高中数学选修2-1章末检测卷13:第二章 圆锥曲线与方程

合集下载

高中数学选修2-1章末检测卷9:第二章 圆锥曲线与方程

高中数学选修2-1章末检测卷9:第二章 圆锥曲线与方程

圆锥曲线检测题一、选择题1.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .41 B .21C .2D .4 2.过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( )A .10B .8C .6D .43.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0 D .315(-,)1-4.过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( )A .4pB .5pC .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x ;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足NP MP =的所有曲线方程是() A .①③ B .②④ C .①②③ D .②③④6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( )A .1351222=-y xB .1312522=-y xC .1512322=-y x D .1125322=-y x 7.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y x D .041222=+--+y x y x 8.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点P F F ,21、是两曲线的一个交点,则21PF F ∆的面积是( ) A .4 B .2 C .1 D .129.已知椭圆22221a y x =+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( ) A .2230<<a B .2230<<a 或282>a C .223<a 或282>a D .282223<<a10.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点,MN 中点横坐标为32-,则此双曲线的方程是( ) A .14322=-y x B .13422=-y x C .12522=-y x D .15222=-y x 二、填空题11.与椭圆22143x y +=具有相同的离心率且过点)3,2(-的椭圆的标准方程是 12.已知直线1+=x y 与椭圆122=+ny mx )0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.13.双曲线的实轴长为2a ,F 1, F 2是它的左、右两个焦点,左支上的弦AB 经过点F 1,且|AF 2|、|AB |、|BF 2|成等差数列,则|AB |=14.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值_____.15.若方程11422=-+-t y t x 所表示的曲线为C ,给出下列四个命题:①若C 为椭圆,则41<<t ; ②若C 为双曲线,则4>t 或;③曲线C 不可能是圆;④若C 表是椭圆,且长轴在x 轴上,则231<<t . 其中真命题的序号为(把所有正确命题的序号都填在横线上) 三、解答题16.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点N M 、当AN AM =时,求m 的取值范围17.已知抛物线的顶点为椭圆22221x y a b+=(0)a b >>的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行。

人教版高二数学选修2-1第二章圆锥曲线测试题以及详细答案

人教版高二数学选修2-1第二章圆锥曲线测试题以及详细答案

、选择题:高二圆锥曲线单元测试姓名: 得分:1.动点M的坐标满足方程13tx2 2y |12x 5y 12|,那么动点M的轨迹是〔A. 抛物线B.双曲线C.椭圆D.以上都不对2.设P是双曲线2 2\上一1上一点,双曲线的一条渐近线方程为3xa292y 0, F1、F2分别是双曲线的左、右焦点,假设IP% | 5,那么| PF2 | (A. 1 或5B. 1 或9C. 1D. 93、设椭圆的两个焦点分别为那么椭圆的离心率是〔〕F i、、F2,过F2作椭圆长轴的垂线交椭圆于点P,假设^ F1PF2为等腰直角三角形,A;八.2B. C. 2 2 D. 24.过点〔2,-1〕引直线与抛物线只有一个公共点,这样的直线共有〔〕条A. 1B.2C. 3D.45.点A〔2,0)、B(3,0),动点P(x,y)满足PA PB 2y ,那么点P的轨迹是〔〕A.圆B,椭圆C,双曲线 D.抛物线6.如果椭圆A x 2y2 2x y36 90 B. x1的弦被点〔4, 2〕平分,那么这条弦所在的直线方程是〔7、无论为何值,方程2y 4 0 x22sinC . 2x 3y 12 0y21所表示的曲线必不是〔D x 2y 8 0A.双曲线B.抛物线2 28.万程mx ny 0与mx 2nyC.椭圆D.以上都不对1 (m n 0〕的曲线在同一坐标系中的示意图应是C2 2 y — 1和双曲线—9 7 2y — 1有以下命题:9三、解做题:,,—………,14 (1),1共焦点,它们的离心率之和为二,求双曲线方程.(12分)5216. P 为椭圆—25.y — 1上一点,92的面积;点P 在椭圆上,且位于 x 轴上方,PA PF(1)求点P 的坐标;(2)设M 是椭圆长轴 AB 上的一点,M 到直线AP 的距离等于| MB | ,求椭圆上的点到 二、填空题:①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点 ③ 双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同 .其中正确命题的序号是 10.假设直线 (1 a)x y 1 0与圆x 2 y 22x 0相切,那么a 的值为11、抛物线y x 2上的点到直线4x 3y 8 0的距离的最小值是 12、抛物线 C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,那么点Q 的坐标 2 2 13、椭圆 —L 1的焦点为F I 和F 2,点P 在椭圆上,如果线段 PF 1中点在y 轴上, 12 3那么|PR|是|PF 2|的 14.假设曲线1的焦点为定点,那么焦点坐标是17、求两条渐近线为2y 0且截直线x y 3 0所得弦长为曳3的双曲线方程.(14分)3.......................... 2 18、知抛物线y 焦点为F,顶点为.,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分) 19、某工程要将直线公路 l 一侧的土石,通过公路上的两个道口道总AP 、BP 运往公路另一侧的 P 处,PA=100m, PB=150m,/ APB=60 ° ,试说明怎样运土石最省工? 20、点A 、B 分别是椭圆——36 20 1长轴的左、右端点,点F 是椭圆的右焦点,2• , 一 x 9.对于椭圆一1615.双曲线与椭圆25F I 、F 2为左右焦点,假设 F 1PF 2 60(2)求P 点的坐标.(14分)M 的距离d 的最小值圆梦教育高二圆锥曲线测试题做题卡选择题(5*8=40)题号12345678答案、填空题(5*6=30)9. ______________ 10 ______11. _______________ 12 ______13. _______________ 14. ______17、(14 分)19、〔14 分〕20、〔14 分〕高二理科数学圆锥曲线测试题答案9.①② 10、-1 11 > -12.3三、解做题:1.、(,,1) 13. 7倍 14. (0, ±3)415.(12 分)解:由于椭圆焦点为F(0,4),离心率为 e=4 ,所以双曲线的焦点为522c=4,a=2,b=2#.所以求双曲线方程为:匕 x- 1412x 2-4y 2 = o联立方程组得: X 4y ,消去y 得,3x 2-24x+(36+x y 3 0、选择题ADDCDDBA填空题: 16.[解析]:丁 a=5, b= 3 c = 4(1)设 | PF I | t 1 , | PF 2 1t 2 ,那么 t 1t 210 ①t 12 t ;F 1PF 22"2 cos60 1"2 sin 60 2 82②,1 122由①3 2—②得用21233(2)设 P(x,y),由 S F 1PF 222c |y14 1yH 寸 4| y | 3%;33 31y1方入椭圆方程解得x 5J3, 417、解:设双曲线方程为 x 2-4y 2=.P(迎幽或P (返,室)或4 , 44 ,4P ( 5713 33、成丁 J P(4 5 1343J.设直线被双曲线截得的弦为 AB,且AlxjyDBl x 2,y 2),那么: 那么:|AB|二、.(1 , 2 2k )[(X I X 2) 4x 1X 2] (1 1)(82 36 4 3)解得: =4,所以,所求双曲线方程是: X IX 1X2242x 2 8 36 3 12(368(12—)8.318 [解析]: 4设 M (x,y), P ( X 1,yJ, Q y 2 1X 2 FQ 的中点 (X2, y2),1 X 22 2y 2易求4x 的焦点F 的坐标为( 1, 0)X2 V22x 2y1 ,又Q 是OP 的中点X I 2V1X I 2x 2 4x2y 2 4yF(0, 4),离心率为 2,从而)=0••.P 在抛物线y 2 4x 上,(4y)2 4(4x 2),所以M 点的轨迹方程为y 2x 工219解析:设直线l 与椭圆交于P i (x i, y .、P 2(X 2, y 2), 将P i 、P 2两点坐标代入椭圆方程相减得直线l 斜率犬1 +/2当一为[网』 产 £k= 1 t =- -:1. '< =- 一 =-二二—J由点斜式可得l 的方程为x+2y-8=0. 答案:x+2y-8=0 解:以直线l 为x 轴,线段AB 的中点为原点对立直角坐标系,那么在l 一侧必存在经A 到P 和 经B 到P 路程相等的点,设这样的点为 M,那么 |MA|+|AP|=|MB|+|BP|,即 |MA| — |MB|=|BP|- |AP|=50,| AB | 50 7 ,椭圆上的点(x , y )到点M 的距离d 有M 在双曲线2522y2252 61的右支上.故曲线右侧的土石层经道口 按这种方法运土石最省工.B 沿BP 运往P 处,曲线左侧的土石层经道口 A 沿AP 运往P 处, 20(14分)解:(1)由可得点uuu设点 P (x , y ),那么 AP =( x +6,A(-6,0),F(0,4)uuuy ) , FP = ( x — 4, y ),由可得2(x 6)(x 4) y 2那么 2x 2+9x —18=0, x =3或 x =—6.2由于y >0,只能x = 3,于25、. 3 y= ---------了 2.・•点P 的坐标是(3,5-13-) 2 2(2)直线AP 的方程是x — J 3 y +6=0.设点M( m ,0),那么M 到直线AP 的距离是于是m 6,又—6M < 6军得 m =2.36 202 2 2 2 5 2 4 9.2d (x 2) y x 4x 4 20 x (x ) 15,9 9 2由于一6<m <6,,当x = 9"时,d取得最小值v1152说明:在解析几何中求最值:一是建立函数关系,利用代数方法求出相应的最值;再是利用圆锥曲线的几何性质或者曲线的参数方程求最值.。

数学人教B版选修2-1章末测试:第二章圆锥曲线与方程B

数学人教B版选修2-1章末测试:第二章圆锥曲线与方程B

第二章测评B(高考体验卷)(时间:90分钟 满分:100分) 第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=1 3.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等4.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 35.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .36.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A.⎣⎡⎦⎤12,34B.⎣⎡⎦⎤38,34C.⎣⎡⎦⎤12,1D.⎣⎡⎦⎤34,1 7.(2014课标全国Ⅰ高考)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( )A.72 B .3 C.52D .28.若双曲线x 2a 2-y 2b 2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x9.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0C .x ±2y =0D .2x ±y =010.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 第Ⅱ卷(非选择题 共50分)二、填空题(本大题共5个小题,每小题5分,共25分.把答案填在题中的横线上) 11.双曲线x 216-y 29=1的两条渐近线的方程为__________.12.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.13已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =__________.14.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是__________.15.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________.三、解答题(本大题共4个小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(6分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.17.(6分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .18.(6分)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程.(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.19.(7分)(2013广东高考)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.参考答案1.解析:设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF |=x 0+p 2=5,则x 0=5-p 2.又点F 的坐标为⎝⎛⎭⎫p 2,0,所以以MF 为直径的圆的方程为(x -x 0)⎝⎛⎭⎫x -p2+(y -y 0)y =0.将x =0,y =2代入得px 0+8-4y 0=0,即y 202-4y 0+8=0,所以y 0=4.由y 20=2px 0,得16=2p ⎝⎛⎭⎫5-p 2,解之,得p =2,或p =8. 所以C 的方程为y 2=4x 或y 2=16x .故选C. 答案:C2.解析:由于双曲线焦点在x 轴上,且其中一个焦点在直线y =2x +10上,所以c =5. 又因为一条渐近线与l 平行,因此b a =2,可解得a 2=5,b 2=20,故双曲线方程为x 25-y 220=1,故选A.答案:A3.解析:因为0<k <9,所以方程x 225-y 29-k =1与x 225-k -y 29=1均表示焦点在x 轴上的双曲线.双曲线x 225-y 29-k =1中,其实轴长为10,虚轴长为29-k ,焦距为225+9-k =234-k ;双曲线x 225-k -y 29=1中,其实轴长为225-k ,虚轴长为6,焦距为225-k +9=234-k .因此两曲线的焦距相等,故选A.答案:A4.解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y =±3x ,即±3x -y =0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d =|±3-0|2=32. 答案:B5.解析:设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|= 3.抛物线y 2=2px 的准线为x =-p 2,所以x 0=-p 2,代入双曲线的渐近线的方程y =±b a x ,得|y 0|=bp 2a .由⎩⎪⎨⎪⎧c a =2,a 2+b 2=c 2,得b =3a ,所以|y 0|=32p .所以S △AOB =34p 2=3,解得p =2或p =-2(舍去).答案:C6.解析:设P 点坐标为(x 0,y 0),则x 204+y 23=1,kP A 2=y 0x 0-2,kP A 1=y 0x 0+2,于是kP A 1·kP A 2=y 20x 20-22=3-34x 20x 20-4=-34.故kP A 1=-341kP A 2.∵kP A 2∈[-2,-1], ∴kP A 1∈⎣⎡⎦⎤38,34.故选B. 答案:B7.解析:如图,由抛物线的定义知焦点到准线的距离p =|FM |=4.过Q 作QH ⊥l 于H ,则|QH |=|QF |. 由题意,得△PHQ ∽△PMF , 则有|HQ ||MF |=|PQ ||PF |=34,∴|HQ |=3.∴|QF |=3. 答案:B8.解析:由离心率为3,可知c =3a ,∴b =2a , ∴渐近线方程为y =±ba x =±2x ,故选B.答案:B9.解析:由题意,知椭圆C 1的离心率e 1=a 2-b 2a ,双曲线C 2的离心率为e 2=a 2+b 2a .因为e 1·e 2=32, 所以(a 2-b 2)(a 2+b 2)a 2=32, 即(a 2-b 2)(a 2+b 2)a 4=34,整理可得a =2b .又双曲线C 2的渐近线方程为bx ±ay =0, 所以bx ±2by =0,即x ±2y =0.答案:A10.解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴⎩⎨⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②,得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,即b 2a 2=-(y 1+y 2)(y 1-y 2)(x 1+x 2)(x 1-x 2), ∵AB 的中点为(1,-1), ∴y 1+y 2=-2,x 1+x 2=2, 而y 1-y 2x 1-x 2=k AB =0-(-1)3-1=12,∴b 2a 2=12. 又∵a 2-b 2=9, ∴a 2=18,b 2=9,∴椭圆E 的方程为x 218+y 29=1.故选D.答案:D11.解析:由题意可知所求双曲线的渐近线方程为y =±34x .答案:y =±34x12.解析:抛物线的准线方程为y =-p2,设A ,B 的横坐标分别为x A ,x B ,则|x A |2=|x B |2=3+p 42,所以|AB |=|2x A |.又焦点到准线的距离为p ,由等边三角形的特点得p =32|AB |,即p 2=34×4×⎝⎛⎭⎫3+p 42,所以p =6.答案:613.解析:如图所示.根据余弦定理|AF |2=|BF |2+|AB |2-2|AB |·|BF |cos ∠ABF ,即|BF |2-16|BF |+64=0,得|BF |=8.又|OF |2=|BF |2+|OB |2-2|OB |·|BF |cos ∠ABF ,得|OF |=5. 根据椭圆的对称性|AF |+|BF |=2a =14,得a =7. 又|OF |=c =5,故离心率e =57.答案:5714.解析:由双曲线方程可知,它的渐近线方程为y =b a x 与y =-ba x ,它们分别与x -3y +m =0联立方程组,解得A ⎝⎛⎭⎪⎫-am a -3b ,-bm a -3b ,B ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b .由|P A |=|PB |知,可设AB 的中点为Q ,则Q ⎝ ⎛⎭⎪⎪⎫-am a -3b +-am a +3b 2,-bm a -3b +bm a +3b 2,由PQ ⊥AB ,得k PQ ·k AB =-1, 解得2a 2=8b 2=8(c 2-a 2),即c 2a 2=54.故c a =52. 答案:5215.解析:设B 在x 轴上的射影为B 0,由题意得,|B 0F 1|=13|F 1F 2|=2c3,得B 0坐标为⎝⎛⎭⎫-5c 3,0,即B 点横坐标为-5c 3.设直线AB 的斜率为k ,又直线过点F 1(-c,0),∴直线AB 的方程为y =k (x +c ).由⎩⎪⎨⎪⎧y =k (x +c ),x 2+y 2b 2=1得(k 2+b 2)x 2+2ck 2x +k 2c 2-b 2=0,其两根为-5c3和c ,由韦达定理得⎩⎪⎨⎪⎧-53c +c =-2ck 2k 2+b 2,-53c ×c =k 2c 2-b2k 2+b2,解之,得c 2=13,∴b 2=1-c 2=23.∴椭圆方程为x 2+32y 2=1.答案:x 2+32y 2=116.分析:(1)利用椭圆的几何性质可得BF 2=a =2,再把点C 的坐标代入即可求出椭圆方程;(2)写出B ,F 2的坐标,用b ,c 表示直线AB 的方程,联立椭圆方程表示出点A 的坐标,利用点A 与点C 的对称性,表示出点C 的坐标,利用直线F 1C 的斜率及kF 1C ·k AB =-1建立a ,b ,c 的关系,再结合平方关系求离心率.解:设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ), 所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上, 所以169a 2+19b 2=1.解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2.因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc , 且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15.因此e =55. 17.分析:在第(1)问中,根据椭圆中a ,b ,c 的关系及题目给出的条件可知点M 的坐标,从而由斜率条件得出a ,c 的关系,再利用离心率公式可求得离心率,注意离心率的取值范围;在第(2)问中,根据题目条件,O 是F 1F 2的中点,MF 2∥y 轴,可得a ,b 之间的一个关系式,再根据条件|MN |=5|F 1N |,可得|DF 1|与|F 1N |的关系,然后可求出点N 的坐标,代入C 的方程,可得a ,b ,c 的另一关系式,最后利用a ,b ,c 的关系式可求得结论.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |, 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1,代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28,故a =7,b =27.18.分析:第(1)问求动点M 的轨迹C 的方程,就是找出动点M (x ,y )中x 与y 的关系,依据点M 到点F (1,0)的距离比它到y 轴距离多1建立等式|MF |=|x |+1,而|MF |可用两点间距离公式表示,化简整理可得轨迹C 的方程.而对于第(2)问,由于直线过定点(-2,1),可用点斜式得直线方程y -1=k (x +2),讨论直线l 与曲线C 公共点个数问题可转化为直线与曲线方程联立得到的方程组解的个数问题.由第(1)问知曲线C 的方程分为两段:一段是抛物线,一段为射线,而由直线与抛物线联立得到的是二次项含字母的方程,需对二次项系数以及根的判别式作出讨论,还要注意与抛物线联立后有解时x 的取值为非负这一条件.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1,化简整理得y 2=2(|x |+x ). 故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①ⅰ)当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. ⅱ)当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(a)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1,或k >12. 即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(b)若⎩⎪⎨⎪⎧ Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12,或-12≤k <0. 即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. (c)若⎩⎪⎨⎪⎧Δ>0,x 0<0, 由②③解得-1<k <-12,或0<k <12. 即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综合ⅰ,ⅱ可知,当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点; 当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点. 19.解:(1)依题意,设抛物线C 的方程为x 2=4cy , 由|0-c -2|2=322,结合c >0,解得c =1. 所以抛物线C 的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x , 设A (x 1,y 1),B (x 2,y 2)⎝⎛⎭⎫其中y 1=x 214,y 2=x 224, 则切线P A ,PB 的斜率分别为12x 1,12x 2, 所以切线P A 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0, 同理可得切线PB 的方程为x 2x -2y -2y 2=0. 因为切线P A ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0. 所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1.联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y , 消去x 整理得y 2+(2y 0-x 20)y +y 20=0.由一元二次方程根与系数的关系可得y 1+y 2=x 20-2y 0,y 1y 2=y 20,所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2.所以y 20+x 20-2y 0+1=2y 20+2y 0+5=2⎝⎛⎭⎫y 0+122+92. 所以当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.。

高中数学选修2-1第二章《圆锥曲线与方程》单元检测卷含解析

高中数学选修2-1第二章《圆锥曲线与方程》单元检测卷含解析

选修2-1第二章《圆锥曲线与方程》单元检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫a 2,0 B.⎝ ⎛⎭⎪⎫0,12a C.⎝ ⎛⎭⎪⎫a 4,0 D.⎝ ⎛⎭⎪⎫0,14a 4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( ) A .x 2+y 2=2 B .x 2+y 2=4C .x 2+y 2=2(x ≠±2) D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y 2b2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( ) A.22 B.12 C.2-12 D.347.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( ) A .2a +2m B .4a +2m C .a +m D .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0 C .-2或0 D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( ) A .5 6 B .6 5 C .10 2 D . 5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1± 512.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF ²2PF =0,则|1PF +2PF|等于( )A .3B .6C .1D .2第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为_ ___________.14.已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF=3FB,则k =________.15.已知抛物线y 2=2px (p >0),过点M (p,0)的直线与抛物线交于A 、B 两点,则OA ²OB =________.16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=_ _______. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18.(本小题满分12分)已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F 交椭圆于A 、B 两点,求弦AB 的长.19.( 本小题满分12分)已知两个定点A (-1,0)、B (2,0),求使∠MBA =2∠MAB 的点M 的轨迹方程.20.(本小题满分12分)已知点A (0,-2),B (0,4),动点P (x ,y )满足PA ²PB =y 2-8.(1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C 、D 两点.求证:OC ⊥OD (O 为原点).21.( 本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.22.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线y =14x 2的焦点,离心率为255. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于点M ,若MA =m FA ,MB =n FB,求m +n 的值.选修2-1第二章《圆锥曲线与方程》单元检测题参考答案【第5题解析】01.02.x y b y x a c ======∴==时,时,故选A.【第6题解析】2a =3+1=4.∴a =2,又∵c =m 2- m 2-1 =1,∴离心率e =c a =12.故选B.【第7题解析】∵A ,B 在双曲线的右支上,∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a ,|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a ,|BF 1|+|AF 1|=4a +m ,∴△ABF 1的周长为4a +m +m =4a +2m ..故选B. 【第8题解析】如图所示过点F 作FM 垂直于直线3x -4y +9=0,当P 点为直线FM 与抛物线的交点时,d 1+d 2最小值为|3+9|5=125.故选A. 【第9题解析】由题意B 为抛物线的焦点.令A 的横坐标为x 0,则|AB |=x 0+1=1,∴x 0=0.故选B.【第10题解析】由题得2,0|3,P p x y ∴=∴=±焦点的坐标为(),PM|=5,152PFM S ∆∴=⋅⋅=故选A. 【第11题解析】由⎩⎪⎨⎪⎧y =kx -2y 2=8x消去y 得,k 2x 2-4(k +2)x +4=0,故Δ=[-4(k +2)]2-4k 2³4=64(1+k )>0,解得k >-1,由x 1+x 2=4 k +2k2=4,解得k =-1或k =2,又k >-1,故k =2.故选C. 【第12题解析】因为PF 1→²PF 2→=0,所以PF 1→⊥PF 2→,则|PF 1→|2+|PF 2→|2=|F 1F 2|2=4c 2=36,故|PF 1→+PF 2→|2=|PF 1→|2+2PF 1→²PF 2→+|PF 2→|2=36,所以|PF 1→+PF 2→|=6.故选B.【第14题解析】设直线l 为抛物线的准线,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 1为垂足,过B 作BE 垂直于AA 1与E ,则|AA 1|=|AF |,|BB 1|=|BF |,由AF →=3FB ,∴cos ∠BAE =|AE ||AB |=12,∴∠BAE =60°,∴tan∠BAE = 3.即k = 3.故填 3.【第15题解析】直接取两个特殊点1212()(,)A p B p OA OB x x y y ∴⋅=+和, 222p p =-2p =-.故填-p 2.【第16题解析】设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,故|BF |=|AF |=2. 故填2. 【第17题答案】x 24-y 2=1.【第17题解析】由椭圆方程为x 29+y 24=1,知长半轴长a 1=3,短半轴长b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5c 2=a 2+b 2c a =52,解得⎩⎪⎨⎪⎧a =2b =1,故所求双曲线的方程为x 24-y 2=1.∴x 1+x 2=835,x 1x 2=85,∴|AB |= x 1-x 2 2+ y 1-y 2 2=1+1⎝ ⎛⎭⎪⎫8352-4³85=85. 【第19题答案】点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2). 【第19题解析】设动点M 的坐标为(x ,y ). 设∠MAB =β,∠MBA =α,即α=2β, ∴tan α=tan 2β,则tan α=2tan β1-tan 2β.① (1)如图(1),当点M 在x 轴上方时,tan β=y x +1,tan α=y2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y >0); (2)如图(2),当点M 在x 轴的下方时, tan β=-y x +1,tan α=-y2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y <0);(3)当点M 在x 轴上时,若满足α=2β,M 点只能在线段AB 上运动(端点A 、B 除外),只能有α=β=0. 综上所述,可知点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2). 【第20题答案】(1)x 2=2y ;(2)证明见解析. 【第20题解析】(1)解 ∵A (0,-2),B (0,4), ∴PA →=(-x ,-2-y ),PB →=(-x,4-y ).【第21题答案】(1)抛物线C 的方程为y 2=4x ,其准线方程为x =-1;(2)符合题意的直线l 存在,其方程为2x +y -1=0.【第21题解析】(1)将(1,-2)代入y 2=2px , 得(-2)2=2p ²1,所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t .由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 到l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以符合题意的直线l 存在,其方程为2x +y -1=0. 【第22题答案】(1)x 25+y 2=1;(2)m +n =10.【第22题解析】(1)设椭圆C 的方程为x 2a 2+y 2b2=1 (a >b >0).抛物线方程可化为x 2=4y ,其焦点为(0,1), 则椭圆C 的一个顶点为(0,1),即b =1.由e =c a=a 2-b 2a 2=255. 得a 2=5,所以椭圆C 的标准方程为x 25+y 2=1.FA = (x 1-2,y 1),FB=(x 2-2,y 2).∵MA →=m FA ,MB →=n FB ,∴m =x 1x 1-2,n =x 2x 2-2, ∴m +n =2x 1x 2-2 x 1+x 2 4-2 x 1+x 2 +x 1x 2,又2x 1x 2-2(x 1+x 2)=40k 2-10-40k21+5k 2=-101+5k 2,4-2(x 1+x 2)+x 1x 2=4-40k 21+5k 2+20k 2-51+5k 2=-11+5k 2,∴m +n =10.。

高中数学 第2章 圆锥曲线与方程章末综合检测(二) 湘教版高二选修2-1数学试题

高中数学 第2章 圆锥曲线与方程章末综合检测(二) 湘教版高二选修2-1数学试题

章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D.由题意知椭圆的焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 解析:选A.依题意得c =4,e =c a =4a=2,a =2,b 2=c 2-a 2=12,因此所求的双曲线的标准方程为x 24-y 212=1,故选A.3.若点P 到直线x =-1的距离比到点(2,0)的距离小1,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选D.点P 到直线x =-1的距离比到点(2,0)的距离小1,即点P 到直线x =-2的距离与到点(2,0)的距离相等,根据抛物线的定义可知,点P 的轨迹是抛物线.4.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A.15B.25C.45D.215解析:选B.根据椭圆定义可得4+2a =14,解得a =5,故其离心率e =c a =25,故选B.5.双曲线的两条渐近线的夹角为60°,则双曲线的离心率是( ) A .2或233B .2C.233D. 3解析:选A.不妨设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则渐近线方程为y =±bax .由题意,则ba =33或a b =33, 所以b 2a 2=13或a 2b 2=13,可以求得e =233或2.6.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C.点(2,0)为双曲线的右顶点,过该点有两条与双曲线的渐近线平行的直线,这两条直线与双曲线仅有一个公共点,另外,过该点且与x 轴垂直的直线也与双曲线只有一个公共点.所以共有3条.7.已知双曲线与椭圆x 216+y 264=1有共同的焦点,且双曲线的一条渐近线方程为x +y =0,则双曲线的方程为( )A .x 2-y 2=50 B .x 2-y 2=24 C .x 2-y 2=-50 D .x 2-y 2=-24解析:选D.因为双曲线与椭圆x 216+y 264=1有共同的焦点,所以双曲线的焦点在y 轴上,且焦点坐标为(0,-43),(0,43).又双曲线的一条渐近线方程为x +y =0,所以可设双曲线方程为y 2-x 2=λ(λ>0),则2λ=48,λ=24,故所求双曲线的方程为y 2-x 2=24,即x 2-y 2=-24.8.过抛物线y 2=8x 的焦点,作倾斜角为45°的直线,则被抛物线截得的弦长为( ) A .8 B .16 C .32D .64解析:选B.抛物线中2p =8,p =4,则焦点坐标为(2,0),过焦点且倾斜角为45°的直线方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,y 2=8x ,得x 2-12x +4=0, 则x 1+x 2=12(x 1,x 2为直线与抛物线两个交点的横坐标).从而弦长为x 1+x 2+p =12+4=16.9.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值X 围是( )A .m >1B .m ≥1或0<m <1C .m ≥1且m ≠5D .0<m <5且m ≠1解析:选C.直线y =kx +1过定点(0,1),只需该点落在椭圆内或椭圆上,所以025+1m ≤1,解得m ≥1,又m ≠5,故选C.10.已知点A (0,2),B (2,0).若点C 在抛物线x 2=y 的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1解析:选A.由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB ∶x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2,当x 2+x -2=2时,有两个不同的C 点;当x 2+x -2=-2时,亦有两个不同的C 点.因此满足条件的C 点有4个,故选A.11.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA |=2|FB |,则k 等于( )A.13B.23C.23D.223解析:选D.设A (x 1,y 1),B (x 2,y 2),易知x 1>0,x 2>0,y 1>0,y 2>0.由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x得k 2x 2+(4k 2-8)x +4k 2=0, 所以x 1x 2=4,①根据抛物线的定义得,|FA |=x 1+p2=x 1+2,|FB |=x 2+2.因为|FA |=2|FB |, 所以x 1=2x 2+2,②由①②得x 2=1(x 2=-2舍去),所以B (1,22),代入y =k (x +2)得k =223.12.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13 C .b 2=12D .b 2=2解析:选C.由题意,知a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,所以直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12. 二、填空题:本题共4小题,每小题5分.13.若椭圆x 2a 2+y 2b2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为________.解析:抛物线y 2=8x 的焦点坐标为(2,0), 双曲线x 2-y 2=1的焦点坐标为(±2,0)由题意得⎩⎪⎨⎪⎧a 2-b 2=2,4a2=1,所以a 2=4,b 2=2,所以椭圆的方程为x 24+y 22=1.答案:x 24+y 22=114.过直线y =2与抛物线x 2=8y 的两个交点,并且与抛物线的准线相切的圆的方程为________.解析:依题意,抛物线x 2=8y 的焦点(0,2)即为圆心,准线y =-2与圆相切,圆心到切线的距离等于半径,所以半径为2-(-2)=4,故圆的方程为x 2+(y -2)2=16.答案:x 2+(y -2)2=1615.已知双曲线中心在原点,一个顶点的坐标是(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程为________.解析:由题意得双曲线的焦点在x 轴上,且a =3,焦距与虚轴长之比为5∶4,即c ∶b =5∶4,又c 2=a 2+b 2,所以c =5,b =4,所以双曲线的标准方程为x 29-y 216=1.答案:x 29-y 216=116.如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上,则抛物线E 的方程为________.解析:依题意知,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在抛物线E :x 2=2py (p >0)上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .答案:x 2=4y三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知抛物线C :x 2=4y 的焦点为F ,椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32.求椭圆E 的方程. 解:因为椭圆焦点在x 轴上,所以设椭圆E 的方程为x 2a 2+y 2b 2=1,半焦距为c (a >0,b >0,c >0).由题意知F (0,1)为椭圆的短轴的上顶点, 所以b =1,又由c a =32,a 2=b 2+c 2, 得a =2,c = 3.所以椭圆E 的方程为x 24+y 2=1.18.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线的一个交点为P ⎝ ⎛⎭⎪⎫32,6,求抛物线的方程和双曲线的方程.解:依题意,设抛物线的方程为y 2=2px (p >0),因为点P ⎝ ⎛⎭⎪⎫32,6在抛物线上,所以6=2p ×32,所以p =2,所以所求抛物线的方程为y 2=4x .因为双曲线的左焦点在抛物线的准线x =-1上, 所以c =1,即a 2+b 2=1,又点P ⎝ ⎛⎭⎪⎫32,6在双曲线上,所以94a 2-6b 2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1得⎩⎪⎨⎪⎧a 2=14,b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8.(舍去) 所以所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分12分)已知点P (3,4)是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程; (2)△PF 1F 2的面积.解:(1)令F 1(-c ,0),F 2(c ,0), 则b 2=a 2-c 2.因为PF 1⊥PF 2,所以k PF 1·k PF 2=-1,即43+c ·43-c=-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1.因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1.解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去. 故所求椭圆的方程为x 245+y 220=1.(2)由椭圆定义知|PF 1|+|PF 2|=65,① 又|PF 1|2+|PF 2|2=|F 1F 2|2=100,② ①2-②,得2|PF 1|·|PF 2|=80, 所以S △PF 1F 2=12|PF 1|·|PF 2|=20.20.(本小题满分12分)如图,O 为坐标原点,过点P (2,0)且斜率为k 的直线l 交抛物线y 2=2x 于M (x 1,y 1),N (x 2,y 2)两点.(1)求x 1x 2与y 1y 2的值; (2)求证:OM ⊥ON .解:(1)设直线l 的方程为y =k (x -2)(k ≠0).① 由①及y 2=2x 消去y 可得k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1,x 2是方程②的两个根, 由根与系数的关系得x 1x 2=4k2k 2=4,由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16,又y 1y 2<0, 所以y 1y 2=-4.(2)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2,k 1k 2=y 1y 2x 1x 2=-44=-1, 所以OM ⊥ON .21.(本小题满分12分)设A (x 1,y 1),B (x 2,y 2)两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (2)当直线l 的斜率为2时,求l 在y 轴上的截距的取值X 围.解:(1)点F 在直线l 上⇒|FA |=|FB |⇒A ,B 两点到抛物线的准线的距离相等,因为抛物线的准线与x 轴平行,所以上述条件等价于y 1=y 2⇒x 21=x 22⇒(x 1+x 2)·(x 1-x 2)=0,因为x 1≠x 2,所以当且仅当x 1+x 2=0时,直线l 经过抛物线的焦点F .(2)设l 在y 轴上的截距为b ,依题意,得l 的方程为y =2x +b .则过点A ,B 的直线方程可设为y =-12x +m ,由⎩⎪⎨⎪⎧y =2x 2y =-12x +m ,化简得2x 2+12x -m =0, 所以x 1+x 2=-14.因为A ,B 为抛物线上不同的两点,所以上述方程的判别式Δ=14+8m >0,即m >-132.设AB 的中点N 的坐标为(x 0,y 0),则x 0=-18,y 0=-12x 0+m =116+m .又点N 在直线l上,所以116+m =-14+b ,于是b =516+m >516-132=932,所以l 在y 轴上的截距的取值X 围为⎝ ⎛⎭⎪⎫932,+∞.22.(本小题满分12分)如图,抛物线C 1:y 2=4x 的准线与x 轴交于点F 1,焦点为F 2.以F 1,F 2为焦点,离心率为12的椭圆记作C 2.(1)求椭圆的标准方程;(2)直线l 经过椭圆C 2的右焦点F 2,与抛物线C 1交于A 1,A 2两点,与椭圆C 2交于B 1,B 2两点,当以B 1B 2为直径的圆经过F 1时,求A 1A 2的长.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),依据题意得c =1,c a =12,则a =2,b 2=a 2-c 2=3, 故椭圆的标准方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时,B 1⎝ ⎛⎭⎪⎫1,-32,B 2⎝ ⎛⎭⎪⎫1,32, 又F 1(-1,0), 此时B 1F 1→·B 2F 1→≠0,所以以B 1B 2为直径的圆不经过F 1,不满足条件.当直线l 不与x 轴垂直时,设l :y =k (x -1),由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 因为焦点在椭圆内部,所以直线l 与椭圆恒有两个交点. 设B 1(x 1,y 1),B 2(x 2,y 2), 则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为以B 1B 2为直径的圆经过F 1, 所以B 1F 1→·B 2F 1→=0, 又F 1(-1,0),所以(-1-x 1)(-1-x 2)+y 1y 2=0,即(1+k 2)x 1x 2+(1-k 2)(x 1+x 2)+1+k 2=0, 解得k 2=97.由⎩⎪⎨⎪⎧y 2=4x y =k (x -1), 得k 2x 2-(2k 2+4)x +k 2=0. 设A 1(x 3,y 3),A 2(x 4,y 4), 则x 3+x 4=2k 2+4k 2=2+4k2,x 3x 4=1,所以|A 1A 2|=x 3+x 4+2=2+4k 2+2=649.。

选修2-1第二章圆锥曲线与方程测试(含解析答案)

选修2-1第二章圆锥曲线与方程测试(含解析答案)

第二章圆锥曲线与方程单元综合测试班别: 姓名: 成绩:一、选择题(每小题5分,共60分) 1.椭圆x 2+4y 2=1的离心率为( )A.32B.34C.22D.232.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( )A .-1B .1C .-1020D.1023.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12)4.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线5.已知两定点F 1(-1,0),F 2(1,0),且12|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .线段6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB | 为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2 D .37.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 8.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( )A .x -2y =0B .x +2y -4=0C .2x +3y +4=0D .x +2y -8=0 9.过椭圆x 24+y 22=1的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴 上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( )A.12B.22C.62D.3210.双曲线x 2m -y 2n =1(mn ≠0)有一个焦点与抛物线y 2=4x 的焦点重合,则m +n 的值为( )A .3B .2C .1D .以上都不对11.设F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b <0)的左、右焦点,点P 在双曲线上,若 PF 1→·PF 2→=0,且|PF 1→|·|PF 2→|=2ac (c =a 2+b 2),则双曲线的离心率为( ) A.1+52 B.1+32 C .2 D.1+2212.已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线右支上的任意 一点,若|PF 1|2|PF 2|的最小值为8a ,则双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2]C .(1,3]D .(1,3] 二、填空题(每小题5分,共20分)13.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是.14.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=__________, ∠F 1PF 2的大小为________.15.已知F 1、F 2是椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 是椭圆上任意一点,从F 1引∠F 1PF 2的外角平分线的垂线,交F 2P 的延长线于M ,则点M 的轨迹方程是 . 16.过抛物线y 2=4x 的焦点,作倾斜角为3π4的直线交抛物线于P ,Q 两点,O 为坐标原点,则△POQ 的面积等于__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共60分)17.(10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18、(12分)知抛物线xy42 ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.19.(12分)已知双曲线中心在原点,且一个焦点为(7,0),直线y=x-1与其相交于M,N两点,MN的中点的横坐标为-23,求此双曲线的方程.20.(12分)已知A (2,0)、B (-2,0)两点,动点P 在y 轴上的射影为Q ,P A →·PB→=2PQ →2.(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0<k <1时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标.21.(14分)已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13. (1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.第二章圆锥曲线与方程单元综合测试参考答案一、选择题(每小题5分,共60分)1.A 解析:∵a =1,b =12,∴c =a 2-b 2=32,∴e =c a =32,故选A.2.A 解析 把方程化为标准形式-x 2-1m +y 2-3m=1,则a 2=-3m ,b 2=-1m ,∴c 2=a 2+b 2=-4m =4,∴m =-1.3.B 解析:∵a 2=4,b 2=-k ,∴c 2=4-k .∵e ∈(1,2),∴c 2a 2=4-k4∈(1,4),k ∈(-12,0).4.D 解析:设M (2,0),由题设可知,把直线x =-1向左平移一个单位即为直线x =-2, 则点P 到直线x =-2的距离等于|PM |,所以动点P 的轨迹为抛物线,故选D. 5.D 解析:依题意知|PF 1|+|PF 2|=|F 1F 2|=2,作图可知点P 的轨迹为线段,故选D. 6.B 解析:不妨设双曲线C 为x 2a 2-y 2b 2=1(a >0,b >0),并设l 过F 2(c,0)且垂直于x 轴,则 易求得|AB |=2b 2a ,∴2b 2a =2×2a ,b 2=2a 2,∴离心率e =ca =1+b 2a 2=3,故选B.7.B 解析:由定义|AB |=5+2=7,∵|AB |min =4,∴这样的直线有且仅有两条.8.D 解析:设l 与椭圆的两交点分别为(x 1,y 1)、(x 2,y 2),则得y 21-y 22x 21-x 22=-936,所以y 1-y 2x 1-x 2=-12.故方程为y -2=-12(x -4),即x +2y -8=0.9.C 解析:A (2,1),B (2,-1),设双曲线为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,因为A 、B 在渐近线上,所以1=b a ·2,b a =22,e =ca =a 2+b 2a 2=62.10.C 解析:抛物线y 2=4x 的焦点为F (1,0),故双曲线x 2m -y 2n =1中m >0,n >0,且m +n =c 2=1.11.A 解析:由PF 1→·PF 2→=0可知△PF 1F 2为直角三角形,则由勾股定理,得 |PF 1→|2+|PF 2→|2=4c 2,① 由双曲线的定义,得(|PF 1→|-|PF 2→|)2=4a 2,② 又|PF 1→|·|PF 2→|=2ac ,③ 由①②③得c 2-ac -a 2=0,即e 2-e -1=0, 解得e =1+52或e =1-52(舍去). 12.D 解析:|PF 1|2|PF 2|=2a +|PF 2|2|PF 2|=4a 2|PF 2|+|PF 2|+4a ≥4a +4a =8a ,当且仅当4a 2|PF 2|=|PF 2|,即|PF 2|=2a 时取等号.这时|PF 1|=4a .由|PF 1|+|PF 2|≥|F 1F 2|,得6a ≥2c ,即e =ca ≤3, 得e ∈(1,3],故选D. 二、填空题(每小题5分,共20分)13.x 29-y 2=1 解析:由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是 (10,0),知a 2+b 2=10,因此a =3,b =1,故双曲线的方程是x 29-y 2=1.14.2;120° 解析:由椭圆的定义知|PF 1|+|PF 2|=2a =2×3=6,因为|PF 1|=4,所以|PF 2|=2.在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.15.(x -a 2-b 2)2+y 2=4a 2 解析:由题意知|MP |=|F 1P |,∴|PF 1|+|PF 2|=|MF 2|=2a .∴点M 到点F 2的距离为定值2a .∴点M 的轨迹是以点F 2为圆心,以2a 为半径的圆,其方程为(x -a 2-b 2)2+y 2=4a 2.16.2 2 解析 设P (x 1,y 1),Q (x 2,y 2),F 为抛物线焦点,由2(1)4y x y x=--⎧⎨=⎩,得y 2+4y -4=0,∴|y 1-y 2|=()()221212444442y y y y +-=-+⨯=∴S △POQ =12|OF ||y 1-y 2|=2 2. 三、解答题17.解:由椭圆方程x 29+y 24=1,知长半轴a 1=3,短半轴b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5,c 2=a 2+b 2,c a =52,解得⎩⎨⎧a =2,b =1.故所求双曲线的方程为x 24-y 2=1. (10分)18. [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=y y x x 21222,又Q 是OP 的中点 ∴ ⎪⎪⎩⎪⎪⎨⎧==221212y y x x ⇒⎩⎨⎧==-==yy y x x x 422422121,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y . (12分)19.解:设双曲线方程为x 2a 2-y2b 2=1(a >0,b >0),依题意c =7,∴方程可以化为x 2a 2-y 27-a 2=1,由⎩⎪⎨⎪⎧x2a 2-y 27-a 2=1,y =x -1,得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2a 27-2a 2,∵x 1+x 22=-23,∴-a 27-2a 2=-23,解得a 2=2. ∴双曲线的方程为x 22-y 25=1. (12分)20.解:(1)设动点P 的坐标为(x ,y ),则点Q (0,y ),PQ →=(-x,0),P A →=(2-x ,-y ), PB →=(-2-x ,-y ),P A →·PB→=x 2-2+y 2.① ②∵P A →·PB →=2PQ →2,∴x 2-2+y 2=2x 2, 即动点P 的轨迹方程为y 2-x 2=2. (2)设直线m :y =k (x -2)(0<k <1),依题意,点C 在与直线m 平行且与m 之间的距离为2的直线上,设此直线为 m 1:y =kx +b . 由|2k +b |k 2+1=2,即b 2+22kb =2.① 把y =kx +b 代入y 2-x 2=2,整理,得(k 2-1)x 2+2kbx +(b 2-2)=0, 则Δ=4k 2b 2-4(k 2-1)(b 2-2)=0,即b 2+2k 2=2.② 由①②,得k =255,b =105. 此时,由方程组⎩⎨⎧y =255x +105,y 2-x 2=2,解得⎩⎨⎧x =22,y =10,即C (22,10).(12分)21. [解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0), 2a >2c =22,∴a > 2由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2. 此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2-1=-13,解得a 2=3,123222=-=-=∴c a b∴P 点的轨迹方程为x 23+y 2=1.(2)设l :y =kx +m (k ≠0),则由 ⎪⎩⎪⎨⎧+==+m kx y y x 1322 将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*)设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m1+3k 2 即Q (-3km 1+3k 2,m1+3k 2) ∵|MA |=|MB |,∴M 在AB 的中垂线上,∴k l k AB =k ·m1+3k 2+1-3km 1+3k 2=-1 ,解得m =1+3k 22 …③又由于(*)式有两个实数根,知△>0,即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得12[1+3k 2-(1+3k 22)2]>0,解得-1<k <1,由k ≠0, ∴k 的取值范围是k ∈(-1,0)∪(0,1). (14分)。

高二年级数学选修2_1第二章《圆锥曲线》检测试题整理

高二年级数学选修2_1第二章《圆锥曲线》检测试题整理

圆锥曲线一.选择题:本大题共8题,每小题5分,共40分。

请将答案写在括号里。

1、已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <22、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是( )A B C D3、设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能 4、椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么P 点到椭圆的右焦点的距离是( )A.15B.10C.12D.85、双曲线1322=-y x 的两条渐近线所成的锐角是 ( )A.30°B.45°C.60°D.75°6、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有( ) A.123FP FP FP += B.222123FP FP FP += C.2132FP FP FP =+D.2213FP FP FP =·7、双曲线22a x -22by =1的两条渐近线互相垂直,那么它的离心率为( )A. 2B.3C. 2D.238、过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .10二、选择题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9、设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是 。

2019年高中数学第二章圆锥曲线与方程章末检测新人教A版选修2-1

2019年高中数学第二章圆锥曲线与方程章末检测新人教A版选修2-1

章末检测(二) 圆锥曲线与方程时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.双曲线x 23-y 26=1的右焦点到渐近线的距离是( )A. 3 B . 6 C .3D .6解析:双曲线的焦点到渐近线的距离等于b ,即b = 6. 答案:B2.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于( ) A .4 B .6 C .7D .8解析:由渐近线方程y =32x ,且b =3,得a =2,由双曲线的定义,得|PF 2|-|PF 1|=4,又|PF 1|=3,∴|PF 2|=7. 答案:C3.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对解析:(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.⎩⎪⎨⎪⎧x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.答案:C4.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6 B .5 C .4D .3解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6. 答案:A5.已知椭圆x2a 2+y22=1的一个焦点为(2,0),则椭圆的方程是( )A.x 24+y 22=1 B.x 23+y 22=1 C .x 2+y 22=1D.x 26+y 22=1 解析:由题意知,椭圆焦点在x 轴上,且c =2, ∴a 2=2+4=6,因此椭圆方程为x 26+y 22=1,故选D.答案:D6.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆解析:由条件知|PM |=|PF |,∴|PO |+|PF |=|PO |+|PM |=|OM |=k >|OF |, ∴P 点的轨迹是以O ,F 为焦点的椭圆. 答案:A7.从抛物线y 2=4x 上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F , 且|PF |=5,则△MPF 的面积为( ) A .5 6 B.2534C .20D .10解析:由题意,设P ⎝ ⎛⎭⎪⎫y 204,y 0,则|PF |=|PM |=y 204+1=5,所以y 0=±4, 所以S △MPF =12|PM |·|y 0|=10.答案:D8.椭圆x 24+y 23=1的离心率为e ,点(1,e )是圆x 2+y 2-4x -4y +4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x +2y -4=0B .4x +6y -7=0C .3x -2y -2=0D .4x -6y -1=0解析:依题意得e =12,圆心坐标为(2,2),圆心(2,2)与点⎝ ⎛⎭⎪⎫1,12的连线的斜率为2-122-1=32,所求直线的斜率等于-23,所以所求直线方程是y -12=-23(x -1),即4x +6y -7=0,选B.答案:B9.已知定点A (2,0),它与抛物线y 2=x 上的动点P 连线的中点M 的轨迹方程为( ) A .y 2=2(x -1) B .y 2=4(x -1) C .y 2=x -1D .y 2=12(x -1)解析:设P (x 0,y 0),M (x ,y ),则⎩⎪⎨⎪⎧x =x 0+22y =y2,所以⎩⎪⎨⎪⎧x 0=2x -2y 0=2y,由于y 20=x 0,所以4y 2=2x -2,即y 2=12(x -1).答案:D10.设F 1,F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值等于( ) A .0 B .2C .4D .-2解析:易知当P ,Q 分别在椭圆短轴端点时, 四边形PF 1QF 2的面积最大.此时,F 1(-3,0),F 2(3,0),P (0,1), ∴PF 1→=(-3,-1),PF 2→=(3,-1), ∴PF 1→·PF 2→=-2. 答案:D11.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为( ) A .2 B .3 C.52D.32解析:由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知当|AB |为通径,即|AB |=2p =4时,为最小值,所以|AC |+|BD |的最小值为2. 答案:A12.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫14,94B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫0,12 解析:由题意:B ⎝ ⎛⎭⎪⎫c ,b 2a ,∴k =b 2ac +a =a -c a =1-e ,∴13<1-e <12,∴12<e <23,故选C. 答案:C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.已知F 1(-1,0),F 2(1,0)是椭圆x 2a 2+y 2b 2=1的两个焦点,若椭圆上一点P 满足|PF 1|+|PF 2|=4,则椭圆的离心率e =________.解析:由椭圆定义得|PF 1|+|PF 2|=4,所以2a =4,解得a =2,又c =1,所以e =c a =12.答案:1214.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点, 若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 解析:由双曲线的方程可知a =1,c =2, ∴||PF 1|-|PF 2||=2a =2, ∴|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4, ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=(2c )2=8, ∴2|PF 1||PF 2|=4,∴(|PF 1|+|PF 2|)2=8+4=12, ∴|PF 1|+|PF 2|=2 3. 答案:2 315.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A ,B 两点(点A 在y 轴左侧),则|AF ||FB |=________.解析:由题意可得焦点F ⎝ ⎛⎭⎪⎫0,p 2,故直线AB 的方程为y =33x +p 2,与x 2=2py 联立得A ,B 两点的横坐标为x A =-33p ,x B =3p ,故A ⎝ ⎛⎭⎪⎫-33p ,16p ,B ⎝⎛⎭⎪⎫3p ,32p ,所以|AF |=23p ,|BF |=2p ,所以|AF ||BF |=13.答案:1316. 已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1, 则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点). 答案:x 24+y 23=1(y ≠0)三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(12分)如果直线l 过定点M (1,2)且与抛物线y =2x 2有且只有一个公共点,求直线l 的方程.解析:①当直线l 的斜率不存在时,x =1与对称轴平行,有一个交点;②当直线l 的斜率存在时,设直线方程为y -2=k (x -1),与y =2x 2联立,得2x 2-kx +k -2=0, 由Δ=k 2-8(k -2)=0得k =4, 所以直线l 的方程为y =4x -2.综上,直线l 的方程为x =1或y =4x -2.18.(12分)已知双曲线的中心在原点,过右焦点F (2, 0)作斜率为 35的直线,交双曲线于M ,N 两点,且|MN |=4,求双曲线方程.解析:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由右焦点为F (2,0)知c =2,b 2=4-a 2,则双曲线方程为x 2a 2-y 24-a 2=1.直线MN 的方程为:y =35(x -2),代入双曲线方程整理,得 (20-8a 2)x 2+12a 2x +5a 4-32a 2=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-12a 220-8a 2,x 1x 2=5a 4-32a220-8a 2.∴|MN |=1+⎝⎛⎭⎪⎫352×x 1+x 22-4x 1x 2=85× ⎝ ⎛⎭⎪⎫-12a 220-8a 22-4·5a 4-32a 220-8a 2=4. 解得:a 2=1,∴b 2=4-1=3. 故所求双曲线方程为:x 2-y 23=1. 19.(12分)已知抛物线的顶点在原点,焦点F 在x 轴正半轴上,且过点P (2,2),过F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.(1)求抛物线的方程;(2)设直线l 是抛物线的准线,求证:以AB 为直径的圆与准线l 相切. 解析:(1)设抛物线y 2=2px (p >0),将点(2,2)代入得p =1. ∴y 2=2x 为所求抛物线的方程.(2)证明:设l AB 的方程为:x =ty +12,代入y 2=2x 得:x 2-(1+2t 2)x +14=0,设AB 的中点为M (x 0,y 0),则x 0=1+2t 22.∴点M 到准线l 的距离d =x 0+12=1+2t 22+12=1+t 2,又AB =x 1+x 2+p =1+2t 2+1=2+2t 2,∴d =12AB ,故以AB为直径的圆与准线l 相切.20.(12分)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.解析:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0.因为x 1>0,x 2>0,2p >0,所以x 1=x 2,由此可得|y 1|=|y 2|,即点A ,B 关于x轴对称.由此得∠AOx =30°,所以y 1=33x 1,与y 21=2px 1联立,解得y 1=23p .所以|AB |=2y 1=43p .21.(13分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点F 到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.解析:(1)依题意,可设椭圆方程为x 2a2+y 2=1,则右焦点为F (a 2-1,0).由题意,知|a 2-1+22|2=3,解得a 2=3.故所求椭圆的方程为x 23+y 2=1.(2)设点M ,N 的坐标分别为M (x M ,y M ),N (x N ,y N ),弦MN 的中点为P (x P ,y P ).由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0.∵直线y =kx +m (k ≠0)与椭圆相交于不同的两点, ∴Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1, ①∴x P =x M +x N2=-3mk3k 2+1, 从而y P =kx P +m =m3k 2+1,∴k AP =y P +1x P =-m +3k 2+13mk. 又|AM |=|AN |, ∴AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1,②把②代入①,得m 2<2m ,解得0<m <2. 由②,得k 2=2m -13>0,解得m >12.综上可得,m 的取值范围是12<m <2.点P⎝ ⎛⎭⎪⎫1,32在椭圆E 22.(13分)已知椭圆E 的方程为:x 2a 2+y 2b2=1(a >b >0),其右焦点为F 2(1,0),上.(1)求椭圆E 的方程;(2)过椭圆E 的左顶点A 作两条互相垂直的直线分别与椭圆E 交于(不同于点A 的)两点M ,N .问:直线MN 是否一定经过x 轴上一定点?若是,求出定点坐标;若不是,说明理由.解析:(1)∵椭圆E 的右焦点为F 2(1,0),∴c =1,左焦点为F 1(-1,0),∵点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上. ∴2a =|PF 1|+|PF 2| =+2+⎝ ⎛⎭⎪⎫322+-2+⎝ ⎛⎭⎪⎫322=4. ∴a =2,b =a 2-c 2= 3. ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)知A 点坐标为(-2,0),设直线AM 的方程为y =k (x +2),则由⎩⎪⎨⎪⎧y =k x +3x 2+4y 2=12⇒(3+4k 2)x 2+16k 2x +16k 2-12=0,解得M ⎝ ⎛⎭⎪⎫6-8k 23+4k 2,12k 3+4k 2, 同理可得N ⎝ ⎛⎭⎪⎫6k 2-83k 2+4,-12k 3k 2+4. 若6-8k 23+4k 2=6k 2-83k 2+4,则得k 2=1,即直线MN 的方程为x =-27,此时过x 轴上一点Q ⎝ ⎛⎭⎪⎫-27,0.当k 2≠1时,假设直线MN 过x 轴上一定点Q ′(m,0),则Q ′M →∥NQ ′→,又Q ′M →=⎝ ⎛⎭⎪⎫6-8k 23+4k2-m ,12k 3+4k 2,NQ ′→=⎝ ⎛⎭⎪⎫m -6k 2-83k 2+4,12k 3k 2+4, 则由Q ′M →∥NQ ′→,解得m =-27.∴直线MN 过x 轴上一定点Q ⎝ ⎛⎭⎪⎫-27,0.。

高中数学选修2-1章末检测卷3:第二章 圆锥曲线与方程

高中数学选修2-1章末检测卷3:第二章 圆锥曲线与方程

第二章综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·四川文,5)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .23 B .2C. 3 D .1 [[答案]] D[[解析]] 由y 2=8x 可得其焦点坐标(2,0),根据点到直线的距离公式可得d =|2-3×0|12+-32=1.2.已知椭圆x 2a 2+y 225=1(a >5)的两个焦点为F 1、F 2,且|F 1F 2|=8,弦AB 经过焦点F 1,则△ABF 2的周长为( )A .10B .20C .241D .441 [[答案]] D[[解析]] 由椭圆定义可知,有|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,∴△ABF 2的周长L =|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a . 由题意可知b 2=25,2c =8,∴c 2=16a 2=25+16=41,∴a =41,∴L =441,故选D. 3.椭圆x 2m 2+y 23-m =1的一个焦点为(0,1),则m =( )A .1 B.-1±172C .-2或1 D .-2或1或-1±172[[答案]] C[[解析]] ∵焦点在y 轴上,∴3-m >m 2.由3-m -m 2=1得m =1或-2,∴选C.4.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22xD .y =±12x[[答案]] C[[解析]] ∵2b =2,2c =23,∴b =1,c =3,∴a 2=c 2-b 2=3-1=2,∴a =2,故渐近方程为y =±b a x =±22x .5.(2013·天津理,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2 D .3[[答案]] C[[解析]] ∵e =2,∴b 2=3a 2,双曲线的两条渐近线方程为y =±3x ,不妨设A =(-p 2,3p2),B (-p 2,-3p 2),则AB =3p ,又三角形的高为p 2,则S △AOB =12×p 2×3p =3,即p 2=4,又p >0,∴p =2.6.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b 2=1的离心率,则lg e 1+lg e 2( )A .大于0且小于1B .大于1C .小于0D .等于1 [[答案]] C[[解析]] ∵lg e 1+lg e 2=lg a 2-b 2a +lg a 2+b 2a =lg a 4-b 4a 2<lg a 2a 2=lg1=0,∴lg e 1+lg e 2<0.7.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1D.x 28-y 24=1 [[答案]] B[[解析]] 依题意有⎩⎪⎨⎪⎧a =22a +2b =2·2c a 2+b 2=c 2,解得a =2,b =2.又焦点在y 轴上,∴双曲线的标准方程为y 24-x 24=1.8.已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .双曲线的一支D .抛物线 [[答案]] A[[解析]] 由题意知,|QF 1|=|QP |+|PF 1|=|PF 2|+|PF 1|=2a .(2a 为椭圆长轴长), ∴Q 点轨迹是以F 1为圆心,2a 为半径的圆.9.(2013·新课标Ⅱ理,11)设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[[答案]] C[[解析]] 由已知F (34p,0),A (0,2),M (y 203p ,y 0),∵AF ⊥AM ,∴k AF ·k AM =-1,即2-34p ×2-y 0-y 203p=-1,∴y 20-8y 0+16=0,∴y 0=4,∴M (163p ,4), ∵|MF |=5,∴5=34p -163p2+16,∴(34p -163p)2=9. ∴3p 4-163p =3或3p 4-163p =-3,∴9p 2-36p -64=0,① 或9p 2+36p -64=0,由①得∴p =-43(舍),p =163.由②得p =43(p =-163舍),∴c 的方程为y 2=4x 或y 2=16x .10.已知θ∈R ,则方程x 2+y 2cos θ=4表示的曲线不可能是( ) A .抛物线 B .双曲线C .椭圆 D .圆 [[答案]] A[[解析]] 当θ=0时,cos θ=1,方程表示圆; 当θ=π3时,cos θ=12,方程表示椭圆;当θ=2π3时,cos θ=-12,方程表示双曲线,故选A.11.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口的直径为60 cm ,灯深40 cm ,则抛物线的标准方程可能是( ) A .y 2=254x B .y 2=454x C .x 2=-452y D .x 2=-454y[[答案]] C[[解析]] 如果设抛物线的方程为y 2=2px (p >0),则抛物线过点(40,30),302=2p ×40,2p =452,所以抛物线的方程应为y 2=452x ,所给选项中没有y 2=452x ,但方程x 2=-452y 中的“2p ”的值为452,所以选项C 符合题意. 12.(2013·新课标Ⅰ理,10)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1 [[答案]] D[[解析]] 设A 点坐标的(x 1,y 1),B 点坐标为(x 2,y 2),∴⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1.两式相减得,x 21-x 22a 2=y 22-y 21b2,即x 1-x 2x 1+x 2a2=y 2-y 1y 2+y 1b2,∵x 1+x 2=2,y 1+y 2=-2,∴k =y 2-y 1x 2-x 1=b 2a 2,又∵k =-1-01-3=12,∴b 2a 2=12,又∵c 2=a 2-b 2=2b 2-b 2=b 2,c 2=9,∴b 2=9,a 2=18,即标准方程为x 218+y 29=1,故选D.二、填空题(本大题共4个小题,每小题4分,共16分,把正确[答案]填在题中横线上) 13.椭圆x 24+y 23=1的两焦点为F 1、F 2点P 在椭圆上,使∠F 1PF 2=90°的点P 有________个.[[答案]] 0[[解析]] 设a >b >0,c =a 2-b 2,以O 为圆心,以c 为半径画圆;当c <b 时,圆与椭圆无公共点,此时椭圆上无满足要求的点;当c =b 时,圆与椭圆切于短轴的两个端点,此时满足要求的点有两个,即椭圆短轴两个端点;当c >b 时,椭圆与圆有四个交点,此时满足条件的点有这四个点,这里a 2=4,b 2=3,∴c =1,b =3,因此这样的点P 不存在. 14.已知双曲线x 2-y 2b 2=1(b >0)的一条渐近线的方程为y =2x ,则b =________. [[答案]] 2[[解析]] ∵双曲线的焦点在x 轴上,∴b a =2,∴b 2a 2=4,∴b 2=4,又∵b >0,∴b =2.15.(2013·辽宁理,15)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.[[答案]] 57[[解析]] 本题考查椭圆的几何性质,解三角形问题. 在△ABF 中,由余弦定理得,cos ∠ABF =|AB |2+|BF |2-|AF |22|AB |·|BF |,∴|BF |2-16|BF |+64=0,∴|BF |=8,设右焦点为F 1,因为直线过原点,∴|BF 1|=|AF |=6,∴2a =|BF |+|BF 1|=14,∴a =7, ∵O 为Rt △ABF 斜边AB 的中点,∴|OF |=12|AB |=5,∴c =5,∴e =57.16.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是________(写出所有正确命题的序号). [[答案]] ③④[[解析]] 显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线;而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故③④为真命题.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)若已知椭圆x 210+y 2m =1与双曲线x 2-y 2b =1有相同的焦点,又椭圆与双曲线交于点P (103,y ),求椭圆及双曲线的方程. [[解析]] 由椭圆与双曲线有相同的焦点得10-m =1+b ,即m =9-b ① 又点P (103,y )在椭圆、双曲线上,得y 2=89m ,②y 2=b 9.③ 解由①、②、③组成的方程组得m =1,b =8, ∴椭圆方程为x 210+y 2=1,双曲线方程为x 2-y 28=1.18.(本小题满分12分)求以直线x +2y =0为渐近线,且截直线x -y -3=0所得弦长为833的双曲线的标准方程.[[解析]] 由于双曲线渐近线方程为x +2y =0,故可设双曲线方程为x 2-4y 2=λ(λ≠0). 设直线x -y -3=0与双曲线的交点为A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧x -y -3=0,x 2-4y 2=λ.消去y ,整理得3x 2-24x +36+λ=0. 由Δ=242-12(36+λ)>0,解得λ<12.由根与系数关系可得⎩⎪⎨⎪⎧x 1+x 2=8,x 1·x 2=36+λ3.代入弦长公式中, |AB |=2|x 1-x 2|=2·x 1+x 22-4x 1x 2=2·82-4×36+λ3=812-λ3, 于是812-λ3=833,解得λ=4(与λ<12符合).故所求的双曲线方程为x 24-y 2=1.19.(本小题满分12分)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.[[解析]] (1)直线AB 的方程是y =22(x -p2),与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,方程4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42). 设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.20.(本小题满分12分)(2013·新课标Ⅰ文,21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.[[解析]] (1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程式为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP ||QM |=Rr 1,可求出Q (-4,0),所以可设l :y =k (x +4),由l 与圆M 相切得|3k |1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1并整理得,7x 2+8x -8=0,解得x 1,2=-4±627.所以|AB |=1+k 2|x 2-x 1|=187. 当k =-24时,由图形的对称性可知|AB |=187.综上,|AB |=23或|AB |=187. 21.(本小题满分12分)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,一条渐近线方程为y =x ,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在此双曲线上,求MF 1→·MF 2→. [[解析]] (1)由题意知双曲线的方程是标准方程.∵双曲线的一条渐近线方程为y =x ,∴设双曲线方程为x 2-y 2=λ. 把点(4,-10)代入双曲线方程得,λ=6.∴所求双曲线方程为x 2-y 2=6. (2)双曲线的焦点为F 1(-23,0)、F 2(23,0). ∵M 点在双曲线上,∴32-m 2=6,m 2=3. ∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=0.22.(本小题满分14分)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由. [[解析]] (1)设椭圆的方程x 2a 2+y 2b 2=1(a >b >0),∵F (2,0)是椭圆的右焦点,且椭圆过点A (2,3),∴⎩⎪⎨⎪⎧ c =2,2a =3+5=8,∴⎩⎪⎨⎪⎧c =2,a =4.∵a 2=b 2+c 2, ∴b 2=12,故椭圆方程为x 216+y 212=1. (2)假设存在符合题意的直线l ,其方程y =32x +t .由⎩⎨⎧y =32x +t ,x 216+y 212=1.消去y ,得3x 2+3tx +t 2-12=0.∵直线l 与椭圆有公共点,∴Δ=(3t )2-12(t 2-12)≥0,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离等于4,可得,|t|94+1=4,∴t=±213.由于±213∉[-43,43],故符合题意的直线l不存在.。

2018版高中数学 第二章 圆锥曲线与方程章末检测卷 新人教A版选修2-1

2018版高中数学 第二章 圆锥曲线与方程章末检测卷 新人教A版选修2-1

第二章 圆锥曲线与方程章末检测卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A.22B.21C.20D.13 答案 A解析 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22.2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎪⎫22,0 B.⎝ ⎛⎭⎪⎫52,0 C.⎝ ⎛⎭⎪⎫62,0 D.(3,0) 答案 C解析 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32, ∴c =62, 故右焦点坐标为⎝ ⎛⎭⎪⎫62,0.3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长是实轴长的2倍,则该双曲线的一条渐近线方程为( )A.y =14xB.y =4xC.y =12x D.y =2x答案 D解析 根据题意,有b =2a ,则ba=2, 故其中一条渐近线方程为y =2x , 故选D.4.设F 1和F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是等边三角形的三个顶点,则双曲线的离心率为( ) A.32 B.2 C.52D.3答案 B解析 由tan π6=c 2b =33,有3c 2=4b 2=4(c 2-a 2),则e =c a =2,故选B.5.双曲线x 213-y 23=1的渐近线与圆(x -4)2+y 2=r 2(r >0)相切,则r 的值为( ) A.4 B.3 C.2 D. 3 答案 D解析 因为双曲线的渐近线为y =±313x ,即3x ±13y =0,已知圆的圆心为(4,0),利用直线与圆相切, 得到d =|43±0|3+13=3=r ,故r =3,故选D.6.若抛物线x 2=2py 的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A.4B.2C.-4D.-2 答案 D解析 椭圆x 23+y 24=1的下焦点为(0,-1),即为抛物线x 2=2py 的焦点,∴p2=-1,∴p =-2. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的左,右焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 答案 A解析 由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 8.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则这样的直线l 有( )A.1条B.2条C.3条D.4条 答案 C解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有2条,若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有1条,所以满足条件的直线有3条.9.已知双曲线x 2a -y 24=1的渐近线方程为y =±233x ,则此双曲线的离心率是( )A.72 B.133 C.53 D.213答案 D解析 ∵双曲线x 2a -y 24=1的渐近线方程为y =±2ax ,则2a =233,即4a =43,∴a =3,半焦距c =3+4=7,∴e =73=213,故选D. 10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点(-c ,0)和(c ,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( ) A.33 B.22 C.14 D.12答案 D解析 由题意可得⎩⎪⎨⎪⎧c 2=m 2+n 2,c 2=am ,2n 2=2m 2+c 2,解得c 2a 2=14,∴e =c a =12.11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A.2 B.3 C.6 D.8 答案 C解析 由椭圆方程得F (-1,0),设P (x 0,y 0), 则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20. ∵P 为椭圆上一点,∴x 204+y 203=1.∴OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2.∵-2≤x 0≤2,∴OP →·FP →的最大值在x 0=2时取得,且最大值等于6.12.已知抛物线y 2=x ,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 的面积之和的最小值是( ) A.2 B.3 C.1728 D.10答案 B解析 如图,可设A (m 2,m ),B (n 2,n ),其中m >0,n <0,则OA →=(m 2,m ),OB →=(n 2,n ),OA →·OB →=m 2n 2+mn =2, 解得mn =1(舍)或mn =-2.∴l AB :(m 2-n 2)(y -n )=(m -n )·(x -n 2), 即(m +n )(y -n )=x -n 2, 令y =0, 解得x =-mn =2,∴C (2,0),点C 为直线AB 与x 轴的交点.S △AOB =S △AOC +S △BOC =12×2×m +12×2×(-n )=m -n ,S △AOF =12×14×m =18m ,则S △AOB +S △AOF =m -n +18m =98m -n =98m +2m≥298m ·2m=3, 当且仅当98m =2m ,即m =43时等号成立.故△ABO 与△AFO 的面积之和的最小值为3.二、填空题(本大题共4小题,每小题5分,共20分)13.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,|AF |=2,则|BF |=____. 答案 2解析 设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2, ∴x 1=1,直线AF 的方程是x =1,故|BF |=|AF |=2. 14.过椭圆x 216+y 29=1的焦点F 的弦中最短弦长是________.答案 92解析 由椭圆的几何性质可知,过椭圆焦点且与长轴垂直的弦长最短,弦长为2b2a =184=92. 15.已知双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为________________. 答案 3x 2-y 2=1解析 由题意可得e =ca=2,则c =2a ,设其一焦点为F (c ,0),渐近线方程为bx ±ay =0, 那么d =bc b 2+a 2=bcc=b =1, 而c 2=4a 2=a 2+b 2,解得a 2=13,那么所求的双曲线方程为3x 2-y 2=1.16.已知直线l :x -y -m =0经过抛物线C :y 2=2px (p >0)的焦点,l 与C 交于A ,B 两点.若|AB |=6,则p 的值为________. 答案 32解析 因为直线l 过抛物线的焦点, 所以m =p2,由⎩⎪⎨⎪⎧x -y -p 2=0,y 2=2px得x 2-3px +p 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3p , 故|AB |=x 1+x 2+p =4p =6, ∴p =32.三、解答题(本大题共6小题,共70分)17.(10分)中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3∶7,求这两条曲线的方程.解 设椭圆的方程为x 2a 21+y 2b 21=1,双曲线的方程为x 2a 22-y 2b 22=1,半焦距c =13,由已知得a 1-a 2=4,c a 1∶c a 2=3∶7, 解得a 1=7,a 2=3,所以b 21=36,b 22=4,所以两条曲线的方程分别为 x 249+y 236=1,x 29-y 24=1.18.(12分)已知直线y =x -4被抛物线y 2=2mx (m ≠0)截得的弦长为62,求抛物线的标准方程.解 设直线与抛物线的交点为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=2mx ,y =x -4,得x 2-2(4+m )x +16=0,所以x 1+x 2=2(4+m ),x 1x 2=16,所以弦长为(1+k 2)(x 1-x 2)2=2[4(4+m )2-4×16]=22(m 2+8m ). 由22(m 2+8m )=62,解得m =1或m =-9. 经检验,m =1或m =-9均符合题意.所以所求抛物线的标准方程为y 2=2x 或y 2=-18x .19.(12分)已知椭圆C 的左,右焦点坐标分别是(-2,0),(2,0),离心率是63,直线y =t 与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆P ,圆心为P .(1)求椭圆C 的方程;(2)若圆P 与x 轴相切,求圆心P 的坐标. 解 (1)因为c a =63,且c =2, 所以a =3,b =a 2-c 2=1, 所以椭圆C 的方程为x 23+y 2=1.(2)由题意知P (0,t )(-1<t <1).由⎩⎪⎨⎪⎧y =t ,x 23+y 2=1得x =±3(1-t 2),所以圆P 的半径为3(1-t 2).当圆P 与x 轴相切时,|t |=3(1-t 2),解得t =±32, 所以点P 的坐标是⎝ ⎛⎭⎪⎫0,±32. 20.(12分)已知椭圆的中心在原点,且经过点P (3,0),离心率e =223,求椭圆的标准方程.解 (1)当焦点在x 轴上时,设其方程为x 2a 2+y 2b2=1(a >b >0).∵离心率e =223,∴c a =223.又∵a 2=b 2+c 2,∴a =3b . 又∵椭圆经过点P (3,0), ∴9a 2+0b2=1,∴a 2=9,b 2=1.∴椭圆的标准方程为x 29+y 2=1.(2)当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).同理可得a =3b .又∵椭圆经过点P (3,0),∴0a 2+9b2=1,∴b 2=9,∴b =3,a =9. ∴椭圆的标准方程为y 281+x 29=1.21.(12分)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴的一个端点A ,短轴的一个端点B 的连线AB 平行于OM . (1)求椭圆的离心率;(2)设Q 是椭圆上任一点,F 2是椭圆的右焦点,求∠F 1QF 2的取值范围. 解 (1)依题意知F 1点坐标为(-c ,0), 设M 点坐标为(-c ,y ).若A 点坐标为(-a ,0),则B 点坐标为(0,-b ),则直线AB 的斜率k =-b a .(A 点坐标为(a ,0),B 点坐标为(0,b )时,同样有k =-ba)则有y -c =-b a ,∴y =bc a.①又∵点M 在椭圆x 2a 2+y 2b 2=1上,∴c 2a 2+y 2b 2=1.②由①②得c 2a 2=12,∴c a =22,即椭圆的离心率为22. (2)设|QF 1|=m ,|QF 2|=n ,∠F 1QF 2=θ, 则m +n =2a ,|F 1F 2|=2c .在△F 1QF 2中,cos θ=m 2+n 2-4c 22mn =(m +n )2-2mn -2a 22mn =a 2mn -1≥a 2(m +n 2)2-1=0.当且仅当m =n 时,等号成立, ∴0≤cos θ≤1,∴θ∈[0,π2].即∠F 1QF 2的取值范围是[0,π2]. 22.(12分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于32,它的一个顶点恰好在抛物线x 2=8y 的准线上. (1)求椭圆C 的标准方程;(2)如图,点P (2,3),Q (2,-3)在椭圆上,A ,B 是椭圆上位于直线PQ 两侧的动点,当A ,B 运动时,满足∠APQ =∠BPQ ,试问直线AB 的斜率是否为定值,请说明理由.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆的一个顶点恰好在抛物线x 2=8y 的准线y =-2上, ∴b =2, 又c a =32,a 2=b 2+c 2, ∴a =4,c =23,∴椭圆C 的标准方程为x 216+y 24=1.(2)斜率为定值.理由如下:设A (x 1,y 1),B (x 2,y 2), ∵∠APQ =∠BPQ ,∴直线PA ,PB 的斜率互为相反数,可设直线PA 的斜率为k ,则直线PB 的斜率为-k , 直线PA 的方程为y -3=k (x -2), 联立⎩⎨⎧y -3=k (x -2),x 2+4y 2=16,消去y ,得(1+4k 2)x 2+8k (3-2k )x +4(3-2k )2-16=0, ∴x 1+2=8k (2k -3)1+4k2, 同理可得x 2+2=-8k (-2k -3)1+4k 2=8k (2k +3)1+4k 2, ∴x 1+x 2=16k 2-41+4k 2,x 1-x 2=-163k1+4k 2,∴k AB =y 1-y 2x 1-x 2=k (x 1+x 2)-4k x 1-x 2=36, 即直线AB 的斜率为定值36.。

高中数学选修2-1章末检测卷2:第二章 圆锥曲线与方程

高中数学选修2-1章末检测卷2:第二章 圆锥曲线与方程

章末检测卷二)时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.双曲线3x 2-y 2=9的实轴长是( ) A.2 3 B.2 2 C.4 3 D.4 2[答案] A[解析] ∵3x 2-y 2=9,∴x 23-y 29=1, ∴a =3,∴2a =2 3.2.抛物线y 2=8x 的焦点到准线的距离是( )A.1B.2C.4D.8[答案] C[解析] ∵2p =8,∴p =4.3.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( ) A.k >3B.2<k <3C.k =2D.0<k <2[答案] C[解析] k >0,c =9-k 2=k +3,∴k =2. 4.F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线 [答案] A[解析] ∵PQ 平分∠F 1P A ,且PQ ⊥AF 1,∴Q 为AF 1的中点,且|PF 1|=|P A |,∴|OQ |=12|AF 2|=12(|P A |+|PF 2|)=a , ∴Q 点轨迹是以O 为圆心,a 为半径的圆.5.直线y =x +3与曲线y 29-x |x |4=1( ) A.没有交点B.只有一个交点C.有两个交点D.有三个交点 [答案] D[解析] 当x >0时,双曲线y 29-x 24=1的渐近线为:y =±32x ,而直线y =x +3斜率为1,1<32, ∴y =x +3与x 轴上半部分的一支双曲线有一交点.当x ≤0时,曲线y 29+x 24=1为椭圆, 又∵直线y =x +3过椭圆顶点,∴直线y =x +3与椭圆左半部分有两交点,共计3个交点,选D.6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )A.33B.22C.14D.12 [答案] D[解析] 由题意可得⎩⎪⎨⎪⎧ c 2=m 2+n 2,c 2=am ,2n 2=2m 2+c 2,解得c 2a 2=14,∴e =c a =12. 7.与抛物线x 2=4y 关于直线x +y =0对称的抛物线的焦点坐标是( )A.(1,0)B.(116,0)C.(-1,0)D.(0,-116) [答案] C[解析] x 2=4y 关于x +y =0对称的曲线为y 2=-4x ,其焦点为(-1,0).8.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62[答案] D[解析] |F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b2=1. ∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a ,∴|AF 2|=2+a ,|AF 1|=2-a .在Rt △F 1AF 2中,∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.故选D. 9.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1 D.x 24+y 2=1 [答案] A[解析] ∵抛物线焦点为(-1,0),∴c =1, 又椭圆的离心率e =12,∴a =2,b 2=a 2-c 2=3, ∴椭圆的方程为x 24+y 23=1,故选A. 10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2B.2 2C.4D.8 [答案] C[解析] 设C :x 2a 2-y 2a2=1. ∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a 2=1和x =-4得A (-4,16-a 2),B (-4,-16-a 2),∴|AB |=216-a 2=43, ∴a =2,∴2a =4.∴C 的实轴长为4.11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8[答案] C[解析] 由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.∵P 为椭圆上一点,∴x 204+y 203=1. ∴OP →·FP →=x 20+x 0+3(1-x 204) =x 204+x 0+3=14(x 0+2)2+2. ∵-2≤x 0≤2,∴OP →·FP →的最大值在x 0=2时取得,且最大值等于6.12.从双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1引圆x 2+y 2=a 2的切线,切点为T .延长F 1T 交双曲线右支于P 点,若M 为线段F 1P 的中点,O 为坐标原点,则|MO |-|MT |与b -a 的大小关系为( )A.|MO |-|MT |>b -aB.|MO |-|MT |=b -aC.|MO |-|MT |<b -aD.不确定[答案] B[解析] 如图,设双曲线的右焦点为F 2,连接PF 2.∵O 、M 分别为F 1F 2、F 1P 的中点,∴OM 是△PF 1F 2的中位线,∴|OM |=12|PF 2|, 由双曲线的定义,知|PF 1|-|PF 2|=2a ,∴|PF 2|=|PF 1|-2a ,∴|MO |-|MT |=12(|PF 1|-2a )-|MT | =12|PF 1|-|MT |-a =|MF 1|-|MT |-a =|TF 1|-a =|OF 21|-|OT |2-a =c 2-a 2-a =b -a .二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线x 216-y 29=1的两条渐近线的方程为________. [答案] y =±34x [解析] 双曲线x 216-y 29=1的渐近线方程为x 216-y 29=0,即y =±34x . 14.如图,椭圆的中心在坐标原点,当FB →⊥AB →时,此类椭圆称为“黄金椭圆”,可推算出“黄金椭圆”的离心率e =________.[答案] 5-12[解析] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0).由题意得⎩⎪⎨⎪⎧ |AB |2=a 2+b 2,|BF |=b 2+c 2=a ,|AF |=a +c .∵BF →⊥BA →,∴|AB |2+|BF |2=|AF |2,∴(a +c )2=a 2+b 2+a 2,∴c 2+ac -a 2=0.∴e 2+e -1=0,又0<e <1,∴e =5-12. 15.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=________.[答案] 2[解析] 由y 2=4x ,知p =2,F (1,0),由抛物线定义,x A +p 2=|AF |, ∴x A =2-1=1,因此AB ⊥x 轴,F 为AB 中点,从而|BF |=|AF |=2.16.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是________.[答案] x 24-y 2=1 [解析] 由PF 1⊥PF 2,有|PF 1|2+|PF 2|2=|F 1F 2|2⇒(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=|F 1F 2|2, 由已知,得||PF 1|-|PF 2||=2a ,|F 1F 2|=2c =25,|PF 1|·|PF 2|=2⇒(2a )2+2×2=(25)2⇒a 2=4⇒b 2=c 2-a 2=5-4=1.则双曲线方程为x 24-y 2=1. 三、解答题(本大题共6小题,共70分)17.(10分)双曲线x 2a 2-y 2b2=1(a >0,b >0),过焦点F 1的弦AB (A ,B 在双曲线的同支上)长为m ,另一焦点为F 2,求△ABF 2的周长.解 ∵|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a ,∴(|AF 2|-|AF 1|)+(|BF 2|-|BF 1|)=4a ,又|AF 1|+|BF 1|=|AB |=m ,∴|AF 2|+|BF 2|=4a +(|AF 1|+|BF 1|)=4a +m .∴△ABF 2的周长等于|AF 2|+|BF 2|+|AB |=4a +2m .18.(12分)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解 (1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y得x 2-4x -4b =0,(*)因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1.(2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0,解得x =2,代入x 2=4y ,得y =1.故点A (2,1),因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2, 所以圆A 的方程为(x -2)2+(y -1)2=4.19.(12分)过抛物线y 2=4x 的焦点F 作直线l 与抛物线交于A 、B 两点.求证:△AOB 是钝角三角形.证明 ∵焦点F 为(1,0),过点F 且与抛物线交于点A 、B 的直线可设为ky =x -1,代入抛物线y 2=4x ,得y 2-4ky -4=0,则有y A y B =-4,则x A x B =y 2A 4·y 2B 4=1. 又|OA |·|OB |cos ∠AOB =OA →·OB →=x A x B +y A y B =1-4=-3<0,得∠AOB 为钝角,故△AOB 是钝角三角形.20.(12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上;(3)在(2)的条件下求△F 1MF 2的面积.(1)解 ∵离心率e =2,∴双曲线为等轴双曲线,可设其方程为x 2-y 2=λ(λ≠0),则由点(4,-10)在双曲线上,可得λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6.(2)证明 ∵点M (3,m )在双曲线上,∴32-m 2=6,∴m 2=3,又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0),∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=9-12+3=0,∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上.(3)解 S △F 1MF 2=12×43×|m |=6. 21.(12分)已知椭圆G :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积.解 (1)由已知得c =22,c a =63. 解得a =23,又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧ y =x +m x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2) (x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4; 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△P AB 的面积S =12|AB |·d =92. 22.(12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1、PF 2的斜率分别为k 1、k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. 解 (1)由已知得e =c a =32,c 2a 2+14b2=1, 又c 2=a 2-b 2,所以a 2=4,b 2=1.故椭圆C 的方程为:x 24+y 2=1. (2)方法一 如图,由题意知 |F 1M ||MF 2|=|PF 1||PF 2|即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m,整理得: m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3.∴-32<m <32.故m 的取值范围为m ∈⎝⎛⎭⎫-32,32. 方法二 由题意知:PF 1→·PM →|PF 1→||PM →|=PF 2→·PM →|PF 2→||PM →|, 即PF 1→·PM →|PF 1→|=PF 2→·PM →|PF 2→|. 设P (x 0,y 0),其中x 20≠4,将向量坐标化得:m (4x 20-16)=3x 30-12x 0.所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝⎛⎭⎫-32,32. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 所以Δ=64(ky 0-k 2x 0)2-16(1+4k 2)(y 20-2kx 0y 0+k 2x 20-1)=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0. 故k =-x 04y 0,又1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0. 所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2 =⎝⎛⎭⎫-4y 0x 0·⎝⎛⎭⎫2x 0y 0=-8. 所以1kk 1+1kk 2为定值,这个定值为-8.。

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。

高二数学选修2-1第二章《圆锥曲线》测试题

高二数学选修2-1第二章《圆锥曲线》测试题

高二数学选修2-1第二章《圆锥曲线》测试题 班级: 姓名: 座号:评分:一.选择题:本大题共8题,每小题5分,共40分。

请将答案写在括号里。

1、已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( )A.k <1 B.k >2 C.k <1或k >2 D.1<k <2 2、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是( )A B CD3、设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,()A.必在圆222x y +=内B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能4、椭圆13610022=+y x上的点P 到它的左准线的距离是10,那么P 点到椭圆的右焦点的距离是 ( )5、双曲线1322=-y x 的两条渐近线所成的锐角是 ( )° ° ° ° 6、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132xx x =+, 则有()A.123FP FPFP += B.222123FP FP FP +=C.2132FPFP FP =+ D.2213FPFP FP =·7、双曲线22ax -22by =1的两条渐近线互相垂直,那么它的离心率为( )A.2 B.3C. 2D. 238、过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y xP y x P 两点,若621=+y y,则21P P 的值为 ( )A .5B .6C .8D .10 二、选择题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9、设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是 。

最新人教A版高中数学选修2-1:第二章 圆锥曲线与方程 章末检测

最新人教A版高中数学选修2-1:第二章 圆锥曲线与方程 章末检测

第二章 圆锥曲线与方程测试卷一、选择题1.椭圆x 24+y 25=1的焦点坐标是( )A .(±1,0)B .(±3,0)C .(0,±1)D .(0,±3)解析:由椭圆方程得:a 2=5,b 2=4,所以c 2=1,又椭圆的焦点在y 上, 所以焦点坐标是(0,±1). 答案:C2.抛物线y =8x 2的焦点坐标是( )A.⎝⎛⎭⎫0,132B.⎝⎛⎭⎫0,116 C .(0,2) D .(0,4)解析:抛物线的标准方程为x 2=18y ,焦点坐标为⎝⎛⎭⎫0,132,故选A. 答案:A3.已知双曲线C :x 216-y 24=1,则C 的渐近线方程为( )A .x ±2y =0B .2x ±y =0C .x ±6y =0 D.6x ±y =0解析:由x 216-y24=0可得双曲线的渐近线方程x ±2y =0,故选A.答案:A4.已知实数m,6,-9构成一个等比数列,则圆锥曲线x 2m+y 2=1的离心率为( )A.32 B.3 C.52D. 5 解析:因为m,6,-9成等比数列,所以-9m =36,解得m =-4,则y 2-x 24=1的离心率为e =1+41= 5.故选D.答案:D5.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 24+y 23=1 D.x 25+y 24=1 解析:因为|AB |=3,所以|AF 2|=32,又|F 1F 2|=2,所以在直角三角形AF 1F 2中,|AF 1|=|F 1F 2|2+|AB |2=22+⎝⎛⎭⎫232=52,因为|AF 1|+|AF 2|=52+32=4=2a ,所以a =2,c =1,b =3,所以椭圆的方程为:x 24+y 23=1.答案:C6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63 B.33 C.23 D.13解析:因为以线段A 1A 2为直径的圆的半径为a ,圆心为(0,0),则由题意得圆心到直线bx-ay +2ab =0的距离d =2ab a 2+b2=a ,又a 2=c 2+b 2,所以a 2=32c 2,所以e =c a =63.答案:A7.已知点P (x ,y )是抛物线y 2=4x 上任意一点,Q 是圆C :(x +2)2+(y -4)2=1上任意一点,则|PQ →|+x 的最小值为( )A .5B .4C .3D .2解析:由题意,抛物线y 2=4x 的焦点F (1,0),准线l :x =-1, 圆C :(x +2)2+(y -4)2=1的圆心C (-2,4),半径r =1,P 到直线l :x =-1的距离d =|PF |,根据抛物线的定义,可得点P 到y 轴的距离为x =d -1,结合图象(如图所示)可得当C ,P ,F 三点共线时,|PQ |+d 取最小值, 所以(|OQ |+x )min =|FC |-r -1=5-1-1=3,故选C.答案:C8.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PMF 的面积为( )A .5B .10C .20 D.15解析:设P (x 0,y 0),则|PM |=x 0+1=5,解得x 0=4,则y 20=4×4=16,|y 0|=4,S △MPE =12×5×|y 0|=10, 故选B. 答案:B9.两个正数a ,b 的等差中项是92,等比中项是25,且a >b ,则抛物线y 2=-bax 的焦点坐标为( )A.⎝⎛⎭⎫-516,0B.⎝⎛⎭⎫15,0 C.⎝⎛⎭⎫-15,0 D.⎝⎛⎭⎫-25,0 解析:由两个正数a ,b 的等差中项是92,等比中项是25,且a >b可得⎩⎨⎧ a +b =9ab =(25)2解得⎩⎪⎨⎪⎧a =5,b =4.抛物线的方程为y 2=-45x ,故焦点坐标为⎝⎛⎭⎫-15,0. 故答案选C.答案:C10.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( )A. 2B. 3C. 5 D .2解析:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =bax根据题意:d =|3b -a |a 2+b 2=1⇒b =3a ⇒e =2,故答案选D.答案:D11.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=2QF →,则|QF |=( )A .8B .4C .6D .3解析:设点P (-1,t )、Q (x ,y ),易知点F (1,0),FP →=(-2,t ),QF →=(1-x ,-y ),∴2(1-x )=-2,解得x =2,因此,|QF |=x +1=3,故选D.答案:D12.已知F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,点M 在C 的右支上,坐标原点为O ,若|FM |=2|OF |,且∠OFM =120°,则C 的离心率为( )A.32 B.5-12C .2 D.3+12解析:设双曲线的左焦点为F 1,由题意可得|MF |=|F 1F |=2c ,∠MFF 1=120°,即有|MF 1|2=|MF |2+|F 1F |2-2|MF |·|F 1F |cos ∠MFF 1=4c 2+4c 2-2·4c 2·⎝⎛⎭⎫-12=12c 2, 即有|MF 1|=23c ,由双曲线的定义可得|MF 1|-|MF |=2a ,即为23c -2c =2a ,即有c =3+12a ,可得e =ca =3+12.答案:D 二、填空题13.在平面直角坐标系xOy 中,抛物线y 2=12x 的焦点恰好是双曲线x 2a2-y 2=1的一个焦点,则双曲线的两条渐近线的方程为________.解析:因为抛物线的焦点为(3,0),所以双曲线的半焦距c =a 2+1=3,解得a =22,故其渐近线方程为y =±122x ,即y =±24x .答案:y =±24x14.过抛物线y 2=2px (p >0)的焦点F ,且倾斜角为π4的直线与抛物线交于A ,B 两点,若弦AB 的垂直平分线经过点(0,2),则p 等于________.解析:由题意,抛物线y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,则过焦点F 且倾斜角为π4的直线方程为y =x -p 2,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =y +p 2y 2=2px得y 2-2py -p 2=0,∴y 1+y 2=2p ,x 1+x 2=3p ,∴弦AB 的中点坐标为⎝⎛⎭⎫3p 2,p ,弦AB 的中垂直平分线方程为y -2=-x ,弦AB 的中点在该直线上,∴p -2=-3p 2,解得p =45.答案:4515.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点.若|AF 1|=3|F 1B |,AF 1⊥x 轴,则椭圆E 的方程为________.解析:∵AF 2⊥x 轴,∴A 点坐标为⎝⎛⎭⎫c ,b 2a .即(c ,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,利用向量的坐标相等易得B ⎝⎛⎭⎫-53c ,-13b 2 代入椭圆方程可得⎝⎛⎭⎫-53c 2+⎝⎛⎭⎫-13b 22b 2=1,∵b 2+c 2=1,∴b 2=23,c 2=13,∴x 2+32y 2=1. 答案:x 2+32y 2=116.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析:由矩形ABCD ,所以|AB |=|CD |=2b 2a,|BC |=|AD |=|F 1F 2|=2c ,又由2|AB |=3|BC |,所以4b 2a =6c ,又b 2=c 2-a 2,所以2e 2-3e -2=0,解得e =2,或e =-12(舍去).答案:2 三、解答题17.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解析:(1)焦点F ⎝⎛⎭⎫p 2,0,则直线的方程为y =22⎝⎛⎭⎫x -p2,将其代入y 2=2px 得4x 2-5px +p 2=0,x 1+x 2=5p4,|AB |=9=x 1+x 2+p =9p4,所以p =4,所以y 2=8x .(2)由(1)知A (1,-22),B (4,42).设C ⎝⎛⎭⎫y 208,y 0, 由OC →=OA →+λOB →可知 ⎝⎛⎭⎫y 208,y 0=(1,-22)+λ(4,42), 解得λ=0或2.18.一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于点R ,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解析:由题意,双曲线的离心率为e =3,即c 2a 2=a 2+b 2a2=3,整理得b 2=2a 2,∴双曲线方程可化为2x 2-y 2=2a 2,设直线方程为y =x +m , 由⎩⎪⎨⎪⎧y =x +m 2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0, 由Δ=4m 2+4(m 2+2a 2)>0,∴直线一定与双曲线相交, 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2m ,x 1x 2=-m 2-2a 2,又由PR →=3RQ →,∴x R =x 1+3x 24,x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2,消去x 2得m 2=a 2,又由OP →·OQ →=x 1x 2+y 1y 2=x 1x 2(x 1+m )(x 2+m )=2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3解得m =±1,a 2=1,b 2=2,故直线的方程为y =x ±1,双曲线方程为x 2-y 22=1.19.过双曲线x 23-y 26=1的右焦点F 2,倾斜角为30°的直线交双曲线于A ,B 两点,O 为坐标原点,F 1为左焦点.(1)求|AB |;(2)求△AOB 的面积.解析:(1)由双曲线的方程得a =3,b =6,∴c =a 2+b 2=3,F 1(-3,0),F 2(3,0).直线AB 的方程为y =33(x -3).设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =33(x -3)x 23-y26=1消去y 得5x 2+6x -27=0.∴x 1+x 2=-65,x 1·x 2=-275.∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫332[](x 1+x 2)2-4x 1x 2=43⎣⎡⎦⎤⎝⎛⎭⎫-652-4⎝⎛⎭⎫-275=1635. (2)直线AB 的方程变形为3x -3y -33=0.∴原点O 到直线AB 的距离为d =|-33|(3)2+(-3)2=32.∴S △AOB =12|AB |·d =12×1653×32=1235.20.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点,M 为其上顶点.椭圆的长轴长为4,且△F 1MF 2的周长为4+2 3.(1)求椭圆C 的方程;(2)已知P (0,3),若直线y =2x -2与椭圆C 交于A ,B 两点,求P A →·PB →. 解析:(1)由题可知,2a +2c =4+23,2a =4,得a =2,c = 3又a 2=b 2+c 2,解得b =1,故椭圆C 的方程为x 24+y 2=1,(2)由⎩⎪⎨⎪⎧y =2x -2x 24+y 2=1,得17x 2-32x +12=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3217,x 1x 2=1217,∵P A →=(x 1,y 1-3),PB →=(x 2,y 2-3), ∴P A →·PB →=x 1x 2+(y 1-3)(y 2-3)=x 1x 2+(2x 1-5)(2x 2-5)=5x 1x 2-10(x 1+x 2)+25将x 1+x 2=3217,x 1x 2=1217代入,得P A →·PB →=5×1217-10×3217+25=16517.21.平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上.椭圆C 的左顶点为A .(1)求椭圆C 的标准方程;(2)过点A 作直线l 与椭圆C 交于另一点B .若直线l 交y 轴于点C ,且OC =BC ,求直线l 的斜率.解析:(1)由题意知:⎩⎪⎨⎪⎧1-b 2a 2=⎝⎛⎭⎫32232a 2+⎝⎛⎭⎫122b 2=1解得:⎩⎪⎨⎪⎧a 2=4b 2=1,所以,所求椭圆C 方程为x 24+y2=1.(2)由题意知直线l 的斜率存在,设为k ,l 过点A (-2,0),则l 的方程为:y =k (x +2),联立方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 整理得:(1+4k 2)x 2+16k 2x +16k 2-4=0,令B (x B ,y B ),C (0,y C )由-2x B =16k 2-41+4k 2,得x B =2-8k 21+4k 2,将x =0代入y =k (x +2)中,得到y C =2k ,所以OC =|2k |,|BC |=1+k 2|x B -0|=1+k 2⎪⎪⎪⎪⎪⎪2-8k 21+4k 2,由OC =BC ,得:|2k |=1+k 2⎪⎪⎪⎪⎪⎪2-8k 21+4k 2,解得:k 2=18,∴k =±24.所以直线l 的斜率为±24. 22.已知椭圆方程为x 2+y 24=1,射线y =2x (x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A ,B 两点(异于M ).(1)求证直线AB 的斜率为定值; (2)求△AMB 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧x 2+y 24=1y =2x (x ≥0),得M ⎝⎛⎭⎫22,2,不妨设直线MA :y -2=k ⎝⎛⎭⎫x -22,直线MB :y -2=-k ⎝⎛⎭⎫x -22. 由⎩⎨⎧y -2=k ⎝⎛⎭⎫x -22x 2+y24=1,得(4+k 2)x 2-(22k -2k 2)x +12k 2-2k -2=0,设A (x 1,y 1),B (x 2,y 2),M ⎝⎛⎭⎫22,2,∴x 1+22=2k 2-22k 4+k 2,∴x 1=2(k 2-4k -4)2(4+k 2),同理得∴x 2=2(k 2+4k -4)2(4+k 2),∴k AB =y 1-y 2x 1-x 2=k (x 1+x 2-2)x 1-x 2=2(k 2-4)-2(k 2+4)-42=2,∴直线AB 的斜率为定值2.(2)设直线l ,y =2x +m ,设P (x 1,y 1),Q (x 2,y 2)由⎩⎪⎨⎪⎧y =2x +m x 2+y 24=1,得8x 2-4mx +m 2-4=0,∴x 1+x 2=8k 23+4k 2,y 1+y 2=k (x 1+x 2-2)=-6k 3+4k 2, 由Δ>0得-22<m <22,且m ≠0,点M 到AB 的距离d =|m |5,|AB |=1+4·⎝⎛⎭⎫-4m 82-4×m 2-48=5·8-m 24S △AMB =12AB ·d =12|m |8-m 24=14·m 2(8-m 2)≤14·m 2+8-m 22=1当且仅当m 2=8-m 2,即m 2=4,当m =±2时,取等号,所以△AMB 面积的最大值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 检测题B时间120分钟,满分150分一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( )A .k >3B .2<k <3C .k =2D .0<k <2 [[答案]] C[[解析]] k >0,c =9-k 2=k +3,∴k =2.2.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A .x 24+y 23=1B .x 28+y 26=1C .x 22+y 2=1D .x 24+y 2=1[[答案]] A[[解析]] ∵抛物线焦点为(-1,0),∴c =1,又椭圆的离心率e =12,∴a =2,b 2=a 2-c 2=3,∴椭圆的方程为x 24+y 23=1,故选A.3.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .x 220-y 25=1B .x 25-y 220=1C .x 280-y 220=1D .x 220-y 280=1[[答案]] A[[解析]] 本题考查双曲线方程及相关概念.由双曲线焦距为10,则有52=a 2+b 2,双曲线渐近线方程y =±b a x ,P (1,2)在y =b a x 上,则b a =12,所以a 2=20,b 2=5,选A. 4.如下图所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经过A 、E 、D 、B 四点的双曲线的离心率为( )A .5-1B .5+1C .3-1D .3+1[[答案]] D[[解析]] 设正六边形边长为x ,则|FC |=2x ,在△DEF 中,|DF |=x 2+x 2-2x 2cos120°=3x ,故e =c a=2x 3-1x=3+1. 5.(2014·天津理)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A .x 25-y 220=1B .x 220-y 25=1C .3x 225-3y 2100=1D .3x 2100-3y 225=1[[答案]] A[[解析]] 本题考查双曲线标准方程求法,由于一个焦点在直线y =2x +10上,则一个焦点为(-5,0),又由渐近线平行于y =2x +10.则a b =12,∴a 2=5,b 2=20,双曲线标准方程:x 25-y 220=1,选A. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( ) A .2B .22C .4D .8 [[答案]] C[[解析]] 本题考查双曲线的性质.故双曲线的方程为x 2a 2-y 2a 2=1,抛物线的准线为x =-4,且|AB |=43,故可得A (-4,23),B (-4,-23),将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.注意双曲线中,实轴长应为2a 而不是a ,另外本题还要注意等轴双曲线方程的设法. 7.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A .14B .35C .34D .45[[答案]] C[[解析]] 本题主要考查了双曲线的定义与几何性质的运用,以及余弦定理的运用.依题意:a =b =2,∴c =2.因|PF 1|=2|PF 2|,则该|PF 2|=m ,∴|PF 1|=2m , 又|PF 1|-|PF 2|=22=m .∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.本题要正确地利用双曲线的定义式.8.在抛物线y =2x 2上有一点P ,它到Q (2,10)的距离与它到抛物线焦点距离之和最小,则P 点坐标是( )A .(2,-8)B .(-2,-8)C .(-2,8)D .(2,8) [[答案]] D[[解析]] 如下图所示,易得:P ′F +PQ =P ′A ′+PQ >A ′Q >AQ =AP +PQ =PF +PQ .∴该点P 横坐标为2,代入得纵坐标为8,该点为(2,8),选D.9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c ,0)和(c,0)(c >0).若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( ) A .33B .22C .14D .12 [[答案]] D[[解析]] 由题意得⎩⎪⎨⎪⎧c 2=am 12n 2=2m 2+c 2 2c 2=m 2+n 2 3,由(2)(3)可得m =c 2,代入(1)得椭圆的离心率e =c a =12.故选D.10.(2014·吉林省实验中学一模)如下图,F 1、F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1、C 2在第一象限的公共点,若|F 1F 2|=|F 1A |,则C 2的离心率是( )A .13B .23C .23或25D .25[[答案]] B[[解析]] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由题意得,|AF 1|=|F 1F 2|=2c =21+3=4,∴c =2, |AF 1|-|AF 2|=2,∴|AF 2|=2,∴2a =|AF 1|+|AF 2|=6,∴a =3,∴e =c a =23.二、填空题(本大题共5小题,每小题5分,共25分)11.顶点在原点,焦点在x 轴上且正焦弦(过焦点与对称轴垂直的弦也称作通径)长为6的抛物线方程是________. [[答案]] y 2=6x 或y 2=-6x [[解析]] 正焦弦长为2p ,∴2p =6, ∴方程为y 2=6x 或y 2=-6x .12.过椭圆x 25+y 24=1的右焦点有一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. [[答案]] 53[[解析]] 设右焦点为F ,则有F (1,0).将椭圆方程与直线方程联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -1,得交点A (0,-2),B (53,43).故S △OAB =12·OF ·|y 1-y 2|=12×1×|43+2|=53.13.在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是________. [[答案]] y =8x -15[[解析]] 设所求直线与y 2=16x 相交于点A ,B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2).即y 1-y 2x 1-x 2=16y 1+y 2⇒k AB =8.故所求直线方程为y =8x -15.14.如下图所示,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.[[答案]] 2 3[[解析]] 因为F 1,F 2分别为椭圆的左,右焦点,点P 在椭圆上,且正三角形POF 2的面积为3,所以S △POF 2=12|OF 2|·|PO |sin60°=34c 2=3,所以c 2=4.∴点P 的坐标为(c 2,32c ),即(1,3),∴1a 2+3b 2=1,又b 2+c 2=a 2,所以⎩⎪⎨⎪⎧b 2+3a 2=a 2b 2a 2=4+b2,解得b 2=2 3. 15.若椭圆x 2+y 22=a 2(a >0)和连接A (1,1),B (2,3)两点的线段恒有公共点,则实数a 的取值范围为________. [[答案]] ⎣⎡⎦⎤62,342[[解析]] 线段AB 与椭圆有公共点,其等价条件是点A 在椭圆内或边界上,点B 在椭圆外或边界上,∴⎩⎨⎧12+122≤a222+322≥a2,∴62≤a ≤342. 三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.[[解析]] 依题意,设抛物线方程为y 2=2px ,(p >0),∵点(32,6)在抛物线上,∴6=2p ×32,∴p =2,∴所求抛物线方程为y 2=4x .∵双曲线左焦点在抛物线的准线x =-1上,∴c =1,即a 2+b 2=1,又点(32,6)在双曲线上,∴94a 2-6b 2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1.解得a 2=14,b 2=34. ∴所求双曲线方程为4x 2-43y 2=1.17.已知抛物线y 2=4x ,椭圆x 29+y 2m=1,它们有共同的焦点F 2,并且相交于P 、Q 两点,F 1是椭圆的另一个焦点, 试求:(1)m 的值; (2)P 、Q 两点的坐标; (3)△PF 1F 2的面积.[[解析]] (1)∵抛物线方程为y 2=4x ,∴2p =4,∴p2=1,∴抛物线焦点F 2的坐标为(1,0),它也是椭圆的右焦点,在椭圆中,c =1,a 2=9=b 2+c 2,∴9=m +1,∴m =8.(2)解方程组⎩⎪⎨⎪⎧ y 2=4x ,x 29+y 28=1.得⎩⎪⎨⎪⎧ x =32,y =6,或⎩⎪⎨⎪⎧x =32,y =- 6.∴点P 、Q 的坐标为(32,6)、(32,-6).(3)点P 的纵坐标6就是△PF 1F 2的边F 1F 2上的高, ∴S △PF 1F 2=12|F 1F 2|·|y p |=12×2×6= 6.18.(2011·福建文,18)如下图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.[[解析]] (1)由⎩⎪⎨⎪⎧y =x +b x 2=4y得x 2-4x -4b =0,(*)∵直线l 与抛物线相切,∴△=(-4)2-4×(-4b )=0,∴b =-1.(2)由(1)知b =-1,方程(*)为x 2-4x +4=0.解得x =2,代入x 2=4y 中得,y =1, ∴A(2,1).∵圆A 与抛物线准线y =-1相切,∴r =|1-(-1)|=2. 所以圆A 的方程为(x -2)2+(y -1)2=4.19.如下图,直线y =kx +b 与椭圆x 24+y 2=1,交于A 、B 两点,记ΔAOB 的面积为S .(1)求在k =0,0<b <1的条件下,S 的最大值. (2)当|AB |=2,S =1时,求直线AB 的方程. [[解析]] (1)设点A 的坐标为(x 1,b ),B 为(x 2,b ),由x 24+b 2=1,解得x 1,2=±21-b 2,所以S =12b ·|x 1-x 2|=2b ·1-b 2≤b 2+1-b 2=1, 当且仅当b =22时,S 取到最大值1.(2)联立⎩⎪⎨⎪⎧y =kx +b ,x 24+y 2=1,消去y 得(k 2+14)x 2+2kbx +b 2-1=0,Δ=4k 2-b 2+1① |AB |=1+k 2|x 1-x 2|=1+k 2·4k 2-b 2+114+k 2=2②设O 到AB 的距离为d ,则d =2S|AB |=1,又因为d =|b |1+k 2,所以b2=k 2+1,代入②式整理得k 4-k 2+14=0,解得k 2=12,b 2=32, 代入①式检验,Δ>0,故直线AB 的方程为y =22x +62,或y =22x -62,或y =-22x +62,或y =-22x -62. 20.如下图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程. (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.[[解析]] (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y , ∵P在圆上,∴x 2+(54y )2=25,即C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=1+1625x 1-x 22=4125×41=415. 21.(2014·全国大纲理)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. [[解析]] (1)设Q (x 0,4),代入y 2=2px 得x 0=8p.所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p .由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x 得,y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),|AB |=m 2+1|y 1-y 2|=4(m 2+1). 又l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4my -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故MN 的中点为E (2m 2+2m 2+3,-2m ).|MN |=1+1m 2|y 3-y 4|=4m 2+12m 2+1m 2. 由于MN 垂直平分AB ,故A 、M 、B 、N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+(2m +2m )2+(2m 2+2)2=4m 2+122m 2+1m 4化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.。

相关文档
最新文档