初中数学 3.2 圆的轴对称性(1)

合集下载

人教版九年级数学上册《第一单元_课时2_圆的轴对称性—垂径定理》名师教学设计

人教版九年级数学上册《第一单元_课时2_圆的轴对称性—垂径定理》名师教学设计

《圆的轴对称性——垂径定理》教学设计一、教学内容分析小学时,我们已经知道,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.也就是说,将圆沿着直径所在的直线对折,直线两侧的部分完全重合.这点学生通过动手操作不难理解,但是该如何证明呢?这是本课时首先要解决的问题.教科书中提供了一种证明轴对称的常用方法,即在圆上任意选取一点,证明该点关于给定对称轴(直径所在直线)的对称点也在圆上,这种证明轴对称的方法需要学生理解掌握.垂径定理将圆的轴对称性具体化、符号化,我们可以由下面这个问题引入垂径定理.如果我们在⊙O 中任意画一条弦AB ,观察图形(见下),它还是轴对称图形吗?若是,你能找到它的对称轴吗?有几条呢?同学们通过动手实验不难得出,此时只要作出垂直于弦AB 的直径,沿着直径所在直线对折,图形的左右两边就可以完全重合,即图形关于该直径所在直线成轴对称.显然,我们只能找到一条这样的直径,因此图形只有一条对称轴.我们不妨设直径CD 与弦AB 垂直相交于点P (如图),观察图形,想想你能找出图中隐含的哪些相等关系.如图所示,通过动手操作发现:将⊙O 沿直径CD 所在的直线对折,CD 两侧的半圆重合,点A 与点B 重合,C A =BC ,D A = BD ,AP=BP.根据轴对称的性质,对称轴垂直平分对应点的连线段,我们可以得到,直线CD 是弦AB 的中垂线.学生通过直观感受总结出垂径定理的内容,接下来要引导学生通过严谨的逻辑推理来验证结论的正确性,这也体现了探究图形性质的科学过程.让学生分组讨论证明方法,引导学生构造辅助线,通过全等的知识证明垂径定理.上述图形结构特征可以概括为:(1)直径(半径或过圆心的直线); (2)垂直于弦; (3)平分弦; (4)平分优弧; (5)平分劣弧.可以证明:由(1)(2)可以推出(3)(4)(5). 即垂直于弦的直径平分弦,并且平分弦所对的两条弧.我们把圆的这个性质叫做垂径定理. 符号语言:如右图,∵直径CD ⊥AB 于P , ∴C A =BC ,D A = BD ,AP=BP.引发学生思考:由(1)(3)是否可以推出(2)(4)(5)呢? 即平分弦(非直径)的直径垂直弦,并且平分弦所对的两条弧. 上述结论可以通过全等三角形的知识证明,我们把圆的这个性质叫做垂径定理的推论.此处一定强调“非直径”,因为任意两条直径都是互相平分的,但并不一定都垂直.符号语言:如右图,∵直径CD 与弦AB 相交于P ,且AP=BP , ∴C A =BC ,D A = BD ,CD ⊥AB.通过类比学习,引导学生思考:知道上述5个条件中两个条件是否就可以推导出其他3个结论呢?总结为“知二推三”,也就是说垂径定理有9个推论,这个可以留给学生课后分组讨论研究. 二、学情分析学生在七、八年级已经学习过轴对称图形的有关概念和性质、等腰三角形的对称性,以及证明垂径定理要用到的三角形全等的知识,并且在小学已初步了解了圆的对称性,具备了学习这节课的知识基础;学生通过学习平行四边形、角平分线、中垂线等几何内容,已经掌握了探究图形性质的不同手段和方法,具备了几何定理的分析探索和证明能力.但是垂径定理及其推论的条件和结论复杂,学生难以理解并应用. 三、教学目标1.通过观察、实验,使学生理解圆的轴对称性.2.掌握垂径定理,理解其证明过程,并会用它解决有关的证明与计算问题.3.掌握垂径定理的推论,理解其证明过程,并会用其解决有关的证明与计算问题.4.通过对定理的探究,提高观察、分析和归纳概括能力. 重点难点垂径定理及其推论的内容与证明是本节课学习的重点和难点. 四、评价设计.学习评价量表标准等级会用文字语言、图形语言、符号语言描述垂径定理 A 会用文字语言、图形语言、符号语言描述垂径定理的推论 A 会证明垂径定理及其推论 C 能利用垂径定理及其推论解决简单的计算问题B能利用垂径定理及其推论解决简单的证明问题C五、教学活动设计教学环节教学活动设计意图教师活动学生活动导入新知问题1 约1400年前,我国隋代建造的赵州石拱桥(如图)主桥拱是圆弧形,它的跨度(弧所对的弦长)是37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果精确到0.1 m).1.分析实际问题,将其转化为数学模型.赵州桥的桥拱呈圆弧形,如图,C为弧AB的中点,且CD⊥AB.已知CD=7.23 m,AB=37m,求该圆的半径.学生猜测(1):AD=BD.学生猜测(2):CD过圆心.不过该如何证明呢?带着这个问题进行本节课的学习.通过实际问题导入新知,引发学生思考,激发学习兴趣.探究新知问题 2 请拿出准备好的圆形纸片,沿着它的直径对折,重复做几次,你发现了什么?由此你能猜想哪些线段相等?哪些弧相等?2.(1)沿着直径将圆翻折,圆的直径两边的部分能够完全重合.圆是轴对称图形,直径所在直线为圆的对称轴,所以圆有无数条对称轴.(2)连接关于直径所在直线对称的两个点所形通过动手操作——沿着直径折叠圆,让学生直观感受圆的轴对称性,体会观察、实验在选定一条直径,在圆上任取一点,证明该点关于已知直径所在直线的对称点也在圆上.3.(1)作AB⊥CD,交⊙O 于B点,若能证明AP=BP即可.(2)连接OA,OB,通过三角形全等可以得到AP=BP.所以B为A的对称点.A B.=BC,D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B是关于直线CD的对称点即可.连接OA,OB,通过证明△OAP与△OBP 全等,得到AP=BP,说明DC所在直线为线段AB的对称轴根据圆的轴对称性得到:AC=BC,A B.D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B为关于直线CD的对称点即可.(3)此处强调非直径的弦,因为圆的所有直径都是互相平分的,但不一定垂直.(4)垂径定理还有别的推论吗?需要继续研究.论.解决问题提问1:对于活动1提出的问题,你现在有思路了吗?请大家小组讨论,给出问题的计算过程.如图,赵州桥的桥拱呈圆弧形,C为AB的中点,且CD⊥AB,已知CD=7.23 m,AB=37m,求该圆的半径.提问2:应用垂径定理解决问题的一般思路是什么?1.根据垂径定理的推论,可知CD的延长线必定过O点,且AD=BD.设半径为r,则OB=r,OD=r-7.23,BD=18.5,根据勾股定理列方程为:222r18.5=r(-7.23).一般思路:垂径定理构造直角三角形勾股定理建立方程.帮助学生进行知识迁移,熟练运用垂径定理及其推论解决计算问题.重要辅助线:过圆心作弦的垂线.典型例题例1 如图,AB是⊙O的直径,弦CD⊥AB于点E,点 M在⊙O上,MD恰好经过圆心O,连接MB,若CD=16,BE=4,求⊙O的直径.例2 H5N1亚型高致病性禽流感是一种传染速度很快的疾病,为防止禽流感蔓延,政府规定:离疫点3 km范围内为扑杀区,所有禽类全部扑杀;离疫点3~5 km范围内为免疫区,所有禽类强制免疫.同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内公路CD长为4 km.问:这条公路在免疫区内有多少千米?例1 解设半径为R,因为CD=16,直径AB⊥CD,根据垂径定理得AB平分CD,所以DE=8.因为BE=4,所以OE=R-4.根据勾股定理列方程得:222R8=R(-4).解得R=10,则直径等于20.例2 分析:利用垂径定理解决实际问题,首先需要理解题意,将实际问题抽象为数学模型.如图,过点O作OE⊥CD交CD于E,连接OC,OA,在Rt△OCE中就可以求出OE,在Rt△OAE中求出AE,进而求出AC,最后求出结论.帮助学生进行知识迁移,学以致用,熟练运用垂径定理及其推论解决计算及证明问题.利用垂径定理的关键是:熟悉基本图形,会过圆心作弦的垂线,熟悉连接半径等辅助线的作法,能够结合勾股定理、设参法等知识或方法解决问题.例3 如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=53,求弦CD及⊙O的半径.例4如果圆中两条弦互相平行,那么两条弦所夹的弧相等吗?例3 解如图,作OM⊥CD. ∵OE=4 cm,∠CEA=30°,∴OM=2 cm,EM=23cm DE=53 cm,∴D M=33 cm.∴OD=31 cm,即⊙O的半径为31 cm.OM⊥CD,∴CD=63 cm(根据垂径定理)例4 解通过画图可知,有三种情况.下图所示.在图(1)中,作 MN⊥AB 交圆于 M,N点,充分利用垂径定理即可解决此问题.∵ MN⊥AB,∴M=MA B.∵CD∥AB,∴ MN⊥CD.∴MC=MD.∴M MCA-=MB MD-∴=DAC B.同理:在其他两个图形中AC B的结也能得到=D论.六、板书设计圆的轴对称性——垂径定理七、达标检测与作业A级1.如图,在⊙O中,直径AB⊥CD于M.(1)AB=10,CD=8,求OM的长;(2)CD=8,OM=3,求AB的长;(3)CD=8,BM=2,求AB的长.2.如图,是一条直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时水最深为 m.B级3.如图,AB是⊙O的弦,P是AB上一点,AB=10,BP:PA=4:1.若⊙O的半径为7,求线段OP 的长.4.如图,AB为⊙O的直径,P为OB的中点,∠APC=30°.若AB=16,求CD的长.5.如图,AB,CD是⊙O的弦,M,N分别为AB,CD的中点,且∠AMN=∠CNM.求证:AB=CD.6.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径.如图是水平放置的破裂管道有水部分的截面,若这个输水管道此时的水面宽为16c m,且水最深高度为4c m,求这个圆形截面的半径.C级7.已知AB,CD为⊙O的两条平行弦,⊙O的半径为5 cm,AB=8 cm,CD=6 cm,求AB,CD之间的距离.8.有一石拱桥的桥拱呈圆弧形.如图所示,正常水位时水面宽AB=60 m,水面到拱顶距离CD=18 m;当洪水泛滥时,水面宽 MN=32 m时,高度为5 m的船此时能否通过该桥?请说明理由.八、教学反思本节课遵循研究几何图形的一般过程:提出问题、猜想、实验、证明、得出结论、应用.研究过程中将直观感知、动手实验、逻辑推理有机结合,全面提高学生的数学核心素养.从以赵州桥为背景的实际问题出发,创设学习氛围,激发学生的学习兴趣,引发学生的探究欲望;接着通过实验操作让学生直观感受圆轴对称的性质;引导学生证明圆的轴对称性,并指出证明图形轴对称的一般方法,便于学生积累几何证明方法,产生学习迁移;利用圆的轴对称性和全等三角形的知识证明本节课的重点和难点——垂径定理及其推论;最后运用垂径定理及其推论解决赵州桥问题和平行弦所夹弧等问题.整个过程层层铺垫,环环相扣.本节课渗透研究问题的方法.比如在证明垂径定理的过程中,向学生渗透“先由特殊到一般,再由一般到特殊”的基本思想方法.由动手操作、逻辑推理得到圆的轴对称性,这是由特殊到一般;再利用圆的轴对称性证明垂径定理及其推论,这是由一般到特殊.教师作为引导者,课堂上尽管给了学生充足的思考时间,但还没有完全放开.比如,在“提出问题”环节,可以让学生给出各种问题形式,而不是由老师给出问题或者例题.在探究垂径定理的证明时,应引导学生进行充分的讨论交流等.11/ 11。

北师大版九年级数学下册第三章2圆的对称性

北师大版九年级数学下册第三章2圆的对称性

于点E,AD=OB,试说明 B︵D

= DE
,并求∠A的度数.
解析 设∠A=x°.∵AD=OB,OB=OD,∴OD=AD.
∴∠AOD=∠A=x°.∴∠ABO=∠ODB=∠AOD+∠A=2x°.
∵AO=AB,∴∠AOB=∠ABO=2x°.


∴∠BOD=2x°-x°=x°,即∠BOD=∠AOD.∴ BD = DE .在△AOB中,由三角形的内
解析 ∵ A︵E = B︵D ,∴∠BOD=∠AOE=32°, ∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°. 答案 D
点拨 本题在求角的度数时运用了转化思想,在同圆或等圆中,利用圆心 角、弧、弦之间的关系可以实现角、线段、弧之间的转化.
题型二 利用圆心角、弧、弦之间的关系证明线段相等 例2 (2019江苏南京中考)如图3-2-3,☉O的弦AB、CD的延长线相交于 点P,且AB=CD.求证:PA=PC.


圆心角的度数,因为∠BOA=2∠COD,所以 AB 的度数= CD的度数的2倍,所


以在同圆或等圆中, AB =2 CD ,所以B项正确.C、D项错误.
4.如图3-2-2,AB、CD是☉O的两条直径,弦BE=BD,则 A︵C 与 B︵E 是否相等?为 什么?
图3-2-2
解析 A︵C= B︵E .理由:连接AC.∵AB、CD是☉O的直径,且∠AOC=∠BOD,
2.如图3-2-1,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形 各边仅有一个交点,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影 部分的面积是( )
图3-2-1 A.4π B.3π C.2π D.π 答案 D 利用圆的对称性,可知阴影部分的面积恰为大圆面积的四分之

3.2圆的轴对称性(1)

3.2圆的轴对称性(1)
CD为直径 CD⊥AB ⌒ ⌒ ⌒ ⌒ A
C
E B
O
D
CD平分弦AB 条件
结论 CD平分弧A B
CD平分弧ADB
Hale Waihona Puke 分一条弧成相等的两条弧的点,叫做这条弧的中点.
⌒ 如图,AB是AB所对的弦,AB的垂直平分线DG ⌒ 交AB于点D,交AB于点G,给出下列结论: ⌒ ⌒ ① DG⊥AB ②AG=BD ③BD=AD ①②③ 其中正确的是________(只需填写序号)
A
C 1 3D O
3
B
4、已知:如图在⊙O中,弦AB//CD。 ⌒ ⌒ 求证:AC=BD
O A C B D
定理的推论2
如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?
这两条弦在圆中位置有两种情况:
1.两条弦在圆心的同侧
2.两条弦在圆心的两侧
A O B D
A C

O D
B C

垂径定理的推论2 圆的两条平行弦所夹的弧相等.
5、已知:圆O的半径为5cm,弦AB∥CD, AB=6cm,CD=8cm。求AB与CD间的距离。
C E
D
O E C A F B D A
O F B
变式:已知⊙O的半径为15cm,弦PQ∥MN,且 PQ=18cm,MN=24cm,求以平行弦为底的梯形的面 积。
6、过已知⊙O内的一点A作弦,使A是该弦 的中点,然后作出弦所对的两条弧的中点 E
O C D
A
B
1、已知⊙O的半径为13cm,一条弦的弦心距为5cm, 求 这条弦的长. 想一想:在同一个圆中,两条弦 的长短与它们所对应的弦心距之
B 13
A
D 5
.

初中数学圆及其对称性教案

初中数学圆及其对称性教案

初中数学圆及其对称性教案【知识与技能】1. 理解圆的定义及圆心、半径、弦、直径、圆弧、半圆、等圆、等弧的概念,能准确识别,且能够正确表示。

2. 掌握圆的对称性质,理解圆是轴对称图形,圆的对称轴是直径,圆有无限多条对称轴。

3. 学会运用圆的对称性质解决实际问题。

【过程与方法】1. 在经历画圆、探究圆的定义及相关概念的过程中,提升动手操作能力与分析推理能力,发展空间观念。

2. 通过观察、操作、猜想、验证等方法,培养学生的探究能力和合作意识。

【情感、态度与价值观】1. 体会数学的严谨性,树立实事求是的科学态度。

2. 感受数学与生活的联系,培养学生的应用意识。

二、教学重难点【重点】1. 圆的定义及圆心、半径、弦、直径、圆弧、半圆、等圆、等弧的概念。

2. 圆的对称性质。

【难点】1. 正确理解概念,准确识别,正确表示。

2. 灵活运用圆的对称性质解决实际问题。

三、教学过程(一)导入新课创设情境:利用多媒体展示摩天轮、井盖、呼啦圈、自行车车轮、满月等图片。

请学生观察图片并描述其中共同的图形。

以数学上如何给圆下定义以及还有哪些相关知识为切入点,引出课题。

(二)探究新知1. 圆的定义及相关概念(1)请学生尝试画出一个圆,并交流探讨圆的画法。

(2)引导学生总结圆的定义及圆心、半径、弦、直径、圆弧、半圆、等圆、等弧的概念。

(3)教师通过PPT展示各种图形,让学生判断哪些是圆,并说明理由。

2. 圆的对称性质(1)引导学生观察圆的特点,发现圆是轴对称图形。

(2)引导学生思考圆的对称轴是什么,通过操作、验证,得出圆的对称轴是直径。

(3)引导学生探究圆有多少条对称轴,得出圆有无限多条对称轴。

(4)运用圆的对称性质,解决实际问题。

如:在圆中,如何找到一个点,使得这个点到圆心的距离等于圆的半径?(三)巩固练习出示一些有关圆及其对称性的练习题,让学生独立完成,巩固所学知识。

(四)课堂小结本节课我们学习了圆的定义及相关概念,了解了圆的对称性质。

初中数学 轴对称图形的性质有哪些

初中数学 轴对称图形的性质有哪些

初中数学轴对称图形的性质有哪些轴对称图形是指一个图形中存在一条直线,将图形分成两个完全对称的部分。

这条直线被称为轴对称线,也被称为对称轴。

下面是轴对称图形的一些性质:1. 对称性质:轴对称图形的两个部分是完全对称的,即它们在形状、大小和位置上完全一致,只是相对于轴对称线的位置互换。

这种对称性使得我们能够在一个部分中观察到一些性质,并将其应用到另一个对称部分中。

2. 轴对称线性质:轴对称图形的轴对称线上的任意一点与它的对称点距离相等。

也就是说,如果一个点在轴对称线上,那么它的对称点也在轴对称线上。

这个性质对于计算轴对称图形中各个点的坐标非常有用。

3. 对称中心性质:轴对称图形的对称中心即为轴对称线上的任意一点。

对称中心具有以下性质:a. 对称中心是轴对称图形的一个重要特征,它可以帮助我们确定图形的对称关系。

b. 对称中心到轴对称图形上任意一点的距离等于该点到轴对称线所在直线的距离。

c. 对称中心到轴对称线的距离等于轴对称图形中所有点到轴对称线的距离的平均值。

4. 对称点性质:轴对称图形中每个点都有一个对称点,它们在轴对称线上对称。

对称点的坐标可以通过对称轴上的点的坐标进行计算。

例如,在一个矩形中,矩形的左上角和右下角是对称的,它们在垂直轴对称线上对称。

5. 线段对称性质:轴对称图形中的任意一条线段,它的两个端点关于轴对称线对称。

这个性质对于计算轴对称图形中线段的长度非常有用。

6. 角度对称性质:轴对称图形中的任意一个角度,它的两个角度顶点关于轴对称线对称。

这个性质对于计算轴对称图形中角度的大小非常有用。

7. 区域对称性质:轴对称图形中的任意一个区域,它关于轴对称线对称。

这个性质对于计算轴对称图形中区域的面积非常有用。

通过了解轴对称图形的性质,我们可以更好地理解几何学中的对称性和图形变换。

轴对称图形的性质在解决与对称性和图形变换相关的问题时非常重要。

希望以上内容能够帮助你了解轴对称图形的性质。

如果你还有其他问题,请随时提问。

初中数学知识点精讲精析 圆的对称性

初中数学知识点精讲精析 圆的对称性

3·2圆的对称性1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).2.弦:连接圆上任意两点的线段叫做弦(chord).3.直径:经过圆心的弦叫直径(diameter).Array如右图。

以A、B为端点的弧记作AB,渎作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弧CD是⊙O的一条直径.注意:①弧包括优弧(major arc)和劣弧(minor are),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作ACD),劣弧ABD(记作AD).半圆,圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.②直径是弦,但弦不一定是直径.4.圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.5.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.注意:①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.证明此定理:如图,连结OA、OB,则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM,∴AM=BM.∴点A和点墨关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,弧AC与弧BC重合,弧AD与弧BD重合.∴AC=∴BC, 弧AD与弧BD重合.可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分弦,②平分弦所对的优弧,③平分弦所对的劣弧.即垂径定理的条件有两项,结论有三项.用符号语言可表述为:如图3—7,在⊙O中,AM=BM ,CD 是直径弧AD=弧BD ,CD ⊥AB 于MAC=弧BC.6.垂径定理的一个逆定理平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.如上图,连结OA 、OB ,则OA =OB .在等腰△OAB 中,∵AM =MB ,∴CD ⊥AB(等腰三角形的三线合一).∵⊙O 关于直径CD 对称.∴当圆沿着直径CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合,弧AD 与弧BD 重合.∴弧AC=弧BC ,弧AD=弧BD7.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等.圆的两条平行弦所夹的弧相等.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.理由:如右图示,过圆心O 作垂直于弦的直径EF ,由垂径定理设弧AF=弧BF ,弧CF=弧DF ,用等量减等量差相等,得弧AF-弧CF=弧BF-弧DF ,即弧AC=弧BD ,故结论成立.7.中心对称:中心对称图形是指把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫中心对称图形.这个点就是它的对称中心.圆既是一个轴对称图形又是一个中心对称图形.圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形,对称中心为圆心.8.圆心角、弧、弦之间相等关系定理:圆心角 顶点在圆心的角(如∠AOB).弦心距 过圆心作弦的垂线,圆心与垂足之间的距离(如线段OD)在等圆中,相等的圆心角所对的弧相等,所对的弦相等.如上图所示,已知:⊙O和⊙O′是两个半径相等的圆,∠AOB=∠A′O′B′.求证:弧AB=弧A′B′,AB=A′B′.证明:将⊙O和⊙O′叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半径OA与O′A′重合,∵∠AOB=∠A′O′B′,∴半径OB与O′B′重合.∵点A与点A′重合,点D与点B′重合,∴弧AB与弧A′B′重合,弦AB与弦A′B′重合.∴弧AB=弧A′B′,AB=A′B′.上面的结论,在同圆中也成立.于是得到下面的定理,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.两个圆心角用①表示;两条弧用表示:两条弦用③表示.我们就可以得出这样的结论:在同圆或等圆中②也相等①相等③在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.在同圆或等圆中,如果两个圆心角,两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.注意:(1)不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦、弦心距不一定相等.(2)此定理中的“弧”一般指劣弧.(3)要结合图形深刻体会圆心角、弧、弦、弦心距这四个概念和“所对”一词的含义.否则易错用此关系.(4)在具体应用上述定理解决问题时,可根据需要,择其有关部分.1.如右图所示,一条公路的转弯处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),其中CD=600m ,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,EF=90 m .求这段弯路的半径.[分析]要求弯路的半径,连结OC ,只要求出OC 的长便可以了.因为已知OE ⊥CD ,所以CF =21CD =300 cm ,OF =OE-EF ,此时就得到了一个Rt △CFO. 【解析】连结OC ,设弯路的半径为Rm ,则OF =(R-90)m ,∵OE ⊥CD ,∴CF =CD=×600=300(m).据勾股定理,得 OC 2=CF 2+OF 2, 即R 2=3002+(R-90)2.解这个方程,得R =545.∴这段弯路的半径为545 m .2.如图,点A 是半圆上的三等分点,B 是BN 的中点,P 是直径MN 上一动点.⊙O 的半径为1,问P 在直线MN 上什么位置时,AP+BP 的值最小?并求出AP+BP 的最小值.【解析】作点B 关于直线MN 的对称点B′,则B′必在⊙O 上,且'B N NB .由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90°.连接AB′交MN 于点P′,则P′即为所求的点.此时,即AP+BP .3.已知:如图,在⊙O 中,弦AB 的长是半径OA ,C 为AB 的中点,AB 、OC相交于NM BP AO点M.试判断四边形OACB的形状,并说明理由.【解析】是菱形,理由如下:由BC AC=,得∠BOC=∠AOC.故OM⊥AB,从而AM=BM.在Rt △AOM中,sin∠AOM=AMOA=,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC, 故△BOC 与△AOC都是等边三角形, 故OA=AC=BC=BO=OC,所以四边形OACB是菱形.MCB AO。

北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。

本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

通过学习,使学生能运用圆的对称性解决一些实际问题。

二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。

但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。

三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。

2.难点:理解圆的对称性与轴对称图形的关系。

五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。

2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。

3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。

六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。

2.教学环境:教室布置成有利于学生思考和交流的环境。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。

提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。

2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。

呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。

同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。

3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。

初中数学知识点精讲精析 圆的对称性

初中数学知识点精讲精析  圆的对称性

第二节圆的对称性要点精讲一、圆的对称性:1.圆既是中心对称图形,又是轴对称图形.将圆周绕圆心旋转180°能与自身重合,因此它是中心对称图形,它的对称中心是圆心,将圆周绕圆心旋转任意一角度都能与自身重合,这说明圆具有旋转不变性,是旋转对称的特例.经圆心画任意一条直线,并沿此直线将圆对折,直线两旁的部分能够完全重合,所以圆是轴对称图形,每一条直径所在的直线都是它的对称轴,所以圆有无数条对称轴.2.在同圆或等圆中,圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两弦的弦心距中,有一组量相等,那么它们所对应的其余各组量也分别相等.二、垂径定理及推论:(由圆的轴对称性得出的)1.定理:垂直于弦的直径平分弦,且平分弦所对的优、劣弧.(常见辅助线,过圆心作弦的垂线)2.推论:平分(非直径的)弦的直径垂直于弦,且平分弦所对的两条弧.3.总结为:一条直线满足:(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分弦所对的优弧,(5)平分弦所对的劣弧,中的任意两点,则其他三点也成立.(注:①(1)与(3)结合使用时,弦为非直径弦.②(2)与(3)结合可找圆心,即两条弦的垂直平分线的交点.)③利用垂径定理及勾股定理对于(圆半径r、弦长a、弦心距d、弓开的高h中任意已知两个量可求得另两个量.相关链接像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.典型分析1.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.1/2B.1/4C.1/6D.1/8【答案】B【解析】连接AM 、BM.∵MN ∥AD ∥BC ,OM=ON ,∴四边形AOBN 的面积=四边形AOBM的面积.再根据图形的轴对称性,得阴影部分的面积=扇形OAB 的面积=1/4圆面积.故选B.中考案例1.(2012内蒙古呼和浩特)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A.B.C.D.【答案】B【解析】以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF.根据直径所对圆周角是直角的性质,得∠FDB=90°;根据圆的轴对称性和DC ∥AB ,得四边形FBCD 是等腰梯形.∴DF=CB=1,BF=2+2=4.∴故选B.=针对训练1.以点A(3,0)为圆心,以5为半径画圆,则圆A与x轴交点坐标为()A.(0,-2),(0,8)B.(-2,0),(8,0)C.(0,-8),(0,2)D.(-8,0),(2,0)2.如图,已知⊙O的弦AB,CD交于点P,且OP⊥CD,若CD=4,则AP•BP的值为()A.2B.4C.6D.83.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定4.已知矩形ABCD的边AB=6,AD=8.如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是()A.6<r<10B.8<r<10C.6<r≤8D.8<r≤105.下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同圆或等圆中,同弧所对的圆周角相等.A.①②③B.③④⑤C.①②⑤D.②④⑤6.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1B.2C.3D.47.下列命题正确的是()A.顶点在圆周上的角叫做圆周角B.圆内接平行四边形一定是矩形C.平分弦的直径一定垂直于弦D.与直径垂直的直线是圆的切线8. 如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点参考答案1.【答案】B【解析】因为圆心在x轴上,与x轴相交两点,∴两点的纵坐标都为0,∵圆的半径是5,∴两点的横坐标为3-5=-2,或3+5=8.即两点的坐标为(-2,0)、(8,0).故选B.2.【答案】B【解析】由于OP⊥CD,可通过垂径定理得出CP=DP=2,再根据相交弦定理,AP•BP=CP•DP=2•2=4.故选B.3.【答案】C【解析】∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选:C.4.【答案】A【解析】∵AB=6,AD=8,∴AC=10,∴点C一定在圆外,点B一定在圆内,∴⊙A的半径r 的取值范围是:6<r<10.故选A.5.【答案】B【解析】①、圆周角的特征:一是顶点在圆上,二是两边都和圆相交,故错误;②、必须是同弧或等弧所对的圆周角和圆心角,故错误;③、圆周角定理,故正确;④、符合确定圆的条件,故正确;⑤、符合圆周角定理,故正确;所以正确的是③④⑤.故选B.6.【答案】C【解析】A.是圆周角定理的推论,故正确;B.根据轴对称图形和中心对称图形的概念,故正确;C.根据圆周角定理的推论知:同圆中,相等的圆周角所对的弧相等,再根据等弧对等弦,故正确;D.应是不共线的三个点,故错误.故选C.7.【答案】B【解析】顶点在圆上,且两边都和圆相交的角叫圆周角,故A错误;根据平行四边形的对角相等和圆内接四边形的对角互补,可得圆的内接四边形的两组对角都是直角,故B正确.平分弦(不是直径)的直径一定垂直于弦,故C错误;过直径的一端与直径垂直的直线是圆的切线,故D错误.因此只有B选项是正确的.故选B.8.【答案】A【解析】因为AB=1000米,BC=600米,AC=800米,所以AB2=BC2+AC2,所以△ABC是直角三角形,∠C=90度.因为要求这三个村庄到活动中心的距离相等,所以活动中心P的位置应在△ABC三边垂直平分线的交点处,也就是△ABC外心处,又因为△ABC是直角三角形,所以它的外心在斜边AB的中点处,故选A.扩展知识轴对称及其应用在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.。

初中数学轴对称的几何知识点总结

初中数学轴对称的几何知识点总结

初中数学轴对称的几何知识点总结初中数学轴对称的几何知识点总结「篇一」初中数学轴对称的几何知识点总结我们的天安门为了美观,对称就显的美观漂亮,飞机的两翼的对称为了保持平衡。

轴对称在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合。

这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric),并且对称轴用点画线表示;这时,我们也说这个图形与这条直线对称。

比如说圆、正方形、等腰梯形等。

举例有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。

圆有无数条对称轴,都是经过圆心的直线。

要特别注意线段,有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

性质1.对称轴是一条直线。

2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。

线段垂直平分线上的点到线段两端的距离相等。

3.在轴对称图形中,对称轴两侧的.对应点到对称轴两侧的距离相等。

4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6.图形对称。

定理及其逆定理定理1:关于某条直线对称的两个图形是全等形。

(全等形不一定关于某条直线对称)定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形。

初中数学轴对称的几何知识点总结「篇二」初中数学轴对称知识点的归纳总结初中数学轴对称知识点归纳轴对称章节要求正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

那么接下来的轴对称内容请同学们认真记忆了。

北师大版九年级下册数学[圆的对称性—知识点整理及重点题型梳理](提高)

北师大版九年级下册数学[圆的对称性—知识点整理及重点题型梳理](提高)

北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习圆的对称性—知识讲解(提高)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【总结升华】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【总结升华】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【总结升华】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【总结升华】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形. 类型三、圆心角、弧、弦之间的关系及应用5.已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .【思路点拨】本题主要是考查弧、弦、圆心角之间的关系,要证AD =BC ,只需证AD BC =或证∠AOD=∠BOC 即可.【答案与解析】证法一:如图①,∵ AB =CD ,∴ A B C D =.∴ A B B DC D B D -=-,即AD BC =, ∴ AD =BC .证法二:如图②,连OA 、OB 、OC 、OD ,∵ AB =CD ,∴ ∠AOB =∠COD .∴ ∠AOB -∠DOB =∠COD -∠DOB ,即∠AOD =∠BOC ,∴ AD =BC .【总结升华】在同圆或等圆中,证两弦相等时常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,必须借助已知的等弦进行推理.举一反三:【变式】如图所示,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB . 求证:AC BD =.【答案】证法一:如上图所示,连OC、OD,则OC=OD,∵OA=OB,且12OM OA=,12ON OB=,∴OM=ON,而CM⊥AB,DN⊥AB,∴Rt△COM≌Rt△DON,∴∠COM=∠DON,∴A C B D=.证法二:如下图,连AC、BD、OC、OD.∵M是AO的中点,且CM⊥AB,∴AC=OC,同理BD=OD,又OC=OD.∴AC=BD,∴A C B D=.。

3.2+圆的对称性-教学设计++2022—2023学年北师大版数学九年级下册

3.2+圆的对称性-教学设计++2022—2023学年北师大版数学九年级下册

3.2【圆的对称性】【学习目标】1、知道圆的轴对称性和中心对称性及相关性质;2、通过圆的旋转不变性,明白圆心角、弧、弦之间相等关系定理.【学习重点】教学重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.一、情境导入二、新知学习1、(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?你是用什么方法解决的?与同伴进行交流。

(2)想一想:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?圆是中心对称图形呢?如果是,对称中心是什么?练习:1.下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴2、圆心角的概念:我们把顶点在圆心的角叫做圆心角练习:判别下列各图中的角是不是圆心角,并说明理由。

ABCO3、通过圆的旋转不变性,你能说出圆心角、弧、弦之间存在的相等关系定理吗?【做一做】在等圆☉O 和☉O'中,分别作相等的圆心角∠AOB和∠A'O'B'(如图所示),将两圆重叠,并固定圆心,然后将其中一个圆旋转一个角度,使得OA与O'A'重合,你能发现哪些等量关系?说一说你的理由.旋转能使∠AOB和∠A'O'B'完全重合,同圆或等圆可得OA=OB=O'A'=O'B',从而得∠OAB=∠OBA=∠O'A'B'=∠O'B'A',AB=A'B',圆心角定理:【想一想】在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;在同圆或等圆中,相等的弦所对的圆心角______,所对的弧_________.圆心角、弧、弦之间相等关系定理:注意:三、例题学习,BE 如图,AB,DE是⊙O的直径,C是⊙O的一点,且AD CE与CE的大小有什么关系?为什么?四、随堂练习1.如图,在⊙O中, ,∠A =30°,∠B=2.若圆的一条弦把圆分成度数比为1∶3的两条弧,则优弧所对的圆心角为()A.45B.90°C.135°D.270°3.如图所示,已知AB是☉O的直径,,∠BOC=40°,那么∠AOE等于()A.40°B.60°C.80°D.120°4.如图所示,直尺ABCD的一边与量角器的零刻度线重合,若从量角器的中心O引射线OF经过刻度120°,交AD于点E,则∠DEF=.5、 如图,A 、B 是⊙O 上的两点,∠AOB=120°,C 是 的中点。

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。

教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。

本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。

二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。

但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。

同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。

三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。

2.能够运用圆的对称性解决实际问题。

3.培养学生的观察能力、动手操作能力和推理能力。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称轴的定义及性质的掌握。

五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。

六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。

2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。

3.准备一些实际问题,用于巩固学生对圆对称性的运用。

七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。

然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。

2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。

同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。

3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。

初中数学轴对称基础知识点详解

初中数学轴对称基础知识点详解

初中数学轴对称基础知识点详解轴对称是初中数学中的基础知识点之一,是在平面几何中经常出现的重要概念。

轴对称是指图形相对于条轴线对称,即图形中的每一点与轴线上与该点距离相等、且在轴线上的点关于轴线对称。

下面将详细介绍轴对称的基本概念、性质和相关例题。

轴对称的基本概念:轴对称是指图形相对于条轴线对称。

轴线可以是任意直线,可以是水平线、垂直线、倾斜线或曲线。

在轴对称中,轴线的选择对图形的对称性质有一定影响,但图形始终是关于轴线对称的。

轴对称的性质:1.图形的每一点关于轴线对称,意味着轴线上的点与轴线之间的距离相等。

2.如果图形的一部分与轴线对称,则图形的其他部分与轴线对称。

3.如果图形中的两个点A、B关于轴线对称,则点A关于点B对称,点B关于点A对称。

轴对称与平移的关系:平移是指将图形沿着一些方向按照一定规律进行移动。

在平移中,图形的每一点都按照相同的方向和相同的距离进行移动,而保持形状不变。

轴对称图形可以通过平移得到相对的轴对称图形,平移的方向和距离与轴线的位置有关。

轴对称与旋转的关系:旋转是指将图形以一些点为中心按照一定角度进行旋转。

在旋转中,图形的每一点都按照相同的角度和相同的方向进行旋转,而保持形状不变。

轴对称图形可以通过旋转得到相对的轴对称图形,旋转的角度和中心与轴线的位置有关。

轴对称的判断:判断一个图形是否具有轴对称性可以通过以下方法进行验证:1.观察图形是否在一个直角坐标系中,并找出其中心轴(满足轴对称性的直线)。

2.随机选择图形中的一点,并绘制一个与中心轴相互垂直的线段。

3.测量选定点到中心轴和该点对称点到中心轴的距离是否相等,若相等则该图形具有轴对称性。

轴对称的性质与应用:1.轴对称性是一种重要的对称性质,它在几何构造中常常用于求解问题。

2.轴对称性可以用于判断一些图形的性质,如判断一个图形是否是正多边形。

3.轴对称性也可以应用于计算几何中的一些问题,如确定一个平面图形的对称中心。

轴对称的例题:1.给定一个图形ABCD,其中AB=BC=4,AD=6,AC=8,请问该图形是否具有轴对称性?如果具有,请给出轴对称线的方程。

初中数学教学课例《圆的对称性》教学设计及总结反思

初中数学教学课例《圆的对称性》教学设计及总结反思
第一环节:复习提问(学生完成 5 分钟) 圆的定义、点与圆的位置关系 第二环节:观看微课动画、折纸活动探讨研究(师 生共同研究形成概念 25 分钟) 圆的轴对称性、圆是轴对称图形,其对称轴是任意 一条过圆心的直线、圆的几个概念、圆上任意两点间的 部分叫做圆弧,简称弧弧 AB 记作 AB、大于半圆的弧叫 教学过程 做优弧,小于半圆的弧叫做劣弧优弧 DCA 劣弧 AB、连 接圆上任意两点的线段叫做弦、经过圆心的弦叫做直 径、垂径定理、垂直于弦的直径平分这条弦,并且平分 弦所对的弧、讲解例题、垂径定理的逆定理、讲解例题 第三环节:练习理解。(学生独立完成 10 分钟) 第四环节:课堂小结(师生共同总结 5 分钟) 第五环节:课外作业。 教师引导学生活动组织,并得出结论。播放微课视
频,在学生不理解的地方进行适当地讲解。督促学生完
成课堂作业。并且对作业完成情况进行一定的分析、讲
解。帮助学生理解新知,并且做到能够运用。
在如今的时代背景下,教师不再是以前的样子,学
校、学生都不在是以前的样子。古代学子求学,如今老
师“求学”。从这个现象出发,我觉得老师更加应该关
注的是学生的自主学习能力,所以在我的课堂设计中,
加入了很多学生自我探索、总结的部分,并且为了提高
课例研究综 学生的兴趣度,加入了他们喜欢的动画微视频等。曾今

教师主业是教书,但如今我认为教师的主业转换成了育
人。因为网络上有足够多的好教师讲的可能比我们好。
我们在帮助他们筛选,我们未来逐渐加强的应该是学生
的心里教学,并且帮助学生克服困难。使学生在学校不
初中数学教学课例《圆的对称性》教学设计及总结反思
学科
初中数学
教学课例名
《圆的对称性》

1.经历探索圆的对称性及相关性质。

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。

本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。

但是,对于圆的对称性的理解还需要进一步的引导和培养。

因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。

三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。

通过提出问题,引导学生思考和探索,从而发现圆的对称性。

同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。

六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。

2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。

4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。

5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
在同圆或等圆中,如果两条弦相等,你能得出什么 结论?
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°

3.2圆的轴对称性(1)

3.2圆的轴对称性(1)
O
C
A
BC就是所要求的弦 点D,E就是所要求的弦 所对的两条弧的中点.
B
D
说能出你这节课的收获和体验让大家
与你分享吗?
总结回顾
师生共同总结:
1.本节课主要内容:(1)圆的轴对称性;(2)垂径定理. 2.垂径定理的应用:(1)作图;(2)计算和证明.
3.解题的主要方法:
(1)画弦心距和半径是圆中常见的辅助线; (2)半径(r)、半弦、弦心距(d)组成的直角三角形 是研究与圆有关问题的主要思路,它们之间的关系:
弦长AB 2 r 2 d 2 .
C
m
F
E G
n
A
B
D
例2:一条排水管的截面如图所示。已知排水管的半
径OB=10,水面宽AB=16。求截面圆心O到水面的距离。
想一想:排水管中水最深多少? 解:作OC⊥AB于C, 由垂径定理得: AC=BC=1/2AB=0.5×16=8 由勾股定理得:
OC OB BC 10 8 6
(A)6cm (B)8cm (C)10cm (D)12cm
O
8
10 6
P
• 3、已知:如图,⊙O 中, AB为 弦,OC ⊥AB OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径.
A
C 1 3D O
3
B
讲解
例2 已知:如图,在以 O为圆心的两个同心圆中, 大圆的弦AB交小圆于C, A D两点。
D
⌒ ⌒ ⌒ ⌒
∴ EA=EB, AC=BC, AD=BD.
B
分一条弧成相等的两条弧的点,叫做这条弧的中点.
⌒如图,用直尺和圆规求作这条弧 例1:已知AB 的中点。

最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)

最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)

最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)名师总结:中考数学圆的知识点考点一:圆的相关概念1.圆的定义:在平面内,以一个固定点为圆心,以固定距离为半径,绕圆心旋转一周所形成的图形叫做圆。

2.圆的几何表示:以圆心为中心的圆记作“⊙O”,读作“圆O”。

考点二:弦、弧等与圆有关的定义1.弦:连接圆上任意两点的线段。

2.直径:经过圆心的弦,等于半径的2倍。

3.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

4.弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,用符号“⌒”表示。

大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

考点三:垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

推论2:圆的两条平行弦所夹的弧相等。

考点四:圆的对称性1.圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2.圆的中心对称性:圆是以圆心为对称中心的中心对称图形。

考点五:弧、弦、弦心距、圆心角之间的关系定理1.圆心角:顶点在圆心的角叫做圆心角。

2.弦心距:从圆心到弦的距离叫做弦心距。

3.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

考点六:圆周角定理及其推论1.圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

九上数学课件 圆的对称性(课件)

九上数学课件  圆的对称性(课件)
A
则AC与AE的大小关
系是 AC=AE .
C
D B
O
2.如图,在△ABC中,
∠C=90°,∠A=25°,以点C
为圆心,BC为半径的圆交
AB于点D,交AC于点E,
则弧BD度数5为0°
.
B D
C
EA
能力提升: 我们已经知道在⊙O中,如果2∠AOB=∠COD,则 C⌒D=2A⌒B,那么CD=2AB也成立吗?若成立,请说明 理由;若不成立,那它们之间的关系又是什么?
B D OC A
知 一 推 三
1.判断题 (1)等弦所对的弧相等.
(× )
(2)等弧所对的弦相等.
(√ )
(3)圆心角相等,所对的弦相等. ( × )
2.弦长等于半径的弦所对的 圆心角等于 60 ° .
弧、弦与圆心角关系定理的推论
在同圆或等圆中,如果 两个圆心角、两条弧、两条 弦中有一组量相等,那么它 们所对应的其余各组量都分 别相等.
( ( ( (
( (
填一填: 如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么_A_B_=__C_D___,∠__A_O_B__=_∠__C_O_D_. (2)如果AB=CD ,那么_A_B__=_C_D___,∠_A_O__B_=_∠__C_O__D__.
(3)如果∠AOB=∠COD,那么__A__B_=__C_D___,A__B_=_C__D___.
2AB>CD
AB C
O
E
D
如图,已知⊙O与△ABC三
A
边均相交,在三边上截得的
D
H
线段DE=FG=HK,∠A= 50°,则∠BOC的度数
N
Q
O E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 圆的轴对称性(1)
教学目标
1.使学生理解圆的轴对称性.
2.掌握垂径定理.
3.学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题. 教学重点
垂径定理是圆的轴对称性的重要体现,是今后解决有关计算、证明和作图问题的重要依据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用.
教学难点
垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比较,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点.
教学关键
理解圆的轴对称性.
教学环节的设计
这节课我通过七个环节来完成本节课的教学目标,它们是:
复习提问,创设情境;引入新课,揭示课题;讲解新课,探求新知;应用新知,体验成功; 目标训练,及时反馈;总结回顾,反思内化;布置作业,巩固新知.
一、复习提问,创设情境
1.教师演示:将一等腰三角形沿着底边上的高对折,启发学生共同回忆等腰三角形是轴对称图形,同时复习轴对称图形的概念;
2.提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?(教师用教具演示,学生自己操作) 二、引入新课,揭示课题
1.在第一个环节的基础上,引导学生归纳得出结论:
圆是轴对称图形,每一条直径所在的直线都是对称轴. 强调:
(1)对称轴是直线,不能说每一条直径都是它的对称轴; (2)圆的对称轴有无数条.
判断:任意一条直径都是圆的对称轴( )
设计意图:让学生更好的理解圆的轴对称轴新性,为下一环节探究新知作好准备.
三、讲解新课,探求新知 先按课本进行合作学习
1.任意作一个圆和这个圆的任意一条直径CD ;
2.作一条和直径CD 的垂线的弦,AB 与CD 相交于点E . 提出问题:把圆沿着直径CD 所在的直线对折,你发现哪些点、线段、圆弧重合? 在学生探索的基础上,得出结论:(先介绍弧相等的概念) ①EA=EB ;② AC=BC ,AD=BD
. 理由如下:∵∠OEA=∠OEB=Rt ∠,根据圆的轴轴对称性,可得射线EA 与EB 重合, ∴点A 与点B 重合,弧AC 和弧BC 重合,弧AD 和弧BD 重合. ∴ EA=EB , AC=BC
,AD=BD . 思考:你能利用等腰三角形的性质,说明OA 平分CD 吗?(课内练习1)
A
B C D O E ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒
注:老教材这个内容放在圆心角、圆周角之后,垂径定理完全可以不用圆的轴对称性来证,可用等腰三角形的性质来证明,现在只能证前面一个(略). 然后把此结论归纳成命题的形式:
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
垂径定理的几何语言 ∵CD 为直径,CD ⊥AB (OC ⊥AB ) ∴ EA=EB , AC=BC ,AD=BD .
四、应用新知,体验成功 例1 已知AB ,如图,用直尺和圆规求作这条弧的中点.(先介绍弧中点概念)
作法:
⒈连结AB.
⒉作AB 的垂直平分线 CD , 交弧AB 于点E.
点E 就是所求弧AB 的中点.
变式一: 求弧AB 的四等分点.
思路:先将弧AB 平分,再用同样方法将弧AE 、弧BE 平分.
(图略)
有一位同学这样画,错在哪里?
1.作AB 的垂直平分线CD
2.作AT 、BT 的垂直平分线EF 、GH (图略)
教师强调:等分弧时一定要作弧所对的弦的垂直平分线.
变式二:你能确定弧AB 的圆心吗?
方法:只要在圆弧上任意取三点,得到三条弦,画其中两条弦的垂直平分线,交点即为圆弧的圆心.
例2 一条排水管的截面如图所示.排水管的半径OB=10,水面宽AB=16,求截面圆心O 到水面的距离OC .
思路:
先作出圆心O 到水面的距离OC ,即画 OC ⊥AB ,∴AC=BC=8,
在Rt △OCB 中,68102222=-=-=BC OB OC ∴圆心O 到水面的距离OC 为6.
例3 已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA=OB .求证:AC=BD . 思路:
作OM ⊥AB ,垂足为M , ∴CM=DM
∵OA=OB , ∴AM=BM , ∴AC=BD .
概念:圆心到圆的一条弦的距离叫做弦心距.
小结:
1.画弦心距是圆中常见的辅助线;
2.半径(r )、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长222d r AB -=.
注:弦长、半径、弦心距三个量中已知两个,就可以求出第三个.
A
B C D O E ⌒ ⌒ ⌒ ⌒ O A B C ⌒ ⌒ ⌒
五、目标训练,及时反馈
1.已知⊙0的半径为13,一条弦的AB 的弦心距为5,则这条弦的弦长等于 . 答案:24
2.如图,AB
是⊙0的中直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( ) A .∠COE=∠DOE B .CE=DE C .OE=BE D .
BD=BC
答案:C
3.过⊙O 内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 长为( )
A .3
B .6cm
C . cm
D .9cm
答案:A
注:圆内过定点M 的弦中,最长的弦是过定点M 的直径,最短的弦是过定点M 与OM 垂直的弦,此结论最好让学生记住,课本作业题也有类似的题目.
4.如图,⊙O 的直径为10,弦AB 长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )
A .3≤OM ≤5
B .4≤OM ≤5
C .3<OM<5
D .4<OM<5
答案:A
5. 已知⊙O 的半径为10,弦AB ∥CD ,AB=12,CD=16,则AB 和CD 的距离为 . 答案:2或24
注:要分两种情况讨论:(1)弦AB 、CD 在圆心O 的两侧;(2)弦AB 、CD 在圆心O 的同侧.
6.如图,已知AB 、AC 为弦,OM ⊥AB 于点M , ON ⊥AC 于点N ,BC=4,求MN 的长. 思路:由垂径定理可得M 、N 分别是AB 、AC 的中点,
所以MN=2
1BC=2. 六、总结回顾,反思内化
师生共同总结:
1.本节课主要内容:(1)圆的轴对称性;(2)垂径定理.
2.垂径定理的应用:(1)作图;(2)计算和证明.
3.解题的主要方法:
(1)画弦心距是圆中常见的辅助线;
(2)半径(r )、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长222d r AB -=.
七、布置作业, 巩固新知
P75作业题1~6,第7题选做.
⌒ ⌒。

相关文档
最新文档