一元二次方程和抛物线教学内容

合集下载

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)
2.通过分析二次函数图像,提升直观想象和数据分析的能力。
3.掌握一元二次方程的多种解法,培养问题解决和数学运算的能力。
4.将二次函数和一元二次方程应用于实际问题,增强数学建模和数学应用的意识。
5.在小组讨论和问题解决过程中,培养合作交流、批判性思维和创新意识。
三、教学难点与重点
1.教学重点
-二次函数与一元二次方程的关系:理解二次函数图像与一元二次方程解的关系,掌握二次函数标准形式及其图像特征。
-举例:求解x²-5x+6=0,展示不同解法并比较各自优劣。
-实际问题中的应用:学会将实际问题抽象为二次函数与一元二次方程模型,解决最值、交点等问题。
-举例:抛物线与直线的交点问题在实际情境中的应用,如物体抛掷的最高点问题。
2.教学难点
-图像与方程关系的理解:学生往往难以将二次函数图像与一元二次方程的解直观地联系起来。
在实践活动中,学生们的分组讨论进行得相当积极。他们能够将所学的理论知识应用到解决实际问题中去,这让我感到很欣慰。然而,我也观察到,在将实际问题抽象为数学模型的过程中,一些学生仍然感到困难。这告诉我,需要在后续的教学中加强对数学建模能力的培养。
在小组讨论环节,我尝试扮演了一个引导者和启发者的角色,鼓励学生们提出自己的观点和问题。我注意到,当他们被鼓励去探索和发现时,他们的思考变得更加深入。不过,我也发现时间管理上存在一些问题,有时候讨论可能会拖沓,影响到了课堂的整体进度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

抛物线与一元二次方程

抛物线与一元二次方程

抛物线与一元二次方程【教学目标】:1.复习巩固用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c =0的解。

2.让学生体验函数y =x 2和y =bx +c 的交点的横坐标是方程x 2=bx +c 的解的探索过程,掌握用函数y =x 2和y =bx +c 图象交点的方法求方程ax 2=bx +c 的解。

3.提高学生综合解题能力,渗透数形结合思想。

【重点难点】:重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。

难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。

【教学过程】:一、复习巩固1.如何运用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c 的解? 2.完成以下两道题:(1)画出函数y =x 2+x -1的图象,求方程x 2+x -1=0的解。

(精确到0.1) (2)画出函数y =2x 2-3x -2的图象,求方程2x 2-3x -2=0的解。

教学要点1.学生练习的同时,教师巡视指导, 2.教师根据学生情况进行讲评。

解:(1)列表:x … -3 -2 -1 -120 1 2 … y … 5 1 -1 -54-1 1 5 …画出的图象如图(1)所示:函数y =x 2+x -1的图象与x 轴交点的横坐标分别是x 1=-1.7和x 2=0.7,所以一元二次方程x 2+x -1=0的解是x 1=-1.7和x 2=0.7。

解:(2)列表;x … -32 -12 12 34 1 2 3 … y…7-3-258-37…画出的图象如图(2)所示。

函数y =2x 2-3x -2的图象与x 轴交点的横坐标分别是x 1=-12和x 2=2,所以一元二次方程的解是x 1=-12和x 2=2。

二、探索问题问题1:(P23问题4)育才中学初三(3)班学生在上节课的作业中出现了争论:求方程x 2=12x 十3的解时,几乎所有学生都是将方程化为x 2-12x -3=0,画出函数y =x 2-12x -3的图象,观察它与x 轴的交点,得出方程的解。

初中数学《二次函数与一元二次方程》教案

初中数学《二次函数与一元二次方程》教案

教学设计如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x 轴交点情况判断下列函数的图象与x 只有一个交点的是( )A .y =x 2+2x -3B .y =x 2+2x +3C .y =x 2-2x +3D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点,故选D.【类型二】利用二次函数图象与x 轴交点坐标确定抛物线的对称轴如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x 轴交点情况确定字母取值范围若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-2解析:若m ≠0,二次函数与x 轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m =0,原函数是一次函数,图象与x 轴也有一个交点.由(m +2)2-4m (12m +1)=0,解得m =2或-2,当m =0时原函数是一次函数,图象与x 轴有一个交点,所以当m =0,2或-2时,图象与x 轴只有一个交点.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.。

九年级数学上人教版《一元二次方程的概念》教案

九年级数学上人教版《一元二次方程的概念》教案

《一元二次方程的概念》教案一、教学目标1.理解一元二次方程的概念,能根据定义识别一元二次方程,并了解一元二次方程的有关概念。

2.通过观察、比较、分析等方法,自主发现一元二次方程的特点,培养学生的观察能力、抽象概括能力和归纳能力。

3.初步感受方程的思想方法,培养学生对数学的兴趣和良好的学习习惯。

二、教学重点与难点重点:一元二次方程的概念。

难点:识别一元二次方程,并理解一元二次方程的一般形式。

三、教具准备投影仪、小黑板。

四、教学过程1.复习导入首先引导学生回顾“元”和“次”的含义,并请学生举例说明一元一次方程和二元一次方程的概念。

接着让学生思考:什么样的方程是一元二次方程?请学生尝试给出定义,并引导学生进行讨论和修正,最终得出结论。

然后教师进行总结和强调,让学生明确一元二次方程的概念和一般形式。

2.探索新知教师出示一些方程,让学生判断是否是一元二次方程,并说明理由。

通过这些例题,引导学生深入理解一元二次方程的概念,并掌握识别一元二次方程的方法。

同时,通过比较一元二次方程与一元一次方程、二元一次方程的区别和联系,培养学生的分析能力和归纳能力。

3.巩固练习教师出示一些练习题,让学生自主完成并进行检查和纠正。

通过这些练习题,让学生加深对一元二次方程的认识和理解,并巩固所学知识。

同时,教师可适当出示一些拓展题目,引导学生进一步思考和探索一元二次方程的应用和拓展。

4.课堂小结教师引导学生回顾本节课所学内容,并总结一元二次方程的概念和一般形式。

同时强调识别一元二次方程的方法和注意事项,以及解题时需要注意的问题。

最后教师可适当进行情感教育和价值观的培养,引导学生感受数学的思想方法和实际应用价值,培养学生对数学的兴趣和良好的学习习惯。

5.布置作业教师布置适量的练习题,让学生巩固所学知识并拓展思维。

同时提醒学生注意解题规范和解题策略的选择,培养学生的解题能力和数学素养。

一元二次方程的解的意义教案

一元二次方程的解的意义教案

一元二次方程的解的意义教案一、教学目标:1、了解一元二次方程的定义和特点;2、掌握一元二次方程的解的求法;3、理解一元二次方程的解的意义。

二、教学重点:1、一元二次方程的定义和特点;2、一元二次方程解的求法;3、一元二次方程解的意义。

三、教学难点:一元二次方程解的意义。

四、教学内容:1、一元二次方程的定义和特点什么是一元二次方程?一元二次方程是指一个由变量 x 的平方、x 和常数项组成的二次多项式的形式,通常写作ax² + bx + c = 0。

而一元二次方程的特点是:一元二次方程是一次方程的一般形式,其次数为 2,而其中只有一个未知数和常数项。

2、一元二次方程解的求法解一元二次方程的方法有三种:一是配方法;二是因式分解;三是公式法。

(1) 配方法:对于一个一元二次方程ax² + bx + c = 0,我们可以通过“补全平方”的方式来化简方程。

以ax² + bx + c = 0 为例:将方程两边同时减去常数项 c,得:ax² + bx = -c;接着,将方程两边除以系数 a,得:x² + (b/a)x = -c/a;我们通过加上一个半平方数,使得方程左边的部分可以写成:(x + b/2a)²;将方程化简得:(x + b/2a)² = b²/4a² - c/a。

注意:当b²/4a² - c/a < 0 时,方程无实数根,此时解为“无解”;当b²/4a² - c/a = 0 时,方程有唯一实数根,此时解为“一解”;当b²/4a² - c/a > 0 时,方程有两个不相等的实数根,此时解为“二解”。

(2) 因式分解:对于一个一元二次方程ax² + bx + c = 0,我们可以通过因式分解的方式来求出方程的解。

以ax² + bx + c = 0 为例:我们要通过求解出一个二次多项式的两个因式,来分解方程的左边,使之变为两个因式之积的形式;接着,将两个因式分别为零,得到方程的两个实数根。

初中数学《一元二次方程》教育教学课件

初中数学《一元二次方程》教育教学课件
【含义】
一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的 值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的 根(只含有一个未知数的方程的解也叫做这个方程的根)。
【特点】
由代数基本定理,一元二次方程有且仅有两个根(重根即为两个相等的根), 根的情况由判别式 △=b2-4ac 决定。
(x-2)(x+2)=0
即 x+2=0或x-2=0 ∴ x1=-2,x2= 2
方程解法 之 基本方法 • 因式分解法
十字相乘法
十字相乘法是因式分解法解 一元二次方程中一个重要的部分。 一元二次方程左边为二次三项式, 形如x²+(p+q)x+pq=0,可化为 (x+p)(x+q)=0,从而得出:
x1=-p;x2=-q。
【银行问题】
3、王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本 和利息 取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存 款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本 利息共63元, 求第一次存款时的年利率. 解:设第一次存款时的年利率为x,
方程解法 之 基本方法 • 因式分解法
【例题】
1.解方程 x²+2x+1=0 解:利用完全平方公式 因式分解得:
(x+1)²=0 ∴ x=-1
2.解方程 x(x+1)-2(x+1)=0 解:利用提公因式法解得:
(x+1)(x-2)=0 即 x-2=0 或 x+1=0
∴ x1=2,x2=-1
3.解方程 x²-4=0 解:利用平方差公式 因式分解得:
方程解法 之 基本方法 • 公式法

《抛物线及其标准方程》教案

《抛物线及其标准方程》教案

《抛物线及其标准方程》教案《抛物线及其标准方程》教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编整理的《抛物线及其标准方程》教案,欢迎大家分享。

《抛物线及其标准方程》教案篇1一、目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

并进一步感受坐标法及数形结合的思想二、重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线。

例如:(1),(2)的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。

到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题2.4.1抛物线及其标准方程)2.抛物线的定义信息技术应用(课堂中展示画图过程)先看一个实验:如图:点F是定点,是不经过点F的定直线,H是上任意一点,过点H作,线段FH的垂直平分线交MH于点M。

拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)可以发现,点M随着H运动的过程中,始终有MH=MF,即点M 与定点F和定直线的距离相等。

(也可以用几何画板度量MH,MF的值)(定义引入):我们把平面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线。

人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)

人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)
(2)若该抛物线的对称轴为直线x=5/2. ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程

解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线

= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )

抛物线教案

抛物线教案

教案抛物线教学设计与实施一、教学目标1.让学生理解抛物线的定义、标准方程和基本性质,能够画出简单的抛物线图形。

2.培养学生运用数学语言表达、分析和解决实际问题的能力。

3.培养学生的空间想象能力和抽象思维能力。

二、教学内容1.抛物线的定义和标准方程2.抛物线的焦点、准线和对称轴3.抛物线的图形和性质4.抛物线在实际问题中的应用三、教学重点与难点1.教学重点:抛物线的定义、标准方程和基本性质。

2.教学难点:抛物线的图形理解和应用。

四、教学过程1.导入新课:通过生活中的实例,如抛物线运动、抛物面天线等,引导学生了解抛物线在实际中的应用,激发学生的学习兴趣。

2.探究新知:(1)抛物线的定义:以一个点为焦点,到这个点的距离等于到一条直线的距离的点的轨迹。

(2)抛物线的标准方程:y^2=4ax(开口向右)、x^2=4ay(开口向上)。

(3)抛物线的焦点、准线和对称轴:焦点为(a,0),准线为x=-a,对称轴为y轴。

(4)抛物线的图形和性质:图形为U形或倒U形,性质包括对称性、顶点、焦点、准线等。

3.实践应用:(1)画出给定焦点的抛物线。

(2)已知抛物线上的点,求抛物线的标准方程。

(3)利用抛物线的性质解决实际问题,如求抛物线与直线的交点、抛物线上的切线等。

4.总结反馈:通过课堂小结,让学生回顾本节课所学内容,巩固知识点。

五、作业布置1.课后习题:完成教材中抛物线相关习题。

2.拓展练习:研究抛物线在实际问题中的应用,如抛物线运动、抛物面天线等。

六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

同时,关注学生的学习兴趣,注重培养学生的数学思维能力和实际应用能力。

在教学过程中,注重启发式教学,引导学生主动探究,培养学生的自主学习能力。

同时,注重师生互动,鼓励学生提问,激发学生的思维活力。

在教学评价方面,采用多元化评价方式,关注学生的全面发展。

需要重点关注的细节是“实践应用”部分。

九年级数学上册《一元二次方程求根公式及其应用》教案、教学设计

九年级数学上册《一元二次方程求根公式及其应用》教案、教学设计
(二)过程与方法
1.通过对一元二次方程的引入,使学生掌握从实际问题中抽象出一元二次方程的一般方法。
2.通过自主探究、小组合作等方式,引导学生发现一元二次方程求根公式的推导过程,培养学生的逻辑思维能力和团队协作能力。
3.利用求根公式解决实际问题时,引导学生分析问题、建立数学模型,提高学生解决实际问题的能力。
ቤተ መጻሕፍቲ ባይዱ三、教学重难点和教学设想
(一)教学重难点
1.重点:一元二次方程求根公式的推导及其应用。
2.难点:理解求根公式的推导过程,以及如何运用求根公式解决实际问题。
(二)教学设想
1.引入新课:
-通过生活实例,如抛物线运动、面积计算等,引出一元二次方程的实际背景,激发学生的学习兴趣。
-对比一元一次方程,引导学生发现一元二次方程的特点,为新课的学习做好铺垫。
四、教学内容与过程
(一)导入新课,500字
1.教学活动:利用多媒体展示一个实际问题,如“一个学生从地面上抛出一个球,球的最高点离地面2米,问学生抛球的高度和初速度分别是多少?”
2.提出问题:引导学生思考如何解决这个问题,从而引出一元二次方程的求解。
3.引入新课:通过对比一元一次方程,强调一元二次方程的特点,即未知数的最高次数为2,且方程的根可能有0个、1个或2个。
1.必做题:
-请同学们完成课本第chapter页的练习题,包括直接求解一元二次方程和运用求根公式解决实际问题。
-从练习中挑选两道具有代表性的题目,要求同学们写出完整的解题过程,包括解题思路、步骤和最终答案。
2.选做题:
-针对课堂上的抛物线运动实例,请同学们设计一个类似的实际问题,并运用一元二次方程求根公式进行求解。
1.学生对一元二次方程的概念理解可能不够深入,需要通过实例引入,帮助学生建立直观的认识。

初中数学一元二次方程教案(5篇)

初中数学一元二次方程教案(5篇)

初中数学一元二次方程教案(5篇)初中数学一元二次方程教案(精选5篇)作为一名优秀的教育工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。

下面是小编为大家整理的初中数学一元二次方程教案,如果大家喜欢可以分享给身边的朋友。

初中数学一元二次方程教案篇1学习目标:1、使学生会用列一元二次方程的方法解决有关增长率的应用题;2、进一步培养学生分析问题、解决问题的能力。

学习重点:会列一元二次方程解关于增长率问题的应用题。

学习难点:如何分析题意,找出等量关系,列方程。

学习过程:一、复习提问:列一元二次方程解应用题的一般步骤是什么二、探索新知1.情境导入问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.2023年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2023年村长完成了36.3•亩坡耕地还林还草任务,求①增长率x是多少②该村有50户人家,每户均地村长2023•年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,•则国家将对该村投入补助粮食多少万斤2.合作探究、师生互动教师引导学生分析关于环保的情境导入问题,•这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,•即2023年实际完成的亩数是30(1+x),第二次增长后,即2023年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.教师引导学生运用方程解决问题:①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.②全村坡耕地还林还草为50×36.3=1 815(亩),•国家将补助粮食1815 ×500=907 500(斤)=90.75(万斤).三、例题学习说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

九年级数学上册《 二次函数与一元二次方程》教案

九年级数学上册《 二次函数与一元二次方程》教案

九年级数学上册《二次函数与一元二次方程》教案经典题型教学目标知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.教学重点和难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程设计(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t —5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t -5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s 时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x +9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2++的图像与x轴相交,ax bx c那么交点的横坐标就是一元二次方程2++=0的根.ax bx c(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计二次函数与一元二次方程抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系例题。

数学九上一元二次方程

数学九上一元二次方程

数学九上一元二次方程一元二次方程是数学九上的重要内容之一,它在数学中具有广泛的应用。

本文将围绕标题展开,详细介绍一元二次方程的定义、性质、解法以及实际应用。

一、一元二次方程的定义一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知常数,且a≠0。

其中,x为未知数,²表示x的平方。

二、一元二次方程的性质1. 一元二次方程的次数为2,即方程中最高次项的指数为2。

2. 一元二次方程的解可以是实数或复数。

3. 一元二次方程的图像是抛物线,开口方向由a的正负决定。

4. 一元二次方程的解的个数与判别式Δ=b²-4ac的正负有关。

三、一元二次方程的解法1. 因式分解法:当一元二次方程可以因式分解时,可以通过因式分解的方法求解。

例如,对于方程x²-5x+6=0,可以因式分解为(x-2)(x-3)=0,从而得到x=2或x=3。

2. 公式法:一元二次方程的解可以通过求根公式得到。

求根公式为x=(-b±√Δ)/(2a),其中Δ=b²-4ac为判别式。

根据判别式的正负,可以得到方程的解的情况。

a) 当Δ>0时,方程有两个不相等的实数解。

b) 当Δ=0时,方程有两个相等的实数解。

c) 当Δ<0时,方程没有实数解,但可以有复数解。

四、一元二次方程的实际应用一元二次方程在实际生活中有广泛的应用,以下列举几个常见的应用场景:1. 物体自由落体运动:当物体自由落体时,其高度与时间之间的关系可以用一元二次方程来表示。

例如,一个物体从高度h0自由落下,经过t秒后的高度h可以用方程h=h0-1/2gt²来表示,其中g为重力加速度。

2. 抛体运动:抛体运动是指物体在一定初速度和抛射角度下的运动轨迹。

抛体运动的轨迹可以用一元二次方程来表示。

例如,一个物体以初速度v0和抛射角度θ抛出,其水平方向的位移x和垂直方向的位移y可以分别用方程x=v0cosθt和y=v0sinθt-1/2gt²来表示。

解一元二次方程抛物线的最好方法

解一元二次方程抛物线的最好方法

解一元二次方程是数学中非常基础的问题,但是很多学生在学习中可能会遇到困难。

下面我们就来详细讨论一下解一元二次方程抛物线的最好方法。

一、理解一元二次方程的基本概念1.1 了解一元二次方程的定义一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知的实数,且a不等于0,x为未知数。

1.2 熟悉一元二次方程的性质一元二次方程对应的抛物线可以分为开口向上和开口向下两种情况,这与方程中a的正负有关。

在解题过程中,需要对抛物线的性质有清晰的认识。

二、掌握一元二次方程解题的一般步骤2.1 根据一元二次方程的系数求出判别式判别式Δ = b^2 - 4ac,根据Δ的正负和大小可以判断方程的根的情况。

2.2 计算一元二次方程的根当Δ大于0时,方程有两个不相等的实根;Δ等于0时,方程有两个相等的实根;Δ小于0时,方程无实根。

2.3 根据抛物线性质验证解的合理性通过计算根的值并代入原方程验证,确保解的合理性。

三、应用一元二次方程解题的常见技巧3.1 完全平方公式当一元二次方程形式为ax^2 + bx + c = a(x + m)^2 + n时,可以利用完全平方公式转化方程为一元二次方程的标准形式解题。

3.2 合并同类项当方程中存在多个含有x的项时,可以利用合并同类项简化计算过程,更清晰地解题。

四、举例说明一元二次方程解题的过程4.1 例题1:解方程x^2 + 3x + 2 = 0根据一元二次方程的系数,求出判别式Δ = 3^2 - 4*1*2 = 1。

因为Δ大于0,所以方程有两个不相等的实根。

通过求根公式计算得出x1 = -1,x2 = -2,再把这两个根代入原方程验证,确定解的合理性。

4.2 例题2:解方程2x^2 - 4x + 2 = 0利用合并同类项化简方程为x^2 - 2x + 1 = 0,再根据完全平方公式得出(x - 1)^2 = 0,进而求得x = 1,因此方程有一个重根x = 1。

“一元二次方程”教学分析与探讨

“一元二次方程”教学分析与探讨

“一元二次方程”教学分析与探讨一元二次方程是初中数学中的一个重要知识点,它的掌握程度对于学生后续数学学习和实际应用中的问题解决都有着至关重要的影响。

因此,如何科学有效地进行一元二次方程的教学,是数学教师在教学实践中需要重点探讨和研究的问题。

一、教学目标1、了解一元二次方程的概念和基本形式;2、学会解一元二次方程,熟练掌握各种解法;3、掌握应用一元二次方程解决实际问题的方法和技巧。

二、教学内容1、一元二次方程的概念:一元二次方程是指只含有一个未知数、它的最高次项是2次幂次的方程。

2、一元二次方程的基本形式:ax²+bx+c=0(其中a≠0,x是未知数,a、b、c为已知数)3、一元二次方程的解法(1)配方法通过变形将一元二次方程化简成一个完全平方式相减的形式,再通过平方根求解。

(2)因式分解法将一元二次方程因式分解成两个一次式的积,再调用一次方程的解法求解。

(3)公式法利用求解一元二次方程的公式进行求解。

(4)图像法通过图像的极值、零点、对称等性质求解方程。

三、教学过程1、引入思想:介绍一元二次方程的基本概念和形式,阐述其重要性与应用。

2、知识讲解:(1)详细讲解一元二次方程及其基本形式和解法;(2)举例分析各种解法的应用场景和方法。

3、实例练习:采用同步练习和分组竞赛等方式,让学生通过一些简单的练习,熟悉各种解法的操作流程和注意事项。

4、拓展练习:采用较难的练习题来孔细的提示学生,诱导其探究问题,寻找规律,并激发创新思维,强化解题能力。

5、贴近实际:引导学生运用所学知识,解决实际生活中遇到的问题,比如抛物线运动、极值、投影距离等。

四、教学方法1、启发式教学法:教师在介绍某一解法原理的同时,提供几个与学生常见的应用范例,鼓励学生在分析应用中,运用已学知识,使学生自己发现解题规律和方法。

2、合作探究法:在新知识的学习,训练和评价各个教学环节以灵活运用小组讨论、研究和完成教育实践活动等方式,来提高学生的思维,促进学生创新能力的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一元二次方程2
0ax bx c ++=(a ≠0) (1)当2
4b ac =-V >0时,x 有两个不相等的实数根,即
x= 2b a -± (2)当24b ac =-V =0时,x 只有一个实数根,即x= 2b a
-
(3)当24b ac =-V <0时,x 没有实数根。

推导过程如下:
2222222222212120
4440
4440
(2)40
(2)422,ax bx c a x abx ac a x abx b b ac ax b b ac ax b b ac
ax b b x a
b c x x x x a a
++=++=++-+=+-+=+=-+=-=+=-=
备注:推导过程只需了解一下,考试时可直接用,以上三点多用于判断该方程有几个根,一般考试时会告诉你abc 中的一个或两个,再告诉你有几个根,然后根据性质求出未知的那一个,更多地用于在抛物线中判断与x 轴的位置关系,详见第2大点。

2、20y ax bx c =++=(a ≠0)在直角坐标系中抛物线的一般表达方式,是由2y ax =(a ≠0)通过平移得到的,2
y ax =(a ≠0)是顶点为坐标系原点的抛物线。

a ≠0是因为当0
a =时,y 就不是抛物线了,而是一条直线。

20y ax bx c =++=(a ≠0)有以下几个特点是考试中常考到的,复习时需结合图形理解:
(1)抛物线顶点坐标:24(,)24b ac b a a -- ,因此,对称轴2b x a
=- ①0a >时,抛物线开口向上,y 有最小值,无最大值,y 先是随着x 的增大逐渐减小,当x 增大至2b a
-时,y 取最小值244ac b a -,而后又随着x 的增大y 逐渐增大。

(以对称轴为界先减后增)
②0a <时,抛物线开口向下,y 有最大值,无最小值,y 先是随着x 的增大逐渐增大,当x
增大至2b a
-时,y 取最大值244ac b a -,而后又随着x 的增大y 逐渐减小。

(以对称轴为界先增后减)
(2)开口大小根据a 的绝对值来判断,a 越大,开口越大,a 越小,开口也越小。

(3)抛物线与y 轴的交点为(0,c )
(4)考试时还经常用到的是2
4b ac =-V 来判断抛物线与x 轴的位置关系:
①240b ac ->时,抛物线与x 轴有两个交点,且两交点关于对称轴对称,分别为
1x 和2x ,要分清楚哪个在对称轴左边,哪个在对称轴右边。

②240b ac -=时,抛物线与x 轴有且只有一个交点,该交点就是抛物线的顶点,交点坐标为(,0)2b a -
,该点毫无疑问在对称轴上。

③240b ac -<时,抛物线与x 轴没有交点。

(5)平移问题,经常考,掌握诀窍后不难,但一不小心很容易错。

假设原抛物线方程为20y ax bx c =++=(a ≠0),有以下两种平移方法:
① 横向平移:
向左平移k 时,用()x k +代替原来的x ,即2()()a x k b x k c ++++y=,(a ≠0), 向右平移k 时,用()x k -代替原来的x ,即2()()a x k b x k c -+-+y=,(a ≠0),
备注:如原抛物线方程以配方形式出现时,如:23(5)4y x =-+形式出现时,就更为方便,向左平移2就是[]23(2)54y x =+-+,同理,向右平移就是[]23(2)54y x =--+ ② 纵向平移:
向上平移m 时,在式子末尾直接加上m 即可,即:2ax bx c m +++y=,(a ≠0) 向下平移m 时,在式子末尾直接减去m 即可,即:2ax bx c m ++-y=,(a ≠0)
说明:以上所总结出来的规律在复习时要结合图形进行理解,更直观,便于消化,要熟练有关公式的推导过程,不可死记硬背,得理解才能活学活用,万一在考试时忘记某个公式,可现场进行推导。

相关文档
最新文档