人教版六年级数学下册全册完整课件
合集下载
人教版小学六年级数学下册全册
负数
-7 -5.2
-
1 3
0既不是正数,也不是负数。
三、回归生活,拓展应用
-150
+126
看了这些信息,你有什 么感受?
白天的平均温度和夜间的平均温度相差
2℃76。
三、回归生活,拓展应用
+8844.43
-155
仔细读题,你获得了什么信息? 你知道你所在城市的海
有什么不明白的?
拔高度吗?说说它的具
体含义。
三、回归生活,拓展应用
+2时
-8时 北京时间用什么表示?
以北京时间为标准,孟加拉国首都 达卡的时间记为-2时,你知道它此 时的时间吗?
三、回归生活,拓展应用
某食品厂生产的120 g袋装方便面外包装印有“(120±5)g”的字样。 小明购买一袋这样的方便面,称一下发现117 g,请问厂家有没有欺骗行 为?为什么?
二、结合情境,理解意义
下面是中央气象台2012年1月21日下午发布的六个城市的气温预报 (2012年1月21日20时—2012年1月22日20时)。
3℃和-3℃表示的意 思一样吗?
仔细观察,你有什么发现?
二、结合情境,理解意义
在温度计上分别表示出3℃和-3℃。
请在温度计上表 示-18℃。
-3℃和-18℃哪 个温度低?
你对负数有什么新 的认识?
四、了解历史,课堂总结
这节课你有什么收获?
第一单元:负数
直线上的负数
绿色圃中小学教育网 绿色圃中小学教育网http://wwΒιβλιοθήκη
一、复习旧知,引入新课
填一填:
①一辆公共汽车经过某站台时有12人上车, 记作( +12 )人;7人下车,记作( -7 )人。
人教版小学六年级下册数学(全册)教学课件ppt
7/10/2024
探究新知
折扣的意义:商店有时降价 出售商品,叫做打折扣销售, 通称( 打折)。
几折就表示(十分之几), 也就是(百分之几十 ),几 几折表示(百分之几十几 )。
八五折就是原价的85%。
7/10/2024
“八五折”又是 什么意思呢?
那么“九折”就是……
探究新知
爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出 售。买这辆车用了多少钱?
商场: 230×88%-20
=202.4-20 =182.4(元)
专卖店: 210×(1-20%)
=210×80% =168(元)
7/10/2024
巩固拓展
我在A电器店看中了一部摄像机,又分别 去B电器店和C电器店转了转,结果同一 款摄像机,促销情况可大不相同。
原价 折扣
A电器店
8000 九折
B电器店
15000÷(1+20%)=12500(人次) 答:该市2011年出境旅游人数为12500人次。
7/10/2024
易错举例
今年比去年节电二成五,就是指今年的
× 用电量是去年的25%。
7/10/2024
这种说法是不对的。 节电二成五是比原来少了二成五, 所以应该是1 - 25%=75%。
温馨提示:可以把此题转化成“求比一个数 少25﹪的数是多少的百分数问题来解决。
8600 八五折
C电器店
7150 不打折
7/10/2024
巩固拓展
问问题题12::你在觉购得买在这哪部家摄买像比机较的合过适程?中怎,么你说有服大 家什去么哪感家受买?呢?
A电器店 8000×90%=7200(元) B电器在店解决8问60题0×时8,5%不=7要31被0(表元面)
探究新知
折扣的意义:商店有时降价 出售商品,叫做打折扣销售, 通称( 打折)。
几折就表示(十分之几), 也就是(百分之几十 ),几 几折表示(百分之几十几 )。
八五折就是原价的85%。
7/10/2024
“八五折”又是 什么意思呢?
那么“九折”就是……
探究新知
爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出 售。买这辆车用了多少钱?
商场: 230×88%-20
=202.4-20 =182.4(元)
专卖店: 210×(1-20%)
=210×80% =168(元)
7/10/2024
巩固拓展
我在A电器店看中了一部摄像机,又分别 去B电器店和C电器店转了转,结果同一 款摄像机,促销情况可大不相同。
原价 折扣
A电器店
8000 九折
B电器店
15000÷(1+20%)=12500(人次) 答:该市2011年出境旅游人数为12500人次。
7/10/2024
易错举例
今年比去年节电二成五,就是指今年的
× 用电量是去年的25%。
7/10/2024
这种说法是不对的。 节电二成五是比原来少了二成五, 所以应该是1 - 25%=75%。
温馨提示:可以把此题转化成“求比一个数 少25﹪的数是多少的百分数问题来解决。
8600 八五折
C电器店
7150 不打折
7/10/2024
巩固拓展
问问题题12::你在觉购得买在这哪部家摄买像比机较的合过适程?中怎,么你说有服大 家什去么哪感家受买?呢?
A电器店 8000×90%=7200(元) B电器在店解决8问60题0×时8,5%不=7要31被0(表元面)
人教版六年级下册数学浓度问题(课件)
③将含农药30%的药液,加入一定量的水以后,药液含药24%,如 果再加入同样多的水,药液含药的百分比是多少?
①第一次加水
30% 24%
0%
24% 4
:
6% 1
此时药液质量:4+1=5
②第二次加水: 5 24% 20% 51
答:药液含药的百分比是20%。
30%
?%
24%
酒精:5 (7 3) 6(kg)
32
原酒精溶液:6 40% 15(kg)
答:原来酒精溶液有15千克。
②在浓度为40%的酒精溶液中加入5千克水,浓度变为 30%,则原 来的酒精溶液有多少千克?
40% 30%
法二:十字交叉法
40% 30%
0%
30% 3
:
10% 1
5 13 15 (kg)
答:原来的酒精溶液有15千克。
果肉:900×(1-90%)=90(kg)
现在水果:90÷(1-70%)=300 (kg) 答:现在这批水果的质量是300千克。
综合巩固
①仓库运来含水量为90%的一种水果900千克。一星期后再测,发 现含水量降低到70%。现在这批水果的质量是多少千克?
法二:十字交叉法
90% 70%
100%
30% 3
x : y (16 10)(: 20 16) x : y 就是所取甲、乙两溶液的质量比
M浓 M稀
【多种溶液配比】
例题 3:现有浓度为 10%的盐水 20千克。再加入多少千克浓度为 30% 的盐水,可以得到浓度为 22%的盐水?
法一:十字交叉法
10% 20千克
10%
8% 2
30%
22%
:
30%
12% 3
人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件
盒子里有同样大小的红球和蓝球各4个,要想摸 出的球一定有2个同色的,至少要摸出几个球?
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1, 就能保证至少有两个球同色。
一天晚上,小红正要从自已放袜子的抽屉里 取袜子,突然灯熄了。她知道自己的抽屉里放有 白色与黄色的袜子各6只。小红至少要摸出多少只 袜子,才能保证拿出一双相同颜色的袜子?
9÷4=2……1 2+1=3
第五单元 数学广角--鸽巢问题 第3课
鸽巢问题
第3课时
人教版六年级下册数学课件
目
01 新课导入 02 新课讲解
录
03 课堂小结
CONTENTS
04 拓展延伸
第一部分 PART 01
新课导入
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
复习导入
5个人坐4把椅子,总有一把椅子上至少坐 2人,为什么?
把5个人分到“4个鸽巢”(代表4把 椅 子 ) 中 , 5÷4 = 1……1 , 所 以 一 定 有 “一个鸽巢”里至少有1+1=2(人),即 总有一把椅子上至少坐2人。
第二部分 PART 02
新课讲解
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)
课后习题
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5
…
影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5
…
影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。
人教版小学六年级数学下册《生活中的“促销”问题》优秀课件
5元一个,一律五折。
满100减50
两种相同糕点,选择 买哪一个更划算呢?
请看教材, 学习一下生 活中怎么购 物最划算。
第三步 精读教材
请仔细阅读课本第12页例5,划出重要信息。
怎么知道哪个商场更划算 呢?两个商场的促销方式 你明白吗?请看教材上阅 读与理解。
先求出在A、B两个商场买这 条裙子各应付的钱数,再选择 花钱较少的一个商场。
看看和书上的
答:选择A商场更省钱。
算法一样吗?
“满100元减50元”和“ 打五折”一样吗?
(1)在什么情况下两种促销方式的结果
是一样的? 价格为整百元 (2)在什么情况下两种促销方式的结果
你现在知道 “新知引入” 中的哪个糕点 更划算了吗? 去看一下吧。
相差的不多? 总价比整百元多一点点 (3)在什么情况下两种促销方式的结果会
②选择哪个商场更省钱?甲、乙两商场的价格相差多少 元?
290-270=20(元) 答:选择乙商场更省钱。甲、乙两商场的价格相差20元。
易错辨析
3.两家玩具店周末开展促销活动,A店按“每满100元减20 元”的方式销售,B店打八折销售。乐乐要买一个标价 250元的变形金刚,去哪家店更优惠?
A店:250-20×2=210(元) B店:250×80%=200(元) 210>200 答:去B店更优惠。
辨析:学生易误认为250元是超过了100元,所以只 减1个20元,而实际上250元里面有2个100元还多50 元,所以要减去2个20元。
提升点 解决“折上折”问题
4.某运动鞋专卖店搞促销活动,甲品牌运动鞋每满200 元减100元;乙品牌运动鞋“折上折”,先打六折, 在此基础上再打九五折。如果两个品牌都有一双标 价260元的运动鞋,哪个品牌更优惠?
满100减50
两种相同糕点,选择 买哪一个更划算呢?
请看教材, 学习一下生 活中怎么购 物最划算。
第三步 精读教材
请仔细阅读课本第12页例5,划出重要信息。
怎么知道哪个商场更划算 呢?两个商场的促销方式 你明白吗?请看教材上阅 读与理解。
先求出在A、B两个商场买这 条裙子各应付的钱数,再选择 花钱较少的一个商场。
看看和书上的
答:选择A商场更省钱。
算法一样吗?
“满100元减50元”和“ 打五折”一样吗?
(1)在什么情况下两种促销方式的结果
是一样的? 价格为整百元 (2)在什么情况下两种促销方式的结果
你现在知道 “新知引入” 中的哪个糕点 更划算了吗? 去看一下吧。
相差的不多? 总价比整百元多一点点 (3)在什么情况下两种促销方式的结果会
②选择哪个商场更省钱?甲、乙两商场的价格相差多少 元?
290-270=20(元) 答:选择乙商场更省钱。甲、乙两商场的价格相差20元。
易错辨析
3.两家玩具店周末开展促销活动,A店按“每满100元减20 元”的方式销售,B店打八折销售。乐乐要买一个标价 250元的变形金刚,去哪家店更优惠?
A店:250-20×2=210(元) B店:250×80%=200(元) 210>200 答:去B店更优惠。
辨析:学生易误认为250元是超过了100元,所以只 减1个20元,而实际上250元里面有2个100元还多50 元,所以要减去2个20元。
提升点 解决“折上折”问题
4.某运动鞋专卖店搞促销活动,甲品牌运动鞋每满200 元减100元;乙品牌运动鞋“折上折”,先打六折, 在此基础上再打九五折。如果两个品牌都有一双标 价260元的运动鞋,哪个品牌更优惠?
六年级下册数学课件-课时2 数的运算人教版 (共28张PPT)
答:第二季度的营业额比第一季度增长了10%。
2.学生夏令营组织远 足,原计划3小时走完 11.25 km。实际2.5小 时就走完了原定路程。 实际比原计划每小时 多走多少千米?
11.25÷2.5-11.25÷3=4.5-3.75=0.75(km)
答:实际比原计划每小时多走0.75千米。
二、知识应用
a×b×c×d=(a×c)×(b×d)
乘法分配律 4.6×32.7+5.4×32.7=(4.6+5.4)×32.7
a×c+b×c=(a+b)×c
四则混合运算,有时可以运用运算定律使计算更 加简便。
做一做:
计算下面各题。
4× 2 +4×5 =4×( 2 + 5 )=4×1=4
7
7
77
9 - 4 - 5 = 9 -( 4 + 5 )= 9 -1= 2
做一做:
六年级有5个班,1至5班的人数依次为:43、 40、41、44、42,学校小礼堂有200个座位, 如果召开六年级毕业典礼,需要加椅子吗?
43+40+41+44+42>40×5=200,所以需要加 椅子。
9. 通过计算可以解决许多实际问题,解决实 际问题时有哪些主要步骤?
10.六年级举行“小发明”比赛,六(1)班同学
六年级下册数学课件-课时2 数的运算人教版 (共28张PPT)
6
整理和复习
课时2 数的运算
六年级下册数学课件-课时2 数的运算人教版 (共28张PPT)
一、复习内容
1.我们学过哪些运算?举例说明每种运算的含义。
加法:把两个数合成一个数的运算。 例如:小红有4朵花,小丽有3多花,两人一共 有几朵花? 4+3=7(朵)
2.学生夏令营组织远 足,原计划3小时走完 11.25 km。实际2.5小 时就走完了原定路程。 实际比原计划每小时 多走多少千米?
11.25÷2.5-11.25÷3=4.5-3.75=0.75(km)
答:实际比原计划每小时多走0.75千米。
二、知识应用
a×b×c×d=(a×c)×(b×d)
乘法分配律 4.6×32.7+5.4×32.7=(4.6+5.4)×32.7
a×c+b×c=(a+b)×c
四则混合运算,有时可以运用运算定律使计算更 加简便。
做一做:
计算下面各题。
4× 2 +4×5 =4×( 2 + 5 )=4×1=4
7
7
77
9 - 4 - 5 = 9 -( 4 + 5 )= 9 -1= 2
做一做:
六年级有5个班,1至5班的人数依次为:43、 40、41、44、42,学校小礼堂有200个座位, 如果召开六年级毕业典礼,需要加椅子吗?
43+40+41+44+42>40×5=200,所以需要加 椅子。
9. 通过计算可以解决许多实际问题,解决实 际问题时有哪些主要步骤?
10.六年级举行“小发明”比赛,六(1)班同学
六年级下册数学课件-课时2 数的运算人教版 (共28张PPT)
6
整理和复习
课时2 数的运算
六年级下册数学课件-课时2 数的运算人教版 (共28张PPT)
一、复习内容
1.我们学过哪些运算?举例说明每种运算的含义。
加法:把两个数合成一个数的运算。 例如:小红有4朵花,小丽有3多花,两人一共 有几朵花? 4+3=7(朵)
人教版数学六年级下册生活与百分数课件(34张ppt)
张伯伯家去年收 谷多少千克?
15%
“1”
前年
前年的量×(1+15%)=去年的量
4000kg
4000
?
比前年增长
(1+15%) 一成五(15%) 求4000的(1+15%)是多少?
去年
4000×(1+15%)=4600(千克)
?kg
答:张伯伯家去年收 谷4600千克。
张伯伯家去年增收 谷多少千克? 4000×15%=600(千克)
综合练习
(数学书第14页第8题)
3.百货大楼搞促销活动,甲品牌鞋满200元减100元,乙品牌鞋 “折上折”,就是先打六折,在此基础上再打九五折。如果 两个品牌都有一双标价260元的鞋,哪个品牌的更便宜? 比实际价格:甲品牌:260-100=160(元)
打六折后的价格
乙品牌:260×60%×95%=148.2(元)
几成表示一个数是另一个数的十分之几(百分之几十)。
应纳税额与各种收入中的应纳税部分的比率叫做税率。
单位时间(如1年、1月、1日等)内的利息 与本 的比率叫做利率。
几折表示现价是原价的百分之几十。 几成表示一个数是另一个数的十分之几(百分之几十)。 应纳税额与各种收入中的应纳税部分的比率叫做税率。 单位时间内的利息与本 的比率叫做利率。
方案一:
方案二:
20000×2.10%×2=840(元)第一年利息:20000×1.50%=300(元) 第二年利息(: 20000+300)×1.50%=304.5(元) 两年的利息:300+304.5=604.5(元)
840元 > 604.5元 答:方案一的利息多。
综合练习
(数学书第14页第8题)
综合练习
(数学书第14页第8题)
人教版六年级下册数学课件-小升初数学知识点精讲课件-(简易方程)(共16张PPT)
6χ=30 6χ÷6=χ=303÷06÷6
6χ=30
χ=5
6χ÷6=χ=303÷0÷6 6
5χ+χ=30 解:6χ=30 6χ÷6=χ=303÷06÷6
χ=5
6(χ+2)=42 χ=5 解:6(χ+2解):÷χ6+=24=2÷462÷6
χ+2=7 χ+2-χ2==77--22
χ=5
易错1 1
错 解 25%X÷5= 1
6χ÷6=30÷6
6χ=30
6χ÷6=30÷6
χ=5
5χ+χ=30
χ=5
6(χ+2)=42
解:60
χ+2=7
6χ÷6=30÷6
χ+2-2=7-2
χ=5
χ=5
6χ+12=42 解:6χ+1 2解-:126=χ=424-2-1212
6χ+2×6=42 解:6χ+12=42 6χ+12-12=6χ4=2-421-2 12
5 解:0.05X=51
易错点拨
错析: 观察题目特点, 如果题中有分数 ,要先把分数通 分后再计算,不 要直接按顺序计 算。
1
25%X÷5= 1 5
解:25%X=1
正 X=1÷25% 解 X=4
易错2
2
2(X-4)=3(X-12)
解:2X-4=3X-12
错 12-4=3X-2X
解
X=8
错析: 观察题目特点 ,如果题中是 a(x-b)=c(x-d) 形式,需要把 括号前的数与 括号内的每一 项都相乘,不 可以漏项。
方程的意义
方程:含有未知数的等式.
方程的条件:未知数、等式
方程的解:使方程左右两边相等的未 知数的值。方程的解实际上是一个数 解方程:求方程的解的过程。解方程 实际上是 一个过程。
最新人教版版六年级数学下册教材分析ppt课件精品课件
• 1、在教学内容的选择和表述上,着眼于 学生的可持续发展,遵循学生学习数学的 心理规律,从学生已有的生活经验出发, 让学生亲身经历数学知识的形成过程和应 用过程。
• 2、在教学方法的确定和运用上,着眼于 引导学生主动地进行观察实验、猜测探索、 推理验证、合作交流。真正体现:学生是 学习的主人,教师是学习的组织者、引导 者与合作者,把握本册教材的教学要求和 重点。
•
一找:两种相关量的是圆的面积和半径,π是
定量。
•
二写:根据πr2=S,即π"r"r=S,所以S÷r=π,π是定量,但由于r是
变量,所以π"r是变量,因此(yīncǐ),圆面积和圆半
径不成比例。
•
通过上面的“找”、“写”、“判”三招,可
以很轻松的判断复杂的正反比例,为正确解答比例
第十五页,共35页。
比例(bǐlì)
• 比例的教学是在学生已经具备了大量蕴含比 例关系的常见数量关系(单价、数量、总价, 速度(sùdù)、时间、路程,……)和几何形 体求积公式的知识基础上进行的。从本质上 可以说,比例关系是对常见数量关系的抽象 和概括,是对相关知识的浓缩和提升。教学 时要注意的是:
•
第一招“找”:根据题意找出两种相关联的量
和一个一定的量(不变量)。
•
第二招“写”:根据两个相关联的量写出求定
量的关系(guān xì)式。
•
第三招“判”:根据关系(guān xì)式进行判
断,如果定量是两种相关联的量的商,则成为比例;
如果定量是两种相关联量的积,则成反比例。
第十九页,共35页。
• 如:圆的面积和半径。
第八页,共35页。
•我们以圆柱体积的内容学习为例。在探索圆柱体积计算 方法的内容时,建议引导学生经历“类比猜想—验证说 明”的探索过程(guòchéng),体会类比、转化等数学思 想。教学时可以先呈现“类比猜想”的过程(guòchéng), 由于圆柱和长方体、正方体都是直柱体,而且长方体与 正方体的体积都等于“底面积乘高”,由此可以产生猜 想:圆柱的体积计算方法也可能是“底面积乘高”。在 形成猜想后,再引导学生“验证说明”自己的猜想, “验证说明”的方法可以有如:一是用硬币堆成一堆, 用堆的过程(guòchéng)来说明“底面积乘高”计算圆柱 体积的道理,这实际上是“积分”思想的渗透;另外一 种方法是“转化”思想的渗透,即把圆柱通过“切、拼” 转化为长方体,再根据长方体体积的计算方法推导出圆 柱体积的计算方法。(教材25页的切拼图)
• 2、在教学方法的确定和运用上,着眼于 引导学生主动地进行观察实验、猜测探索、 推理验证、合作交流。真正体现:学生是 学习的主人,教师是学习的组织者、引导 者与合作者,把握本册教材的教学要求和 重点。
•
一找:两种相关量的是圆的面积和半径,π是
定量。
•
二写:根据πr2=S,即π"r"r=S,所以S÷r=π,π是定量,但由于r是
变量,所以π"r是变量,因此(yīncǐ),圆面积和圆半
径不成比例。
•
通过上面的“找”、“写”、“判”三招,可
以很轻松的判断复杂的正反比例,为正确解答比例
第十五页,共35页。
比例(bǐlì)
• 比例的教学是在学生已经具备了大量蕴含比 例关系的常见数量关系(单价、数量、总价, 速度(sùdù)、时间、路程,……)和几何形 体求积公式的知识基础上进行的。从本质上 可以说,比例关系是对常见数量关系的抽象 和概括,是对相关知识的浓缩和提升。教学 时要注意的是:
•
第一招“找”:根据题意找出两种相关联的量
和一个一定的量(不变量)。
•
第二招“写”:根据两个相关联的量写出求定
量的关系(guān xì)式。
•
第三招“判”:根据关系(guān xì)式进行判
断,如果定量是两种相关联的量的商,则成为比例;
如果定量是两种相关联量的积,则成反比例。
第十九页,共35页。
• 如:圆的面积和半径。
第八页,共35页。
•我们以圆柱体积的内容学习为例。在探索圆柱体积计算 方法的内容时,建议引导学生经历“类比猜想—验证说 明”的探索过程(guòchéng),体会类比、转化等数学思 想。教学时可以先呈现“类比猜想”的过程(guòchéng), 由于圆柱和长方体、正方体都是直柱体,而且长方体与 正方体的体积都等于“底面积乘高”,由此可以产生猜 想:圆柱的体积计算方法也可能是“底面积乘高”。在 形成猜想后,再引导学生“验证说明”自己的猜想, “验证说明”的方法可以有如:一是用硬币堆成一堆, 用堆的过程(guòchéng)来说明“底面积乘高”计算圆柱 体积的道理,这实际上是“积分”思想的渗透;另外一 种方法是“转化”思想的渗透,即把圆柱通过“切、拼” 转化为长方体,再根据长方体体积的计算方法推导出圆 柱体积的计算方法。(教材25页的切拼图)
人教版六年级数学下册第六单元整理与复习PPT课件全套
说出因数与倍数的含义吗?
一个整数能被另一个整数整除,这个数就
叫另一个数的倍数,另一个数就是它的因数 。
小试牛刀(选题源于《典中点》)
1.在50以内的自然数中,最大的质数是( 47 ),最小的 合数是( 4 )。 2.既是质数又是奇数的最小的一位数是( 3 )。 3. 20以内的质数有( 2、3、5、7、11、13、17、19 )。 4. 两个质数的和等于21,这两个数是( 2 )和( 19 )。
(4)将下面的数填在适当的括号里。
-15,9.4,8.3%,13亿
①永乐大钟钟壁的厚度为( 9.4 )cm。 ② 中国大陆现有人口约为( 13亿 )人。 ③某地区低于海平面15m,海拔高度记为 ( -15 )m。
④今年商品房的价格比去年提高了( 8.3% )。
2.我来选择。(选题源于《典中点》)
2.判断。(选题源于《典中点》)
(1)一个数的因数的个数是无限的,倍数的个数是有 限的 。( × )
(2)因为56÷8=7,所以56是倍数,7和8是因数。
( × ) (3)14比12大,所以14的因数比12的因数多 。( × ) (4)1是1,2,3,4,5,„ 的因数。(
√ )
(5)12是4的倍数,8是4的倍数,12与8的和也是4的倍
正整数
零 小于零的整数(负整数)
分数(小数)
真分数
假分数
小试牛刀(选题源于《典中点》)
1.整数可以分为( 正整数 )、( 0 )和( 负整数 )。
x x 2. 是真分数, 是假分数,那么x可以是( 3或4 )。 3 5
3. 3.05这个数是( 两 )位小数,把它改写成三位小数 是( 3.050 )。 4.按规律填数。
6 整理和复习
人教版六年级数学下册第四单元比例PPT教学课件全套
4.判断。(对的画“√”,错的画“×”)
(1)在比例里,两个外项的积与两个内项的积的差等于0。 ( √ )
(2)已知xy=32,则可以有比例x:4=8:y。 (3)2:3和4:5可以组成比例。 ( ( √) ) ×
(4)如果5a=8b,那么a:b=5:8。
(5)8:4
1 3 和12:7 可以组成比例。 8 4
6∶ 4= 3 ∶ 2
1 1 所以, 2 : 3 和6∶4可以组成比 1 1 例,所以, : =6:4 。 2 3
方法提示:
判断两个比能不能组成比例,关键看它们的比值是否相等。
比例的意义:
1.比例的意义:表示两个比相等的式子叫做比例。
2.判断两个比能否组成比例的方法:根据比例的 意义,看两个比的比值是否相等,相等就能组 成比例。
夯实基础 (选题源于《典中点》)
1.填空。
2 在比例 3 :2=0.2:0.6里,( 0.9 18 = 40 里,( 2
2 3
)和( 0.6 )是外项;在
2
)和( 18
)是内项。
2.指出下面比例的外项和内项。 (1) 4.5:2.7=10:6 4.5和6是外项,2.7和10是内项。 (2)
x 1.2 = 25 75
像这样表示两个比相等的式子叫做比例。
提示: 写比例时,组成比例的两个比既可以写成带比号
的形式,也可以写成分数的形式,但读法相同。
国旗长5m,宽
10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。 3
想一想,在上图的三面国旗的尺寸中, 还有哪些比可以组成比例?
归纳总结:
1.比例的意义:表示两个比相等的式子叫做比例。
(3) (
易错辨析 (选题源于《典中点》)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 小军比标准体重重了2.5千克,小美轻了1.8千克。
③ 一个蓄水池夏季水位上升 3 米,冬季水位下降 23米。
10
100
(2)你能举出生活中一组相反意义的量,并用正、负数来表示吗? 监控:这样的正、负数能写完吗? 小结:像过去我们熟悉的这些整数、小数、分数等都是正数, 也叫正整数、正小数、正分数;在它们的前面添上负号,就成 了负整数、负小数、负分数,统称负数。
=492÷6
=82(分)
方法二: 80+(4+10+7-5-4)÷6
=80+2 =82(分)
答:这六名同学的实际平均成绩是82分。
四、课堂总结
这节课你有什么收获?
负数
温度中的负数 例1 存折上的负数 例2
一、创设情境,产生需求,认识负 数
(一)创设情境,产生需求
今天还回15本、借出 15本。怎么把这些记 录下来呢?
二、结合情境,理解意义
读出下列各数,并指出哪些是正数,哪些是负数。
正数
4
2.5
+5
+41
负数
-7 -5.2
-
1 3
0既不是正数,也不是负数。
三、回归生活,拓展应用
-150
+126
看了这些信息,你有什 么感受?
白天的平均温度和夜间的平均温度相差
℃27。6
三、回归生活,拓展应用
+8844.43
-155
一、创设情境,产生需求,认识负数
(四)介绍历史
看来以往学过的数已经不能清楚地表示出相反意义的 量。那该怎样表示呢?数学家们也经历了一个漫长的过程。 我们一起来看。
一、创设情境,产生需求,认识负数
(五)联系生活,巩固读写
(1)请你用正数和负数表示出每组信息中相反意义的量。
① 李叔叔做生意,二月份盈利2500元,三月份亏损200元。
人教版
六年级
(下册)
一、谈话激趣,导入新课
你在生活中见过负数吗? 你知道它的含义吗?
二、结合情境,理解意义
下面是中央气象台2012年1月21日下午发布的六个城市的气温预报 (2012年1月21日20时—2012年1月22日20时)。
3℃和-3℃表示的意 思一样吗?
三、巩固深化,拓展应用
体育达标测试,一分钟仰卧起坐的成绩统计如下:李勇45 个、张军28个、张强33个、赵刚26个、王亮18个。如果每 分钟做仰卧起坐30个算达标,以达标的个数为标准,记录 每个人的成绩。刚好达标的个数记为0个,超出的个数用正 数表示,不足的个数用负数表示,请把下表填写完整。
姓名 李勇 张军 张强 赵刚 王亮 达标
二、结合情境,理解意义
怎样表示像这样两种相反意义的量呢?
为了表示两种相反意义的量,需要用两种数。
一种是我们以前学过的数,如3、500、4.7、 3,这些数是正数; 8
另一种是在这些数的前面添上负号“-”的数,如-3、-500、
-4.7、- 3等,这些数是负数。 8
0既不是正数,也不是负数。
0是什么数呢?
-4
-
5 2
-2
从起点到
-
5 2
如何运动?
-0.5
1 1.5 2.5
哪它个们点之到 间0相的距距几离个与单-位25 长到度0的?距离相等?
三、巩固深化,拓展应用
如果把一个人先向东走5 m记作+5 m,那么这个人又 走-4 m是什么意思?这时他距离出发点有多远?在直 线上表示出来。
如果一个人从“-2”位置出发先向西走1米, 再向东走4米,将会到达什么位置?
情况 +15 -2 +3 -4 -12
说说你知道了什么信息?
三、巩固深化,拓展应用
某次数学测试,老师以80分作为标准,将六名同学的成
绩记为+4、+10、-5、0、+7、-4,这六名同学的实际
平均成绩是多少?
方法一:
“你+能4”解表决示这什个么问意题思吗??
(84+90+75+80+87+76)÷6
仔细读题,你获得了什么信息? 你知道你所在城市的海
有什么不明白的?
拔高度吗?说说它的具
体含义。
三、回归生活,拓展应用
+2时
-8时 北京时间用什么表示?
以北京时间为标准,孟加拉国首都达 卡的时间记为-2时,你知道它此时的 时间吗?
三、回归生活,拓展应用
某食品厂生产的120 g袋装方便面外包装印有“(120±5)g”的字样。小 明购买一袋这样的方便面,称一下发现117 g,请问厂家有没有欺骗行为? 为什么?
借出
15本
还回
15本
提问:(3)怎样记录就能把情况表示清楚了呢?请你想想办法。 (4)有的同学用文字,有的同学用符号,这些不同的表示 方法之间,有没有相同的地方呢?
监控:都是成对儿的,意思相反的……。
一、创设情境,产生需求,认识负数
(三)认识负数
像“-15”这样的数叫负数;这个数读作:负十五。“-” 在这里有了新的意义和作用,叫“负号”。“+”是正号。像 “+15”是一个正数,读作:正十五。我们可以在15的前面加上 “+”,也可以省略不写。其实,过去我们认识的很多数都是正 数。
仔细观察,你有什么发现?
二、结合情境,理解意义
在温度计上分别表示出3℃和-3℃。
请在温度计上表 示-18℃。
-3℃和-18℃哪 个温度低?
3℃
0℃表示什么意
-3℃ 思?
-18℃
二、结合情境,理解意义
这些数各表示什 么? 500.00和-500.00有 什么区别呢?
像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生 活中还有许多。你能举出这样的实例吗?
(120±5)g
如果120 g记作0 g,117 g可以 记作多少克?
“(120±5)g”表示什 么意思?
四、了解历史,课堂总结
你对负数有什么新 的认识?
四、了解历史,课堂总结
这节课你有什么收获?
第一单元:负数
直线上的负数
一、复习旧知,引入新课
填一填:
①一辆公共汽车经过某站台时有12人上车, 记作( +12 )人;7人下车,记作( -7)人。
②阳光小学今年招收新300人,记作+300人, 那么-420人表示( 毕业420人 )。
③升降机上升3.5米,记作+3.5米;-4米表示 ( 下降4米 )。
二、创新情境,探究新知
-4 -3 -2 -1 0 1 2 3 4 在直线上表示出1.5和-1.5。
三、巩固深化,拓展应用
在直线上表示下列各数。
图书借出、还回记 录
借出
15本
还回
15本
提问:(1)图书管理员老师遇到了什么问题? 你能帮助她记录一下吗?
(2)小明同学是这样记录的,你觉得他把情况表示 清楚了吗?你是怎样想的。
一、创设情境,产生需求,认识负数
(二)解决问题,经历符号化
今天还回15本、借出 15本。怎么把这些记 录下来呢?
图书借出、还回记 录