加减消元法解方程组
二元一次方程组的解法之加减消元法
②
12x 16y 32 ③ 12x 9y 3 ④
当程的方的方程两程组边的的都系两乘数(能x(个以相或不方一 同或互能程个或y为)使不适互相的两能当为反直的相系个接数反数数方用(数)相程加不,呢等中减为那?消零么元)就时, 可,使以可变用将形加方后减
消元法来解方程组了.
樂
见
2x 3y 11 ①
2x 3 (3) 11
解得 x 1 写解
3x 45 8
解得 x 4
x 1
因此原方程组的解是
y
3
x 4
因此原方程组的解是
y
5樂见
2x 3y 11 ①
(1)6x 5y 9
②
3x 4y 8 ① (2)4x 3y 1 ②
解:①×5得10x 15y 55③ 解:①×4得 12x 16y 32 ③
小结:如果两个方程中有一个未知数的系数相 等(或互为相反数),那么把这两个方程直接 相减(或相加);否则,就把方程乘以适当的 数进行变形,再将所得方程相减(或相加). 樂
见
1997m 1999n 3995 (5)1999m 1997n 3997
选择消
,将方程
①+②得
3996m3996n 39962
y
3
x 4
因此原方程组的解是
y
5樂见
牛刀小试
解下列方程组:
3x 2 y 8 ① (1)6x 5y 47 ②
2x 3y 12 ① (2) 3x 4 y 17 ②
樂 见
巩固练习
用加减法解下列方程时,你认为先消哪个未知数 比较简单,填写消元的过程.
2m 3n 1 ① 选择消 n
(1) 5m 3n 4 ② 将方程 ②-① 进行消元
加减消元法解二元一次方程组教学设计
重点:会用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”。
七、教学过程教学环节教师活动学生活动设计意图导入新课温故而知新1、解二元一次方程组的基本思想是什么?2、代入消元法解方程组的一般步骤:个别提问复习旧知,引入新课。
讲授新课第一站——发现之旅认真观察此方程组中未知数y的系数有什么特点,还有没有其它的解法,并尝试一下能否求出它的解。
第二站——探究之旅分析:观察方程组中的两个方程,未知数x的系数相等,都是2。
把两个方程两边分别相减,就可以消去未知数x,同样得到一个一元一次方程。
解:由①-②得:-8y=8 解得 y=-1把y=-1代入①,得:x=1所以原方程组的解是分析:根据y的系数特点,让学生分组探索出两方程相减能否达到消元的目的,若不能,要怎样做,从而引出加法消元法。
解:由①+②得:5x=10 x=2把x=2代入①,得: y=3让学生在练习本写出解题过程(比比看,谁写的又对又快)。
引导学生观察相同未知数的系数特点。
培养学生从观察和思考问题的能力。
通过知识框架的构建,对方程组的解有一个新的认识,让学生学会学习知识的新方法,培养学生概括知识的能力。
⎩⎨⎧=+=+40222yxyx257,23 1.x yx y-=⎧⎨+=-⎩3521,2511.x yx y+=⎧⎨-=-⎩类比应用、闯关练习3x+2y=8 2m-3n=54x+3y=-4 4m+3n=75x-3y=4x+6y=3课知识小结加减消元法解方程组的基本思想是什么?前提条件是什么?基本思想:加减消元二元----- 一元前提条件:同一未知数的系数互为相反数或相等系数相反--------相加系数相等---------相减加减消元法解方程组的一般步骤:变形——加减(消元)——求解——写解(提醒)方程组变形的依据:等式的基本性质。
总结归纳学以致用作业1、必做题: P98习题8.2第3题及配套练习。
2、选做题: P98习题8.2第5题。
5.2-加减消元法解二元一次方程组
6 7y 9 7y 96 7y 3 3 y 7
联系上面的解法,想一想怎样解方程组
3x 5 y 21 2 x 5 y 11
① + ②
① ②
异加
4x 5 y 3 2 x 5 y 1
① - ②
①
② 同减
3x 5 y 21 2 x 5 y -11
6x-5y=17②
1. 用加减法解方程组
应用(B )
A.①-②消去y B.①-②消去x C. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、指出下列方程组求解过程中有错误步骤, 并给予订正: 7x-4y=4 ①
加减法
(4)
9x-5y=1 6x-7y=2
加减法
⑴ 如果方程组的两个方程中某一未知数的系数相等或者 互为相反数时,把两个方程的两边分别 相减或相加 , 消去一个未知数,得到一元一次方程,解这个方程得一 个未知数的值。将求得的未知数代入其中一个方程得另 一个未知数的值,从而解得方程组的解。同减异加 ⑵如果方程组中某一未知数系数绝对值均不相等时,把 一个或两个方程两边 乘以一个适当的数 , 使两个方程 中某一未知数的系数绝对值相等,从而化为上述类型方 程组求解。 特别的,当一个方程中某未知数的系数是另一个方程同 一未知数的系数 的倍数时 ,加减消元法比较合适。
(口算或在草稿纸上进行笔算),即把求得的解代入 每一个方程看是否成立.
1、根据等式性质填空: <1>若a=b,那么a±c= b±c ( .等式性质1) 思考:若a=b,c=d,那么a+c=b+d吗? <2>若a=b,那么ac= bc . (等式性质2)
加减消元法解二元一次方程组
2 x 5 y 3 例3: 4 x y 3
问题1. 这两个方程直接相加减 能消去未知数吗?为什 么? 问题2. 那么怎样使方程组中 某一未知数系数的绝 对值相等呢?
作业: 用加减消元法来解下面这几道题
1.
x 2y 9 3 x 2 y 1
同学们都 学会了吗?
总结:
同减异加
当两个二元一次方程中 同一个未 知数的系数相反或相等时,把两 个方程的两边分别相加或相减, 就能消去这个未知数,得到一个 一元一次方程。这种方法叫做加 减消元法,简称加减法。
填空题:
1.已知方程组
练习
x+3y=17
两个方 2x-3y=6 程 分别相加 就可以消去未知数 y 只要两边 25x-7y=16 两个方程 2.已知方程组 25x+6y=10 只要两边 分别相减 就可以消去未知数 x
2 1 100 1
4 x 10 y 3 . 6 例2:解方程组: 15 x 10 y 8
分析:可以发现 10y与-10y互为相 反数,若把两个 方程的左边与左 边相加,右边与右 边相加,就可以 消去未知数y。
用什么方法可以消去 一个未知数?先消去 哪一个比较方便?
x 99 y 100 3 x 99 y 102
同学们还有其 他的方法吗?
8.2
消元——二元一次方程组的解法
加减消元法
例1:解方程组:
x 99 y 100 3 x 99 y 102
① ②
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
解:由①-②得:
① ②
①左边 ②左边
=
①右边 ②右边
数学《加减消元法-解二元一次方程组》教案
数学《加减消元法-解二元一次方程组》教案课时安排:第一课时:引入加减消元法第二课时:解决简单的二元一次方程组第三课时:引入倍加消元法第四课时:解决复杂的二元一次方程组课堂活动:第一课时:1.引入问题:小明有 6 条红色的绳子, 8 条绿色的绳子和 10 条蓝色的绳子,共计有多少条绳子?同学们快速作答并验证答案。
2.老师通过上述问题引导学生理解加减消元法。
3.教师给出一个简单的二元一次方程组,让学生通过加减消元法来解决。
4.让学生自己找到一些二元一次方程组,让同桌分别用加减消元法来解决。
第二课时:1.老师总结昨天加减消元法的解决方法,引入倍加消元法,告诉学生在某些情况下倍加消元法可能更适合。
2.老师给出一个适合倍加消元法的问题,让同学们快速求解。
3.让一些同学将他们在昨天找到的二元一次方程组用倍加消元法来解决。
第三课时:1.老师对昨天学过的知识进行复习。
2.展示一些更复杂的二元一次方程组,让同学们思考如何用加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程。
第四课时:1.老师对昨天学习的内容进行总结,让同学们回顾、检验自己的学习成果。
2.老师给出几道复杂的二元一次方程组,让同学们通过加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程并与同学分享。
作业安排:1.课后练习,让同学们运用加减消元法和倍加消元法来解决一些二元一次方程组。
2.让同学们自己编写一些二元一次方程组,让同桌来解决。
加减消元法解二元一次方程组--教案
4、回代——把求得的值代回方程中,求另一个未知数的值;
5、联——用“﹛”把两个未知数的值联立起来。
提示强调:①当某一个未知数的系数的绝对值相等时,若符号不同,用加法消元,若符号相同,用减法消元;
②当某一个未知数的系数成倍数关系时,将系数较小的方程两边都乘这个倍数,把该未知数变为相等或互为相反数,再用加减法解方程组;
③当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,把该未知数的系数化为绝对值相等的数,再用加减消元法求解。
(五)课堂练习
用加减法解下列方程组
(六)课堂小结
1、本节课主要学习了用加减法解二元一次方程组,到现在我们学习了那些解二元一次方程组的方法?
(四)牛刀小试
1、填空题
⑴已知方程组 两个方程,只要两边就可以消去未知数。
⑵已知方程组 两个方程,只要两边就可以消去未知数。
2.选择题
⑴用加减法解方程组 应用()
A①-②消去yB ①-②消去xC ②-①消去常数项
D 以上都不对
⑵方程组 消去y后所得的方程是()
A6x=8B6x=18C6x=5Dx=18
8.2.2加减消元-----解二元一次方程组
教学目标:
1、知识技能目标
掌握加减消元法的基本步骤,熟练运用加减消元法解简单的二元一次方程组
2、能力目标:
能够熟练运用加减消元法解二元一次方程组,训练学生的运算技巧,养成检验的习惯。
3、情感态度及价值目标:
通过研究解决问题的方法,培养学生合作交流意识和探究精神,进而体会数学的独特魅力。
问题7:例3用加减法解方程组
提问:同学们,观察这个方程组,能直接进行加减消元吗?那这个方程组怎么来解,我们分成小组来讨论研究学习。
加减消元法和代入消元法的例题
加减消元法和代入消元法的例题加减消元法和代入消元法是数学中常用的两种解方程的方法。
在本文中,我们将通过例题来详细介绍这两种方法的步骤和应用。
一、加减消元法加减消元法是一种利用方程的加减性质进行消元的方法。
具体步骤如下:1. 将方程中同类项合并。
2. 将方程两边同加或同减一个已知量,使得某一未知量的系数相等。
3. 利用已知量的值求出未知量的值。
下面我们通过一个例题来演示加减消元法的应用。
例题1:已知方程组2x + 3y = 83x - 2y = 7求解x和y的值。
解法:将两个方程进行同类项合并,得到2x + 3y = 83x - 2y = 7将第一个方程两边同乘以2,得到4x + 6y = 16将第二个方程两边同乘以3,得到9x - 6y = 21将上述两个方程相加,得到13x = 37因此,x = 37/13。
将x的值代入第一个方程,得到2(37/13) + 3y = 8解得,y = 2/13。
因此,方程组的解为x = 37/13,y = 2/13。
二、代入消元法代入消元法是一种利用方程的等价性质进行消元的方法。
具体步骤如下:1. 从一个方程中解出一个未知量。
2. 将解得的未知量代入另一个方程中,得到只含有另一个未知量的方程。
3. 解得另一个未知量的值。
下面我们通过一个例题来演示代入消元法的应用。
例题2:已知方程组3x - 2y = 7x + y = 4求解x和y的值。
解法:将第二个方程解出y,得到y = 4 - x。
将y的值代入第一个方程中,得到3x - 2(4 - x) = 7解得,x = 5。
将x的值代入第二个方程中,得到5 + y = 4解得,y = -1。
因此,方程组的解为x = 5,y = -1。
综上所述,加减消元法和代入消元法是两种常用的解方程的方法。
在解方程时,我们可以根据题目的特点选择合适的方法进行求解。
同时,我们也需要注意步骤的正确性和计算的准确性,以确保最终得到的解是正确的。
加减消元法10个例题
加减消元法10个例题加减消元法是解决一元二次方程或多元线性方程组的一种常用方法。
它的基本思想是通过加减方程,消除一个或多个未知数,得到一个简化的方程,从而求解未知数的值。
下面是10个应用加减消元法解决问题的例题。
1. 求解方程组:2x + 3y = 84x - 5y = 17通过将第二个方程乘以2,然后与第一个方程相加,可以消除x 的项,从而得到一个只含有y的方程。
2. 求解方程组:3x - 4y = 57x + 2y = -13通过将第一个方程乘以7,第二个方程乘以3,然后相减,可以消除x的项,从而得到一个只含有y的方程。
3. 求解方程组:x + y + z = 62x - 3y + 4z = 93x - 2y - z = 4通过适当加减方程,可以消除其中一个未知数的项,从而得到一个只含有两个未知数的方程组。
4. 求解方程组:x - y + z = 22x + y - 3z = -4-3x + 2y + 5z = 12通过适当加减方程,可以消除其中一个未知数的项,从而得到一个只含有两个未知数的方程组。
5. 求解方程:x^2 + 3x - 10 = 0可以通过将方程两边同时加上一个适当的数,从而消除一次项,得到一个二次方程。
6. 求解方程:2x^2 + 5x - 3 = 0可以通过将方程两边同时减去一个适当的数,从而消除一次项,得到一个二次方程。
7. 求解方程:3x^2 - 2x + 1 = 0可以通过将方程两边同时乘以一个适当的数,从而消除二次项,得到一个一次方程。
8. 求解方程:4x^2 - 9 = 0可以通过将方程两边同时开方,从而消除二次项,得到一个一次方程。
9. 求解方程:x^3 + 2x^2 - 5x + 6 = 0可以通过将方程两边同时加上一个适当的多项式,从而消除一次项和二次项,得到一个一次方程。
10. 求解方程:(x + 1)^2 - (2x - 3)^2 = 0可以通过将方程两边展开,然后合并同类项,从而消除二次项,得到一个一次方程。
加减消元法解二元一次方程组
1.代入消元法解二元一次方程组的一般步骤是什么?
变 代求写
2.解方程组的基本思路是什么?
通过消元,把“二元”转化为“一元”
3.2 二元一次方程组及其解法(3)
——加减消元法解二元一次方程组
思考探究一
x+y=45 ① 例1: 2x-y=60 ②
解:①+②,得,3x=105 解得,x=35
x=-8
边分别相加或相减消去一个未知数的 所以,
方法,叫做加减消元法,简称加减
y=-7
法.
总结归纳一
利用加减消元法解二元一次方程组时,什么时候两式 相加,什么时候两式相减?
某个未知数的系数互为相反数时用加法,系数 相等时用减法.
思考探究二
例2:
4x+y=14 ① 8x+3y=30 ②
解法一(消去x):
解法二(消去y):
①×2,得 8x+2y=28 ③
②-③,得 y=2
将 y=2代入①,得 4x+2=14
x=3
所以
x=3Байду номын сангаасy=2
①×3,得 12x+3y=42 ③
③-②,得 4x=12 x=3
将 x=3代入①,得 12+y=14
所以
y=2 x=3
y=2
思考探究三
例3:
4x+2y=-5 5x-3y=-9
x+2z-9=0 (1)
3x-z+1=0
4x-2y=39 (2)
3x-4y=18
拓展延伸
4.(南充中考)已知关于x,y的二元一次方程组 的解互为相反数,求k的值。
2x+3y=k. x+2y=-1.
加减消元法解二元一次方程组
3x 4y 10 (2) 9x 2y 20 ②
方程组
5x ax
4y 1① y4 ②
与
x 4y 5 ③ 5x by 1 ④
有相同的解,求 a 、b 的值。答案Fra biblioteka b
1 4
通过这节课的学习活 动,你有什么收获?
记忆口诀:
先要化成一般式,对齐之后再分析; 系数同减异相加,加减消元分清楚; 系数不同也不难,我们就要变一变; 变成相同或相反,然后再来相加减。
两个二元一次方程中同一未知数的系数互 为相反数或相等时可用加减消元法解方程组.
小试牛刀
练习一
选择你喜欢的方法解下列方程组
②
②
知识应用 用加减法解方程组
{ 拓展升华
4x - y =12 ① 2x +3y =-8 ②
解法一: ②×2得:
4x +6y =-16 ③
解法二: ①×3得: 12x - 3y =36 ③
湘江源中学 雷满秀
1、上节课我们学了一种方法解二元一次方 程组,这种方法是什么?
代入消元法
2、解二元一次方程组的基本思想是什么?
消元,即化“二元”为“一元”。
怎样用代入法解二元一次方程组呢?
x 2y 4 ①
x
2
y
5
②
把①变形得:x 4 2 y ③
把③代入②得:(4 2 y) 2 y 5
2x+5y -2x +3y=16
8y =16
y=2
探究一:
解方程组
2x 5y 5 2x 3y 11
① ②
解: ①﹣② 得:8y=16
二元一次方程组的解法:加减消元法
方程中x的系数是相同的,
②×3, 得 15x﹣18y=99, ④
都是15,相减可以消元
③ ﹣④, 得38y=﹣19 .…………(一元一次方程) y=﹣0.5
把y=﹣0.5代入①, 得3x+4×(-0.5)=16 x=6
所以这个方程组的解是
x
y
6 0.5
总结
1、两个二元一次方程中同一个未知数的系数相反,把这两个方程的两 边分别相加,就能消去这个未知数,得到一个一元一次方程。
利用这种关系用加减法解这个方程组。
解: ①+ ② 可以消去未知数y,得 4x=8 .…………(一元一次方程) x=2
把x=2代入方程①,得 2+2y=10
y=4
所以这个方程组的解是
x 2
y
4
•
例2、解二元一次方程组
x y 22 2x y 40
① ②
分析:两个方程中,y的系数都是1,所以我们可以利用这种 关系用加减法解这个方程组。
二元一次方程组的解法
加减消元法
加减消元法
两个二元一次方程中同一个未知数的 系数相反或者相等时,把这两个方程的两 边分别相加或者相减,就能消去这个未知 数,得到一个一元一次方程。这种方法叫 做加减消元法,简称加减法。
•
例1、解二元一次方程组
x 2 y 10 3x 2 y 2
① ②
分析:两个方程中,y的系数分别是+2和﹣2,所以我们可以
数的系数相等或相反。
观察可以发现变形后两个
解法一: ①×3, 得 9x+12y=48.
③
②×2, 得 10x﹣12y=66, ④
方程中y的系数+12与-12是 互为相反数,相加可以消 元
消元——解二元一次方程组--加减消元法
8.2(2)消元——解二元一次方程组--加减消元法一.【知识要点】1.解二元一次方程组的基本思想:消元2.解二元一次方程组的基本方法:代入消元法.加减消元法.整体构造法3.基本步骤:(1)“造同”(即将某一个未知数的系数通过“同乘”的方式构成“绝对值相同型”);(2)加减消元求解;(3)结论二.【经典例题】1.用加减消元法解方程组()5361322x y x y -=⎧⎨-=-⎩①② (2)1340.30.4 1.6x y x y ⎧+=⎪⎨⎪+=⎩ (3)4(x y 1)3(1y)2223x y --=--⎧⎪⎨+=⎪⎩三.【题库】【A 】1.若7172x y a b -与22313x y a b +-是同类项,则x=______,y=________ 2.已知方程组5,1mx n my n +=⎧⎨-=⎩的解是1,1.x y =⎧⎨=⎩,则m ,n 的值是( ) (A )1,2.m n =⎧⎨=⎩ (B )1,2.m n =-⎧⎨=-⎩ (C )2,3.m n =⎧⎨=⎩ (D )3,2.m n =⎧⎨=⎩【B 】1.加减消元法解下列二元一次方程组。
(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x()3533123x y x y -=⎧⎪⎨-=⎪⎩ (4)⎩⎨⎧=--=-01383272n m n m()341655633x y x y +=⎧⎨-=⎩ ()23563212x y x y -=-⎧⎨+=⎩()8+973717374x y x y =⎧⎨-=⎩①②()23183424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩()3259429m n m n -=⎧⎨+=⎩()35710425x y x y -=⎧⎨+=⎩()651111447x y x y -=⎧⎨--=⎩【C 】1.加减消元法解下列二元一次方程组。
()()()413121223x y yxy--=--⎧⎪⎨+=⎪⎩(2)()()⎪⎩⎪⎨⎧=-++=--+6322432y x y x y x y x2.解方程组231367x y x y +=⎧⎨-=⎩①②,用加减消元法消去y ,变形正确的是( )A.⨯①2-②B.3⨯⨯①-②2C.+⨯①2②D.3+⨯⨯①②23.用加减法解方程组()()⎪⎩⎪⎨⎧=+=+2431322b a b a ,最简单的方法是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消元: 二元
一元
一元 2、用代入法解方程的步骤是什么?
主要步骤: 用一个未知数的代数式 变形 表示另一个未知数 代入 消去一个元 分别求出两个未知数的值 求解 写出方程组的解 写解
怎样解下面的二元一次 方程组呢?
3x 5y 21 2 x 5 y -11
例4. 用加减法解方程组:
2x 3y 12 ① ② 3 x 4 y 17
①×3得 6x+9y=36 ③ ②×2得 6x+8y=34 ④ ③-④得: y=2 把y =2代入①, 解得: x=3
分析:
对于当方程组中两方 程不具备上述特点时, 必须用等式性质来改 变方程组中方程的形 式,即得到与原方程 组同解的且某未知数 系数的绝对值相等的 新的方程组,从而为 加减消元法解方程组 创造条件.
参考小丽的思路,怎样解 下面的二元一次方程组呢?
① 2x 5y 7 ② 2 x 3 y 1
分析:
观察方程组中的两个方程,未知数x的系数 相等,都是2.把这两个方程两边分别相减, 就可以消去未知数x,同样得到一个一元一 次方程.
① 2x 5y 7 ② 2 x 3 y 1
x 1 所以原方程组的解是 y 1
补充练习:
x 1 y 1 3 2 x 1 y 2 2 4
用加减消元法解方程组:
①
②
由③-④得: y= -1
把y= -1代入② , 7 解得: x
解:由①×6,得 2x+3y=4 ③ 由②×4,得
2x - y=8 ④
3x 5y 21 2 x 5 y -11
3X+5y +2x - 5y=10 5x+0y =10 5x=10
3x 5y 21 2 x 5 y -11
解:由①+②得: 5x=10
① ②
x=2
把x=2代入①,得
y=3
x3 所以原方程组的解是 y 2
①
②
5 y 11 把②变形得: x
代入①,不就消去
x 了!
2
小明
5 y 2 x 11
把②变形得
可以直接代入①呀!
小彬
5 y和 5 y
互为相反数……
按照小丽的思路,你能消去 一个未知数吗?
① ②
小丽
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 左边 + ②左边
探索与思考
时,小张正确的解是 ,小李由于看错 y 2
了方程组中的C得到方程组的解为
x 3 ,试求方程组中的a、b、c的值。 y 1
五、作业
1、课本P-197[习题7.3] 1 2、作业本P-36; 3、思考题: 在解二元一次方程组中, 代入法 和加减法有什么异同点?
解:把 ②-①得:8y=-8 y=-1 把y =-1代入①,得 2x-5╳(-1)=7 解得:x=1
x 1 所以原方程组的解是 y 1
指出下列方程组求解过程中有 错误步骤,并给予订正: 7x-4y=4 ①
5x-4y=-4 ② 解:①-②,得 2x=4-4, x=0 解: ①-②,得 2x=4+4, x=4 3x-4y=14 ① 5x+4y=2
②
解 ①-②,得
-2x=12
x =-6 解: ①+②,得 8x=16 x =2
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数 二元 一元
基本思路: 加减消元:
主要步骤: 加减
求解 写解
消去一个元 分别求出两个未知数的值 写出原方程组的解
2
所以原方程组 7 x 的解是 2 y 1
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤: 变形 加减 求解 写解
同一个未知数的系 数相同或互为相反数
消去一个元 求出两个未知数的值 写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .