中考复习统计题汇总

合集下载

中考统计复习题

中考统计复习题

中考统计复习题中考统计复习题统计学是一门研究数据收集、分析和解释的学科,它在我们的日常生活中无处不在。

无论是在科学研究中,还是在商业决策中,统计学都起着重要的作用。

随着中考的临近,我们需要复习一些统计学的基本概念和方法。

下面,我将为大家整理一些中考统计复习题,希望能够帮助大家更好地复习和理解统计学知识。

一、选择题1. 下列哪个不是统计学的基本概念?A. 样本B. 总体C. 假设检验D. 参数2. 以下哪个不是统计学中常用的图表?A. 条形图B. 折线图C. 饼图D. 散点图3. 下列哪个指标可以用来描述一组数据的离散程度?A. 均值B. 中位数C. 方差D. 众数4. 在一组数据中,75%的数据小于等于第几个四分位数?A. 第一四分位数B. 第二四分位数C. 第三四分位数D. 第四四分位数5. 下列哪个方法可以用来描述两个变量之间的相关性?A. 方差分析B. 线性回归C. 卡方检验D. t检验二、填空题1. 一组数据的标准差为10,方差为________。

2. 一组数据的最大值为100,最小值为50,极差为________。

3. 一组数据的中位数为20,第一四分位数为15,第三四分位数为25,极差为________。

4. 一组数据的众数为10,出现的频数最高,频数为________。

5. 一组数据的偏态系数为-0.5,说明数据呈现________分布。

三、解答题1. 请问,如何计算一组数据的中位数?请用一个例子进行说明。

2. 请解释什么是正态分布?并举一个实际应用的例子。

3. 请解释什么是样本调查?并说明它的优缺点。

4. 请解释什么是假设检验?并举一个实际应用的例子。

5. 请解释什么是相关系数?并说明它的取值范围和意义。

这些统计复习题涵盖了中考统计学的基本知识点,通过解答这些问题,可以帮助我们加深对统计学的理解和掌握。

在复习过程中,我们还可以结合课本、习题集等资料进行更加深入的学习和巩固。

希望大家能够充分利用好这些复习题,为中考做好充分准备!。

初三数据统计练习题

初三数据统计练习题

初三数据统计练习题数据统计是数学中的一个重要内容,通过对数据的收集、整理、分析和展示,可以更好地了解数据的特征和规律。

本文将介绍一些初三数学中常见的数据统计题目,并提供解题方法。

第一题:某班级有50名学生,调查了学生们最喜欢的运动项目,并整理了如下的结果:篮球:17人足球:12人乒乓球:8人游泳:7人网球:6人请根据上述数据回答以下问题:1. 最受欢迎的运动项目是什么?2. 喜欢篮球和足球的学生总共有多少人?3. 不喜欢足球的学生有多少人?解题方法:1. 根据数据可以得知,学生们最喜欢的运动项目是篮球,因为选择篮球的人数最多。

2. 喜欢篮球和足球的学生总共有17+12=29人。

3. 不喜欢足球的学生有50-12=38人。

第二题:某商店进行了一项销售调查,统计了5种商品的销售数量(单位:件)如下:商品A:35商品B:42商品C:28商品D:19商品E:24请根据上述数据回答以下问题:1. 销售最高的商品是什么?2. 销售最低的商品是什么?3. 这5种商品的平均销售数量是多少?解题方法:1. 销售最高的商品是商品B,因为销售数量为42件,最多。

2. 销售最低的商品是商品D,因为销售数量为19件,最少。

3. 这5种商品的总销售数量为35+42+28+19+24=148件,平均销售数量为148/5=29.6件。

第三题:某调查机构进行了一项调查,统计了300位市民对于环境保护问题的看法如下:支持环保的人数:245人不支持环保的人数:55人请根据上述数据回答以下问题:1. 支持环保的人所占的百分比是多少?2. 不支持环保的人所占的百分比是多少?解题方法:1. 支持环保的人所占的百分比为(245/300)×100% ≈ 81.67%。

2. 不支持环保的人所占的百分比为(55/300)×100% ≈ 18.33%。

通过以上的数据统计练习题,我们可以看到数据统计在解决实际问题中的重要性。

掌握数据统计的方法和技巧,可以帮助我们更好地理解和分析数据,从而做出正确的判断和决策。

统计试题及答案初中

统计试题及答案初中

统计试题及答案初中一、选择题(每题2分,共20分)1. 统计中常用的数据整理方法有()。

A. 条形图B. 折线图C. 扇形图D. 所有选项2. 以下哪项不是统计图的特点?()A. 直观B. 形象C. 抽象D. 易于理解3. 统计表中,数据的排列顺序通常是()。

A. 随机排列B. 按时间顺序排列C. 按数量大小排列D. 按字母顺序排列4. 在统计中,中位数是指()。

A. 数据集中的最小值B. 数据集中的最大值C. 将数据集一分为二的值D. 数据集中的平均值5. 以下哪种图形适合表示事物的变化趋势?()A. 条形图B. 扇形图C. 折线图D. 饼图6. 统计中,众数是指()。

A. 数据集中最小的数B. 数据集中最大的数C. 数据集中出现次数最多的数D. 数据集中的平均数7. 以下哪种方法可以用于计算一组数据的平均数?()A. 求和法B. 乘积法C. 除法D. 所有选项8. 统计中,方差是用来衡量()。

A. 数据的集中程度B. 数据的离散程度C. 数据的波动性D. 数据的稳定性9. 以下哪种图形适合表示部分与整体的关系?()A. 条形图B. 折线图C. 扇形图D. 饼图10. 在统计中,标准差是用来衡量()。

A. 数据的集中程度B. 数据的离散程度C. 数据的波动性D. 数据的稳定性二、填空题(每题2分,共20分)1. 在统计中,一组数据的中位数是将数据按大小排列后,位于______的数。

2. 统计图的类型包括条形图、折线图、扇形图和______图。

3. 统计表通常包括标题、______、数据和备注。

4. 当一组数据中有两个或两个以上的数出现次数相同时,这些数都是这组数据的______。

5. 统计中,平均数的计算公式是______。

6. 一组数据的方差越小,说明数据的______程度越高。

7. 统计中,标准差是方差的______次方根。

8. 扇形图中,每个扇形的大小表示的是______。

9. 统计表中的数据应该按照______顺序排列。

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

统计学综合应用题(有答案)中考23题必练经典

统计学综合应用题(有答案)中考23题必练经典

统计学综合应用题(有答案)中考23题必练经典1. 问题描述:某班级学生的身高数据如下:160 170 155 175 165 165 165 185 165 170请计算该班级学生的身高平均值和中位数。

解答步骤:平均值计算:首先将所有身高数据相加,得到总和:160 + 170 + 155 + 175 + 165 + 165 + 165 + 185 + 165 + 170 = 1695。

然后将总和除以学生人数,即10人,得到身高的平均值:1695 / 10 ≈ 169.5。

中位数计算:首先将身高数据从小到大排序:155, 160, 165, 165, 165, 165, 170, 170, 175, 185。

然后找到中间位置的身高数据,即第5个和第6个身高数据:165, 165。

由于这两个数据相同,所以中位数就是165。

2. 问题描述:某学生一周的研究时间如下:2 3 4 5 6 3 4请计算该学生一周的研究时间的方差。

解答步骤:首先计算研究时间的平均值:将所有研究时间相加,得到总和:2 + 3 + 4 + 5 + 6 + 3 + 4 = 27。

然后将总和除以一周的天数,即7天,得到研究时间的平均值:27 / 7 ≈ 3.857。

接下来计算每个研究时间与平均值之差的平方,并将所有平方差相加:(2 - 3.857)^2 + (3 - 3.857)^2 + (4 - 3.857)^2 + (5 - 3.857)^2 + (6 -3.857)^2 + (3 - 3.857)^2 + (4 - 3.857)^2 ≈ 3.857。

最后将平方差的总和除以一周的天数,即7天,得到研究时间的方差:3.857 / 7 ≈ 0.551。

3. 问题描述:某班级学生的考试成绩如下:85 90 95 80 85 90 90 85 95请计算该班级学生的成绩标准差。

解答步骤:首先计算成绩的平均值:将所有成绩相加,得到总和:85 + 90 + 95 + 80 + 85 + 90 + 90 + 85 + 95 = 795。

初三中考数学:《统计》专项练习复习题

初三中考数学:《统计》专项练习复习题

统计专项练习题一、选择题1. 下列调查中,最合适采用全面调查(普查)方式的是()A.对重庆市民知晓“中国梦”内涵情况的调查B.对2021年元旦节磁器口游客量情况的调查C.对全国中小学生身高情况的调查D.对全班同学参加“反邪教”知识问答情况的调查2. 下列调查中,属于抽样调查的是()A.了解某班学生的身高情况B.某企业招聘,对应聘人员进行面试C.检测某城市的空气质量D.乘飞机前对乘客进行安检3. 我市五月份连续五天的最高气温分别为,,,,(单位:),这组数据的中位数和众数分别是()A.,B.,C.,D.,4. 下列一组数据:、、、、的平均数和方差分别是()A.和B.和C.和D.和5. 为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果。

下列调查数据中最值得关注的是()A.平均数B.中位数C.众数D.方差6. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生B.调查七、八、九年级各30名学生C.调查全体女生D.调查全体男生7. 为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A.2000名学生B.2000 C.200名学生D.2008. 甲乙丙三种糖果的售价分别每千克 6 元、7 元、8 元,若将甲种 8 千克、乙种 10 千克、丙种 3 千克混在一起出售,为确保不亏本售价至少应定为每千克()A.6.8 元B.7 元C.7.5 元D.8.6 元9. 要反映一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布图10. 若数据、、的平均数是3,则数据、、的平均数是 ( ) A.2 B.3 C.4 D.611. 某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是( )A.甲B.乙C.丙D.丁12. 济南某中学足球队的18名队员的年龄如下表所示:这18名队员年龄的众数和中位数分别是( )A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁13. 某市统计部门公布的2016年6~10月份本市居民消费价格指数(CPI)的同比增长分别为2.3%,2.3%,2%,1.6%,1.6%,业内人士评论说:“这五个月的本市居民消费价格指数同比增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”反映的统计量是( )A.方差B.平均数C.众数D.中位数根据上表中的信息判断,下列结论中错误的是().A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分15. 小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.10816. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差17. 为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量18. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.58,S乙2=0.52,S丙2=0.56,S丁2=0.48,则成绩最稳定的是()A.甲B.乙C.丙D.丁19. 为了了解我市参加中考的 120000 学生的视力情况,抽查了 1000 名学生的视力进行统计分析.样本容量是()A.120000 名学生的视力B.1000 名学生的视力C.120000 D.100020. 某市2021年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析,在这个问题中样本是指( )A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生21. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲 B.乙C.丙 D.丁22. 如图是某晚报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护话题的电话最多,共70个,则本周“百姓热线”共接到热线电话有( )A.350个B.200个C.180个D.150个23. 凤江镇有10万人口,随机调查了1000人,其中有20人喜欢看晚间新闻联播,则该镇中喜欢看晚间新闻联播的人数大约有()人.A.1000 B.2000 C.3000 D.400024. 一组数据3、4、x、1、4、3有唯一的众数3,则这组数据的中位数是()A.3 B.2 C.1 D.425. 样本数据3、6、a、4、2的平均数是5,则这个样本的方差是A.8 B.5 C.22D.3二、填空题27. 若数,,,,五个数的平均数为,则的值为________.该小组学生在这次测试中成绩的中位数是_____分.29. 已知某班某次数学成绩中10名同学的成绩分别为89,70,65,89,75,92,88,87,90,86,这10名同学的成绩的中位数、众数分别是_____________。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

中考数学专题训练:统计(附参考答案)

中考数学专题训练:统计(附参考答案)

中考数学专题训练:统计(附参考答案)1.以下调查中,最适合用全面调查的是( )A.调查柳江流域水质情况B.了解全国中学生的心理健康状况C.了解全班学生的身高情况D.调查春节联欢晚会收视率2.乡村医生李医生在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后7天,李医生每天定时为张奶奶测量血压,测得数据如下表:..A.收缩压的中位数为139B.舒张压的众数为88C.收缩压的平均数为142D.舒张压的方差为8873.小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形统计图1及条形统计图2(柱的高度从高到低排列).条形图不小心被撕了两块,图2中“( )”内应填的颜色是( )图1 图2A.蓝B.粉C.黄D.红4.“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如表:A.4.9和4.8 B.4.9和4.9C.4.8和4.8 D.4.8和4.95.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.76.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )图1 图2A.本次抽样调查的样本容量是5 000B.扇形统计图中的m为10%C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D.样本中选择公共交通出行的有2 400人7.长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差8.如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变9.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁10.在某次射击训练过程中,小明打靶10次的成绩(环)如表所示,则小明射击成绩的众数和方差分别为( )C.10和1 D.9和111.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数12.小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:A.13,15 B.14,15C.13,18 D.15,1513.某射击爱好者的10次射击成绩(单位:环)依次为:7,9,10,8,9,8,10,10,9,10,则下列结论正确的是( )A.众数是9 B.中位数是8.5C.平均数是9 D.方差是1.214.“俭以养德”是中华民族的优秀传统,某中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:关于这次调查,下列说法正确的是( ) A .总体为50名学生一周的零花钱数额 B .五组对应扇形的圆心角度数为36° C .在这次调查中,四组的频数为6D .若该校共有学生1 500人,则估计该校零花钱数额不超过20元的人数约为1 200人15.下列说法正确的是( )A .扇形统计图能够清楚地反映事物的变化趋势B .对某型号电子产品的使用寿命采用全面调查的方式C .有一种游戏的中奖概率是15,则做5次这样的游戏一定会有一次中奖D .甲、乙两组数据的平均数相等,它们的方差分别是s 甲2=0.2,s 乙2=0.03,则乙比甲稳定16.若一组数据x 1,x 2,x 3,…,x n 的方差为2,则数据x 1+3,x 2+3,x 3+3,…,x n +3的方差是( ) A .2 B .5 C .6D .1117.如表是小红参加一次“阳光体育”活动比赛的得分情况:评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为.18.为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分).已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)求(2)班学生中测试成绩为10分的人数;(2)请确定下表中a,b,c的值;(3)19.为激励青少年争做事业接班人,某市史馆组织了以“红心永系国”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A级为特等奖,B级为一等奖,C级为二等奖,D级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.根据相关信息,解答下列问题.(1)本次竞赛共有_______名选手获奖,扇形统计图中扇形C的圆心角度数是_________;(2)补全条形统计图;(3)若该史馆有一个入口,三个出口,请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.参考答案1.C 2.A 3.D 4.B 5.D 6.D 7.D 8.C 9.D 10.C11.D 12.D 13.C 14.B 15.D 16.A17.83分18.(1)(2)班学生中测试成绩为10分的有6人(2)a=8,b=9,c=8(3)(1)班成绩更均匀,理由略19.(1)200 108°(2)补全条形统计图略(3)13。

中考数学复习专题19统计

中考数学复习专题19统计

专题19 统计一、单选题1.(2021·山东聊城市)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( )A .样本为40名学生B .众数是11节C .中位数是6节D .平均数是5.6节 【答案】D【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可.【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确.故选择:D .【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键. 2.(2021·湖北随州市)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是( )A .测得的最高体温为37.1℃B .前3次测得的体温在下降C .这组数据的众数是36.8D .这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1℃,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.3.(2021·湖南常德市)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①【答案】D【分析】根据数据的收集、整理、制作拆线统计图及根据统计图分析结果的步骤可得答案.【详解】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故选:D.【点睛】本题考查拆线统计图、频数分布表,解答本题的关键是明确制作频数分布表和拆线统计图的制作步骤4.(2021·四川广安市)下列说法正确的是()A.为了了解全国中学生的心理健康情况,选择全面调查B.在一组数据7,6,5,6,6,4,8中,众数和中位数都是6a ”是必然事件C.“若a是实数,则0D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定【答案】B【分析】根据抽样调查及普查,众数和中位数,随机事件,方差的意义分别判断即可.【详解】解:A 、为了了解全国中学生的心理健康情况,人数较多,应采用抽样调查的方式,故错误; B 、在一组数据7,6,5,6,6,4,8中,众数和中位数都是6,故正确;C 、0a ≥,则“若a 是实数,则0a >”是随机事件,故错误;D 、若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则甲组数据比乙组数据稳定,故错误;故选B .【点睛】此题主要考查了抽样调查及普查,众数和中位数,随机事件,方差的意义,解答本题的关键是熟练掌握各个知识点.5.(2021·云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍 B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍 C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多 【答案】C【分析】分别计算单独生产各型号帐篷的天数,可判断A ,B ,C ,再根据条形统计图的数据判断D 即可. 【详解】解:A 、单独生产B 型帐篷的天数是2000030%1500⨯=4天,单独生产C 型帐篷的天数是2000015%3000⨯=1天,4÷1=4,故错误;B 、单独生产A 型帐篷天数为2000045%4500⨯=2天,4÷2=2≠1.5,故错误;C、单独生产D型帐篷的天数为2000010%1000=2天,2=2,故正确;D、4500>3000>1500>1000,∴每天单独生产A型帐篷的数量最多,故错误;故选C.【点睛】本题考查了条形统计图和扇形统计图综合,解题的关键是读懂题意,明确单独生产某一种帐篷的天数的计算方法.6.(2021·山东泰安市)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.7.(2021·广西玉林市)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=,解得:7x =;故选B . 【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.8.(2021·四川广元市)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键. 9.(2021·江苏宿迁市)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5C .4D .4.5【答案】C【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4, 4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序. 10.(2021·山西)每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是( )A .27点,21点B .21点,27点C .21点,21点D .24点,21点 【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30, 根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点, 根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C . 【点睛】本题考查中位数与众数,掌握中位数与众数定义是解题关键.11.(2021·山东菏泽市)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( ) A .中位数是10.5 B .平均数是10.3C .众数是10D .方差是0.81【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12; 位于最中间的两个数是10,10,它们的平均数是10, 所以该组数据中位数是10,故A 选项不正确; 该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确; 该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.12.(2021·湖南长沙市)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C.【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖北十堰市)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,15【答案】D【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.14.(2021·四川眉山市)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( ) A .80,90 B .90,90C .86,90D .90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数. 【详解】解:将这组数据按照从小到大排列:80,86,90,90,94; 位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B .【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·江苏苏州市)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kg B .4.8kgC .4.6kgD .4.5kg【答案】C【分析】根据平均数的定义求解即可. 【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.74.65kg =.故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.16.(2021·浙江台州市)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21s D .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∵顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s<s2,x和x1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.17.(2021·浙江嘉兴市)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33C︒B.众数是33C︒C.平均数是197C7︒D.4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33 位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7︒,故选项C不符合题意;从统计图可看出4日气温为33℃,5日气温为23℃,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.18.(2021·四川成都市)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.19.(2021·浙江宁波市)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20.(2021·四川资阳市)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.二、填空题1.(2021·浙江丽水市)根据第七次全国人口普查,华东,,,,,A B C D E F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.2.(2021·四川乐山市)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x乙=(5+9+6+7+8)÷5=7(环),2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.三、解答题1.(2021·北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:≤<≤<≤<≤<≤≤):x x x x x68,810,1012,1214,1416b .甲城市邮政企业4月份收入的数据在1012x ≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为2p .比较12,p p 的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1m =;(2)12p p <,理由见详解;(3)乙城市邮政企业4月份的总收入为2200百万元.【分析】(1)由题中所给数据可得甲城市的中位数为第13个数据,然后问题可求解;(2)由甲、乙两城市的中位数可直接进行求解;(3)根据乙城市的平均数可直接进行求解.【详解】解:(1)由题意可得m 为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵68x ≤<有3家,810x ≤<有7家,1012x ≤<有8家,∴中位数落在1012x ≤<上,∴10.1m =;(2)由(1)可得:甲城市中位数低于平均数,则1p 最大为12个;乙城市中位数高于平均数,则2p 至少为13个,∴12p p <;(3)由题意得:200112200⨯=(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.【点睛】本题主要考查中位数、平均数及统计与调查,熟练掌握中位数、平均数及统计与调查是解题关键. 2.(2021·江苏南京市)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t ,你对它与中位数的差异有什么看法? (2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)6.6t ;差异看法见解析;(2)1113a ≤<(其中a 为标准用水量,单位:t )【分析】(1)从中位数和平均数的定义和计算公式的角度分析它们的特点即可找出它们差异的原因; (2)从表中找到第75和第76户家庭的用水量,即可得到应制定的用水量标准数据.【详解】解:(1)由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为:6.4 6.8 6.62+=( t ),而这组数据的平均数为9.2t , 它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

中考复习数学真题汇编15:统计图表(含答案)

中考复习数学真题汇编15:统计图表(含答案)

一、选择题1. (2015福建省福州市,5,3分)下列选项中,显示部分在总体中所占百分比的统计图是( ) A.扇形图 B.条形图 C.折线图 D.直方图 【答案】A2. (2015浙江省温州市,3,4分)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )A.25人B.35人C.40人D.100人【答案】C3. (2015内蒙古呼和浩特,8,3分)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 【答案】B4. (2015年江苏扬州市)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是 ( )各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图A 、音乐组B 、美术组C 、体育组D 、科技组二、填空题 1.2. (2015四川省凉山州市,15,4分)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O 型血的有 人 【答案】10. 【解析】总人数为20÷40%=50人,O 型血的有50×(1﹣40%﹣30%﹣10%)=10人,故答案是10.3. (2015广东省广州市,12,3分)根据环保局公布的广州市2013年至2014年PM 2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是 .(填主要来源的名称)【答案】机动车尾气【解析】用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫做扇形统计图.所以一看数据就知道是机动车尾气.4. (2015四川资阳,13,3分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1) 2~3(不含2)超过3 人 数 7 10 14 19【答案】240.21.7%11.5%20.6%19%8.2%8.6%10.4% 机动车尾气 工业工艺源 燃煤 其他 生物质燃烧 生活面源扬尘图41296301518181312b 3课时数 组)与 不等式(组)A一次方程 B 一次方程组C 不等式与不等式组 D二次方程 E分式方程图数与代数(内容) 课时数数与式 67 方程(组)与 不等式(组) a图实践与综合应用统计与概率空间与图形 数与代数 40%45%5%图5. (2014江苏省苏州市,13,3分)某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.【答案】60【解析】最喜欢羽毛球的人数所占百分率比最喜欢乒乓球的人数所占百分率少10%,故被调查总人数为6÷105=60(人).6. (2015年湖南衡阳,22,6分)为了进一步了解义务教育阶段学生体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分别为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 【答案】(1)40%;(2)16;(3)128【解析】解:(1)总人数=8÷16%=50人,合格百分比:20100%50=40%; (2)不合格的人数=50×32%=16人; (3)九年级不合格为数=400×32%=128人.三、解答题1. (2015浙江省丽水市,20,8分)某运动品牌店对第一季度A ,B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(第13题)20%30%40%乒乓球篮球羽毛球50606552销售量(双)A ,B 两款运动鞋销售量统计图6总销售额(万元)5A ,B 两款运动鞋总销售额统计图A B(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【答案】解:(1)50×45=40(双).∴一月份B款运动鞋销售了40双.(2)设A,B两款运动鞋的销售单价分别为x元,y元.由题意可得504040000 605250000x yx y+⎧⎨+⎩==.解方程组得400500xy⎧⎨⎩==.∴三月份的总销售额为400×65+500×26=39000=3.9(万元).(3)答案不唯一,只要学生结合数据分析,言之有理即可.例如:从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销售量大,建议多进A款运动鞋,少进或不进B款鞋.从总销售额来看,由于B款运动鞋销售量减少,导致总销售额减少,建议店里采取一些促销手段,增加B 款运动鞋的销售量.2.(2015四川省巴中市,26,10分)“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦·我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛.已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.【答案】解:(1)根据统计图,可知A等级的有3人,占15%,∴参加比赛的共有3÷15%=20(人).∴C等级所占百分比为8=40%20,D等级所占百分比为4=20%20.∴m=40,D等级所占百分比为360°×20%=72°.(2)由题意,B等级所占百分比为1-15%-40%-20%=25%,∴B等级人数为20×25%=5(人),补全统计图如下所示.3.(2015山东省青岛市,17,6分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】解:(1)∵10÷25%=40,∴B的人数为40-10-14-3-1=12.补全条形统计图如下:(2)∵1-25%-30%-35%-2.5%=7.5%,∴360°×7.5%=27°.∴扇形统计图中扇形D 的圆心角的度数为27°. (3)∵2000×35%=700,∴该中学有2000名学生中有700名学生能在1.5小时内完成家庭作业.4. (2015重庆B 卷,22,10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了登记且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.类别人数22题图”我最喜欢的课外活动“各类别人数占全班总人数的百分比的扇形统计图DCB25%A“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642【答案】(1)48,105;(2)23【解析】解:(1)总人数=12÷25%=48人;D 类对应的圆心角的度数=360°×1448=105°. 类别人数18“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642,则可列下表: A 1 A 1 A 2 A 2A 1 √ √ A 1 √ √ A 2 √ √ A 2√√∴由上表可得:82(123P =一名擅长书法一名擅长绘画)=5. 小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图). 月均用水量(单位:t )频数 百分比23x ≤<2 4% 34x ≤< 12 24% 45x ≤< 56x ≤< 10 20% 67x ≤< 12% 78x ≤<3 6% 89x ≤<24%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

初中数据统计试题及答案

初中数据统计试题及答案

初中数据统计试题及答案一、选择题(每题2分,共10分)1. 数据统计中,用来表示数据集中趋势的量是:A. 极差B. 平均数C. 方差D. 众数答案:B2. 在一组数据中,出现次数最多的数据被称为:A. 极差B. 平均数C. 方差D. 众数答案:D3. 以下哪个选项不是描述数据离散程度的统计量?A. 极差B. 平均数C. 方差D. 标准差答案:B4. 统计图中,用于展示数据分布情况的图表是:A. 条形图B. 折线图C. 饼图D. 散点图答案:D5. 下列哪项不是数据收集的方法?A. 观察法B. 实验法C. 调查法D. 推理法答案:D二、填空题(每题2分,共10分)1. 在一组数据中,最小的数与最大的数之差称为______。

答案:极差2. 数据的______是指在一组数据中出现次数最多的数值。

答案:众数3. 标准差是衡量数据______程度的统计量。

答案:离散4. 通过______可以直观地看出数据的分布情况。

答案:散点图5. 数据的收集可以通过______、实验法、调查法等方式进行。

答案:观察法三、简答题(每题5分,共10分)1. 请简述平均数和中位数的区别。

答案:平均数是所有数据的总和除以数据的个数,而中位数是将一组数据按大小顺序排列后,位于中间位置的数值。

如果数据个数为奇数,中位数就是中间的那个数;如果数据个数为偶数,中位数通常是中间两个数的平均值。

2. 描述一下如何使用条形图来展示数据。

答案:条形图是一种通过条形的高度或长度来表示数据大小的图表。

在条形图中,每个条形代表一个数据点,条形的长度或高度与数据值成正比。

通过比较不同条形的长度,可以直观地看出数据之间的大小关系。

四、计算题(每题15分,共30分)1. 给定一组数据:5, 7, 8, 9, 10, 11, 12。

请计算这组数据的平均数、中位数和众数。

答案:平均数 = (5+7+8+9+10+11+12)/7 = 9;中位数 = (9+10)/2 = 9.5;众数 = 9(因为9是出现次数最多的数)2. 某班级学生的成绩分布如下:80分有5人,70分有8人,60分有3人,50分有2人。

初三统计测试题及答案

初三统计测试题及答案

初三统计测试题及答案在本次初三统计测试中,我们将通过一系列精心设计的题目来检验你对统计知识的掌握程度。

这些题目涵盖了数据收集、数据整理、图表分析以及概率计算等多个方面。

请仔细阅读题目,并在答题纸上给出你的答案。

1. 某校初三(1)班共有50名学生,其中男生30人,女生20人。

在一次数学测验中,全班的平均成绩为75分,男生的平均成绩为70分,女生的平均成绩为80分。

请问,男生和女生的总成绩分别是多少?2. 某工厂生产一批零件,合格率为95%。

如果工厂生产了1000个零件,那么不合格的零件大约有多少个?3. 某市对100户家庭进行了收入调查,调查结果显示,家庭月收入在3000元以下的有20户,3000-5000元的有30户,5000-7000元的有25户,7000-9000元的有15户,9000元以上的有10户。

请根据这些数据绘制一个扇形统计图,并计算每个收入区间的家庭所占的百分比。

4. 某班级有40名学生,其中20名学生喜欢篮球,15名学生喜欢足球,10名学生喜欢乒乓球,5名学生喜欢羽毛球。

如果随机抽取一名学生,他喜欢篮球的概率是多少?5. 某商场进行促销活动,每购买100元商品,即可获得一次抽奖机会。

奖品设置如下:一等奖1名,奖品为价值1000元的平板电脑;二等奖2名,奖品为价值500元的智能手表;三等奖5名,奖品为价值100元的购物券。

请问,抽中一等奖的概率是多少?6. 某校初三(2)班有50名学生,其中30名学生的身高在150-160厘米之间,15名学生的身高在160-170厘米之间,5名学生的身高超过170厘米。

如果随机抽取一名学生,他的身高在160-170厘米之间的概率是多少?7. 某市对100名初三学生进行了学习时间调查,调查结果显示,每天学习时间在4小时以下的有20人,4-6小时的有30人,6-8小时的有25人,8小时以上的有25人。

请根据这些数据绘制一个条形统计图,并计算每个学习时间区间的学生所占的百分比。

中考数学总复习《统计》专项提升训练(带有答案)

中考数学总复习《统计》专项提升训练(带有答案)

中考数学总复习《统计》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________1.下列调查适合采用全面调查的是()A.对某河流水质情况的调查B.对市场上粽子质量情况的调查C.对某班55名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查2.每年的3月21日是世界睡眠日,良好的睡眠状态是保持身体健康的重要基础,为了解某学校800名初一学生的睡眠时间,从21个班级中随机抽取50名学生进行调查,在这个问题中50是()A.总体B.个体C.样本D.样本容量3.王老师对本班40名学生的血型做了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16 D.64.某班在开展劳动教育课程调查中发现,第一小组7名同学每周做家务的天数依次为3,7,5,6,5,4,5(单位:天),则这组数据的众数和中位数分别为() A.5和5 B.5和4 C.5和6 D.6和5 5.某位运动员在一次射击训练中,10次射击的成绩如图所示,则这10次成绩的平均数和中位数分别是()第5题图A.9.7,9.5 B.9.7,9.8C.9.8,9.5 D.9.8,9.86.为发展学生的创新意识,提高学生的实践操作能力,某区教体局拟举办机器人编程竞赛.某校准备从甲、乙、丙、丁四名同学中选派一名同学,代表本校参加比赛,这四名同学平时成绩的平均数x(单位:分)及方差s2如下表:x s2甲88 1.6乙980.8丙931丁97 1.2如果要选派一名平时成绩好且状态稳定的同学参赛,那么应该选派()A.甲B.乙C.丙D.丁7.随着人民生活水平的不断提高,人们越来越关注身体健康.下图是九年级(1)班的同学在一次体检中每分钟心跳次数的频数分布直方图(次数均为整数),则下列说法一定正确的是()第7题图A.该班级一共有70名学生B.每分钟心跳次数在60~69这个区间(包括60和69)的人数最多C.每分钟心跳次数超过80的人数为15D.每分钟心跳次数为65的人数多于每分钟心跳次数为75的人数8.2022年1月~12月,某省高新技术产业增加值达12 600亿元,其中相关产业统计数据如下图所示,以下说法不正确的是()第8题图A.扇形统计图能反映各部分在总体中所占的百分比B.其他(机械制造、家具制造)产业的增加值占总体的43.5%C.新材料产业增加值达到2 142亿元D.“互联网+”产业对应扇形的圆心角度数超过120°9.某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面,各项成绩均按百分制计,其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为__________分.10.一组数据1,x,5,7有唯一众数,且中位数是6,则平均数是__________.11.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为__________双.12.中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”.为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间”进行了随机调查,为便于统计学生每天完成书面作业的时间(用t 表示,单位:小时)状况,设置了如下四个选项,分别为A.t≤1;B.1<t≤1.5;C.1.5<t≤2;D:t>2.并根据调查结果绘制了如下两幅不完整的统计图.第12题图请根据以上提供的信息解答下列问题:(1)参与本次测试的学生人数为______,m=______.(2)请补全条形统计图.(3)如果该县有15 000名初中学生,那么请估算该县“每天完成书面作业的时间不超过90分钟”的初中学生有多少人?(4)你每天完成书面作业的时间属于哪个选项?请对老师的书面作业布置提出合理化建议.13.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级:8694798471907683 90 87八年级:8876907887937587 87 79整理如下:年级平均数中位数众数方差七年级84a9044.4八年级8487b36.6根据以上信息,回答下列问题:(1)填空:a=________,b=________.A同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生.(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数.(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.14.某校计划组织开展暑期研学活动,备选的研学基地有A ,B ,C ,D ,E 五个.该校统计了去年暑期这五个研学基地的男、女生研学人数及他们对相应研学基地的满意度评分情况,并绘制成如下两个统计图.第14题图请结合统计图信息解决下列问题: (1)去年暑期C 研学基地男、女生研学总人数是D 研学基地男、女生研学总人数的2倍,求去年暑期D 研学基地的男生研学人数;(2)若一个研学基地的满意度总平均得分不少于9分为“优秀”,请写出去年暑期这五个研学基地中满意度达到“优秀”的基地,并说明理由;(3)请结合以上信息,对该校今年暑期研学基地的选择提出合理的建议.统 计1.C 2.D 3.A 4.A 5.B 6.B 7.B 8.D 9.94 10.5 11.12012.解:(1)100 8.(2)补全条形统计图如答图1所示.答图1(3)15 000×8+56100=9 600(名).答:该县“每天完成书面作业的时间不超过90分钟”的初中学生约有9 600名. (4)建议减少作业量,根据学生的能力分层布置作业.(答案不唯一,合理即可) 13.解:(1)85 87 七.(2)510×200+610×200=220(名).答:该校这两个年级测试成绩达到“优秀”的学生总人数约为220.(3)我认为八年级的学生掌握国家安全知识的总体水平较好.理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握国家安全知识的总体水平较好.(答案不唯一) 14.解:(1)设去年暑期D研学基地的男生研学人数为x.根据题意,得2(x+792)=1 800+1 200.解得x=708.答:去年暑期D研学基地的男生研学人数是708.(2)对于C研学基地来说,(9.2×1 800+8.7×1 200)÷3 000=9(分).因为C研学基地的满意度总平均得分为9分,所以C研学基地达到了“优秀”;对于E研学基地来说,因为男、女生对E研学基地的满意度平均得分分别为9.5分和9.1分,均超过了9分,所以E研学基地的满意度总平均得分不少于9分,达到了“优秀”;对于A,B,D研学基地来说,因为男、女生对A,B,D研学基地的满意度平均得分都未达到9分,所以A,B,D研学基地的满意度总平均得分都少于9分,未达到“优秀”.综上所述,去年暑期这五个研学基地中满意度达到“优秀”的基地为C,E.(3)去年暑期E研学基地的研学人数较多,且满意度总平均得分是五个研学基地中最高的,建议该校今年暑期选择E研学基地.(答案不唯一,合理即可)。

初三中考数学复习 统计 专题训练题 含答案

初三中考数学复习  统计  专题训练题 含答案

初三中考数学复习统计专题训练题含答案A.280 B.240 C.300 D.2607.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( A )A.1 250条 B.1 750条 C.2 500条 D.5 000条8.为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( C )A.25元 B.28.5元 C.29元 D.34.5元9.如果一组数据a1,a2,…,a n的方差为2,那么一组新数据2a1,2a2,…,2a n 的方差是( C )A.2 B.4 C.8 D.1610.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( B )A.第一天 B.第二天 C.第三天 D.第四天11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s甲2=0.53,s乙2=0.51,s丙2=0.43,则三人中成绩最稳定的是__丙__(填“甲”“乙”或“丙”).12.记录某足球队全年比赛结果的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了__30__场.13.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩/分数70 80 92 将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是__77.4__分.14.某公司共25名员工,下表是他们月收入的资料.月收入/元45000 18000100005 500 4 800 3 400 3 000 2 200人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是__3_400__元,众数是__3_000__元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:用中位数或众数来描述更为恰当.理由:平均数受极端值的影响,只有3个人的工资达到了6 276元,用平均数来反映该公司全体员工月收入水平不恰当.15.某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球 a乒乓球36排球 b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=__24__,b=__18__;(2)在扇形统计图中,“排球”所在的扇形的圆心角为__54__度;(3)全校有多少名学生选择参加乒乓球运动?解:36÷30%=120(人),全校总人数是120÷10%=1 200(人),则选择参加乒乓球运动的人数是1 200×30%=360(人).16.自2019年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(1)写出a,b的值;(2)已知该校有5 000名师生,且A品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.解:(1)a =0.9+0.3=1.2,b =1.2+0.2=1.4.(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5 000名师生一天使用共享单车的费用为5 000×1.1=5 500(元),因为5 500<5 800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.17.一组数据x 1,x 2,…,x 6的平均数为1,方差为53.(1)求:x 12+x 22+…+x 62;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[(x 12+x 22+…+x 62-2(x 1+x 2+…+x 6)+6]=16(x 12+x 22+…+x 62-2×6+6)=16(x 12+x 22+…+x 62)-1=53,∴x 12+x 22+…+x 62=16.(2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,∴x 7=1.∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107.。

中考统计题专练(带答案可打印)

中考统计题专练(带答案可打印)

1.(10分)某市各中小学为落实教育部政策,全面开展课后延时服务.市教育局为了解该市中学延时服务的情况,随机抽查甲、乙两所中学各100名家长进行问卷调查.家长对延时服务的综合评分记为,将所得数据分为5组 “很满意”: 90≤x<100;“满意”: 80≤x<90;“比较满意”: 70≤x<80;“不太满意”: 60≤x<70;“不满意”: 0≤x<60,市教育局将数据进行分析后,得到如下部分信息:.甲、乙两所中学延时服务得分的平均数、中位数、众数如表:.甲中学“满意组”的分数从高到低排列,排在最后的10个数分别是: 83,83,83,83,82,81,81,81,80,80.请你根据以上信息,回答下列问题:(1)直接写出和的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)市教育局指出:延时服务综合得分在70分及以上才算合格,请你估计乙中学2300名家长中认为该校延时服务合格的人数.x (c d a m参考答案:1、(1)乙中学“比较满意”所占的百分比为:1-40%-7%-18%-10%=25%即a=25%,甲中学“满意组”的分数从高到低排列,排在最后的10个数分别是:83,83,83,83,82,81,81,81,80,80.∴将甲中学的满意度得分从高到低排列后,处在中间位置的两个数的平均数为828181.52+=,因此中位数是81.5,即81.5m=,答:15a=,81.5m=;(2)甲中学延时服务开展较好,理由如下:因为甲中学延时服务得分的平均数、中位数均比乙中学的高,所以甲中学的较好;(3)2300(17%18%)1725⨯--=(人).答:乙中学2300名家长中认为该校延时服务合格的人数为1725人.。

九年级数学专题复习《统计》

九年级数学专题复习《统计》

九年级数学中考训练专题-------- 统计测试题一.基础部分1.(2019·济宁)以下调查中,适宜全面调查的是( )A.调查某批汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量2.(2019·郴州)下列采用的调查方式中,合适的是( )A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用全面调查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用全面调查的方式3.为了解全校学生的上学方式,在全校1 000名学生中随机抽取了150名学生进行调查.下列说法中正确的是( )A.总体是全校学生B.样本容量是1 000C.个体是每名学生的上学时间D.样本是随机抽取的150名学生的上学方式4.(2019·福建)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案.若该校共有2 000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.5.(2019·泰安)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A.众数是8 B.中位数是8C.平均数是8.2 D.方差是1.26.(2019·长沙)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数 B.中位数 C.众数 D.方差7.(2019·随州)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数、中位数和平均数分别为( )A.5,6,6 B.2,6,6C.5,5,6 D.5,6,58.(2019·遂宁)某校拟招聘一批优秀教师,其中某位老师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为分.9.(2019·达州)一组数据1,2,1,4的方差为( )A.1 B.1.5 C.2 D.2.510.(2019·齐齐哈尔)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数 B.中位数 C.方差 D.众数11.(2019·郴州)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s2甲,s2乙,则s2甲s2乙.(填“>”“=”或“<”)12.(2019·江西)根据《居民家庭亲子阅读消费调查报表》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°13.(2019·黄石)根据下列统计图,回答问题:某超市去年8~11月水果销售额占该超市当月销售某超市去年8~11月各月销售总额统计图总额的百分比统计图该超市10月份的水果类销售额 11月份的水果类销售额.(请从“>”“=”“<”中选一个填空)14.(2019·贵港)为了增强学生的安全意识,某校组织了一次全校2 500名学生都参加的“安全知识”考试.阅读后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.分数段(分) 频数(人) 频率51≤x<61 a 0.161≤x<71 18 0.1871≤x<81 b n81≤x<9135 0.3591≤x<10112 0.12总计100 1 请根据图表提供的信息,解答下列问题:(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1∶3∶6,请你估算全校获得二等奖的学生人数.二.能力部分15.(2019·鄂州)已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为( ) A.3 B.4.5 C.5.2 D.616.(2019·龙东)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现一处错误,将最低成绩写得更低了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.极差17.(2019·安顺)已知一组数据x1,x2,x3,…,xn的方差为2,则另一组数据3x1,3x2,3x3,…,3xn的方差为.18.(2019·荆门)高尔基说:“书籍是人类进步的阶梯.”阅读具有丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;(2)根据随机抽查的这个结果,请估计该校1 200名学生中课外阅读5册书的学生人数;(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?三.拓展部分19.【关注社会热点】(2019·嘉兴)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( ) A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%答案:一.基础部分:1.B2.A3. D4. 12005.D6.B7.A8. 88.89.B 10. C 11. <12.C 13. > 14. 解:(1) a=10,b=25,n=0.25(2)如图所示.(3)2 500×12100×310=90(人).答:全校获得二等奖的学生约有90人.二.能力部分15. C 16. B 17. 1818. 解:(1)设阅读5册书的人数为x,由统计图可知:12x+6+8+12=30%,∴x=14.∴阅读书册数的众数是5,中位数是5.(2)该校阅读5册书的学生人数约为1 200×1412÷30%=420(人).(3)设补查人数为y,依题意,得12+6+y<8+14,解得y<4.答:最多补查了3人.19. C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二轮复习-----统计
1、
2、某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;
(1)本次调查中,一共抽取了名学生的成绩;
(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比.
(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是分,众数是分.
(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.
3、某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
图二是某同学根据上表绘制的一个不完全的条形图.
80
95
85
面试
95
90
92
笔试



测试成绩/分
测试项目
请你根据以上信息解答下列问题:
(1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
4、某校为了满足学生课外体育锻炼的需求,计划再购进一批球类用品.为此,该校体育器材管理员对一周内学生在该管理处借出球类用品的数量进行了统计,结果如图所示.
(1)先计算条形统计图和扇形统计图中所缺数据,再补全图形;
(2)计算扇形统计图中乒乓球和篮球所在扇形的圆心角的度数;
(3)若该校计划再购买各种球类用品160个,请按扇形统计图中百分比求出分别购买各种球类用品多少个.
5、空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.
根据以上信息解答下列问题:
(1)该市2013年每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;
(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).
6、为了从甲,乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了次测验,成绩如下:(单位:分)
(1)请填写下表
(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析
7、九年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题:
(1)分别求一班和二班选手进球数的平均数、众数、中位数;
(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?
8、甲乙两人在相同的条件下各射靶10次,甲10次射靶的成绩的情况如图所示,乙10次射靶的成绩依次是:3环、4环、5环、8环、7环、7环、8环、9环、9环、10环.
(1)请在图中画出乙的射靶成绩的折线图.
(2)请将下表填写完整:
平均数方差中位数命中9环以上次数
甲7 1.21
乙 4.83
(3)请从下列三个不同角度对这次测试结果进行分析
①从平均数和方差相结合看(分析谁的成绩稳定些);
②从平均数和中位数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力).
9、2006年青岛市春季房交会期间,某房地产公司对参加本次房交会的消费者进行了随机问卷,共发放1200份调查问卷,实际收回1000份.该房地产公司根据问卷情况,作了以下两方面的统计.
根据被调查消费者年收入情况制成的统计表:
根据被调查消费者打算购买不同住房面积的人数情况制成的扇形统计图:
根据上述信息,解决下列问题:
(1)被调查的消费者平均年收入为______万元.(提示:在计算时,2万元以下的都看成1万元,2万~4万元的都看成3万元,依此类推,8万元以上的都看成9万元)
(2)打算购买80m2~100m2的消费者人数为_______人.
(3)如果你是该房地产公司的开发商,请你从建房面积等方面谈谈你今后的工作打算(不超过30字).10、为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图:
(1)上面所用的调查方法是______(填“全面调查”或“抽样调查”);
(2)写出折线统计图中A、B所代表的值;A:______;B:______;
(3)求该地区喜爱娱乐类节目的成年人的人数.
(4)如果你是电视台的领导,请根据以上数据谈谈你对节目播出类型的调整安排。

(不超过30字)感谢您的支持与配合,我们会努力把内容做得更好!。

相关文档
最新文档