||,则¬p为()A.∀平面向量和,|﹣|≥||+|| B.∃平面向量和,|﹣|<||+|| C.∃平面向量和,|﹣|>||+|| D.∃平面向量和,|﹣|≥||+|| 3.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若a=2b,sinB=,则()A.A=B.A=C.sinA=D.sinA=4.(5分)执行如图所示的程序框图,输出的x值为()A.4 B.5 C.6 D.75.(5分)设函数f(x)=3x+bcosx,x∈R,则“b=0”是“函数f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是()A.最长棱的棱长为B.最长棱的棱长为3C.侧面四个三角形中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形7.(5分)已知抛物线C:y2=4x,点P(m,0),O为坐标原点,若在抛物线C上存在一点Q,使得∠OQP=90°,则实数m的取值范围是()A.(4,8)B.(4,+∞)C.(0,4)D.(8,+∞)8.(5分)设D为不等式组表示的平面区域,点B(a,b)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有成立,则a+b的最大值等于()A.2 B.1 C.0 D.3二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)复数,则|z|=.10.(5分)设F1,F2为双曲线C:=1(a>0)的左、右焦点,点P为双曲线C上一点,如果||PF1|﹣|PF2||=4,那么双曲线C的方程为;离心率为.11.(5分)在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x+y+z=.2 x 3y az12.(5分)如图,在△ABC中,以BC为直径的半圆分别交AB,AC于点E,F,且AC=2AE,那么=;∠A=.13.(5分)现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是.(用数字作答)14.(5分)设P,Q为一个正方体表面上的两点,已知此正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,那么符合条件的直线PQ有条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数f(x)=2,x∈R的部分图象如图所示.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)设点B是图象上的最高点,点A是图象与x轴的交点,求tan∠BAO的值.16.(13分)现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:投资结果获利40% 不赔不赚亏损20%概率(2)购买基金:投资结果获利20% 不赔不赚亏损10%概率p q(Ⅰ)当时,求q的值;(Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于,求p的取值范围;(Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知,,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.17.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AB=AD=2BC=2,点E在棱AB上,平面A1EC与棱C1D1相交于点F.(Ⅰ)证明:A1F∥平面B1CE;(Ⅱ)若E是棱AB的中点,求二面角A1﹣EC﹣D的余弦值;(Ⅲ)求三棱锥B1﹣A1EF的体积的最大值.18.(13分)已知函数f(x)=ax2﹣bx(a>0)和g(x)=lnx的图象有公共点P,且在点P 处的切线相同.(Ⅰ)若点P的坐标为,求a,b的值;(Ⅱ)已知a=b,求切点P的坐标.19.(14分)已知椭圆C:的右焦点为F,右顶点为A,离心率为e,点P(m,0)(m >4)满足条件.(Ⅰ)求m的值;(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,记△PMF和△PNF的面积分别为S1,S2,求证:.20.(13分)设函数f(x)=x(9﹣x),对于任意给定的m位自然数n0=(其中a1是个位数字,a2是十位数字,…),定义变换A:A(n0)=f(a1)+f(a2)+…+f(a m).并规定A(0)=0.记n1=A(n0),n2=A(n1),…,n k=A(n k﹣1),….(Ⅰ)若n0=2015,求n2015;(Ⅱ)当m≥3时,证明:对于任意的m(m∈N*)位自然数n均有A(n)<10m﹣1;(Ⅲ)如果n0<10m(m∈N*,m≥3),写出n m的所有可能取值.(只需写出结论)北京市西城区2015届高三上学期期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合A={﹣1,0,1},B={x|x2﹣x<2},则集合A∩B=()A.{﹣1,0,1} B.{﹣1,0} C.{0,1} D.{﹣1,1}考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:B={x|x2﹣x<2}={x|﹣1<x<2},则A∩B={0,1},故选:C点评:本题主要考查集合的基本运算,比较基础.2.(5分)设命题p:∀平面向量和,|﹣|<||+||,则¬p为()A.∀平面向量和,|﹣|≥||+|| B.∃平面向量和,|﹣|<||+|| C.∃平面向量和,|﹣|>||+|| D.∃平面向量和,|﹣|≥||+||考点:平面向量数量积的运算.专题:平面向量及应用;简易逻辑.分析:由命题的否定的定义知命题p:∀平面向量和,|﹣|<||+||,则¬p:∃平面向量和,|﹣|≥||+||.解答:解:由∀平面向量和的否定为:∃平面向量和,|﹣|<||+||的否定为:|﹣|≥||+||.即有命题p:∀平面向量和,|﹣|<||+||,则¬p:∃平面向量和,|﹣|≥||+||.故选D.点评:本题考查命题的否定,解题时要熟练掌握基本定义.3.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若a=2b,sinB=,则()A.A=B.A=C.sinA=D.sinA=考点:正弦定理.专题:解三角形.分析:已知等式利用正弦定理化简,把sinB的值代入求出sinA的值,即可确定出A的度数.解答:解:把a=2b,利用正弦定理化简得:sinA=2sinB,将sinB=代入得:sinA=,∵A为锐角,∴A=.故选:A.点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.4.(5分)执行如图所示的程序框图,输出的x值为()A.4 B.5 C.6 D.7考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的x,y的值,当x=6,y=64时,满足条件y=64>10×6+3,退出循环,输出x的值为6.解答:解:执行程序框图,有a=2,x=3,y=8不满足条件y>10x+3,x=4,y=16不满足条件y>10x+3,x=5,y=32不满足条件y>10x+3,x=6,y=64满足条件y=64>10×6+3,退出循环,输出x的值为6.故选:C.点评:本题主要考查了程序框图和算法,属于基本知识的考查.5.(5分)设函数f(x)=3x+bcosx,x∈R,则“b=0”是“函数f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据函数奇偶性的性质以及充分条件和必要条件的定义进行判断即可.解答:解:若b=0,则f(x)=3x为奇函数,则充分性成立,若函数f(x)为奇函数,则f(﹣x)=﹣3x+bcosx=﹣3x﹣bcosx,即b=﹣b,解得b=0,即“b=0”是“函数f(x)为奇函数”充分条件和必要条件,故选:C点评:本题主要考查充分条件和必要条件的判断,根据函数奇偶性的性质是解决本题的关键.6.(5分)一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是()A.最长棱的棱长为B.最长棱的棱长为3C.侧面四个三角形中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体如图所示,PA⊥底面ABCD,PA=2,底面是一个直角梯形,其中BC∥AD,AB⊥AD,BC=AB=1,AD=2.可得△PAD,△PAB,△PBC是直角三角形.再利用三垂线定理可得△PCD是直角三角形.即可得出.解答:解:由三视图可知:该几何体如图所示,PA⊥底面ABCD,PA=2,底面是一个直角梯形,其中BC∥AD,AB⊥AD,BC=AB=1,AD=2.可得△PAD,△PAB,△PBC是直角三角形.取AD的中点O,连接OC,AC.可得四边形ABCO是平行四边形,∴OC=OD=OA=1,∴CD⊥AC,∵PA⊥底面ABCD,∴CD⊥PC,因此△PCD是直角三角形.综上可得:四棱锥的侧面四个三角形都是直角三角形.故选:D.点评:本题考查了线面垂直的判定与性质定理、三垂线定理的应用,考查了推理能力与计算能力,属于基础题.7.(5分)已知抛物线C:y2=4x,点P(m,0),O为坐标原点,若在抛物线C上存在一点Q,使得∠OQP=90°,则实数m的取值范围是()A.(4,8)B.(4,+∞)C.(0,4)D.(8,+∞)考点:抛物线的简单性质.专题:计算题.分析:求出以OP为直径的圆的方程,y2=4x代入整理,利用在抛物线C上存在一点Q,使得∠OQP=90°,即可求出实数m的取值范围.解答:解:以OP为直径的圆的方程为(x﹣)2+y2=,y2=4x代入整理可得x2+(4﹣m)x=0,∴x=0或x=m﹣4,∵在抛物线C上存在一点Q,使得∠OQP=90°,∴m﹣4>0,∴m>4,故选:B.点评:本题考查抛物线、圆的方程,考查学生的计算能力,比较基础.8.(5分)设D为不等式组表示的平面区域,点B(a,b)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有成立,则a+b的最大值等于()A.2 B.1 C.0 D.3考点:简单线性规划;平面向量数量积的运算.专题:数形结合;转化思想;不等式的解法及应用;平面向量及应用.分析:由不等式组作出平面区域D,结合得到,再一次作出可行域,然后求线性目标函数z=a+b的最大值.解答:解:由作出平面区域D如图,联立,解得D(﹣1,﹣1),由,得,作出可行域如图,令z=a+b,由图可知,当b=﹣a+z过R(1,1)时z最大为2.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了平面向量数量积的坐标运算,是中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)复数,则|z|=1.考点:复数求模.专题:数系的扩充和复数.分析:化简已知复数可得z=﹣i,由模长公式可得.解答:解:化简可得复数===﹣i∴|z|=|﹣i|=1故答案为:1点评:本题考查复数的模长公式,化简已知复数是解决问题的关键,属基础题.10.(5分)设F1,F2为双曲线C:=1(a>0)的左、右焦点,点P为双曲线C上一点,如果||PF1|﹣|PF2||=4,那么双曲线C的方程为;离心率为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出双曲线的b=4,由双曲线的定义可得a=2,进而得到双曲线方程,由a,b,c的关系求得c,再由离心率公式计算即可得到.解答:解:双曲线C:=1(a>0)的b=4,由双曲线的定义,可得,||PF1|﹣|PF2||=2a=4,即a=2,c==2.则双曲线的方程为,离心率e==.故答案为:,.点评:本题考查双曲线的定义、方程和性质,考查离心率的求法,属于基础题.11.(5分)在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x+y+z=.2 x 3y az考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:先利用每一纵列成等比数列,所以由第一列,可得y=1,再利用每一横行成等差数列,所以由第二行可得a=,由第三行可得z=,进而求出x,即可求出x+y+z.解答:解:因为每一纵列成等比数列,所以由第一列,可得y=1,又因为每一横行成等差数列,所以由第二行可得a=,由第三行可得z=由第一列,可得x=,所以x+y+z=.故答案为:.点评:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力.12.(5分)如图,在△ABC中,以BC为直径的半圆分别交AB,AC于点E,F,且AC=2AE,那么=;∠A=.考点:弦切角.专题:立体几何.分析:证明△AEF∽△ACB,可得===,即可得出结论.解答:解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴===,∴EF=1,故∠EOF=,故∠B+∠C=,∴∠A=,故答案为:,点评:本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.13.(5分)现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是96.(用数字作答)考点:计数原理的应用.专题:排列组合.分析:由题意,先选有3个唱歌节目放在2个小品之间,再把剩下的一个唱歌节目放在排头和排尾,问题得以解决解答:解:先选有3个唱歌节目放在2个小品之间,再把剩下的一个唱歌节目放在排头和排尾,故=96,故答案为:96点评:本题考查了分步计数原理,关键是特殊元素特殊处理,属于基础题14.(5分)设P,Q为一个正方体表面上的两点,已知此正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,那么符合条件的直线PQ有13条.考点:棱柱的结构特征.专题:空间位置关系与距离.分析:由正方体自身的对称性可知,若正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,则PQ比过正方体中心,由此分三种情况,即P,Q为正方体一体对角线两顶点时,P,Q为正方两相对棱中点时,P,Q为正方体对面中心时求得符合条件的直线PQ的条数.解答:解:若正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,则PQ比过正方体中心,否则,正方体绕着直线PQ旋转θ(0<θ<2π)角后,中心不能回到原来的位置.共有三种情况:如图,当P,Q为正方体一体对角线两顶点时,把正方体绕PQ旋转,正方体回到原来的位置,此时直线共有4条;当P,Q为正方两相对棱中点时,把正方体绕PQ旋转π,正方体回到原来的位置,此时直线共有6条;当P,Q为正方体对面中心时,把正方体绕PQ旋转,正方体回到原来的位置,此时直线共有3条.综上,符合条件的直线PQ有4+6+3=13条.故答案为:13.点评:本题考查了棱柱的结构特征,考查了学生的空间想象和思维能力,是中档题.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数f(x)=2,x∈R的部分图象如图所示.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)设点B是图象上的最高点,点A是图象与x轴的交点,求tan∠BAO的值.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)化简可得f(x)=,易得最小正周期为4π,解不等式可得单调递增区间;(Ⅱ)过点B作线段BC垂直于x轴于点C.由题意得,BC=2,易得要求正切值.解答:解:(Ⅰ)化简可得==,由周期公式可得.∴函数f(x)的最小正周期为4π,由可解得,∴函数f(x)的单调递增区间为;(Ⅱ)过点B作线段BC垂直于x轴于点C.由题意得,BC=2,∴.点评:本题考查三角函数的图象和性质,涉及三角函数恒等变换,属基础题.16.(13分)现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:投资结果获利40% 不赔不赚亏损20%概率(2)购买基金:投资结果获利20% 不赔不赚亏损10%概率p q(Ⅰ)当时,求q的值;(Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于,求p的取值范围;(Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知,,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.考点:互斥事件的概率加法公式;相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)根据p++q=1解出即可;(Ⅱ)设出各个事件后得,根据,,从而求出P的范围;(Ⅲ)分别求出EX,EY在值,通过比较得到结论.解答:(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立,所以p++q=1.…(2分)又因为,所以q=.…(3分)(Ⅱ)解:记事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙两人中至少有一人投资获利”,…(4分)则,且A,B独立.由上表可知,,P(B)=p.所以…(5分)==.…(6分)因为,所以.…(7分)又因为,q≥0,所以.所以.…(8分)(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X为丙投资股票的获利金额(单位:万元),所以随机变量X的分布列为:X 4 0 ﹣2P…(9分)则.…10 分假设丙选择“购买基金”方案进行投资,且记Y为丙购买基金的获利金额(单位:万元),所以随机变量Y的分布列为:Y 2 0 ﹣1P…(11分)则.…(12分)因为EX>EY,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.…(13分)点评:本题考查了互斥事件的概率问题,考查了期望问题,是一道基础题.17.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AB=AD=2BC=2,点E在棱AB上,平面A1EC与棱C1D1相交于点F.(Ⅰ)证明:A1F∥平面B1CE;(Ⅱ)若E是棱AB的中点,求二面角A1﹣EC﹣D的余弦值;(Ⅲ)求三棱锥B1﹣A1EF的体积的最大值.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由已知得平面ABCD∥平面A1B1C1D1,从而A1F∥EC,由此能证明A1F∥平面B1CE.(Ⅱ)以AB,AD,AA1分别为x轴、y轴和z轴,建立空间直角坐标系,利用向量法能求出二面角A1﹣EC﹣D的余弦值.(Ⅲ)过点F作FM⊥A1B1于点M,则FM⊥平面A1ABB1,由此能求出当F与点D1重合时,三棱锥B1﹣A1EF的体积的最大值为.解答:(本小题满分14分)(Ⅰ)证明:因为ABCD﹣A1B1C1D1是棱柱,所以平面ABCD∥平面A1B1C1D1.又因为平面ABCD∩平面A1ECF=EC,平面A1B1C1D1∩平面A1ECF=A1F,所以A1F∥EC.…(2分)又因为A1F⊄平面B1CE,EC⊂平面B1CE,所以A1F∥平面B1CE.…(4分)(Ⅱ)解:因为AA1⊥底面ABCD,∠BAD=90°,所以AA1,AB,AD两两垂直,以A为原点,以AB,AD,AA1分别为x轴、y轴和z轴,如图建立空间直角坐标系.…(5分)则A1(0,0,2),E(1,0,0),C(2,1,0),所以,.设平面A1ECF的法向量为,由,,得令z=1,得.…(7分)又因为平面DEC的法向量为,…(8分)所以,由图可知,二面角A1﹣EC﹣D的平面角为锐角,所以二面角A1﹣EC﹣D的余弦值为.…(10分)(Ⅲ)解:过点F作FM⊥A1B1于点M,因为平面A1ABB1⊥平面A1B1C1D1,FM⊂平面A1B1C1D1,所以FM⊥平面A1ABB1,所以…(12分)=.因为当F与点D1重合时,FM取到最大值2(此时点E与点B重合),所以当F与点D1重合时,三棱锥B1﹣A1EF的体积的最大值为.…(14分)点评:本题考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.18.(13分)已知函数f(x)=ax2﹣bx(a>0)和g(x)=lnx的图象有公共点P,且在点P 处的切线相同.(Ⅰ)若点P的坐标为,求a,b的值;(Ⅱ)已知a=b,求切点P的坐标.考点:利用导数研究曲线上某点切线方程;二次函数的性质.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出f(x)和g(x)的导数,求出切线的斜率,解a,b的方程,即可得到a,b;(Ⅱ)设P(s,t),则lns=as2﹣as①,f′(s)=g′(s),联立消掉a可得关于s的方程,构造函数,根据函数单调性可求得唯一s值,进而可求P的坐标.解答:(Ⅰ)解:由题意,得,且f'(x)=2ax﹣b,,由已知,得,即,解得a=2e2,b=3e;(Ⅱ)解:若a=b,则f'(x)=2ax﹣a,,设切点坐标为(s,t),其中s>0,由题意,得 as2﹣as=lns,①,②由②,得,其中,代入①,得.(*)因为,且s>0,所以.设函数,,则.令F'(x)=0,解得x=1或(舍).当x变化时,F'(x)与F(x)的变化情况如下表所示,x (,1) 1 (1,+∞)F'(x)+ 0 ﹣F(x)↗极大值↘所以当x=1时,F(x)取到最大值F(1)=0,且当时F(x)<0.因此,当且仅当x=1时F(x)=0.所以方程(*)有且仅有一解s=1.于是t=lns=0,因此切点P的坐标为(1,0).点评:本题考查利用导数研究函数的单调性及导数的几何意义,考查学生灵活运用所学知识分析问题解决问题的能力,属于中档题.19.(14分)已知椭圆C:的右焦点为F,右顶点为A,离心率为e,点P(m,0)(m >4)满足条件.(Ⅰ)求m的值;(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,记△PMF和△PNF的面积分别为S1,S2,求证:.考点:椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出,|FA|=2,|AP|=m﹣4,利用求m的值;(Ⅱ)分类讨论,设出直线方程代入椭圆方程,利用韦达定理证明∠MPF=∠NPF,求出面积,即可得出结论.解答:(Ⅰ)解:因为椭圆C的方程为,所以a=4,,,…(2分)则,|FA|=2,|AP|=m﹣4.…(3分)因为,所以m=8.…(5分)(Ⅱ)证明:若直线l的斜率不存在,则有S1=S2,|PM|=|PN|,符合题意.…(6分)若直线l的斜率存在,则设直线l的方程为y=k(x﹣2),M(x1,y1),N(x2,y2).由得(4k2+3)x2﹣16k2x+16k2﹣48=0,…(7分)可知△>0恒成立,且,.…(8分)因为…(10分)===,所以∠MPF=∠NPF.…(12分)因为△PMF和△PNF的面积分别为,,…(13分)所以.…(14分)点评:本题考查椭圆方程与性质,考查直线与椭圆的位置关系,考查韦达定理,三角形面积公式,考查学生分析解决问题的能力,属于中档题.20.(13分)设函数f(x)=x(9﹣x),对于任意给定的m位自然数n0=(其中a1是个位数字,a2是十位数字,…),定义变换A:A(n0)=f(a1)+f(a2)+…+f(a m).并规定A(0)=0.记n1=A(n0),n2=A(n1),…,n k=A(n k﹣1),….(Ⅰ)若n0=2015,求n2015;(Ⅱ)当m≥3时,证明:对于任意的m(m∈N*)位自然数n均有A(n)<10m﹣1;(Ⅲ)如果n0<10m(m∈N*,m≥3),写出n m的所有可能取值.(只需写出结论)考点:进行简单的合情推理.专题:推理和证明.分析:(Ⅰ)由已知中变换A:A(n0)=f(a1)+f(a2)+…+f(a m).并规定A(0)=0.记n1=A(n0),n2=A(n1),…,n k=A(n k﹣1),将n0=2015,代入可得答案.(Ⅱ)由函数,可得对于非负整数x,均有f(x)=x(9﹣x)≤20.当x=4或5时,取到最大值,故 A(n)≤20m,令 g(m)=10m﹣1﹣20m,分析函数的最值上,可得结论;(Ⅲ)如果n0<10m(m∈N*,m≥3),则n m的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.解答:解:(Ⅰ)n1=14+0+8+20=42,n2=20+14=34,n3=18+20=38,n4=18+8=26,n5=14+18=32,n6=18+14=32,…所以 n2015=32.…(3分)证明:(Ⅱ)因为函数,所以对于非负整数x,知f(x)=x(9﹣x)≤20.(当x=4或5时,取到最大值)…(4分)因为 A(n)=f(a1)+f(a2)+…+f(a m),所以 A(n)≤20m.…(6分)令 g(m)=10m﹣1﹣20m,则g(3)=103﹣1﹣20×3>0.当m≥3时,g(m+1)﹣g(m)=10m﹣20(m+1)﹣10m﹣1+20m=9×10m﹣1﹣20>0,所以 g(m+1)﹣g(m)>0,函数g(m),(m∈N,且m≥3)单调递增.故 g(m)≥g(3)>0,即10m﹣1>20m≥A(n).所以当m≥3时,对于任意的m位自然数n均有A(n)<10m﹣1.…(9分)解:(Ⅲ)n m的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…(14分)点评:本题考查的知识点是合情推理,其中正解理解变换A:A(n0)=f(a1)+f(a2)+…+f (a m).及规定A(0)=0.记n1=A(n0),n2=A(n1),…,n k=A(n k﹣1)的含义是解答的关键.- 21 -。
北京市西城区2016届高三上学期期末考试数学理试题(WORD精校版)

所以 g (0)0 ,即sin(2π,,,,,,11 分) 0 ,3所以 2πkπ, k Z ,3解得kπ πZ ,验证知其符合题意. 2, k6又因为0 ,所以π,,,,,,13 分的最小值为.316.〔本小题总分值13 分〕〔Ⅰ〕解:记“从甲的 4 局比赛中,随机选取 2 局,且这 2 局的得分恰好相等〞为事件 A ,,,,,,, 1 分由题意,得P( A)21,23C 4所以从甲的 4 局比赛中,随机选取 2 局,且这14 分2 局得分恰好相等的概率为. ,,3〔Ⅱ〕解:由题意, X 的所有可能取值为13,15 ,16, 18,,,,,,, 5 分且 P(X 13)3,P(X15)1,P(X16)3,P(X18)1,,,,,,,7 分8888所以 X 的分布列为:X13151618P 31318888,,,,,,8分所以 E(X )13315116318115 .,,,,,,10分8888〔Ⅲ〕解: x 的可能取值为 6 , 7, 8.,,,,,,13 分17.〔本小题总分值14 分〕〔Ⅰ〕证明:在平行四边形ABCD 中,因为AB AC ,BCD 135 ,所以 AB AC.由 E,F 分别为BC, AD 的中点,得EF // AB,所以 EF AC.,,,,,, 1 分,又因为 EF底面 ABCD ,所以 PA EF .,,,,,, 3 分又因为 PA AC A, PA平面 PAC , AC平面 PAC ,所以 EF平面 PAC .,,,,,, 4 分〔Ⅱ〕证明:因为 M 为 PD 的中点, F 分别为 AD 的中点,所以 MF //PA ,又因为 MF平面 PAB , PA平面 PAB ,z所以 MF // 平面 PAB.,,,,,, 5 分P同理,得 EF // 平面PAB .M 又因为MF EF =F,MF平面MEF,EF平面MEF,A D 所以平面 MEF // 平面 PAB.,,,,,,7 分F 又因为 ME平面 MEF ,B E C所以 ME // 平面 PAB.,,,,,,9 分x y〔Ⅲ〕解:因为 PA底面 ABCD , AB AC ,所以AP, AB,AC 两两垂直,故以AB, AC, AP分别为 x 轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D( 2,2,0), E(1,1,0) ,所以 PB(2,0,2), PD( 2,2,2), BC(2,2,0),,,,,,,10 分设 PM([0,1]),那么PM(2 ,2, 2) ,PD所以 M( 2 ,2,2 2 ),ME(12,12,22),易得平面 ABCD 的法向量m(0,0,1).,,,,,,11 分设平面 PBC 的法向量为n( x, y, z) ,由 n BC0 ,n PB 0 ,得2x 2 y0, 2 x 2 z 0,令 x 1,得n(1,1,1).,,,,,,12 分因为直线ME 与平面PBC所成的角和此直线与平面ABCD 所成的角相等,所以 | cos ME ,m | |cos ME, n|,即|MEm || ME n | ,,,,,,,13 分又因为 EF底面 ABCD ,所以 PA EF .,,,,,, 3 分又因为 PA AC A, PA平面 PAC , AC平面 PAC ,所以 EF平面 PAC .,,,,,, 4 分〔Ⅱ〕证明:因为 M 为 PD 的中点, F 分别为 AD 的中点,所以 MF //PA ,又因为 MF平面 PAB , PA平面 PAB ,z所以 MF // 平面 PAB.,,,,,, 5 分P同理,得 EF // 平面PAB .M 又因为MF EF =F,MF平面MEF,EF平面MEF,A D 所以平面 MEF // 平面 PAB.,,,,,,7 分F 又因为 ME平面 MEF ,B E C所以 ME // 平面 PAB.,,,,,,9 分x y〔Ⅲ〕解:因为 PA底面 ABCD , AB AC ,所以AP, AB,AC 两两垂直,故以AB, AC, AP分别为 x 轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D( 2,2,0), E(1,1,0) ,所以 PB(2,0,2), PD( 2,2,2), BC(2,2,0),,,,,,,10 分设 PM([0,1]),那么PM(2 ,2, 2) ,PD所以 M( 2 ,2,2 2 ),ME(12,12,22),易得平面 ABCD 的法向量m(0,0,1).,,,,,,11 分设平面 PBC 的法向量为n( x, y, z) ,由 n BC0 ,n PB 0 ,得2x 2 y0, 2 x 2 z 0,令 x 1,得n(1,1,1).,,,,,,12 分因为直线ME 与平面PBC所成的角和此直线与平面ABCD 所成的角相等,所以 | cos ME ,m | |cos ME, n|,即|MEm || ME n | ,,,,,,,13 分又因为 EF底面 ABCD ,所以 PA EF .,,,,,, 3 分又因为 PA AC A, PA平面 PAC , AC平面 PAC ,所以 EF平面 PAC .,,,,,, 4 分〔Ⅱ〕证明:因为 M 为 PD 的中点, F 分别为 AD 的中点,所以 MF //PA ,又因为 MF平面 PAB , PA平面 PAB ,z所以 MF // 平面 PAB.,,,,,, 5 分P同理,得 EF // 平面PAB .M 又因为MF EF =F,MF平面MEF,EF平面MEF,A D 所以平面 MEF // 平面 PAB.,,,,,,7 分F 又因为 ME平面 MEF ,B E C所以 ME // 平面 PAB.,,,,,,9 分x y〔Ⅲ〕解:因为 PA底面 ABCD , AB AC ,所以AP, AB,AC 两两垂直,故以AB, AC, AP分别为 x 轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D( 2,2,0), E(1,1,0) ,所以 PB(2,0,2), PD( 2,2,2), BC(2,2,0),,,,,,,10 分设 PM([0,1]),那么PM(2 ,2, 2) ,PD所以 M( 2 ,2,2 2 ),ME(12,12,22),易得平面 ABCD 的法向量m(0,0,1).,,,,,,11 分设平面 PBC 的法向量为n( x, y, z) ,由 n BC0 ,n PB 0 ,得2x 2 y0, 2 x 2 z 0,令 x 1,得n(1,1,1).,,,,,,12 分因为直线ME 与平面PBC所成的角和此直线与平面ABCD 所成的角相等,所以 | cos ME ,m | |cos ME, n|,即|MEm || ME n | ,,,,,,,13 分又因为 EF底面 ABCD ,所以 PA EF .,,,,,, 3 分又因为 PA AC A, PA平面 PAC , AC平面 PAC ,所以 EF平面 PAC .,,,,,, 4 分〔Ⅱ〕证明:因为 M 为 PD 的中点, F 分别为 AD 的中点,所以 MF //PA ,又因为 MF平面 PAB , PA平面 PAB ,z所以 MF // 平面 PAB.,,,,,, 5 分P同理,得 EF // 平面PAB .M 又因为MF EF =F,MF平面MEF,EF平面MEF,A D 所以平面 MEF // 平面 PAB.,,,,,,7 分F 又因为 ME平面 MEF ,B E C所以 ME // 平面 PAB.,,,,,,9 分x y〔Ⅲ〕解:因为 PA底面 ABCD , AB AC ,所以AP, AB,AC 两两垂直,故以AB, AC, AP分别为 x 轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D( 2,2,0), E(1,1,0) ,所以 PB(2,0,2), PD( 2,2,2), BC(2,2,0),,,,,,,10 分设 PM([0,1]),那么PM(2 ,2, 2) ,PD所以 M( 2 ,2,2 2 ),ME(12,12,22),易得平面 ABCD 的法向量m(0,0,1).,,,,,,11 分设平面 PBC 的法向量为n( x, y, z) ,由 n BC0 ,n PB 0 ,得2x 2 y0, 2 x 2 z 0,令 x 1,得n(1,1,1).,,,,,,12 分因为直线ME 与平面PBC所成的角和此直线与平面ABCD 所成的角相等,所以 | cos ME ,m | |cos ME, n|,即|MEm || ME n | ,,,,,,,13 分又因为 EF底面 ABCD ,所以 PA EF .,,,,,, 3 分又因为 PA AC A, PA平面 PAC , AC平面 PAC ,所以 EF平面 PAC .,,,,,, 4 分〔Ⅱ〕证明:因为 M 为 PD 的中点, F 分别为 AD 的中点,所以 MF //PA ,又因为 MF平面 PAB , PA平面 PAB ,z所以 MF // 平面 PAB.,,,,,, 5 分P同理,得 EF // 平面PAB .M 又因为MF EF =F,MF平面MEF,EF平面MEF,A D 所以平面 MEF // 平面 PAB.,,,,,,7 分F 又因为 ME平面 MEF ,B E C所以 ME // 平面 PAB.,,,,,,9 分x y〔Ⅲ〕解:因为 PA底面 ABCD , AB AC ,所以AP, AB,AC 两两垂直,故以AB, AC, AP分别为 x 轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D( 2,2,0), E(1,1,0) ,所以 PB(2,0,2), PD( 2,2,2), BC(2,2,0),,,,,,,10 分设 PM([0,1]),那么PM(2 ,2, 2) ,PD所以 M( 2 ,2,2 2 ),ME(12,12,22),易得平面 ABCD 的法向量m(0,0,1).,,,,,,11 分设平面 PBC 的法向量为n( x, y, z) ,由 n BC0 ,n PB 0 ,得2x 2 y0, 2 x 2 z 0,令 x 1,得n(1,1,1).,,,,,,12 分因为直线ME 与平面PBC所成的角和此直线与平面ABCD 所成的角相等,所以 | cos ME ,m | |cos ME, n|,即|MEm || ME n | ,,,,,,,13 分又因为 EF底面 ABCD ,所以 PA EF .,,,,,, 3 分又因为 PA AC A, PA平面 PAC , AC平面 PAC ,所以 EF平面 PAC .,,,,,, 4 分〔Ⅱ〕证明:因为 M 为 PD 的中点, F 分别为 AD 的中点,所以 MF //PA ,又因为 MF平面 PAB , PA平面 PAB ,z所以 MF // 平面 PAB.,,,,,, 5 分P同理,得 EF // 平面PAB .M 又因为MF EF =F,MF平面MEF,EF平面MEF,A D 所以平面 MEF // 平面 PAB.,,,,,,7 分F 又因为 ME平面 MEF ,B E C所以 ME // 平面 PAB.,,,,,,9 分x y〔Ⅲ〕解:因为 PA底面 ABCD , AB AC ,所以AP, AB,AC 两两垂直,故以AB, AC, AP分别为 x 轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D( 2,2,0), E(1,1,0) ,所以 PB(2,0,2), PD( 2,2,2), BC(2,2,0),,,,,,,10 分设 PM([0,1]),那么PM(2 ,2, 2) ,PD所以 M( 2 ,2,2 2 ),ME(12,12,22),易得平面 ABCD 的法向量m(0,0,1).,,,,,,11 分设平面 PBC 的法向量为n( x, y, z) ,由 n BC0 ,n PB 0 ,得2x 2 y0, 2 x 2 z 0,令 x 1,得n(1,1,1).,,,,,,12 分因为直线ME 与平面PBC所成的角和此直线与平面ABCD 所成的角相等,所以 | cos ME ,m | |cos ME, n|,即|MEm || ME n | ,,,,,,,13 分。
北京市西城区2016届高三二模数学(理)试题【含答案】

北京市西城区2015-2016学年度第二学期高三综合练习(二)数学(理科)2016.5一、选择题:本大题共8小题,每小题5分,共40分.在四个选项中,选出符合题目要求的一项. 1.设全集U =R ,集合{}02A x x =<<,{}1B x x =<,则集合()U C A B =( )A .(),0-∞B .(],0-∞C .()2,+∞D .[)2,+∞ 2.若复数z 满足23z z i i +⋅=+,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,若()1s i n343A B a c +===,,则sin A =( )A .23B .14C .34D .164.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A .2 BC .3 D.5.“a b c d 、、、成等差数列”是“a d b c +=+”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.某市家庭煤气的使用量()3x m 和煤气费()f x (元)满足关系()()0C x A f x C B x A x A <≤⎧⎪=⎨+->⎪⎩,,,已知家庭今年前三个月的煤气费如下表:若四月份该家庭使用了320m 的煤气,则其煤气费为( )A .11.5 元B .11元C .10.5元D .10元7.如图,点A B 、在函数2log 2y x =+的图像上,点C 在函数2log y x =的图像上,若ABC ∆为等边三角形,且直线//BC y 轴,设点A 的坐标为()mn ,,则m =( ) A .2 B .3 CD8.设直线:340l x y a ++=圆()22:22C x y -+=,若在圆C 上存在两点P Q ,,在直线l 上存在一点M ,使得90∠=PMQ ,则a 的取值范围是( )A .[]18,6- B.6⎡-+⎣ C .[]16,4- D.66⎡---+⎣二、填空题(本大题共6小题,每小题5分,共30分)9.在62x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于 .10.设x y ,满足约束条件2110y xx y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值为 .11.执行如图所示的程序框图,输出的S 值为 . 12.设双曲线C 的焦点在x轴上,渐近线方程为2y x =±, 则其离心率为 ;若点()42,在C 上,则双曲线C 的方程为 .13.如图,ABC ∆为圆内接三角形,BD 为圆的弦,且//BD AC ,过点A 做圆的切线与BD 的延长线交于点E ,AD 与BC 交于点F ,若45AB AC BD ===,,则AFAD= , AE = .14.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度进行评优.若A 电影的“点播量”和“专家评分”中至少有一项高于B 电影,则称A 电影不亚于B 电影.已知共有10部微电影参展,如果某部电影不亚于其他9部电影,就称此部电影为优秀影片.那么在这10部微电影中,最多可能有 部优秀影片.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()()21cos f x x x =.(Ⅰ)若α为第二象限角,且sin α=,求()f α的值; (Ⅱ)求函数()f x 的定义域和值域.16.(本小题满分13分)某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[)010,,[)1020,,[)2030,,[)3040,,[]4050,,并分别加以统计,得到如图所示的频率分布直方图.(Ⅰ)写出a 的值;(Ⅱ)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;(Ⅲ)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X 表示其中初中生的人数,求X 的分布列和数学期望.17.(本小题满分14分)如图,正方形ABCD 的边长为4,E F 、分别为BC DA 、的中点,将正方形ABCD 沿着线段EF 折起,使得60DFA ∠=,设G 为AF 的中点. (Ⅰ)求证:DG EF ⊥;(Ⅱ)求直线GA 与平面BCF 所成角的正弦值;(Ⅲ)设P Q 、分别为线段DG CF 、上一点,且//PQ 平面ABEF ,求线段PQ 长度的最小值.设a R ∈,函数()()2x af x x a -=+.(Ⅰ)若函数()f x 在()()00f ,处的切线与直线32y x =-平行,求a 的值; (Ⅱ)若对于定义域内的任意1x ,总存在2x 使得()()21f x f x <,求a 的取值范围.已知椭圆()2222:10x y C a b a b+=>>的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点()()00B m m >,的直线l 与椭圆C 相交于E F 、两点,点B 关于原点的对称点为D ,若点D 总在以线段EF 为直径的圆内,求m 的取值范围.已知任意的正整数n 都可唯一表示为1100112222kk k k n a a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅,其中{}012101k a a a a k N =⋅⋅⋅∈∈,,,,,.对于n N *∈,数列{}n b 满足:当012k a a a a ⋅⋅⋅,,,中有偶数个1时,0n b =;否则1n b =.如数5可以唯一表示为2105120212=⨯+⨯+⨯,则50b =. (Ⅰ)写出数列{}n b 的前8项;(Ⅱ)求证:数列{}n b 中连续为1的项不超过2项;(Ⅲ)记数列{}n b 的前n 项和为n S ,求满足1026n S =的所有n 的值(结论不要求证明).北京市西城区2016年高三二模试卷参考答案及评分标准高三数学(理科) 2016.5一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.A 3.B 4.C 5.A 6.A 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9.160 10.7311.527 12 22184x y -=13.456 14.10 注:第12,13题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 α是第二象限角,且sin α所以cos α==. ………………2分所以sin tan cos ααα== ………………4分所以2()(1f α==. ………………6分 (Ⅱ)解:函数()f x 的定义域为{|x x ∈R ,且ππ,}2x k k ≠+∈Z . ………………8分化简,得2()(1)cos f x x x =2(1x =2cos cos x x x =1cos 222x x +=………………10分 π1sin(2)62x =++, ………………12分 因为x ∈R ,且ππ2x k ≠+,k ∈Z ,所以π7π22π66x k +≠+, 所以1π1sin(2)6x -+≤≤.所以函数()f x 的值域为13[,]22-. ………………13分(注:或许有人会认为“因为ππ2x k ≠+,所以()0f x ≠”,其实不然,因为π()06f -=.)16.(本小题满分13分)(Ⅰ)解:0.03a =. ………………3分 (Ⅱ)解:由分层抽样,知抽取的初中生有60名,高中生有40名. ………………4分 因为初中生中,阅读时间不小于30个小时的学生频率为(0.020.005)100.25+⨯=, 所以所有的初中生中,阅读时间不小于30个小时的学生约有0.251800450⨯=人, ………………6分同理,高中生中,阅读时间不小于30个小时的学生频率为(0.030.005)100.35+⨯=,学生人数约有0.351200420⨯=人.所以该校所有学生中,阅读时间不小于30个小时的学生人数约有450420870+=人. ………………8分(Ⅲ)解:初中生中,阅读时间不足10个小时的学生频率为0.005100.05⨯=,样本人数为0.05603⨯=人.同理,高中生中,阅读时间不足10个小时的学生样本人数为(0.00510)402⨯⨯=人. 故X 的可能取值为1,2,3. ………………9分则 123235C C 3(1)C 10P X ⋅===, 213235C C 3(2)C 5P X ⋅===, 3335C 1(3)C 10P X ===. 所以X 的分布列为:……………… 12分 所以3319()123105105E X =⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为正方形ABCD 中,,E F 分别为,BC DA 的中点,又因为FD FA F =,所以EF ⊥平面DFA . ………………2分 又因为DG ⊂平面DFA ,所以DG EF ⊥. ………………4分 (Ⅱ)解:因为60DFA ∠=,DF FA =,AG GF =, 所以DFA ∆为等边三角形,且DG FA ⊥. 又因为DG EF ⊥,EFFA F =,所以DG ⊥平面ABEF . ………………5分设BE 的中点为H ,连接GH ,则,,GA GH GD 两两垂直,故以,,GA GH GD 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系,则(0,0,0)G ,(1,0,0)A ,(1,4,0)B,(0,C ,(1,0,0)F -,所以(1,0,0)GA =,(1BC =-,(2,4,0)BF =--. ………………6分 设平面BCF 的一个法向量为(,,)x y z =m , 由0BC ⋅=m ,0BF ⋅=m,得0,240,x x y ⎧-=⎪⎨--=⎪⎩ 令2z =,得2)=m . (7)设直线GA 与平面BCF 所成角为α, 则||257sin |cos ,|19||||GA GA GA α⋅=<>==m m m .即直线GA 与平面BCF 19. ………………9分(Ⅲ)由题意,可设(0,0,)(0P k k ≤,(01)FQ FC λλ=≤≤, 由(1,FC =,得(,4)FQ λλ=,所以(1,4)Q λλ-,(1,4)PQ k λλ--=. ………………10分 由(Ⅱ),得GD =为平面ABEF 的法向量. 因为//PQ 平面ABEF ,所以0GD PQ ⋅=0k -=. ………………11分 所以||(PQ λ==,………………12分 又因为221172117()171716λλλ-+=-+,所以当117λ=时,min ||17PQ =.所以当117λ=,17k =PQ 长度有最小值17. ………………14分18.(本小题满分13分)(Ⅰ)证明:函数()y f x =的定义域{|}D x x x a =∈≠-R 且, ………………1分由题意,(0)f '有意义,所以0a ≠.求导,得244()()2()()(3)()()()x a x a x a x a x a f x x a x a +--⋅++⋅-'==-++. ………………3分 由题意,得243(0)3a f a'==,解得1a =±.验证知1a =±符合题意. ………………5分(Ⅱ)解:“对于定义域内的任意1x ,总存在2x 使得21()()f x f x <”等价于“()f x 不存在最小值”. ………………6分① 当0a =时, 由1()f x x=,得()f x 无最小值,符合题意. ………………7分 ② 当0a >时, 令4()(3)()0()x a x a f x x a +⋅-'=-=+,得x a =- 或 3x a =. ………………8分随着x 的变化时,()f x '与()f x 的变化情况如下:所以函数()f x 的单调递减区间为(,)a -∞-,(3,)a +∞,单调递增区间为(,3)a a -.………………9分因为当x a >时,2()0()x af x x a -=>+,当x a <时,()0f x <,所以只要考虑1(,)x a ∈-∞,且1x a ≠-即可. 当1(,)x a ∈-∞-时,由()f x 在(,)a -∞-上单调递减,且1111||2x x x a a <++<-, 得1111()(||)2f x f x x a >++, 所以存在2111||2x x x a =++,使得21()()f x f x <,符合题意; 同理,当1(,)x a a ∈-时,令2111||2x x x a =-+, 得21()()f x f x <,也符合题意;故当0a >时,对于定义域内的任意1x ,总存在2x 使得21()()f x f x <成立.………11分 ③ 当0a <时,随着x 的变化时,()f x '与()f x 的变化情况如下表:所以函数()f x 的单调递减区间为(,3)a -∞,(,)a -+∞,单调递增区间为(3,)a a -.因为当x a >时,2()0()x af x x a -=>+,当x a <时,()0f x <,所以min ()(3)f x f a =.所以当13x a =时,不存在2x 使得21()()f x f x <.综上所述,a 的取值范围为[0,)a ∈+∞. ………………13分19.(本小题满分14分)(Ⅰ)解:由题意,得:4,a b c ⎧⎪⎨⎪⎩== ………………2分 又因为222c b a +=解得a 1b =,1c =, ………………4分所以椭圆C 的方程为1222=+y x . ………………5分(Ⅱ)解:(方法一)当直线l 的斜率不存在时,由题意知l 的方程为0=x ,此时E ,F 为椭圆的上下顶点,且2=EF ,因为点(0,)D m -总在以线段EF 为直径的圆内,且0m >, 所以10<<m .故点B 在椭圆内. ………………6分 当直线l 的斜率存在时,设l 的方程为m kx y +=.由方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(21)4220k x kmx m +++-=, ………………8分 因为点B 在椭圆内,所以直线l 与椭圆C 有两个公共点,即0)22)(12(4)4(222>-+-=∆m k km . 设),(),,(2211y x F y x E ,则122421km x x k -+=+,21222221m x x k -=+. ………………9分 设EF 的中点),(00y x G , 则12222210+-=+=k kmx x x ,12200+=+=k m m kx y , 所以)12,122(22++-k mk km G . ………………10分 所以2222)12()122(m k m k km DG ++++-=124124224+++=k k k m , 2122124)(1x x x x k EF -++=12121222222+-++=k m k k . ………………11分因为点D 总在以线段EF 为直径的圆内, 所以2EF DG <对于k ∈R 恒成立.所以 1212121241242222224+-++<+++k m k k k k k m . 化简,得1323722422242++<++k k m k m k m ,整理,得31222++<k k m , ………………13分而2221221()113333k g k k k +==--=++≥(当且仅当0=k 时等号成立).所以312<m ,由0>m ,得330<<m . 综上,m 的取值范围是330<<m . ………………14分(方法二)… …则122421kmx x k -+=+,21222221m x x k -=+. …………………9分因为点D 总在以线段EF 为直径的圆内,所以0DE DF ⋅<. ………………11分 因为11(,)DE x y m =+,22(,)DF x y m =+, 所以2121212()DE DF x x y y m y y m ⋅=++++2121212()()()x x kx m kx m m kx m kx m m =++++++++ 221212(1)2()4k x x km x x m =++++22222224(1)2402121m kmk km m k k --=+++<++,整理,得31222++<k k m . ………………13分(以下与方法一相同,略)20.(本小题满分13分)(Ⅰ)解:1,1,0,1,0,0,1,1. ………………3分 (Ⅱ)证明:设数列{}n b 中某段连续为1的项从m b 开始,则1m b =.由题意,令1100112222k k k k m a a a a --=⋅+⋅++⋅+⋅,则01,,,k a a a 中有奇数个1.(1)当01,,,k a a a 中无0时,因为1102222k k m -=++++,所以111011202020202k kk m +-+=⨯+⨯+⨯++⨯+⨯, 111021202020212k k k m +-+=⨯+⨯+⨯++⨯+⨯.所以1m b =,11m b +=,20m b +=,此时连续2项为1. ………………5分(2)当01,,,k a a a 中有0时,① 若0k a =,即11001122202k k k m a a a --=⋅+⋅++⋅+⨯,则110011122212k k k m a a a --+=⋅+⋅++⋅+⨯,因为01,,,k a a a 中有奇数个1,所以10m b +=,此时连续1项为1. ………………7分② 若1k a =,即111001 122202121212ik k s s s m a a --=⋅+⋅++⨯+⨯++⨯+⨯连续个乘以,则111001 0212212020202ik k s s s m a a --+=⋅+⋅++⨯+⨯++⨯+⨯连续个乘以,111001(1)0222212020212ik k s s s m a a ---+=⋅+⋅++⨯+⨯++⨯+⨯连续个乘以,(其中i ∈N ) 如果s 为奇数,那么11m b +=,20m b +=,此时连续2项为1. 如果s 为偶数,那么10m b +=,此时仅有1项1m b =.综上所述,连续为1的项不超过2项. ………………10分 (Ⅲ)解:2051n =或2052n =. ………………13分。
北京市西城区2015(1)

北京市西城区2015 — 2016学年度第一学期期末试卷高三数学(理科)第一部分 易错题4. 在数列}{n a 中,“对任意的*n ∈N ,221++=n n n a a a ”是“数列}{n a 为等比数列”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点分析:本题主要考查了充分条件、必要条件的判定,所涉及的知识是等比数列的判断,充要条件的判断是高考的热点,常与函数的单调性、奇偶性、不等式的性质或解集、立体几何、解析几何、数列、概率等知识交汇命题. 解题方法:本题从两个方面判断:一、221++=n n n a a a 是“数列}{n a 为等比数列”的充分条件吗?即221++=n n n a a a 能否推导出“数列}{n a 为等比数列”;二、221++=n n n a a a 是“数列}{n a 为等比数列”的必要条件吗?即“数列}{n a 为等比数列”能否推导出221++=n n n a a a 。
如2015年北京(理科)高考题第4题设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件考点分析:考查了充分条件、必要条件的判定,所涉及的知识是平面与平面平行的判,定和性质。
解题方法:从两个方面判断:一、m β∥能否推出αβ∥; 二、αβ∥能否推出m β∥。
易错题8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( )A .(0,7)B .(4,7)C .(0,4)D .(5,16)-考点分析:本题主要考查了平面向量数量积的运算,在近几年的各省的高考题中出现的频率较高,常与三角函数、数列、解析几何等知识交汇命题.E F D P C A B解题方法:几何图形中的向量数量积运算,一是建立坐标系,借助向量的坐标运算处理,二是取基底,将所涉及的向量全部用基底表示,再进行运算。
2015-2016年北京市西城区高三上学期期末数学(理)试卷

北京市西城区2015 — 2016学年度上学期期末试卷高三数学(理科) 2016.1本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并回交.第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅ ,则实数a 的取值范围是( ) (A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D )2y x =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A )1623+ (B )1625+ (C )2023+ (D )2025+侧(左)视图正(主)视图俯视图22 1 1开始 4x >输出y 结束否 是 输入xy=12○16. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7. 某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( ) (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-E FD P C A BB OC A NM第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.如图,在ABC ∆中,90ABC ∠= ,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C)满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论:○1 该食品在6C 的保鲜时间是8小时; ○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少; ○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数3()cos (sin 3cos )2f x x x x =+-,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f x α=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下: 甲 6 6 99乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠= ,侧面PAB ⊥底面ABCD ,90BAP ∠= ,2AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ; (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PMPD的值.F CADPMB E18.(本小题满分13分)已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为23,点3(1,)2A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C :3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2, ,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.北京市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±12 12. 132- 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:3()cos (sin 3cos )2f x x x x =+- 23sin cos (2cos 1)2x x x =+-13sin 2cos 222x x =+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:X 13 15 16 18P38 1838 18……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠= , 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠= ,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分 又因为PA AC A = ,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,z又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB . ………………5分 同理,得//EF 平面PAB .又因为=MF EF F ,MF ⊂平面MEF ,EF ⊂平面MEF , 所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =- ,(2,2,2)PD =-- ,(2,2,0)BC =-, ………………10分设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=-- , 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n ,由0BC ⋅= n ,0PB ⋅= n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<> m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分 所以 2|22|||3λλ-=, 解得332λ-=,或332λ+=(舍). ………………14分18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分 (Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,1)1(1,)+∞()h x '-0 +()h x↘↗所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时, 令()0h x '=,解得x t =.当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,)tt(,)t +∞()h x '-0 +()h x↘↗所以()h x 在(0,)t 上单调递减,在(,)t +∞上单调递增, 所以当x t =时,min()()h x h t =. ………………11分因为(1)0h =,1t <,且()h x 在(,)t +∞上单调递增,所以()(1)0h t h <=.又因为存在12e (0,1)t -∈ ,111122()12ln 0t t t t h t ----=--=>e e e e ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分) (Ⅰ)解:由题意,得32c a =,222a b c =+, ………………2分 又因为点3(1,)2A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,3c =,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分 则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d - 与排列1121,,,,n n D d d d d - :, 因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2, ,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a - ,且这两个排列的逆序对的个数的算术平均值为(1)4n n -.所以所有()S A 的算术平均值为(1)4n n -. ………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++ ,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +, 所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a , 先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a - , 由○1,知1()S A 与()S A 的奇偶性不同,再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a - , 由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a ,再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a - , 以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a , 即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。
北京市西城区2014+—+2015学年度第一学期期末高三理科考试试题

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为((A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D 内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0 (D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4) (D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 120.(本小题满分13分)设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+ cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . (9)分(Ⅱ)解:如图过点B 作线段BC 垂直于x 由题意,得33π4TAC ==,2=BC ,所以2tan 3πBC BAO AC ∠==. ………… 13分16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分(Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事 件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =.所以()()()()P C P AB P AB P AB =++ (5)分111(1)222p p p =?+?? 1122p =+. (6)分因为114()225P C p =+>,所以35p >. ……………… 7分又因为113p q ++=,0q ≥, 所以23p ≤.所以3253p ≤<. (8)分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分(Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分且()2f x ax b '=-,1()g x x'=, …………………3分由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) (7)分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. (9)分令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0ts ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =,2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . (8)分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分)8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. (3)分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分(Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
2015年北京西城高三二模数学(理科)试题及答案

北京市西城区 2 0 1 5年高三二模试卷数学(理科)2015.5本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 6 页,共 150 分.考试时长 120 分钟.考生务势必答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回.1.设会合,会合?,则 A I B=()(-1? 3)?(1? 3]?[?(-]A .B .C. 1? 3) D .1? 32.已知平面向量,则实数 k =()A . 4B.- 4C. 8D.- 83.设命题 p :函数在 R上为增函数;命题q:函数为奇函数.则以下命题中真命题是()4.履行如下图的程序框图,若输入的,则输出的 s属于()A.{ 1?2}?B.{1?3}?C.{2?3}?D.{1?3?9}?5.某生产厂商更新设施,已知在将来x 年内,此设施所花销的各样花费总和y(万元)与 x知足函数关系,若欲使此设施的年均匀花销最低,则此设施的使用年限x为()A . 3B. 4C.5D. 66.数列为等差数列,知足,则数列前 21项的和等于()A .B.21C. 42D. 847.若“x> 1 ”是“不等式建立”的必需而不充足条件,则实数a的取值范围是()A . a > 3B . a < 3C. a > 4 D .a < 48.在长方体,点 M 为AB1的中点,点 P 为对角线AC1上的动点,点Q为底面ABCD上的动点(点P,Q能够重合),则MP+PQ的最小值为()第Ⅱ卷(非选择题共110 分)二、填空题:本小题共 6 小题,每题 5 分,共 30 分.9.复数=____10.双曲线 C :的离心率为;渐近线的方程为..已知角的终边经过点(-,); cos 2 =.11 3 4 ,则 cos = ?12.如图, P 为O 外一点, PA是切线,A为切点,割线PBC 与O订交于点B、C,且 PC = 2PA , D 为线段 PC 的中点,AD 的延伸线交O于点 E.若PB=3? ,则4PA =; AD·DE =.13.现有 6 人要排成一排照相,此中甲与乙两人不相邻,且甲不站在两头,则不一样的排法有种.(用数字作答)14.如图,正方形 ABCD 的边长为 2, O为AD 的中点,射线 OP 从 OA 出发,绕着点 O 顺时针方向旋转至 OD,在旋转的过程中,记, OP 所经过的在正方形 ABCD 内的地区(暗影部分)的面积S = f (x),那么关于函数 f (x)有以下三个结论:①;②随意,都有③随意此中全部正确结论的序号是.三、解答题:本大题共 6 小题,共 80分.解答应写出必需的文字说明、证明过程或演算步骤.15.(本小题满分 13分)在锐角△ ABC 中,角 A, B ,C 所对的边分别为 a, b , c ,已知 a =7 ,b=3,.(Ⅰ)求角 A 的大小;(Ⅱ)求△ ABC 的面积.16.(本小题满分 13分)某厂商检查甲、乙两种不一样型号电视机在10 个卖场的销售量(单位:台),并依据这10个卖场的销售状况,获得如下图的茎叶图.为了鼓舞卖场,在同型号电视机的销售中,该厂商将销售量高于数据均匀数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)当 a = b =3时,记甲型号电视机的“星级卖场”数目为m,乙型号电视机的“星级”n,比较m,n的大小关系;卖场数目为(Ⅱ)在这 10个卖场中,随机选用 2 个卖场,记 X 为此中甲型号电视机的“星级卖场”的个数,求 X 的散布列和数学希望.(Ⅲ)若 a = 1,记乙型号电视机销售量的方差为s2,依据茎叶图推测 b为什么值时, s2达到最小值.(只要写出结论)17.(本小题满分 14分)如图 1,在边长为 4的菱形 ABCD中,于点 E ,将△ADE沿DE 折起到的地点,使,如图2.⑴求证:平面 BCDE ;⑵求二面角的余弦值;⑶判断在线段 EB 上能否存在一点 P ,使平面?若存在,求出的值;若不存在,说明原因.18.(本小题满分 13分)已知函数,此中 a R .⑴当时,求 f (x)的单一区间;⑵a0m0x f (x)|≤m建立.当>时,证明:存在实数>,使得关于随意的实数,都有|19.(本小题满分 14分)设分别为椭圆 E:x2y21(a b0) 的左、右焦点,点 A 为椭圆 E 的左极点,a2b2点 B 为椭圆 E 的上极点,且|AB|= 2.⑴若椭圆 E 的离心率为,求椭圆 E 的方程;⑵设 P 为椭圆 E 上一点,且在第一象限内,直线与y轴订交于点Q,若以PQ为直径的圆经过点F1,证明:20.(本小题满分 13 分)无量数列P:,知足,关于数列P ,记,此中表示会合中最小的数.(Ⅰ)若数列P:1?3?4?7?,写出;(Ⅱ)若,求数列P 前 n项的和;(Ⅲ)已知= 46,求的值.欢迎接见“高中试卷网”——。
北京市西城区第一学期期末试卷高三数学理科试题

北京市西城区2016 — 2017学年度第一学期期末试卷高三数学(理科)2017.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|02}A x x =<<,2{|10}B x x =-≤,那么AB =(A ){|01}x x <≤ (B ){|12}x x -<≤(C ){|10}x x -<≤ (D ){|12}x x <≤2.下列函数中,定义域为R 的奇函数是(A )21y x =+(B )tan y x =(C )2xy =(D )sin y x x =+3.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x ±= (B 0y ±=(C )30x y ±= (D )30x y ±=4.在极坐标系中,过点(2,)6P π且平行于极轴的直线的方程是(A )sin 1=ρθ(B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ5.某四棱锥的三视图如图所示,该四棱锥的四个 侧面的面积中最大的是 (A )3 (B)(C )6 (D)6.设,a b 是非零向量,且≠±a b .则“||||=a b ”是“()()+⊥-a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件7.实数,x y 满足3,0,60.x x y x y ⎧⎪+⎨⎪-+⎩≤≥≥若z ax y =+的最大值为39a +,最小值为33a -,则a的取值范围是(A )[1,0]- (B )[0,1](C )[1,1]- (D )(,1][1,)-∞-+∞8.在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A ,B 分别在x 轴,y 轴上移动.若该正四面体的棱长是2,则||OP 的取值范围是(A)1](B )[1,3](C)1,2](D)1]精品文档第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.复数1i1i+=-____.10.设等比数列{}n a的各项均为正数,其前n项和为n S.若11a=,34a =,则n a =____;6S =____.11.执行如图所示的程序框图,输出的S 值为____.12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.13.设函数30,()log ,,x a f x x x a =>⎪⎩≤≤其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.14.10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数2π()sin(2)2cos 16f x x x ωω=-+-(0)ω>的最小正周期为π.(Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,//AD BC ,90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥P ABCD -的体积.17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a ,b 是正整数,且a b <.(Ⅰ)该卖场有56台A 型手机,试估计其中待机时间不少于123小时的台数; (Ⅱ)从A 型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X ,求X 的分布列;(Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围.19.(本小题满分14分)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B 两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)数字1,2,3,,(2)n n ≥的任意一个排列记作12(,,,)n a a a ,设n S 为所有这样的排列构成的集合.集合12{(,,,)|n n n A a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j --≤;集合12{(,,,)|n n n B a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j ++≤.(Ⅰ)用列举法表示集合3A ,3B ;(Ⅱ)求集合n n A B 的元素个数;(Ⅲ)记集合n B 的元素个数为n b .证明:数列{}n b 是等比数列.北京市西城区2016 — 2017学年度第一学期期末高三数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.B 4.A 5.C 6.C 7.C 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.12n -;6311.3-12;[4,9)14.16注:第10,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()sin(2)(2cos1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+[4分]1sin 2cos 222x x ωω=+ πsin(2)6x ω=+,[6分]所以()f x 的最小正周期2ππ2T ω==, 解得1ω=.[7分](Ⅱ)由(Ⅰ)得 π()sin(2)6f x x =+.因为7π12x ≤≤0,所以ππ4π2663x +≤≤.[9分] 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;[11分]当π4π263x +=,即7π12x =时,()f x 取得最小值为 [13分]16.(本小题满分14分)解:(Ⅰ)因为90BAD ∠=,所以AB AD ⊥,[1分]又因为AB PA ⊥,所以AB ⊥平面PAD .[3分] 所以平面PAD ⊥平面ABCD .[4分](Ⅱ)取PA 的中点F ,连接BF ,EF .[5分] 因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为//BC AD ,12BC AD =,所以//BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF .[7分]又BF ⊂平面PAB ,CE ⊄平面PAB , 所以//CE 平面PAB .[8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点,又因为平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图建立空间直角坐标系O xyz -.[9分]设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a .所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y az =⎧⎨-=⎩令1z =,则y a =.所以(0,,1)a =n .[11分] 因为DC 与平面PAB 所成角为30,所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===|n n n , 解得1a =.[13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分] 17.(本小题满分13分)解:(Ⅰ)被检测的7台手机中有5台的待机时间不少于123小时,因此,估计56台A 型手机中有556407⨯=台手机的待机时间不少于123小时.[3分] (Ⅱ)X 可能的取值为0,1,2,3.[4分]4711(0)35C P X ===;133447C C 12(1)35C P X ===; 223447C C 18(2)35C P X ===;3447C 4(3)35C P X ===.[8分]所以,X 的分布列为:[10分](Ⅲ)若A ,B 两个型号被测试手机的待机时间的平均值相等,当B 型号被测试手机的待机时间的方差最小时,124a =,125b =.[13分]18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是(0,)+∞,[1分] 导函数为1()cos(1)f x a x x'=-⋅-.[2分] 因为曲线()y f x =在1x =处的切线的斜率是1-,所以(1)1f '=-,即11a -=-,[3分]所以2a =.[4分](Ⅱ)因为()f x 在区间(0,1)上为增函数,所以对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥.[6分] 因为(0,1)x ∈时,cos(1)0x ->, 所以11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥.[8分] 令()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-.[10分] 因为(0,1)x ∈时,sin (1)0x -<,所以(0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增,所以()(1)1g x g <=.[12分]所以1a ≤.即a 的取值范围是(,1]-∞.[13分]19.(本小题满分14分)解:(Ⅰ)将1x =代入22142x y +=,解得2y =±,所以||AB =[2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3,[4分]所以△MAB面积的最大值是2.[5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而2224t n +=.[6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±.[7分] 直线MA 的方程为00()y n y n x t x t--=--,[8分] 令0y =,得000ty nx x y n -=-,从而000ty nx OE y n-=-.[9分] 直线MB 的方程为00()y n y n x t x t ++=--,[10分] 令0y =,得000ty nx x y n +=+,从而000ty nx OF y n+=+.[11分] 所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()2222002204242=n y n y y n ----[13分]22022044=y n y n -- =4.所以OE OF ⋅为定值.[14分]20.(本小题满分13分)解:(Ⅰ)3{(1,2,3)}A =,3{(1,2,3),(1,3,2),(2,1,3),(3,2,1)}B =.[3分] (Ⅱ)考虑集合n A 中的元素123(,,,,)n a a a a . 由已知,对任意整数,,1i j i j n <≤≤,都有i j a i a j --≤, 所以()()i j a i i a j j -+<-+,所以i j a a <.由,i j 的任意性可知,123(,,,,)n a a a a 是1,2,3,,n 的单调递增排列, 所以{(1,2,3,,)}n A n =.[5分]又因为当k a k =*(k ∈N ,1)k n ≤≤时,对任意整数,,1i j i j n <≤≤, 都有i j a i a j ++≤.所以(1,2,3,,)n n B ∈,所以n n A B ⊆.[7分]所以集合n n A B 的元素个数为1.[8分](Ⅲ)由(Ⅱ)知,0n b ≠.因为2{(1,2),(2,1)}B =,所以22b =.当3n ≥时,考虑n B 中的元素123(,,,,)n a a a a .(1)假设k a n =(1)k n <≤.由已知,1(1)k k a k a k ++++≤, 所以1(1)1k k a a k k n ++-+=-≥, 又因为11k a n +-≤,所以11k a n +=-. 依此类推,若k a n =,则11k a n +=-,22k a n +=-,…,n a k =.① 若1k =,则满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ② 若2k =,则2a n =,31a n =-,42a n =-,…,2n a =.所以11a =.此时满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个.③ 若2k n <<,只要1231(,,,)k a a a a -是1,2,3,,1k -的满足条件的一个排列,就可以相应得到1,2,3,,n 的一个满足条件的排列.此时,满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1k b -个.[10分] (2)假设n a n =,只需1231(,,,)n a a a a -是1,2,3,,1n -的满足条件的排列,此时满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1n b -个.综上23111n n b b b b -=+++++,3n ≥. 因为3221142b b b =++==,且当4n ≥时,23211(11)2n n n n b b b b b b ---=++++++=,[12分] 所以对任意*n ∈N ,3n ≥,都有12n n b b -=. 所以{}n b 成等比数列.[13分]。
北京市西城区2015 — 2016学年度第一学期期末试卷-含答案

北京市西城区2015 — 2016学年度第一学期期末试卷高三物理 2016.1试卷满分:100分 考试时间:120分钟第一卷(共48分)一、单项选择题(本题共12小题,每小题3分,共36分。
) 1.关于某个物体受到的力与运动的关系,下列说法正确的是A. 物体受到的合力为零,速度一定为零B. 物体受到的合力恒定,速度一定恒定C. 物体受到的合力越大,速度一定越大D. 物体受到的合力越大,加速度一定越大2.关于机械振动和机械波,下列说法正确的是A .有机械振动必有机械波B .声音在空气中传播时是横波C .在机械波的传播中质点并不随波迁移D .质点的振动方向与波的传播方向总在同一直线上3. 如图所示,汽车在一水平公路上转弯时,汽车的运动可视为匀速圆周运动的一部分。
下列关于汽车转弯时的说法正确的是 A .汽车处于平衡状态 B .汽车的向心力由重力提供 C .汽车的向心力由支持力提供 D .汽车的向心力由摩擦力提供4.在科学研究中,可以用风力仪直接测量风力的大小。
仪器中有一根轻质金属丝悬挂 着一个金属球,无风时金属球自由下垂,当受到沿水平方向吹来的风时,金属丝偏离竖直方向一个角度并保持恒定,如图所示。
关于风力大小F与小球质量m、偏角θ之间的关系,下列关系中正确的是A .F = mg tan θB .F=mgsin θ C .θcos mg F = D .θtan mg F =θF图乙t /s x /cm 0.4 0.8 1.2 1.6 12-125. 某同学站在体重计上,通过做下蹲、起立的动作来探究超重和失重现 象。
下列说法正确的是 A .下蹲过程中人始终处于超重状态 B .起立过程中人始终处于超重状态C .下蹲过程中人先处于超重状态后处于失重状态D .起立过程中人先处于超重状态后处于失重状态6. 如图甲所示,弹簧振子以O 点为平衡位置,在M 、N 两点之间做简谐运动。
振子的位 移x 随时间t 的变化图象如图乙所示。
北京市西城区2015—2016学年度第一学期期末试卷

北京市西城区2015— 2016学年度第一学期期末试卷九年级数学2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.二次函数()257y x=-+的最小值是().A.7-B.7C.5-D.5【答案】B【解析】当5x=时y取得最小值,最小值为7.2.如图,在Rt ABC△中,90C∠=︒,3AC=,4BC=,则cos A的值为().A.35B.53C.45D.34【答案】A【解析】在Rt ABC△中,由勾股定理得:5AB=.∴3 cos5ACAAB==.3.如图,⊙C与AOB∠的两边分别相切,其中OA边与⊙C相切于点P.若90AOB∠=︒,6OP=,则OC的长为().A.12B.C .D . 【答案】C【解析】如图,连接C 点与切点,则QCPO 为正方形,∴CO ==4.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是( ).A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+-【答案】C【解析】22265(3)95(3)4y x x x x =-+=--+=--.5.若一个扇形的半径是18cm ,且它的弧长是12πcm ,则此扇形的圆心角等于( ). A .30︒ B .60︒ C .90︒ D .120︒ 【答案】D 【解析】∵π180n rl =, ∴18018012π120ππ18l n r ⨯===︒⨯.6.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,2)-,AB x ⊥轴于点B .以原点O 为位似中心,将OAB △放大为原来的2倍,得到11OA B △,且点1A 在第二象限,则点1A 的坐标为( ).A .(2,4)-B .1(,1)2-C .(2,4)-D .(2,4) 【答案】A【解析】将OAB △放大为原来的2倍, 且点A 的坐标为(1,2)-, ∴1A 坐标为(2,4)-.7.如图,一艘海轮位于灯塔P 的南偏东37︒方向,距离灯塔40海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的正东方向上的B 处.这时,B 处与灯塔P 的距离BP 的长可以表示为( ).A .40海里B .40tan37︒海里C .40cos37︒海里D .40sin37︒海里【答案】D【解析】由图像知cos 40cos5340sin 37BP AP APB =⋅∠=⋅︒=⋅︒.8.如图,A ,B ,C 三点在已知的圆上,在ABC △中,70ABC ∠=︒,30ACB ∠=︒,D 是 BAC的中点,连接DB ,DC ,则DBC ∠的度数为( ).A .30︒B .45︒C .50︒D .70︒ 【答案】C【解析】由题知18080BAC ABC ACB ∠=︒-∠-∠=︒, ∴80BDC BAC ∠=∠=︒, ∵D 是BAC 的中点,∴BD CD =, ∴180502BDCDBC ︒-∠∠==︒.9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( ).A .60(30020)y x =+B .(60)(30020)y x x =-+C .300(6020)y x =-D .(60)(30020)y x x =-- 【答案】B【解析】由题知y 与x 的关系式为(60)(30020)y x x =-+.10.二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为( ).A .8B .10-C .42-D .24-【答案】D【解析】函数对称轴为直线22bx a=-=. 又当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,∴222(2)8(2)026860m m ⎧⨯--⨯-+⎪⎨⨯-⨯+⎪⎩≤≥, 解得24m =-.二、填空题(本题共18分,每小题3分) 11.若34a b =,则a bb +的值为 . 【答案】74【解析】34a b =,∴34a b =,∴3(1)744ba b b b ++==.12.点1(3,)A y -,2(2,)B y 在抛物线25y x x =-上,则1y 2y .(填“>”,“<”或“=”) 【答案】>【解析】函数对称轴为直线5522x -=-=,且函数开口向上, 3-离对称轴更远,∴12y y >.13.ABC △的三边长分别为5,12,13,与它相似的DEF △的最小边长为15,则DEF △的周长为 . 【答案】90【解析】ABC △与DEF △相似,且DEF △的最小边长为15, ∴相似比为51153=, ∵ABC △的周长为5121330++=, ∴DEF △的周长为33090⨯=.14.如图,线段AB 和射线AC 交于点A ,30A ∠=︒,20AB =.点D 在射线AC 上,且ADB∠是钝角,写出一个满足条件的AD 的长度值:AD = .【答案】10【解析】如图,过点B 作BE AC ⊥交AC 于点E ,∴cos30AE AB =⋅︒=∵点D 在射线AC 上,且ADB ∠是钝角, ∴0AD AE <<. ∴AD 可以为10.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 【注释】1步5=尺. 译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA 是秋千的静止状态,A 是踏板,CD 是地面,点B 是推动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知1AC =尺,10CD EB ==尺,人的身高5BD =尺.设绳索长OA OB x ==尺,则可列方程为____________.【答案】222(4)10x x =-+【解析】∵5EC BD ==尺,1AC =尺,∴514EA EC AC =-=-=尺,(4)OE OA AE x =-=-尺, 在Rt OEB △中,(4)OE x =-尺,OB x =尺,10EB =尺, 根据勾股定理得:222(4)10x x =-+.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证90OAP OBP ∠=∠=︒,其依据是____________;由此可证明直线PA ,PB 都是⊙O 的切线,其依据是____________.【答案】直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线 【解析】直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:24cos30tan 60sin 45︒⋅︒-︒.18.如图,ABC △中,12AB =,15BC =,AD BC ⊥于点D ,30BAD ∠=︒.求tan C 的值.19.已知抛物线223y x x =-++与x 轴交于A ,B 两点,点A 在点B 的左侧.(1)求A ,B 两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积.20.如图,四边形ABCD 中,AD BC ∥,A BDC ∠=∠. (1)求证:ABD DCB ∽△△;(2)若12AB =,8AD =,15CD =,求DB 的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x 米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线1C :2124y x x k =-+与x 轴只有一个公共点. (1)求k 的值;(2)怎样平移抛物线1C 就可以得到抛物线2C :222(1)4y x k =+-?请写出具体的平移方法;(3)若点(1,)A t 和点(,)B m n 都在抛物线2C :222(1)4y x k =+-上,且n t <,直接写出m的取值范围.23.如图,AB 是⊙O 的一条弦,且AB =C ,E 分别在⊙xOy 上,且OC AB ⊥于点D ,30E ∠=︒,连接l .(1)求OA 的长;(2)若AF 是⊙P 的另一条弦,且点O 到AF 的距离为BAF ∠的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45︒,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58︒.请帮助他们计算出最高塔的高度1P 约为多少米.(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)25.如图,ABC △内接于⊙O ,AB 是⊙O 的直径.PC 是⊙O 的切线,C 为切点,PD AB⊥于点D ,交AC 于点E . (1)求证:PCE PEC ∠=∠; (2)若10AB =,32ED =,3,求PC 的长.26.阅读下面材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与双曲线2ky x=交于(1,3)A 和(3,1)B --两点. 观察图象可知:①当3x =-或1时,12y y =; ②当30x -<<或1x >时,12y y >,即通过观察函 数的图象,可以得到不等式kax b x+>的解集. 有这样一个问题:求不等式32440x x x +-->的解集.某同学根据学习以上知识的经验,对求不等式32440x x x +-->的解集进行了探究. 下面是他的探究过程,请将(2)、(3)、(4)补充完整: (1)将不等式按条件进行转化当0x =时,原不等式不成立;当0x >时,原不等式可以转化为2441x x x +->; 当0x <时,原不等式可以转化为2441x x x+-<; (2)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系 中分别画出这两个函数的图象. 双曲线44y x=如图2所示,请在此坐标系中 画出抛物线.....2341y x x =+-; (不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足34y y =的所有x 的值为 ; (4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式32440x x x +-->的解集为 .27.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =-++的图象经过点(1,0)A ,且当0x =和5x =时所对应的函数值相等.一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点B 在第一象限.(1)求二次函数212y x bx c =-++的表达式;(2)连接AB ,求AB 的长; (3)连接AC ,M 是线段AC 的中点,将点B 绕点M 旋转180︒得到点N ,连接AN ,CN ,判断四边形ABCN 的形状,并证明你的结论.28.在ABC △中,90ACB ∠=︒,4AC BC ==,M 为AB 的中点.D 是射线BC 上一个动点,连接AD ,将线段AD 绕点A 逆时针旋转90︒得到线段AE ,连接ED ,N 为ED 的中点,连接AN ,MN .(1)如图1,当2BD =时,AN = _______,NM 与AB 的位置关系是____________; (2)当48BD <<时,①依题意补全图2;②判断(1)中NM 与AB 的位置关系是否发生变化,并证明你的结论;(3)连接ME ,在点D 运动的过程中,当BD 的长为何值时,ME 的长最小?最小值是多少?请直接写出结果.29.在平面直角坐标系xOy 中,过⊙C 上一点P 作⊙C 的切线l .当入射光线照射在点P 处时,产生反射,且满足:反射光线与切线l 的夹角和入射光线与切线l 的夹角相等,点P 称为反射点.规定:光线不能“穿过”⊙C ,即当入射光线在⊙C 外时,只在圆外进行反射;当入射光线在⊙C 内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C 外反射的示意图如图1所示,其中12∠=∠.(1)自⊙C 内一点出发的入射光线经⊙C 第一次反射后的示意图如图2所示,1P 是第1个反射点.请在图2中作出光线经⊙C 第二次反射后的反射光线; (2)当⊙O 的半径为1时,如图3,①第一象限内的一条入射光线平行于x 轴,且自⊙O 的外部照射在其上点P 处,此光线经⊙O 反射后,反射光线与y 轴平行,则反射光线与切线l 的夹角为__________︒;②自点(1,0)A -出发的入射光线,在⊙O 内不断地反射.若第1个反射点1P 在第二象限,且第12个反射点12P 与点A 重合,则第1个反射点1P的坐标为______________;(3)如图4,点M 的坐标为(0,2),⊙M 的半径为1.第一象限内自点O 出发的入射光线经⊙M 反射后,反射光线与坐标轴无公共点,求反射点P 的纵坐标的取值范围.北京市西城区2015— 2016学年度第一学期期末试卷九年级数学参考答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式24= 162=- 112=.18.解:∵AD BC ⊥于点D , ∴90ADB ADC ∠=∠=︒.∵在Rt ABD △中,12AB =,30BAD ∠=︒, ∴162BD AB ==, cos 12cos30AD AB BAD =⋅∠=⋅︒=∵15BC =,∴ 1569CD BC BD ==-=-. ∴在Rt ADC △中,tan AD C CD ===19.解:(1)令0y =,则2230x x -++=.解得 11x =-,23x =. ∵点A 在点B 的左侧,∴(1,0)A -,(3,0)B .对称轴为直线1x =. (2)∵当1x =时,4y =,∴顶点C 的坐标为(1,4). ∵点C ,D 关于x 轴对称,∴点D 的坐标为(1,4)-. ∵4AB =,∴1=442162ACB DCB ACBD S S S +=⨯⨯⨯=四边形△△.20.(1)证明:∵AD BC ∥,∴ADB DBC ∠=∠. ∵A BDC ∠=∠, ∴ABD DCB ∽△△.(2)解:∵ABD DCB ∽△△,∴AB ADDC DB=. ∵12AB =,8AD =,15CD =, ∴12815DB =. ∴10DB =. 21.解:根据题意,得(213)(82)60x x --=.整理得211180x x -+=.解得12x =,29x =. ∵9x =不符合题意,舍去,∴2x =.答:人行通道的宽度是2米.22.解:(1)∵抛物线1C :2124y x x k =-+与x 轴有且只有一个公共点,∴方程2240x x k -+=有两个相等的实数根. ∴2(4)420k ∆=--⨯=. 解得 2k =.(2)∵抛物线1C :21242y x x =-+22(1)x =-,顶点坐标为(1,0),抛物线2C :222(1)8y x =+-的顶点坐标为(1,8)--,∴将抛物线1C 向左平移2个单位长度,再向下平移8个单位长度就可以得到抛物线2C .(3)31m -<<. 23.解:(1)∵OC AB ⊥于点D ,∴AD DB =,90ADO ∠=︒.∵AB =∴AD =∵2AOD E ∠=∠,30E ∠=︒, ∴60AOD ∠=︒.∵在Rt AOD △中,sin ADAOD OA∠=,∴4sin AD OA AOD ===∠.(2)75BAF ∠=︒或15︒.24.解:(1)∵在Rt ADB △中,90ADB ∠=︒,45B ∠=︒,∴9045BAD B ∠=︒-∠=︒. ∴BAD B ∠=∠. ∴AD DB =. 设AD x =,∵在Rt ADC △中,tan ADACD DC∠=,58ACD ∠=︒, ∴tan58xDC =︒.∵ DB DC CB AD =+=,90CB =,∴90tan58xx +=︒.将tan58 1.60︒≈代入方程, 解得240x ≈.答:最高塔的高度AD 约为240米.25.(1)证明:连接OC ,如图1.∵PC 是⊙O 的切线,C 为切点, ∴OC PC ⊥.∴1290PCO ∠=∠+∠=︒. ∵PD AB ⊥于点D , ∴90EDA ∠=︒.∴390A ∠+∠=︒. ∵OA OC =, ∴1A ∠=∠. ∴23∠=∠. ∵34∠=∠, ∴24∠=∠. 即PCE PEC ∠=∠.(2)解:作PF EC ⊥于点F ,如图2.∵AB 是⊙O 的直径, ∴90ACB ∠=︒.∵在Rt ABC △中,10AB =,3sin 5A =, ∴sin 6BC AB A =⋅=.∴8AC ==. ∵在Rt AED △中,32ED =, ∴5sin 2ED AE A ==. ∴112EC AC AE =-=. ∵24∠=∠, ∴PE PC =.∵PF EC ⊥于点F ,∴11124FC EC ==,90PFC ∠=︒.∴2590∠+∠=︒.∵21290A ∠+∠=∠+∠=︒. ∴5A ∠=∠. ∴3sin 55∠=. ∴在Rt PFC △中,55sin 512FC PC ==∠. 26.解:(2)抛物线如图所示;(3)x =4-,1-或1; (4)41x -<<-或1x >.27.解:(1)∵二次函数212y x bx c =-++,当0x =和5x =时所对应的函数值相等,∴二次函数212y x bx c =-++的图象的对称轴是直线52x =. ∵二次函数212y x bx c =-++的图象经过点(1,0)A ,∴10252b c b ⎧=-++⎪⎪⎨⎪=⎪⎩.解得 252c b =-⎧⎪⎨=⎪⎩.∴二次函数的表达式为215222y x x =-+-.(2)过点B 作BD x ⊥轴于点D ,如图1.∵一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,∴2153222x x x -+=-+-.解得 12x =,25x =. ∴交点坐标为(2,1),(5,2)-. ∵点B 在第一象限,∴点B 的坐标为(2,1). ∴点D 的坐标为(2,0).在Rt ABD △中,1AD =,1BD =,∴AB(3)结论:四边形ABCN 的形状是矩形.证明:设一次函数3y x =-+的图象与x 轴交于点E ,连接MB ,MN ,如图2.∵点B 绕点M 旋转180︒得到点N ,∴M 是线段BN 的中点.∴ MB MN =.∵M 是线段AC 的中点, ∴ MA MC =. ∴四边形ABCN 是平行四边形.∵一次函数3y x =-+的图象与x 轴交于点E , 当0y =时,3x =. ∴点E 的坐标为(3,0). ∴1 DE DB ==.∴在Rt BDE △中,45DBE DEB ∠=∠=︒. 同理45DAB DBA ∠=∠=︒. ∴90ABE DBA DBE ∠=∠+∠=︒. ∴四边形ABCN 是矩形.28.解:(1(2)①补全图形如图所示;②结论:(1)中NM 与AB 的位置关系不变. 证明:∵90ACB ∠=︒,AC BC =, ∴45CAB B ∠=∠=︒. ∴ 45CAN NAM ∠+∠=︒.∵AD 绕点A 逆时针旋转90︒得到线段AE , ∴AD AE =,90DAE ∠=︒. ∵N 为ED 的中点,∴1452DAN DAE ∠=∠=︒,AN DE ⊥. ∴ 45CAN DAC ∠+∠=︒,90AND ∠=︒. ∴ NAM DAC ∠=∠.在Rt AND △中,cos cos 45AN DAN AD =∠=︒=在Rt ACB △中,cos cos 45AC CAB AB =∠=︒=. ∵M 为AB 的中点,∴2AB AM =.∴2AC AC AB AM ==.∴AM AC =. ∴AN AD =AMAC. ∴ANM ADC ∽△△.∴AMN ACD ∠=∠.∵点D 在线段BC 的延长线上, ∴18090ACD ACB ∠=︒-∠=︒. ∴90AMN ∠=︒. ∴NM AB ⊥.(3)当BD 的长为6时,ME 的长的最小值为2.29.解:(1)所得图形,如图1所示.(2)①45︒;②1(,)2或1(2-. (3)①如图5,直线OQ 与⊙M 相切于点Q ,点Q 在第一象限,连接MQ ,过点Q 作QH x ⊥轴于点H . ∵直线OQ 与⊙M 相切于点Q , ∴MQ OQ ⊥.∴90MQO ∠=︒. ∵2MO =,1MQ =, ∴在Rt MQO △中,1sin 2MQ MOQ MO ∠==. ∴30MOQ ∠=︒.∴OQ OM cos MOQ =⋅∠= ∵QH x ⊥轴, ∴90QHO ∠=︒.∵9060QOH MOQ ∠=︒-∠=︒,∴在Rt QOH △中,3sin 2QH OQ QOH =⋅∠=. …………………………6分 ②如图6,当反射光线PN 与坐标轴平行时,连接MP 并延长交x 轴于点D ,过点P 作PE OD ⊥于点E ,过点O 作OF PD ⊥于点F .∵直线l 是⊙M 的切线, ∴MD l ⊥.∴12 90OPD NPD ∠+∠=∠+∠=︒. ∵12∠=∠,∴OPD NPD ∠=∠. ∵PN x ∥轴,∴NPD PDO ∠=∠.∴OPD PDO ∠=∠. ∴OP OD =. ∵OF PD ⊥,∴ 90MFO ∠=︒,PF FD =.∵cos OMF ∠=MF MOMO MD=, 设PF FD x ==,而2MO =,1M P =, ∴12212x x+=+.解得x =. ∵0x >,∴x =∵PE OD ⊥,∴ 90PED MOD ∠=︒=∠. ∴PE MO ∥.∴ EPD OMF ∠=∠.∴cos cos EPD OMF ∠=∠. ∴PE MFPD MO=. ∴MFPE PD MO=⋅ 122xx +=⋅ (1)x x =+=可知,当反射点P 从②中的位置开始,在⊙M 上沿逆时针方向运动,到与①中的点Q 重合之前,都满足反射光线与坐标轴无公共点,所以反射点P 的纵32P y <.。