运筹学B-第2章对偶规划
运筹学课件 第二章-对偶问题
2.4 运输问题
2.1 线性规划的模型与图解法
2.1.1 问题的引入 (1)生产安排问题 如何合理使用有限的人力、物力和资金, 使得收到最好的经济效益。
例1:某工厂可生产甲、乙两种产品,需消耗煤、 电、油三种资源。现将有关数据列表如下:
资源单耗 资源 产品
甲 9 4 3 7
乙 4 5 10 12
•约束条件的类型与非负条件对偶 •非标准的约束条件类型对应非正常的非负规划:
min z 5 x x 3 x
1 2
3
2x 2x x 1
1 2 3
x 3 x 4 x 10
1 2 3
2x 2x x 5
2.3.2 灵敏度分析
一、定义:
灵敏度分析讨论建模时的系数及有关变量变化时对 解的影响。 反映在两个方面
最优性: j C j C B B 1 Pj 1 可行性:X B B b
二、目的:
(1)参数在何范围内变化最优解(基)不变。 (2)参数变化,最优解有何变化。 1.资源向量b的变化分析
4.最优性
设X,分别是( P )与( D )问题的可行解, Y 且C X Y b,则 X, Y皆为最优解。
图示为:
CX Yb
z w CX Yb
* *
5.强对偶性 设 如果(P)问题有最优解,则(D)问题也有最 优解,且最优值相等。 证:对(P)增加松弛变量XS,化为标准型:
min w 2 y1 y2 y1 2 y2 1 y1 y 2 1 y1 y2 0 y , y 0 1 2
s.t.
s.t.
若原问题xj≤0,则对偶问题第j个约束
反号(与规定形式比)。同理,若原问题 第i个约束反号(与规定形式比),则对偶 问题yi≤0。
运筹学基础对偶线性规划(2)
y1 +2y2 +y3 ≤ 3
-3y1 +y3 ≤ -5
y1 -y2 +y3=1
y1 ≥ 0, y2 , y3 ≤ 0
对偶问题(或原问题) 目标函数最大化( maxZ)
n 个约束 m 个变量 目标函数价值向量(系数) 约束条件限定向量
≤ 约束 ≥
=
≥0 变量 ≤ 0
无限制
§2.2 线性规划的对偶理论
n 个变量 m 个约束 约束条件限定向量(右边项) 目标函数价值向量
≥0 变量 ≤ 0
无限制
对偶问题(或原问题) 目标函数最大化( maxZ)
n 个约束 m 个变量 目标函数价值向量(系数) 约束条件限定向量
≤ 约束 ≥
=
-2 x1
x3 3
≥ 约束 ≤
≥0 变量 ≤ 0
x1,x2,x3
=
无限制
原问题线性规划模型 对偶线性规划模型
max f 2x1 3x2 min g 8y1 16 y2 12 y3
x1 2 x2 8 s.t.44x1xx,12x2 11620
s.t.
y1 4y2 2 2y1 4y3 3
yi 0,i 1,2,3
下列的表给出了原问题模型和模型的对应关系,这些也可以
≥ 约束 ≤
=
≥ 约束 ≤
=
反号
Hale Waihona Puke ≤0 变量 ≥ 0无限制
原问题(maxZ)与对偶之关系:
原问题 目标函数max
对偶问题 目标函数min
n个
变 量
无 00约束
n个 约
束
条
件
原问题(maxZ)口诀: 变量决定约束是同号
约 m个
运筹学02对偶理论1线性规划的对偶模型,对偶性质
(x1, x2, x3)T 0
从而对偶问题为
4 min w Yb ( y1, y2 ) 1 4 y1 y2
4 1 -1
YA ( y1, y2 ) 1 -7
5
(4 y1 y2, y1 7 y2, y1 5y2 ) (5, 2, 3)
min Z 4 y1 y2
4 y1 y2 5
min
w
6 y1
8y2
10 y3
约束, 即
5yy1175yy22
y3 3 y3
4
3
yi 0, i 1,2,3
3.1 线性规划的对偶模型 Dual model of LP
线性规划问题的规范形式(Canonical Form 或叫对称形式) : 定义:
目标函数求极大值时,所有约束条件为≤号,变量非负; 目标函数求极小值时,所有约束条件为≥号,变量非负。
【例3.2】写出下列线性规划的对偶问题
max Z (5, 2,3)(x1, x2, x3)T
max Z 5x1 2x2 3x3
4x1x1 7
x2 x2
x3 4 5x3 1
x1, x2, x3 0
【解】设Y=(y1,y2 ), 则有
4
1
1 7
1
5
x1 x2 x3
4 1
y1y1 7
y2 2 5 y2 3
y1 0, y2 0
3.1 线性规划的对偶模型 Dual model of LP
【例3.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x1 35x2x2108 x1 0, x2 0
【解】该线性规划的对偶问题是求最 小值,有三个变量 且非负, 有两个“ ≥”
运筹(第二章对偶与灵敏度分析)(1)
5x2 3x3 30
x1 0, x2无约束,x3 0
2023/2/22
17
解:将原问题模型变形, 令x1 x1
min z 7x1 4x2 3x3
4x1 2x2 6x3 24
3x1 6x2 4x3 15 5x2 3x3 30
y1 y2 y3
x1 0, x2无约束,x3 0
则对偶问题是
max w 24 y1 15y2 30 y3
4 y1 3y2
7
x1
2 y1 6 y2 5 y3 4
x2
6 y1 4 y2 3x3 3
x3
y1, y2 0, x3无约束
2023/2/22
18
小结:对偶问题与原问题的关系:
目标函数:MAX
原 约束条件:m个约束
对
问
y1 y2
ym
2023/2/22
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
分别是原问题和对偶问题的可行解,则恒有
n
m
c j x j bi yi
j 1
i 1
m
n
考虑利用 c j aij yi 及
aij x j bi
i 1
j 1
代入。
2、无界性 如果原问题(对偶问题)有无界解,则
其对偶问题(原问题)无可行解。
2023/2/22
运筹学课件第二章对偶问题
第二章线性规划的对偶理论与灵敏度分析一、学习目的与要求 1、掌握对偶理论及其性质 2、掌握对偶单纯形法3、熟悉灵敏度分析的概念和内容4、掌握限制常数与价值系数、约束条件系数的变化对原最优解的影响5、掌握增加新变量和增加新的约束条件对原最优解的影响,并求出相应因素的灵敏度范围6、了解参数线性规划的解法 二、课时 6学时第一节 线性规划的对偶问题一、对偶问题的提出定义:一个线性规划问题常伴随着与之配对的、两者有密切联系的另一个线性规划问题,我们将其中一个称为原问题,另一个就称为对偶问题,在求出一个问题的解时,也同时给出了另一问题的解。
应用:在某些情况下,解对偶问题比解原问题更加容易;对偶变量有重要的经济解释(影子价格);作为灵敏度分析的工具;对偶单纯形法(从一个非可行基出发,得到线性规划问题的最优解);避免使用人工变量(人工变量带来很多麻烦,两阶段法则增加一倍的计算量)。
例:某家具厂木器车间生产木门与木窗;两种产品。
加工木门收入为56元/扇,加工木窗收入为30元/扇。
生产一扇木门需要木工4小时,油漆工2小时;生产一扇木窗需要木工3小时,油漆工1小时;该车间每日可用木工总共时为120小时,油漆工总工时为50小时。
问:(1)该车间应如何安排生产才能使每日收入最大?(2)假若有一个个体经营者,手中有一批木器家具生产订单。
他想利用该木器车间的木工与油漆工来加工完成他的订单。
他就要考虑付给该车间每个工时的价格。
他可以构造一个数学模型来研究如何定价才能既使木器车间觉得有利可图而愿意为他加工这批订单、又使自己所付的工时费用最少。
解(1):设该车间每日安排生产木门x1扇,木窗x2扇,则数学模型为⎪⎩⎪⎨⎧≥≤+≤++=-0502120343056max 21212121x x x x x x x zX*=(15,20)’ Z*=1440元解(2):设y 1为付给木工每个工时的价格,y 2为付给油工每个工时的价格⎪⎩⎪⎨⎧≥≥+≥++=-0303562450120min 21212121y y y y y y y wY*=(2,24)’ W*=1440元将上述问题1与问题2称为一对对偶问题,两者之间存在着紧密的联系与区别:它们都使用了木器生产车间相同的数据,只是数据在模型中所处的位置不同,反映所要表达的含义也不同。
运筹学第2章:线性规划的对偶理论
目
标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1
运筹学--第二章 线性规划的对偶问题
习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。
分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。
(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。
2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。
2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。
运筹学2对偶问题
§2.1线性规划的对偶模型 Dual model of LP
Ch2 Dual Problem
2019/9/19
Page 11 of 19
在例2.1中,原问题的最优解X=(24.24,0,46.96) 对偶问题的最优解Y=(10.6,0.91,0,0) 最优值z=w=5712.12
分析:
1. y1=10.6说明在现有的资源限量的条件下,增加 一个单位第一种资源可以给企业带来10.6元的利润; 如果要出售该资源,其价格至少在成本价上加10.6元。
1
1
3
5 x
x
2
2
8 10
x 1 0 , x 2 0
【解】这是一个对称形式的线性规划,它的对偶问题求最
小值,有三个变量且非负,有两个“ ≥”约束,即
min w 6 y1 8 y2 10 y3
5 y1 7 y2 y3 4 y1 2 y2 3y3 3 yi 0, i 1,2,3
§2.1线性规划的对偶模型 Dual model of LP
Ch2 Dual Problem
2019/9/19
Page 16 of 19
若给出的线性规划不是对称形式,可以先化成对称形式再 写对偶问题。也可直接按表2-1中的对应关系写出非对称 形式的对偶问题。
例如,原问题是求最小值,按表2-1有下列关系:
及食物价格如下表,试建立此人在满足健康需要的基础上
花费最少的数学模型。
含量 食物
营养成分
一
二
三 四 五 六 需要量
A
13 25 14 40 8 11 ≥80
B
24
9
30 25 12 15 ≥150
运筹学第二章线性规划的对偶理论
(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3
与
y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条
运筹学第2章-线性规划的对偶理论
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
运筹学基础及应用第2章-线性规划的对偶问题(胡运权版)教程文件
2 x 1 2 x 2 12
s
.t
x 4
1
x
1
2
x2 16
8
4
x2
12
x 1 , x 2 0
反过来问:若厂长决定不生 产甲和乙型产品,决定出租 机器用于接受外加工,只收 加工费,那么4种机器的机 时如何定价才是最佳决策?
1.对偶问题的提出
在市场竞争的时代,厂长的最佳决策显然应符合两条:
对偶问题的基本性质minmax的某个约束条件的右端项常数bi第i种资源的拥有量增加一个单位时所引起目标函数最优值z的改变量称为第i种资源的影子价格其值等于d问题中对偶变量y影子价格的经济意义1影子价格是一种边际价格在其它条件不变的情况下单位资源数量的变化所引起的目标函数最优值的变化
运筹学基础及应用
Operations Research
1 . min Z 2 x 1 2 x 2 4 x 3
2x1 3x 2 5x 3 2
3
x
1
x 2 7x 3 3
x1 4x 2 6x 3 5
x 1 , x 2 , x 3 0
2 . min Z 3 x 1 2 x 2 3 x 3 4 x 4
x1 2x 2 3x 3 4x 4 3
4
0
0
4
16
12
2
3
minω
max z
对偶性是线性规划问题的最重要的内容之一。每一个线性规划( LP ) 必然有与之相伴而生的另一个线性规划问题,即任何一个求 maxZ 的LP都 有一个求 minZ 的LP。其中的一个问题叫“原问题”,记为“P”,另一个 称为“对偶问题”,记为“D”。
2.原问题与对偶问题
2. 原问题与对偶问题的对应关系
运筹学第2章 对偶理论01-对偶问题及影子价格、对偶单纯形法
第2章对偶理论及灵敏度分析主要内容对偶理论⏹线性规划对偶问题⏹对偶问题的基本性质⏹影子价格⏹对偶单纯形法灵敏度分析⏹灵敏度问题及其图解法⏹灵敏度分析⏹参数线性规划线性规划的对偶问题⏹对偶问题的提出⏹原问题与对偶问题的数学模型⏹原问题与对偶问题的对应关系实例:某家电厂家利用现有资源生产两种产品,有关数据如下表:设备A设备B 调试工序利润(元)612521115时24时5时产品Ⅰ产品ⅡD一、对偶问题的提出如何安排生产,使获利最多?厂家设Ⅰ产量–––––Ⅱ产量–––––1x 2x ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=052426155 2max 212121221x x x x x x x s.t.x x z ,设设备A ——元/时设备B ––––元/时调试工序––––元/时1y 2y 3y 收购付出的代价最小,且对方能接受。
出让代价应不低于用同等数量的资源自己生产的利润。
设备A 设备B 调试工序利润(元)0612521115时24时5时ⅠⅡD ⏹厂家能接受的条件:⏹收购方的意愿:32152415min yy y w ++=单位产品Ⅰ出租收入不低于2元单位产品Ⅱ出租收入不低于1元出让代价应不低于用同等数量的资源自己生产的利润。
1252632132≥++≥+y y y y y52426155 2212121221⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=x x x x x x x s.t.x x z ,max ⎪⎩⎪⎨⎧≥≥++≥+++=0y 125265241532132132321y y y y y y y t s y y y w ,,.min 对偶问题原问题收购厂家一对对偶问题⎩⎨⎧≥≥=⇒⎩⎨⎧≥≤=00bY C YA s.t.Yb w X AX t s CX z min ..max ),(21c c C =⎪⎪⎫ ⎛=1x x X )(ij a A =()321,y ,y y Y =⎪⎪⎪⎫ ⎛=321b b b b 3个约束2个变量2个约束3个变量原问题对偶问题其它形式的对偶问题?特点:1.原问题的约束个数(不包含非负约束)等于对偶问题变量的个数;2.原问题的价值系数对应于对偶问题右端项;3.原问题右端项对应于对偶问题的价值系数;4.原问题约束矩阵转置就是对偶问题约束矩阵;5.原问题为求最大,对偶问题是求最小问题;6.原问题不等约束符号为“≤”,对偶问题不等式约束符号为“≥”;二、原问题与对偶问题的数学模型1.对称形式的对偶当原问题对偶问题只含有不等式约束时,称为对称形式的对偶。
运筹学第2章 对偶理论
2 y1 3 y2 y3 2 3 y1 y2 4 y3 3 5 y1 7 y2 6 y3 4 y , y , y 0 1 2 3
原—对偶问题的相互变换形式
原问题(或对偶问题) 目标函数 max 约 束 条 件 变 量 m个 ≤ ≥ = n个 ≥0 ≤0 无约束 约束条件右端项 目标函数变量的系数 对偶问题(或原问题) 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 目标函数变量的系数 约束条件右端项 变 量 约 束 条 件
设y1 , y2 , y3分别为三种资源的收费单价,所以 有下式: 5 y1 2 y2 y3 10 2 y1 3 y2 5 y3 18 y1 , y2 , y3 0 就目标而言,用下式可以表达: 170 y1 100 y2 150 y3 W
一般而言,W 越小越好,但因需双方满意,故
变为对称形式
m axZ 2 x1 3 x 2 4 x 3 2 x 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
min W 2 y1 3 y2 5 y3
B
1 0
M-1
-2
最 终 表
cj cB 3 -1 -1 xB x1 x2 x3 检验数 b 4 1 9
3 x1 1 0 0 0
-1 x2
-1 x3 0 0 1 0
0 x4 1/3 0 2/3 -1/3
I
0 1 0 0
-1/3 1/3-M 2/3- M
所以, X*=(4 , 1 , 9),Z = 2
初 始 表
《运筹学》第二章 对偶问题
3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y
无
3
约
束
对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1
运筹学-对偶问题
对偶问题的应用场景
资源分配问题
在资源有限的情况下,如何合理分配资源以达到 最优目标。
运输问题
如何制定运输计划,使得运输成本最低且满足运 输需求。
生产计划问题
如何制定生产计划,使得生产成本最低且满足市 场需求。
投资组合优化问题
如何选择投资组合,使得投资收益最大且风险最 小。
02
对偶问题在运筹学中的重要性
对偶问题的理论完善与深化
对偶理论的数学基础
进一步深入研究对偶理论的数学基础,包括对偶映射、对偶函 数、对偶不等式等,为解决对偶问题提供更坚实的理论基础。
对偶问题的转化与求解
研究如何将复杂的对偶问题转化为更容易求解的形式,或 者设计有效的求解方法,以提高对偶问题的求解效率。
对偶理论与实际应用的结合
在对偶理论不断完善的基础上,进一步探索如何将其应用于实际问题 中,以解决实际问题的优化问题,提高决策的科学性和效率。
在整数规划中,对偶问题通常 是指将原问题的约束条件或目 标函数进行一些变换,使得原 问题与对偶问题在结构上存在 一定的对称性。
对偶问题的性质
02
01
03
对偶问题的最优解与原问题的最优解具有密切关系。
在线性规划中,如果原问题是最大化问题,则对偶问 题是最小化问题,反之亦然。
在整数规划中,对偶问题的约束条件和目标函数通常 与原问题存在一定的对称性。
02 求解步骤
03 1. 定义原问题和对偶问题。
04
2. 利用状态转移方程和最优子结构性质,求解对偶问 题。
05 3. 利用对偶问题的解,求解原问题。
博弈论中的对偶策略
1. 定义博弈中的策略空间和支付 函数。
求解步骤
2. 构造对偶问题。
运筹学第二章——第八节—线性规划的对偶理论
四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。
运筹学第2章线性规划的对偶问题
§2.1 线性规划的对偶问题
随着线性规划应用的逐步加深,人们发现每一个线性规 划问题都存在一个与之对应的、具有密切关联的线性规 划问题,其中一个称为原问题,另一个称为对偶问题 (Dual linear programming,DLP)。对偶问题不仅具有 优良的数理性质,而且还有着重要的实际意义,尤其在 生产运营管理中有明显的经济含义。对偶理论充分显示 出线性规划理论逻辑上的严谨性和结构上的对称性,使 线性规划理论更加丰富,应用领域更为广泛。
yi 0 (i 1,2,3)
则得如下的线性规划模型:
min w 48 y1 20 y2 8 y3 8 y1 4 y2 2 y3 600 6 y 2 y2 1.5 y3 300 s.t. 1 y1 1.5 y2 0.5 y3 200 y , y , y 0 1 2 3
max z 2 y1 5 y2 9 y3 y1 3 y2 2 y3 3 2 y y 2 y 1 1 2 3 5 y1 y2 3 y3 1 y1无约束,y2 0, y3 0,
max z 600 x1 300 x2 200 x3 8 x1 6 x2 x3 48 4 x1 2 x2 1.5 x3 20 s.t 2 x1 1.5 x2 0.5 x3 8 x , x , x 0 1 2 3
x1 2, x2 0, x3 8
(2.1.6)
设 yi (i 1,2,, m) 表示第i种资源的定价,则其对偶问 题的形式为:
min w b1 y1 b2 y2 ... bm ym a11 y1 a21 y2 ... am1 ym c1 a y a y ... a y c 12 1 22 2 m2 m 2 s.t. a y a y ... a y c mn m n 1n 1 2 n 2 y1 , y2 , , ym 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A( X ' X '' ) b s.t. ' '' X , X 0
''
min W Yb
AX AX b s.t. ' '' X , X 0
9
YA C Y ( A) C Y 0
OR:SM
P 和 D 的对偶关系
4
OR:SM
第一节 对偶规划的数学模型
出让定价
• 假设出让 A、B、C 设备所得单位利润分别为:y1、y2、y3 ; • 原本用于生产甲产品的设备台时,如若出租,应不低于自行 生产带来的利润,否则宁愿自己生产。于是有 2y1 + 0y2 + 3y3 ≥ 3 • 同理,对乙产品而言,则有 0y1 + 2y2 + 4y3 ≥ 5 • 设备台时出让的收益(希望出让的收益最少值) min =16y1 + 10y2 + 32y3
≥” “≤” “=”
【例】写出下列线性规划的对偶问题 min W 2 y1 y2 2 y3 max Z x1 x2 x3
y1 y2 2 y3 1 y y y 1 1 2 3 y1 y2 y3 1 y1 0, y2无约束, y3 0 【解】设对偶问题的变量为 y1, y2 和 y3,则:
• 前者称为线性规划原问题(P)数学模型,则后者为对偶问题(D)数 学模型,反之亦然。 • 经计算,对偶问题的最优解: y1 = 0,y2 = 1/2,y3 =1,W* = 37 • 两个问题的参数相互联系以及目标函数值相等, • 这并非偶然。
6
OR:SM
max Z CX
P:
min W Yb
8
Y A Y ( A) C ' '' Y , Y 0
' ''
OR:SM
max Z CX
P:
max Z C ( X X )
' ''
max Z CX CX
'
min W Yb YA C Y 0
' ''
AX b s.t. X 无约束
S CS CB B I 0, CB B 0, Y 0(2)
1
同时,希望 Yb 越小越好:
minW Yb (3)
OR:SM
7
max Z CX
P:
min WZ(Y Y )b max CX
' ''
AX b s.t. X 0 AX b b AX b
C CB B A 0 1 YA 令: CB B 则: C , Y 0 C B 1 0 Y B
①存在性:设X*是P的最优解,则: Y就是D的一个可行解,即:
1
YA Y B, N C CB , C N
YB CB
17
:
Y D的目标函数值求最小,所以:
A B C
工时消耗 甲 乙 2 0 3 0 2 4
• 显然还有
y1,y2,y3 ≥ 0
5
OR:SM
例1的对偶问题的数学模型
maxZ = 3x1 + 5x2 2x1 ≤16 2x2 ≤10 s.t. 3x +4 x ≤32 1 2 x1 , x2 ≥0
min =16y1+10y2+32y3 2y1+ 0y2+ 3y3≥ 3 s.t. 0y + 2y + 4y ≥ 5 1 2 3 y1 , y2 , y3≥0
max W 18 y1 10 y2 14 y3 2 y3 = 1 7 y1 2 y 6 y 8 y 5 1 2 3 ≥ y3 ≤ 4 8 y1 y 5y ≤ 9 2 1 y1≤0, y2≥0, y3 无约束
【解】设对偶问题的变量为 y1, y2 和 y3,则:
x1 x2 x3 2 x x x 1 1 2 3 2 x1 x2 x3 2 x1 0; x2 , x3 无约束
11
OR:SM
【练习】写出下列线性规划的对偶问题
min Z x1 5 x2 4 x3 9 x4 7 x1 2 x2 8 x3 x4 18 6 x2 5 x4 10 2 x1 8 x2 x3 14 x1无约束, x2 0, x3 , x4 0
CX Yb
AX b AX X S b YA C YA YS C X S b AX YX S Y (b AX ) YS YA C YS X (YA C ) X X和Y为最优解,
Y b AX 0
(YA YS ) X Y ( AX X S )
第2章 对偶规划
第 2 章 对偶规划
内容提要
第一节 对偶规划的数学模型
对偶问题的提出
对偶规划的性质
第二节 对偶规划的经济解释
影子价值的内涵
影子价值的应用
资源定价的决策案例
第三节 对偶单纯形法 第四节 灵敏度分析
2
OR:SM
第一节 对偶规划的数学模型
一、对偶问题的提出 例1 产品 工时消耗 h
OR:SM
如果X和Y分别为P和D的可行解,它们分别为P和D 最优解的充要条件是: C YA X 0 证明:充分性 Y 设X和Y分别为P和D的可行解,且满足: 即: CX YAX Yb YAX CX Yb 所以:X和Y必为P和D的最优解。
b AX 0
YX S 0,YS X 0
CB B
1
OR:SM
②相等性: P:CX D:
CB X B CB B b Y b CB B b
* 1
1
充分性,可由对称性定理得到证明。
18
OR:SM
定理3:强对偶定理(3-2)
(2)对于原问题P(max)和对偶问题D(min),若P无界则 D不可行,若D无界则P不可行。
证明:根据弱对偶定理。
原问题(或对偶问题) 目标函数max 决策变量 n 个 约束条件 m 个 价值系数 n 个 资源限量 m 个 系数矩阵 变 量 约 束
10
对偶问题(或原问题) 目标函数min 约束条件 n 个 决策变量 m 个 资源限量 n 个 价值系数 m 个 系数矩阵 约 束 变 量 AT “≥” “≤” “=” ≤0 ≥0 无约束
可以看出,能使对偶问题目标函数值为25的可行解: X(1)=(0.5, 2)T, X(2)=(1, 1.5)T 根据弱对偶定理,25是原问题目标函数值的上界, 即原问题最优目标函数值不大于25。
16 OR:SM
1
2
3
定理3:强对偶定理(3-1)
(1) 原 问 题 P(max) 有 最 优 解 的 充 要 条 件 是 对 偶 问 题 D(min)有最优解,且两个问题的最优目标函数值相等。 证明:必要性,P有最优解,则D有最优解。
CX Yb
OR:SM
推论1:P和D有最优解的充要条件是它们同时具有可行解。 证明:(1)必要条件。
若P和D有最优解,则它们同时有可行解。 (2)充分条件。 若P和D同时有可行解,那么它们有最优解。 CX
Yb
可见,对偶问题任意一个可行解Y对应的目标函数值 都是原问题目标函数值的上界,所以一定存在X,使原问 题目标函数值最大,即原问题具有最优解。 反之,原问题任意一个可行解X对应的目标函数值都 是对偶问题目标函数值的下界,所以一定存在Y,使对偶 问题目标函数值最小,对偶问题具有最优解。
max Z CX
minW Yb YA C Y
(Y Y ) A C s.t' . AX b '' Y , YX00
' AX b ''
min W Y b Y (b)
' ''
AX b s.t. ( A) X (b) 取值无约束 X 0
设备 A B C 甲 2 0 3 乙 0 2 4 工时成本 元/h 20 15 10 生产能力 h 16 10 32
max Z 3x1 5 x2 2 x1 16 2 x 10 2 s.t. 3 x1 4 x2 32 x1 , x2 0
3 OR:SM
第一节 对偶规划的数学模型
15
OR:SM
证明:设对偶问题变量为x1,x2,则模型为 max Z 4 y 6 y 2 y min W 10 x1 10 x2
x1 2 x2 4 y1 2 y2 y3 10 2 x 3x 6 1 2 2 y1 3 y2 3 y3 *10 T x 3x 2 2 X 0,2 1 y , y , y 0 x1 , x2 0 1 2 3 * Z 20
20 OR:SM
定理4:互补松弛定理
如果X和Y分别为P和D的可行解,它们分别为P和D 最优解的充要条件是: C YA X 0 证明:必要性
Y b AX 0 YA C X 0 C YA
21
YX S YS X 0 YX S 0, YS X 0
14
OR:SM
【例】 已知线性规划问题
max Z 4 y1 6 y2 2 y3 y1 2 y2 y3 10 2 y1 3 y2 3 y3 10 y , y , y 0 1 2 3
试用对偶理论证明该问题的最优目标函数值不大于25。