2014年全国新课标高考文科数学考试大纲

合集下载

2014年高考文科数学大纲卷-答案

2014年高考文科数学大纲卷-答案

【考点】二项式定理. 14.【答案】 3
2
【解析】解:∵函数
y

cos
2x

2sin
x

2 sin 2
x

2sin
x
1

2 sin
x

1 2
2


3 2
,∴当
sin
x

1 2
时,函数
y 取得最大值为 3 ,故答案为: 3 .
2
2
【提示】利用二倍角的余弦公式化简函数的解析式为
y

2
a
b

2
b
的值,可得
(2a

b)
b
的值.
【考点】平面向量数量积的运算. 7.【答案】C 【解析】解:根据题意,先从 6 名男医生中选 2 人,有 C62 15 种选法,再从 5 名女医生中选出 1 人,有
C51 5 种选法,则不同的选法共有155 75 种.故选 C.
【提示】根据题意,分 2 步分析,先从 6 名男医生中选 2 人,再从 5 名女医生中选出 1 人,由组合数公式 依次求出每一步的情况数目,由分步计数原理计算可得答案. 【考点】排列、组合及简单计数问题,排列、组合的实际应用. 8.【答案】C 【解析】解:由等比数列的性质可得 S2 , S4 S2 , S6 S4 成等比数列,即 3,12, S6 15 成等比数列,可
0

x

1,故选:C.
【提示】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求. 【考点】一元二次不等式的解法,绝对值不等式的解法,不等式组的解法. 4.【答案】B 【解析】解:如图,取 AD 中点 F,连接 EF,CF,∵E 为 AB 的中点,∴ EF∥BD ,则 CEF 为异面直线 BD 与 CE 所成的角,∵ABCD 为正四面体,E,F 分别为 AB,AD 的中点,∴ CE CF . 设正四面体的棱长为 2a,则 EF a , CE CF (2a)2 a2 3a .

2014年新课标高考数学考试大纲详细解读

2014年新课标高考数学考试大纲详细解读

2014年高考数学考试大纲详细解读2014年全国新课标数学学科《考试大纲》和《考试说明》文理科和2013年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量等几个方面都没有发生变化。

注重对数学思想与方法的考查,体现数学的基础、应用和工具性的学科特色,多视角、多维度、多层次地考查数学思维品质和思维能力,考查考生对数学本质的理解,考查考生的数学素养和学习潜能。

新课标考试说明与去年的考试说明比较,可以看出:依然是对如下知识和能力的考查1.坚持对五种能力的考查:(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.这一能力的考查在试卷中主要以立体几何中的三视图得以体现,且难度有逐年递增的趋势。

(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.2.两个意识的考查:(1)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(2)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.2014年高考数学主客观题考试特点:理科必考知识点(即近三年高考每年都考的知识点,主要针对客观题):复数、常用逻辑用语、程序框图、三视图、球的组合体、概率、函数与导数、圆锥曲线、三角函数等。

2014年大纲版高考文科数学试题含答案(Word版)

2014年大纲版高考文科数学试题含答案(Word版)

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( ) A .2 B .3 C .5 D .72.已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35-D .45- 3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( ) A .{|21}x x -<<- B .{|10}x x -<< C .{|01}x x << D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16B .6C .13D .35.函数1)(1)y x =>-的反函数是( )A .3(1)(1)x y e x =->-B .3(1)(1)x y e x =->-C .3(1)()x y e x R =-∈D .3(1)()x y e x R =-∈ 6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( )A .31B .32C .63D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π 11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2 B. C .4 D.12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B. 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B ,求二面角1A AB C --的大小.大纲版数文解析(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)。

2014年高考试题:文科数学(大纲卷)

2014年高考试题:文科数学(大纲卷)

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合M={1,2,4,6,8},N={2,3,5,6,7},则MN 中元素的格式为( )A. 2B. 3C. 5D. 7(2)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B. 35 C. -35 D. -45(3)不等式组(2)01x x x +>⎧⎨<⎩的解集为( )A. {21}x x -<<-B. {10}x x -<<C. {01}x x <<D. {1}x x >(4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16 B. 36 C. 13 D. 33(5)函数y =ln (31x +)(x >-1)的反函数是( )A. 3(1)(1)x y e x =->-B. 3(1)(1)x y e x =->-C. 3(1)()x y e x R =-∈D. 3(1)()x y e x R =-∈.(6)已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2(7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A. 60种B. 70种C. 75种D. 150种选法,根据分步计数乘法原理可得,组成的医疗小组共有15×5=75种不同选法.【考点】计数原理和排列组合.(8)设等不数列{a n}的前n项和为S n,若S2=3,S4=15,则S6=( )A. 31B. 32C. 63D. 64(9)已知椭圆C:22221(0)x ya ba b+=>>的左右焦点为F1,F2离心率为33,过F2的直线l交C与A,B两点,若△AF1B的周长为43,则C的方程为( )A.22132x y+= B.2213xy+= C.221128x y+= D.221124x y+=(10)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )A. 814πB. 16πC. 9πD.274π(11)双曲线C:22221(0,0)x ya ba b-=>>的离心率为2,焦点到渐近线的距离为3,则C的焦距等于( )A. 2B. 22C.4D.42(12)奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(1)=1,则f(8)+f(9)= ( )A. -2B.-1C. 0D. 1二、填空题:本大题共4个小题,每个小题5分。

2014年全国统一高考数学试卷文科大纲版学生版

2014年全国统一高考数学试卷文科大纲版学生版

2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)(2014?大纲版)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)(2014?大纲版)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣>的解集为(2014?大纲版)不等式组)3.(5分)(<B.{x|﹣1<2<x<﹣1}x<0}C.{x|0<x<1}xA.{|﹣D.{x|x>1}4.(5分)(2014?大纲版)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()..D.B.CA)1)+(x>﹣1)的反函数是(2014?5.(5分)(大纲版)函数y=ln(x3x3(x>﹣1e)﹣1)﹣eB)(x>﹣1).y=(y=A.(1x33x(xy=C.(1﹣e∈)(x∈R)R﹣1))D.y=(e6.(5分)(2014?大纲版)已知,为单位向量,其夹角为60°,则(2﹣))? =(2.1C.DA.﹣1B.07.(5分)(2014?大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)(2014?大纲版)设等比数列{a}的前n项和为S.若S=3,S=15,则42nn S=()6A.31B.32C.63D.649.(5分)(2014?大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F、1F,离心率为,过F的直线l交C于A、B两点,若△AFB的周长为4,122则C的方程为()2A.+=1B.+y=1C.+=1D.+=110.(5分)(2014?大纲版)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为().DC..9πB.16πA11.(5分)(2014?大纲版)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)(2014?大纲版)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1)二、填空题(本大题共4小题,每小题5分36(用数字x.的系数是)分)13.(5(2014?大纲版)(x﹣2 的展开式中作答).的最大值是y=cos2x14.(5分)(2014?大纲版)函数+2sinx的最大+满足约束条件y4y,则z=x大纲版)设15.(5分)(2014?x,.值为22的交l与+y=2的两条切线,若x和2014?(16.5分)(大纲版)直线ll是圆l2211.的夹角的正切值等于与3点为(1,),则ll21三、解答题.a=2a=1a}a大纲版)数列(10.17(分)2014?{满足,,﹣a+=2a2n2n2n1n1++(Ⅰ)设b=a﹣a,证明{b}是等差数列;nn1nn+(Ⅱ)求{a}的通项公式.n18.(12(2014?大纲版)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,分)tanA=,求B.19.(12分)(2014?大纲版)如图,三棱柱ABC﹣ABC中,点A在平面ABC1111内的射影D在AC上,∠ACB=90°,BC=1,AC=CC=2.1(Ⅰ)证明:AC⊥AB;11(Ⅱ)设直线AA与平面BCCB的距离为,求二面角A﹣AB﹣C的大小.1111人需使用某种设备42014?大纲版)设每个工作日甲,乙,丙,丁1220.(分)(,各人是否需使用设备相互独立.0.40.5,的概率分别为0.6,0.5,人需使用设备的概率;3(Ⅰ)求同一工作日至少同一工作日需“k台设备供甲,乙,丙,丁使用,若要求(Ⅱ)实验室计划购买的最小值.k0.1,求使用设备的人数大于k”的概率小于23.0)(a)=ax+3x≠+3x2014?21.(12分)(大纲版)函数f(x)的单调性;(x(Ⅰ)讨论f的取值范围.a,2)是增函数,求(Ⅱ)若f(x)在区间(12,直线F0)的焦点为=2px(py(22.12分)(2014?大纲版)已知抛物线C:>.|=|PQ|,与C的交点为Q,且|QFPy=4与y轴的交点为的方程;C(Ⅰ)求、MC相交于与若A相交于、B两点,AB的垂直平分线l′ClF(Ⅱ)过的直线与的方程.l四点在同一圆上,求、、、两点,且NAMBN。

2014年全国大纲卷高考文科数学试题真题含答案

2014年全国大纲卷高考文科数学试题真题含答案

2014年普通高等学校统一考试(大纲)文科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合M={1,2,4,6,8},N={2,3,5,6,7},则M N 中元素的个数为( )A. 2B. 3C. 5D. 7【答案】B(2)已知角α的终边经过点(-4,3),则cos α=( )A. 45B. 35C. -35D. -45【答案】D(3)不等式组(2)01x x x +>⎧⎨<⎩的解集为( ) A. {21}x x -<<- B. {10}x x -<< C. {01}x x << D. {1}x x >【答案】C(4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A. 16B.C. 13D. 【答案】B(5)函数y =ln 1)(x >-1)的反函数是( )A. 3(1)(1)x y e x =->-B. 3(1)(1)x y e x =->-C. 3(1)()x y e x R =-∈D. 3(1)()x y e x R =-∈.【答案】D(6)已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2【答案】B(7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A. 60种B. 70种C. 75种D. 150种【答案】C(8)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 64【答案】C(9)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为C 的方程为( ) A. 22132x y += B. 2213x y += C. 221128x y += D. 221124x y += 【答案】A(10)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( ) A. 814π B. 16π C. 9π D. 274π 【答案】A(11)双曲线C:22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A. 2B.C.4D.【答案】C(12)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( )A. -2B.-1C. 0D. 1【答案】D二、填空题:本大题共4个小题,每个小题5分。

2014文科数学高考大纲

2014文科数学高考大纲

2014年高考文科数学全卷21道试题,其中选择题10道(2013年为9道),填空题5道(2013年为6道),解答题6道。

考纲要求与2013年与2013年一致。

只有个别题型示例有变化。

考试范围与要求一、数学基础知识根据湖南省实施《课程标准》的实际情况,湖南省高考文科数学的考试内容为《课程标准》的必修内容、选修1的内容以及选修系列4的“4-4坐标系与参数方程”专题。

1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.高考常从两个方面对集合知识进行考查:一方面考查集合本身的基础知识,如集合的概念、集合间的关系判断和运算等;另一方面是将集合知识与其他知识点综合,考查集合语言与集合思想的运用。

题型示例无变化。

2、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用(函数分段不超过三段).④理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用基本初等函数的图像分析函数的性质.(2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点.③体会对数函数是一类重要的函数模型.④了解指数函数与对数函数(a>0,且a≠1)互为反函数.(4)幂函数①了解幂函数的概念.②结合函数的图像,了解它们的变化情况.(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.②根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用①了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.高考对函数的考查,常以选择题和填空题考查函数的概念和一些基本初等函数的图象和性质,解答题则往往不是简单地考查概念、公式和法则的应用,而是常与导数、不等式、数列、三角函数、解析几何等知识以及实际问题结合起来进行考查,并渗透数学思想方法,突出考查函数与方程、数形结合、分类与整合、化归与转化等数学思想方法。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年新课标高考数学考纲解读

2014年新课标高考数学考纲解读

2014年新课标高考数学考纲解读2014年全国新课标数学学科《考试大纲》和《考试说明》文理科和2013年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量等几个方面都没有发生变化。

注重对数学思想与方法的考查,体现数学的基础、应用和工具性的学科特色,多视角、多维度、多层次地考查数学思维品质和思维能力,考查考生对数学本质的理解,考查考生的数学素养和学习潜能。

新课标考试说明对如下知识和能力的考查1.坚持对五种能力的考查:(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.这一能力的考查在试卷中主要以立体几何中的三视图得以体现,且难度有逐年递增的趋势。

(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.2.两个意识的考查:(1)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(2)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.。

2014年新课标Ⅰ卷高考文科数学文试卷试题真题及答案

2014年新课标Ⅰ卷高考文科数学文试卷试题真题及答案

2014年普通高等学校招生全国统一考试(课标I 卷)数学(文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2 (4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. B. 21 C. 21 D. (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A.203 B.72 C.165 D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 00,是C 上一点,x F A 045=,则=x 0()A. 1B. 2C. 4D. 8(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3(C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2014年大纲版高考文科数学试题及答案(Word版)

2014年大纲版高考文科数学试题及答案(Word版)

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45- 3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16 B C .13 D5.函数1)(1)y x =>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2 B. C .4 D.12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B. 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小.大纲版数文解析(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)。

2014年高考文科数学大纲卷

2014年高考文科数学大纲卷

绝密★启用前2014年普通高等学校招生全国统一考试(大纲卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,4,6,8}M =,{1,2,3,5,6,7}N =,则M N 中元素的个数为( )A .2B .3C .5D .7 2.已知角α的终边经过点(4,3)-,则cos α=( ) A .45B .35C .35- D .45- 3.不等式组(x 2)0,||1,x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16BC .13D5.函数1)(1)y x =>-的反函数是( )A .3(1e )(1)x y x =->-B .3(e 1)(1)x y x =->-C .3(1e )()x y x =-∈R D .3(e 1)()x y x =-∈R6.已知a 、b 为单位向量,其夹角为60 ,则(2a -b ) b =( )A .1-B .0C .1D .27.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60 种B .70 种C .75 种D .150 种 8.设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6S =( )A .31B .32C .63D .649.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,过2F 的直线l 交C 于A ,B 两点.若1AF B △的周长为,则C 的方程为( )A .22132x y += B .2213x y += C .221128x y += D .221124x y += 10.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4B .16πC .9πD .27π411.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2B.C .4D.12.奇函数()f x 的定义域为R .若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( ) A .2- B .1-C .0D .1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.共20分,把答案填写在题中的横线上. 13.6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos 22sin y x x =+的最大值为 .15.设x ,y 满足约束条件02321x y x y x y -⎧⎪+⎨⎪-⎩≥≤≤,则4z x y =+的最大值为 .16.设直线1l 和2l 是圆222x y +=的两条切线.若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+. (Ⅰ)设1n n n b a a +=-,证明{}n b 是等差数列; (Ⅱ)求{}n a 的通项公式.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------- 姓名________________ 准考证号_____________18.(本小题满分12分)ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B .19.(本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,90ACB ∠= ,1BC =,12AC CC ==.(Ⅰ)证明:11AC A B ⊥;(Ⅱ)设直线1AA 与平面11BCC B,求二面角1A AB C --的大小.20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.21.(本小题满分12分)函数32()33(0)f x ax x x a =++≠. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 在区间(1,2)是增函数,求a 的取值范围.22.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l '与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.。

2014年普通高等学校招生全国统一考试大纲

2014年普通高等学校招生全国统一考试大纲

2014年普通高等学校招生全国统一考试大纲以下2014年普通高等学校招生全国统一考试大纲、说明内容介绍由高考栏目为您搜集整理的,希望对您2014高考有所帮助!2014年普通高等学校招生全国统一考试大纲和考试说明,由教育部考试中心组织编写,将于2014年初出版。

课程标准实验版大纲既是2014年教育部高中课程改革,包括山西省在内的实验省、自治区高考命题的依据,也是实验省区(包括山西在内)2014年参加高考的考生复习备考的依据。

大纲和说明分文科和理科两种。

现将有关内容介绍如下:一、序号与名称:课程标准实验版1、《2014年普通高等学校招生全国统一考试大纲(文科·课程标准实验版)》2、《2014年普通高等学校招生全国统一考试大纲(理科·课程标准实验版)》文科考试大纲含语文、数学(文)、英语、政治、历史、地理六科;理科考试大纲含语文、数学(理)、英语、物理、化学、生物六科。

3、《2014年普通高等学校招生全国统一考试大纲的说明(文科·课程标准实验版)》4、《2014年普通高等学校招生全国统一考试大纲的说明(理科·课程标准实验版)》这两本考试大纲的说明是2014年普通高等学校招生全国统一高考大纲(课程标准实验版)的配套用书。

序号为3的文科考试大纲的说明含语文、数学(文)、英语、文科综合四科;序号为4的理科考试大纲的说明含语文、数学(理)、英语、理科综合四科。

5、《普通高等学校招生全国统一考试大纲及考试说明(日语·2014年版)》6、《普通高等学校招生全国统一考试大纲及考试说明(俄语·2014年版)》序号为5、6的两本考试大纲及说明根据教育部有关文件精神以及2013年考后各方面反馈的意见,由教育部考试中心组织两科命题专家进行了修订。

这两本考试大纲还附有最近几年高考试题分析,由教育部考试中心组织各科命题专家分命题意图、解题思路、失误防范等几个层次对高考试题进行了分析,并进一步阐述高考对考生能力、素质的要求,还对考生复习提出了建议。

2014考试大纲-数学文

2014考试大纲-数学文

2014年普通高等学校全国统一考试大纲数学(文科)I.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测学生的数学素养. 数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考查考生进入高等学校继续学习的潜能.一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判断,初步应用等.(3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形和几何量的计算求解等,运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7) 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越高.3. 个性品质要求个性品质是指考生个体的情感、态度和价值观. 要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以事实求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4. 考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.(1)对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意迫求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度. (2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.(4)对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学教学的实际和考生的年龄特点,并结合实践经验,使教学应用问题的难度符合考生的水平.(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.二、考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题.(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合的关系及运算.2.函数概念与基本初等函数Ⅰ(指数函数、对数函致、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质.(2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数:了解对数在简化运算中的作用.②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.③知道对数函数是一类重要的函数模型 .④了解指数函y =a x 与对函数y =log a x 互为反函数(a >0,且a ≠1).(4)幂函数①了解幂函数的概念 . ②结合函数2132,1,,,x y x y x y x y x y =====的图像,了解它们的变化情况 .(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数 .②根据其体函数的图像,能够用二分法求相应方程的近似解 .(6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升,指数增长,对增长等不同函数类型增长的含义 .②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用 .3.立体几何初步①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构 .②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系.①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理 .●公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 .●公理2:过不在同一条直线上的三点,有且只有一个平面 .●公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .●公理4:平行于同一条直线的两条直线互相平行.●定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理 .理解以下判定定理.●如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.●如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.●如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.●如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.●如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.●如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.●垂直于同一个平面的两条直线平行.●如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平而垂直.③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两条相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想.②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方法让从总体中抽取样本;了解分层抽样和系统抽样方法 .(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释 . ④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想 .⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的不稳定性,了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义 .8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念 .②了解弧度制的概念,能进行弧度与角度的互化.(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义. ②能利用单位圆中的三角函数线推导出απααπ±±,的正弦、余弦、余弦、正切的诱导公式,能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性 . ③理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间)2,2(ππ-内的单调性 . ④理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos x x x = .⑤了解函数y=A sin(ωx+φ)的物理意义;能画出y=A sin (ωx+φ)的图像,了解参数A、ω、φ对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.9.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景.②理解平面向量的概念,理解两个向量相等的含义.③理解向量的几何表示.(2)向量的线性运算①掌握向量加法、减法的运算,并理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.10.三角恒等变换(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式.③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).11.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与侧量和几何计算有关的实际问题 .12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式) . ②了解数列是自变量为正整数的一类函数 .(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n 项和公式 .③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题 .④了解等差数列与一次函数、等比数列与指数函数的关系 .13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景 .(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型 .②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. ③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组 .②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组 . ③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:)0,(2≥≥+b a ab b a ①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题 .14.常用逻辑用语(1)命题及其关系①理解命题的概念 .②了解“若p ,则q ”形式的命题及其逆命题、否命题与你否命题,会分析四种命题的相互关系 .③理解必要条件、充分条件与充要条件的意义.(2)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义 .(3)全称量词与存在量词①理解全称量词与存在量词的意义 .②能正确地对含有一个量词的命题进行否定 .15.圆锥曲线与方程①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想.⑤了解圆锥曲线的简单应用.16.导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背景 .②理解导数的几何意义.(2)导数的运算①能根据导数定义求函数y =C (C 为常数),y =x ,y =2x ,y =1x的导数 . ②能利用下面给出的基本初等函效的导数公式和导数的四则运算法则求简单函数的导数.●常见基本初等函数的导数公式:'()C =0(C 为常数);'()n x =n 1n x -,n ∈N *;'(sin )x =cos x ;'(cos )x =-sin x ;'(e )x =e x ;'()x a =x a ln a (a >0,且a ≠1);'(ln )x =1x ;'(log )a x =1log a e x(a >0,且a ≠1) . ●常用的导数运算法则:法则1:[])(')('')()(x v x u x v x u ±=± .法则2:[]''()()()()()u x v x u x v x u x =+'().v x法则3:''''()()()()()(()0).()()u x v x u x v x u x v x v x v x ⎡⎤-=≠⎢⎥⎣⎦ (3)导数在研究函数中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次) .(4)生活中的优化问题会利用导数解决某些实际问题 .17.统计案例。

2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2014 年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12 小题,每小题5 分)1.(5 分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3 C.5 D.72.(5分)已知角α 的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5 分)不等式组的解集为()A.{x|﹣2<x<﹣1} B.{x|﹣1<x<0}C.{x|0<x<1} D.{x|x>1}4.(5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5 分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0 C.1 D.27.(5 分)有6 名男医生、5 名女医生,从中选出2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有()A.60 种B.70 种C.75 种D.150 种8.(5 分)设等比数列{a n}的前n 项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l 交C 于A、B 两点,若△AF1B 的周长为4,则C 的方程为()A.+=1 B.+y2=1 C.+=1 D.+=110.(5 分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5 分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2C.4 D.412.(5 分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1二、填空题(本大题共4 小题,每小题5 分)13.(5 分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5 分)函数y=cos2x+2sinx 的最大值是.15.(5 分)设x,y 满足约束条件,则z=x+4y 的最大值为.16.(5 分)直线l1 和l2 是圆x2+y2=2 的两条切线,若l1 与l2 的交点为(1,3),则l1 与l2 的夹角的正切值等于.三、解答题17.(10 分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(I)设b n=a n+1﹣a n,证明{b n}是等差数列;(II)求{a n}的通项公式.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(I)证明:AC1⊥A1B;(II)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C 的大小.20.(12 分)设每个工作日甲,乙,丙,丁4 人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3 人需使用设备的概率;(II)实验室计划购买k 台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.21.(12 分)函数f(x)=ax3+3x2+3x(a≠0).(I)讨论f(x)的单调性;(II)若f(x)在区间(1,2)是增函数,求a 的取值范围.22.(12 分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与y 轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(I)求C 的方程;(II)过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,且A、M、B、N 四点在同一圆上,求l 的方程.2014 年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12 小题,每小题5 分)1.(5 分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3 C.5 D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M 与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N 中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5 分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5 分)不等式组的解集为()A.{x|﹣2<x<﹣1} B.{x|﹣1<x<0} C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E 为AB 的中点,可取AD 中点F,连接EF,则∠CEF 为异面直线CE 与BD 所成角,设出正四面体的棱长,求出△CEF 的三边长,然后利用余弦定理求解异面直线CE 与BD 所成角的余弦值.【解答】解:如图,取AD 中点F,连接EF,CF,∵E 为AB 的中点,∴EF∥DB,则∠CEF 为异面直线BD 与CE 所成的角,∵ABCD 为正四面体,E,F 分别为AB,AD 的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF 中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y 的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,、 故选:D .【点评】本题考查反函数解析式的求解,属基础题.6.(5 分)已知,为单位向量,其夹角为 60°,则(2﹣)•=( )A .﹣1B .0C .1D .2【考点】9O :平面向量数量积的性质及其运算. 【专题】5A :平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得的值,可得(2﹣)•的值.【解答】解:由题意可得, =1×1×cos60°=, =1,∴(2﹣)•=2﹣=0,故选:B .【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5 分)有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有( ) A .60 种B .70 种C .75 种D .150 种【考点】D9:排列、组合及简单计数问题. 【专题】5O :排列组合.【分析】根据题意,分 2 步分析,先从 6 名男医生中选 2 人,再从 5 名女医生中 选出 1 人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从 6 名男医生中选 2 人,有 C 62=15 种选法,再从 5 名女医生中选出 1 人,有 C 51=5 种选法, 则不同的选法共有 15×5=75 种;故选:C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5 分)设等比数列{a n}的前n 项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64【考点】89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4 成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4 成等比数列,即3,12,S6﹣15 成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4 成等比数列是解决问题的关键,属基础题.9.(5 分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2 的直线l 交C 于A、B 两点,若△AF1B 的周长为4 ,则C 的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B 的周长为4 ,求出a= ,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B 的周长为4,∵△AF1B 的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5 分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD 的外接球的球心在它的高PO1 上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5 分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2C.4 D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y= ,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0 的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5 分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4 小题,每小题5 分)13.(5 分)(x﹣2)6的展开式中x3的系数是﹣160 .(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x 的系数为3,可得r=3,将r=3 代入通项,计算可得T4=﹣160x3,即可得答案.66 r+1 6【解答】解:根据题意,(x﹣2)6的展开式的通项为T =C r x6﹣r(﹣2)r=(﹣1)r•2r•C r x6﹣r,令6﹣r=3 可得r=3,此时T4=(﹣1)3•23•C3x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5 分)函数y=cos2x+2sinx 的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1 ﹣2sin2x+2sinx= ,结合﹣1≤sinx≤1 及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1 的条件.15.(5 分)设x,y 满足约束条件,则z=x+4y 的最大值为 5 .【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y 为直线方程的斜截式,得.由图可知,当直线过C 点时,直线在y 轴上的截距最大,z 最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5 分)直线l1 和l2 是圆x2+y2=2 的两条切线,若l1 与l2 的交点为(1,3),则l1 与l2 的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1 与l2 的夹角为2θ,由于l1 与l2 的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l1 与l2 的夹角为2θ,由于l1 与l2 的交点A(1,3)在圆的外部,且点A 与圆心O 之间的距离为OA==,圆的半径为r=,∴sinθ== ,∴cosθ=,tanθ==,∴tan2θ== =,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10 分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(I)设b n=a n+1﹣a n,证明{b n}是等差数列;(II)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2 变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n 并令n 从1 开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n 项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2 得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n 得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2 的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n 得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(I)证明:AC1⊥A1B;(II)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD 为二面角A1﹣AB﹣C 的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C 为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E 为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E 为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C 为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F 为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD 为二面角A1﹣AB﹣C 的平面角,由AD==1 可知D 为AC 中点,∴DF==,∴tan∠A1FD== ,∴二面角A1﹣AB﹣C 的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12 分)设每个工作日甲,乙,丙,丁4 人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3 人需使用设备的概率;(II)实验室计划购买k 台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4 个人都需使用设备的概率、4 个人中有3 个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3 人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k 的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12 分)函数f(x)=ax3+3x2+3x(a≠0).(I)讨论f(x)的单调性;(II)若f(x)在区间(1,2)是增函数,求a 的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a 的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0 时,f(x)在区间(1,2)是增函数,当a<0 时,f(x)在区间(1,2)是增函数,推出f′(1)≥0 且f′(2)≥0,即可求a 的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1 时,则△≤0,f′(x)≥0,∴f(x)在R 上是增函数;②因为a≠0,∴a≤1 且a≠0 时,△>0,f′(x)=0 方程有两个根,x1=,x2=,当0<a<1 时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0 时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0 时,f′(x)=3ax2+6x+3>0 故a>0 时,f(x)在区间(1,2)是增函数,当a<0 时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0 且f′(2)≥0,解得﹣,a 的取值范围[ )∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12 分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与y 轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(I)求C 的方程;(II)过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,且A、M、B、N 四点在同一圆上,求l 的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q 的坐标为(x0,4),把点Q 的坐标代入抛物线C 的方程,求得x0=,根据|QF|=|PQ|求得p 的值,可得C 的方程.(Ⅱ)设l 的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN 垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m 的值,可得直线l 的方程.【解答】解:(Ⅰ)设点Q 的坐标为(x0,4),把点Q 的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C 的方程为y2=4x.(Ⅱ)由题意可得,直线l 和坐标轴不垂直,y2=4x 的焦点F(1,0),设l 的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB 的中点坐标为 D (2m2+1 ,2m ),弦长|AB|= |y1 ﹣y2|= =4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN 的中点 E 的坐标为(+2m2+3,),∴|MN|=|y3 ﹣y4|=,∵MN 垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,∴+DE2= MN2,∴4(m2+1)2+ + =×,化简可得m2﹣1=0,∴m=±1,∴直线l 的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年高考(大纲全国)文科数学

2014年高考(大纲全国)文科数学

2014年普通高等学校招生全国统一考试大纲全国文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014大纲全国,文1)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为().A.2 B.3 C.5 D.7答案:B解析:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},∴M∩N中元素的个数为3,故选B.2.(2014大纲全国,文2)已知角α的终边经过点(-4,3),则cos α=().A.45B.35C.35-D.45-答案:D解析:设角α的终边上点(-4,3)到原点O的距离为r,则5r==,∴由余弦函数的定义,得4cos5xrα==-,故选D.3.(2014大纲全国,文3)不等式组(2)01x xx>⎧⎪⎨<⎪⎩+,的解集为().A.{x|-2<x<-1} B.{x|-1<x<0} C.{x|0<x<1} D.{x|x>1}答案:C解析:(2)01,x xx>⎧⎪⎨<⎪⎩+,①②由①得,x<-2或x>0,由②得,-1<x<1,因此原不等式组的解集为{x|0<x<1},故选C.4.(2014大纲全国,文4)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为().A.16B.6C.13D.3答案:B解析:如图所示,取AD的中点F,连EF,CF,则EF∥BD,∴异面直线CE与BD所成的角即为CE与EF所成的角∠CEF.由题知,△ABC ,△ADC 为正三角形,设AB =2,则C E C F ==112EF BD ==. ∴在△CEF 中,由余弦定理,得222cos 2CE EF CF CEF CE EF +-∠==⋅=,故选B.5.(2014大纲全国,文5)函数1)(1)y x =>-的反函数是( ).A .y =(1-e x )3(x >-1)B .y =(e x -1)3(x >-1)C .y =(1-e x )3(x ∈R )D .y =(e x -1)3(x ∈R ) 答案:D解析:由1)y =,得e 1y1y-,x =(e y -1)3, ∴f -1(x )=(e x -1)3.∵x >-1,∴y ∈R ,即反函数的定义域为R . ∴反函数为y =(e x -1)3(x ∈R ),故选D.6.(2014大纲全国,文6)已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =( ). A .-1 B .0 C .1 D .2 答案:B解析:由已知得|a |=|b |=1,〈a ,b 〉=60°,∴(2a -b )·b =2a ·b -b 2=2|a ||b |cos 〈a ,b 〉-|b |2 =2×1×1×cos 60°-12=0,故选B.7.(2014大纲全国,文7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种 答案:C解析:从6名男医生中选出2名有26C 种选法,从5名女医生中选出1名有15C 种选法,故共有216565C C 57521⨯⋅=⨯=⨯种选法,选C. 8.(2014大纲全国,文8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ). A .31 B .32 C .63 D .64 答案:C解析:∵S 2=3,S 4=15,∴由等比数列前n 项和的性质,得 S 2,S 4-S 2,S 6-S 4成等比数列, ∴(S 4-S 2)2=S 2(S 6-S 4),即(15-3)2=3(S 6-15),解得S 6=63,故选C.9.(2014大纲全国,文9)已知椭圆C :2222=1x y a b+(a >b >0)的左、右焦点为F 1,F 2,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为则C 的方程为( ).A .22=132x y +B .22=13x y + C .22=1128x y + D .22=1124x y + 答案:A解析:∵2222=1x y a b +(a >b >0)的离心率为3,∴c a =,∴::a b c =又∵过F 2的直线l 交椭圆于A ,B 两点,△AF 1B 的周长为∴4a =,∴a =∴b =22=132x y +,选A. 10.(2014大纲全国,文10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ).A .81π4 B .16π C .9π D .27π4答案:A解析:由图知,R 2=(4-R )2+2,∴R 2=16-8R +R 2+2,∴94R =, ∴281814π4ππ164S R ⨯=表==,选A. 11.(2014大纲全国,文11)双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,焦点到C 的焦距等于( ).A .2B .C .4D .答案:C解析:∵e =2,∴2ca=.设焦点F 2(c,0)到渐近线by x a= 渐近线方程为bx -ay =0,=∵c2=a2+b2,∴b=由2ca=2=,∴2243cc=-,解得c=2.∴焦距2c=4,故选C.12.(2014大纲全国,文12)奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=().A.-2 B.-1 C.0 D.1答案:D解析:∵奇函数f(x)的定义域为R,∴f(-x)=-f(x),且f(0)=0.∵f(x+2)为偶函数,∴f(-x+2)=f(x+2).∴f[(x+2)+2]=f(-x-2+2)=f(-x)=-f(x),即f(x+4)=-f(x).∴f(x+8)=f[(x+4)+4]=-f(x+4)=-(-f(x))=f(x).∴f(x)是以8为周期的周期函数,∴f(8)=f(0)=0,f(9)=f(8+1)=f(1)=1.∴f(8)+f(9)=0+1=1.故选D.二、填空题:本大题共4小题,每小题5分.13.(2014大纲全国,文13)(x-2)6的展开式中x3的系数为________.(用数字作答) 答案:-160解析:由通项公式得363333466C(2)8CT x x-=-=-,故展开式中x3的系数为366548C8160321⨯⨯=⨯=-⨯⨯--.14.(2014大纲全国,文14)函数y=cos 2x+2sin x的最大值为________.答案:32解析:∵y=cos 2x+2sin x=1-2sin2x+2sin x=2132sin22x⎛⎫--+⎪⎝⎭,∴当1sin2x=时,max32y=.15.(2014大纲全国,文15)设x,y满足约束条件2321x yx yx y-≥⎧⎪+≤⎨⎪-≤⎩,,,则z=x+4y的最大值为________.答案:5解析:画出x,y的可行域如图阴影区域.由z =x +4y ,得144z y x =-+. 先画出直线14y x =-,再平移直线14y x =-, 当经过点B (1,1)时,z =x +4y 取得最大值为5.16.(2014大纲全国,文16)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.答案:43解析:如图所示,设l与圆O :x 2+y 2=2相切于点B ,l 2与圆O :x 2+y 2=2相切于点C,则OB ,OA =,AB =∴1tan 2OB AB α===. ∴2122tan 42tan tan 211tan 314BAC ααα⨯∠====--. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2014大纲全国,文17)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.分析:本题主要考查等差数列的概念、通项公式以及累加法求数列通项公式. (1)可用定义证明b n +1-b n =2(常数)即可.(2)利用(1)的结果,求出{b n }的通项公式及a n +1-a n 的表达式,再用累加法可求数列{a n }的通项公式.(1)证明:由a n +2=2a n +1-a n +2得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)解:由(1)得b n =1+2(n -1), 即a n +1-a n =2n -1. 于是111()(21)nnk k k k aa k +==-=-∑∑,所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.18.(本小题满分12分)(2014大纲全国,文18)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos C =2c cos A ,1tan 3A =,求B . 分析:先由已知及正弦定理,将边的关系转化为角的关系, 再由同角三角函数基本关系化弦为切,求出tan C .根据三角形内角和定理及两角和的正切公式求出tan B ,即可求角B . 解:由题设和正弦定理得3sin A cos C =2sin C cos A . 故3tan A cos C =2sin C , 因为1tan 3A =,所以cos C =2sin C ,1tan 2C =. 所以tan B =tan[180°-(A +C )]=-tan(A +C ) =tan tan tan tan 1A CA C +-=-1, 即B =135°.19.(本小题满分12分)(2014大纲全国,文19)如图,三棱柱ABC -A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B ;(2)设直线AA 1与平面BCC 1B 1A 1-AB -C 的大小.分析:解法一:(1)由已知可证平面AA 1C 1C ⊥平面ABC ,再由面面垂直证线面垂直,利用三垂线定理即得线线垂直.(2)为利用已知,先寻找并证明AA 1与平面BCC 1B 1的距离为A 1E .再由三垂线定理,确定二面角A 1-AB -C 的平面角为∠A 1FD .最后通过解直角三角形求出∠A 1FD 的正切值,即可得出二面角的大小.解法二:建立空间直角坐标系,利用向量知识求解.(1)设出A 1点坐标,确定点及向量坐标,利用数量积为0,证明线线垂直. (2)设法向量,由已知垂直关系,确定坐标.利用向量夹角公式求二面角大小.解法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C , 故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连结A 1C .因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. 又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,1A E =.因为A 1C 为∠ACC 1的平分线,故11A D A E ==作DF ⊥AB ,F 为垂足,连结A 1F . 由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB -C 的平面角.由1AD ==得D 为AC 中点,125AC BC DF AB ⨯=⨯=,11tan A D A FD DF ∠==所以二面角A 1-AB -C 的大小为arctan 解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长, 建立如图所示的空间直角坐标系C -xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a,0,c ),由题设有a ≤2,A (2,0,0),B (0,1,0), 则(2,1,0)AB =-,(2,0,0)AC =-,1(2,0)AA a c =-,,11(4,0)AC AC AA a c =+=-,,1(1)BA a c =-,,.由|12AA =2=,即a 2-4a +c 2=0. ①于是221140AC BA a a c ⋅=-+=,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则CB ⊥m ,1BB ⊥m , 即0CB ⋅=m ,10BB ⋅=m .因()0,1,0CB =,11(2,0)BB AA a c ==-,, 故y =0,且(a -2)x +cz =0.令x =c ,则z =2-a,m =(c,0,2-a ),点A 到平面BCC 1B 1的距离为cos ,CA CA CA c ⋅⋅===〈〉m m m.又依题设,A 到平面BCC 1B 1的距离为3,所以c =代入①解得a =3(舍去)或a =1. 于是1(AA=-.设平面ABA 1的法向量n =(p ,q ,r ),则1AA ⊥n ,AB⊥n , 即10AA ⋅=n ,0AB ⋅=n ,0p -=,且-2p +q =0.令p =q =r =1,n =. 又p =(0,0,1)为平面ABC 的法向量,故1cos||||4⋅==〈,〉n p n p n p .所以二面角A 1-AB -C 的大小为1arccos4. 20.(本小题满分12分)(2014大纲全国,文20)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.分析:(1)先用字母表示各事件,再由互斥与独立事件的概率可求. (2)由(1)分析k 的可能取值情况,比较即得结果.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备,E 表示事件:同一工作日4人需使用设备,F 表示事件:同一工作日需使用设备的人数大于k .(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,P (B )=0.6,P (C )=0.4,()22C 0.5ii P A ⨯=,i =0,1,2,所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅=()()122()P A B C P A B P A B C ⋅⋅⋅⋅⋅++=()()()()()()()122()P A P B P C P A P B P A P B P C ++=0.31.(2)由(1)知,若k =2,则P (F )=0.31>0.1. 又E =B ·C ·A 2, P (E )=P (B ·C ·A 2) =P (B )P (C )P (A 2) =0.06.若k =3,则P (F )=0.06<0.1. 所以k 的最小值为3.21.(本小题满分12分)(2014大纲全国,文21)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.分析:(1)由于导函数的判别式含参数a ,因此要根据导数值的正负判断单调性,需对a 进行分类讨论.当判别式为正时,导函数有两根,为比较两根的大小,需对a 进行二重讨论.(2)根据f (x )在(1,2)上是增函数可列出关于a 的不等式,注意对a >0或a <0进行讨论. 解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根:11x a-+=,21x a --=.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时f ′(x )<0,故f (x )在(x 2,x 1)是减函数; 若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时f ′(x )<0, 故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数. 当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得504a -≤<. 综上,a 的取值范围是5,04⎡⎫-⎪⎢⎣⎭∪(0,+∞). 22.(本小题满分12分)(2014大纲全国,文22)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.分析:(1)设出Q 点坐标,利用54QF PQ =列出关于p 的方程,借助于p 的几何意义及抛物线的性质确定p .(2)通过题设分析判断直线l 与x 轴不垂直.因直线l 过F (1,0),可设l 的方程为x =my +1(m ≠0).直线l 方程与抛物线方程联立,利用韦达定理得到y 1+y 2,y 1y 2关于m 的表达式,借助弦长公式得12|||AB y y =-(其中A (x 1,y 1),B (x 2,y 2)),同理可得34|||MN y y =-(其中M (x 3,y 3),N (x 4,y 4)). 由题目中的A ,M ,B ,N 四点在同一圆上得到关于m 的方程,进而求出m ,得到直线l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得08x p=. 所以8||PQ p =,08||22p p QF x p =+=+.由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2. 所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ),212|||4(1)AB y y m =-=+.又l ′的斜率为-m ,所以l ′的方程为2123x y m m=-++. 将上式代入y 2=4x ,并整理得2244(23)0y y m m+-+=. 设M (x 3,y 3),N (x 4,y 4),则344y y m +=-,y 3y 4=-4(2m 2+3).故MN 的中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,23424(|||m MN y y m+=-=. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而22211||||||44AB DE MN +=, 即2222222242241214(1)22m m m m m m m (+)(+)⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭++, 化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.。

2014年高考新课标1文科数学(带答案全解)

2014年高考新课标1文科数学(带答案全解)

2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(- B . []1,1- C . )3,1( D . )3,2(- 2.若0tan >α,则A. 0sin >α B . 0cos >α C . 02sin >α D . 02cos >α3.设i i z ++=11,则=||z A . 21 B . 22 C . 23 D . 24.已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A . 2 B . 26 C . 25D . 15.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,学科网则下列结论中正确的是 A. )()(x g x f 是偶函数 B . )(|)(|x g x f 是奇函数 C . |)(|)(x g x f 是奇函数 D . |)()(|x g x f 是奇函数6.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B .21 C . 21D . 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A .①②③B . ①③④C . ②④D . ①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A .203B .72C .165D .15810.已知抛物线C :x y =2的焦点为F ,()y x A,是C 上一点,xF A 045=,则=x 0( )A . 1B . 2C . 4D . 8 11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =CA .-5B .3C .-5或3D .5或-312.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 (A )()2,+∞ B .()1,+∞ C .(),2-∞- D .(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 14.甲.乙.丙三位同学被问到是否去过A .B .C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为____ ____.15.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩,则使得()2f x ≤成立的x 的取值范围是________.16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =___150_____m .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年全国新课标高考文科数学考试大纲I.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。

德、智、体全面衡量.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度.Ⅱ.考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。

数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。

一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。

处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识.知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识.知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。

比较、判断,初步应用等。

(3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

这一层次所涉及的主要行为动词有:掌握、导出、分析.推导、证明.研究、讨论、运用、解决问题等.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

(1)空间想象能力:能根据条件作出正确的图形。

根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;该开始至把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,在抽象概括的过程中.发现研究对象的本质;从给定的大量信息材料中概括出一些结论.并能将其应用于解决问题或做出新的判断.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理.也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法。

一般运用合情推理进行猜想,再运用演绎推理进行证明。

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学明天真实性的初步的推理能力。

(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理.能根据问题的条件寻找与设计合理、简捷的运算途径、能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合。

运算包括对数字的计算、估值和近似计算,对式子的组合变形与分辨变形,对几何图形和几何量的计算求解等,运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力。

(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息.并做出判断. 数据处理能力主要依据统计或统计案例中的方法对教据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用香港的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明,应用的主要过程是依据现实的生活背景.提炼相关的数量关系.将现实问题转化为数学问题.构造数学模型,并加以解决.(7) 创新意识:能发现问越、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路.创造性地解决问题。

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越高。

3. 个性品质要求个性品质是指考生个体的情感、态度和价值观. 要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间以事实求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

4. 考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构。

(1)对数学基础知识的考查,既要全面又要突出重点.对支撑学科知识体系的重点内容.要占有较大的比例.构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意迫求知识的覆盖面.从学科的整高度和思维价值的高度考虑问题.在知识网络的交汇点处设计试题.使对数学基础知识的考查达到必要的深度.(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调“以能力立义”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。

对能力的考查要全面,强阅综合性、应用性.并要切合考生实际对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点.强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查.考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力。

(4)对应用意识的考查主要采用解决应用问题的形式。

命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学教材教学的实际和考生的年龄特点,并结合实践经验,使教学应用问题的难度符合考生的水平。

(5)对创新意识的考查是对高层次理性思维的考查。

在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型、等类型的试题。

数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼城试题的基础性、综合性和现实性,重试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查。

努力实现全面考查综合数学素养的要求。

二、考试范围与要求本部分包括必考内容和选考内容两部分。

必考内容为《课程标准》的必修内容和选修系列Ⅰ的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。

(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语育、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集写空集的含义.(3)集合的基本运算①理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合的关系及运算。

2.函胜概念与基本初等函效Ⅰ(指致函做、对数函致、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质.(2)指数函数①了解指数函数模型实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

.③理解指数函数概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④知道指数函数足一类重要的函数数模型.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数:了解对数在简化运算中的作用。

②理解对数函数的概念,理解对数函数的单调性.掌握对函数图像通过的特殊点.③知道对数函数是一类重要的函数模型。

④了解指数函y=a x与对函数y=logwx互为反函数(a<0.且a≠1).(4)冥函数①了解冥函数的概念②结合函数2132,1,,,xyxyxyxyxy=====的图像,了解它们的变化情况,(5)函数与方程①结合二次函数的图像,了解函的零点与方程根的关系,判断一元二次方程根的存在性及根的个数。

②根据其体函数的图像,能够用二分法求相性方程的近似解(6)函数模型及其应用①了解指数函数、对数函数以及冥函数的增长特长,知道直线上升,指数增长,对增长等不同函数类型增长的含义。

②了解函数模型(如指数函数、对数函数、冥函数、分段函数等在社会中普遍使用的函数模型)的广泛应用3.立体几何初步①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构,能画出简单空间图形(长方体、球、圆柱、圆锥、校拄等的简易组合)的三视图,能识别上述三视图所表示的立体模体,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直说图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).⑤了解球、棱柱、棱雄、台的我面积和体积的计算公式.(2)点、直线、平面之间的位工关系①理解空间直先、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

相关文档
最新文档