2013年全国高考理科数学试题分类汇编10排列

合集下载

2013年全国统一高考数学试卷(理科)(大纲版)(含解析版)

2013年全国统一高考数学试卷(理科)(大纲版)(含解析版)

2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.62.(5分)=()A.﹣8B.8C.﹣8i D.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.188.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则co tα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a ﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD 都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【考点】13:集合的确定性、互异性、无序性;1A:集合中元素个数的最值.【专题】11:计算题.【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=()A.﹣8B.8C.﹣8i D.8i【考点】A5:复数的运算.【分析】复数分子、分母同乘﹣8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【考点】9T:数量积判断两个平面向量的垂直关系.【专题】5A:平面向量及应用.【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x<﹣.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【考点】89:等比数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.18【考点】DA:二项式定理.【专题】11:计算题.【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.=C3r x r【解答】解:(x+1)3的展开式的通项为T r+1令r=2得到展开式中x2的系数是C32=3,=C4r y r(1+y)4的展开式的通项为T r+1令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y 0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【考点】6B:利用导数研究函数的单调性.【专题】53:导数的综合应用.【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥﹣2x在(,+∞)上恒成立,构造函数求出﹣2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥﹣2x在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【考点】MI:直线与平面所成的角.【专题】15:综合题;16:压轴题;5G:空间角;5H:空间向量及应用.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z 轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2【考点】9O:平面向量数量积的性质及其运算;K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数【考点】H1:三角函数的周期性;HW:三角函数的最值.【专题】11:计算题;57:三角函数的图像与性质.【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1﹣sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣x)sin(2π﹣2x)=cosxsin2x,所以f(π+x)+f(π﹣x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f(+x)=cos(+x)sin(π+2x)=﹣sinx(﹣sin2x)=sinxsin2x,f(﹣x)=cos(﹣x)sin(π﹣2x)=sinxsin2x,所以f(+x)=f(﹣x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1﹣sin2x),令t=sinx,f(x)=g(t)=2t(1﹣t2),﹣1≤t≤1,∵g(t)=2t(1﹣t2)的导数g'(t)=2﹣6t2=2(1+t)(1﹣t)∴当t∈(﹣1,﹣)时或t∈(,1)时g'(t)<0,函数g(t)为减函数;当t∈(﹣,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=﹣1时或t=时的函数值,结合g(﹣1)=0<g()=,可得g(t)的最大值为.由此可得f(x)的最大值为而不是,故C不正确;对于D,因为f(﹣x)=cos(﹣x)sin(﹣2x)=﹣cosxsin2x=﹣f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=2.【考点】GG:同角三角函数间的基本关系.【专题】56:三角函数的求值.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=﹣,所以cosα=﹣=﹣则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480种.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是[,4] .【考点】7C:简单线性规划.【专题】16:压轴题;59:不等式的解法及应用.【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.【考点】85:等差数列的前n项和;88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=﹣2d2即d=0不符合题意若a2=3,则可得(6﹣d)2=(3﹣d)(12+2d)解可得d=0或d=2∴a n=3或a n=2n﹣1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a ﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【考点】GP:两角和与差的三角函数;HR:余弦定理.【专题】58:解三角形.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.【考点】LW:直线与平面垂直;M5:共线向量与共面向量.【专题】11:计算题;5G:空间角.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE⊥PB,而OE是△BCD的中位线,可得OE∥CD,因此PB⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG 为二面角A﹣PD﹣C的平面角,连接AG、EG,则EG∥PB,可得EG⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos,即得二面角A﹣PD﹣C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A﹣PD﹣C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==﹣,得∠AFG=π﹣arccos,即二面角A﹣PD﹣C的平面角大小是π﹣arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B 1B2)=P(B1)P(B2)P()=.P(X=2)=P(B 3)=P()P(B3)=.P(X=1)=1﹣P(X=0)﹣P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】14:证明题;15:综合题;16:压轴题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k 的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.【考点】6E:利用导数研究函数的最值;8E:数列的求和;8K:数列与不等式的综合.【专题】16:压轴题;35:转化思想;53:导数的综合应用;54:等差数列与等比数列.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(II)根据(I)的证明,可取λ=,由于x>0时,f(x)<0得出,考察发现,若取x=,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为(II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。

2013全国高考1卷理科数学试题及答案解析

2013全国高考1卷理科数学试题及答案解析
做答时请写清题号。
(22)【解析】(1) ,
(2)
(23)【解析】(1)点 的极坐标为
点 的直角坐标为
(2)设 ;则
(lfxlby)
(24)【解析】(1)当 时,
或 或

(2)原命题 在 上恒成立
在 上恒成立
在 上恒成立
(A) (B) (C) (D)
(12)设点 在曲线 上,点 在曲线 上,则 的最小值为
(A) (B) (C) (D)
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~第24题为选考题,考试依据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13)已知向量 夹角为45°,且 ,则 ____________.
得:应购进17枝
(19)【解析】(1)在 中,
得:
同理:
得: 面
(2) 面
取 的中点 ,过点 作 于点 ,连接
,面 面 面
得:点 与点 重合
且 是二面角 的平面角
设 ,则 ,
既二面角 的大小为
(20)【解析】(1)由对称性知: 是等腰直角 ,斜边
点 到准线 的距离
圆 的方程为
(2)由对称性设 ,则
点 关于点 对称得:
得:
(9)【解析】选
不合题意排除
合题意排除
另: ,
得:
(10)【解析】选
得: 或 均有 排除
(11)【解析】选
的外接圆的半径 ,点 到面 的距离
为球 的直径 点 到面 的距离为
此棱锥的体积为
另: 排除
(12)【解析】选
函数 与函数 互为反函数,图象关于 对称

2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( ) A {}2,1,0 B {}2,1,0,1- C {}3,2,0,1- D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4}天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉(C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。

排列组合高考试题及答案(最新整理)

排列组合高考试题及答案(最新整理)

(2010江西理数)14.将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。

【答案】 1080【解析】。

先分组,考虑到有2个是平均分组,得,再全排列得:221164212222C C C C A A 两个两人组两个一人组221146421422221080C C C C A A A ⋅⋅=(2010四川理数)(13)的展开式中的第四项是 .6(2-解析:T 4=答案:-33361602(C x =-160x(2010全国卷1文数)(15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)15.【解析1】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有种不同的选法.所2134C C 以不同的选法共有+种.【解析2】: 1234C C 2134181230C C =+=33373430C C C --=(2010湖北文数)11.在的展开中, 的系数为______。

【答案】45210(1)x -4x 安徽文 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B)18(C)16(D)15【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D.北京理12.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有______个【解析】个数为42214-=。

福建理6.(1+2x )3的展开式中,x 2的系数等于 BA .80B .40C .20D .1013.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。

2013年高考数学全国卷(理科)

2013年高考数学全国卷(理科)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数 球的面积公式 24R S π=第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i i++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .12.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x x M ,则=M C N R A .)2,1(B .[]2,0C.∅ D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为(1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β(4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .48.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是 A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.第Ⅱ卷共包括填空题和解答题两道大题.二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R ∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围. 18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.第14题图(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F 为AD 的中点.(Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.AB CDEF20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分) 已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准选择题(本大题共12小题,每小题5分,共60分.) B D B A D B B D B C C B填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题 17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+ 由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分 19.(本小题满分12分) 解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分(Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴EF ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V . (12)分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . ABCDEF G20.(本小题满分12分) 解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y ……………………………………9分当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分21.(本小题满分12分) 解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . (4)分解得:2,2-==b a ∴122)(2+-=x x x f . …………………………………………6分(Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立 化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x , 将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B 由AB AC 2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622kkk x +-=+② …………………………………………12分- 11 - / 11 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理

2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理

2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-【答案】D2 .(2013年普通高等学校招生统一考试山东数学(理))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279【答案】B3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B4 .(2013年普通高等学校招生统一考试大纲版数学(理))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D5 .(2013年普通高等学校招生统一考试福建数学(理))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考)10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2013年普通高等学校招生统一考试辽宁数学(理))使得()3nx n N n+⎛∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x>0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2013年上海市春季高考)36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23xy 的项的系数是_________.(用数字作答)【答案】1013.(2013年上海市春季高考)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2013年普通高等学校招生统一考试重庆数学(理))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】59016.(2013年普通高等学校招生统一考试天津数学(理))6x ⎛⎝的二项展开式中的常数项为______.【答案】1517.(2013年普通高等学校招生统一考试浙江数学(理))设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【答案】10-18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a=-19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理))若8x⎛⎝的展开式中4x的系数为7,则实数a=______.【答案】2121.(2013年普通高等学校招生统一考试大纲版数学(理))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).【答案】480。

【2013备考】各地名校试题解析分类汇编(一)理科数学:10排列、统计与概率

【2013备考】各地名校试题解析分类汇编(一)理科数学:10排列、统计与概率

各地解析分类汇编:排列、统计与概率1.【云南省玉溪一中2013届高三上学期期中考试理】某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有( ) A .474种 B .77种 C .462种 D .79种【答案】A【解析】首先求得不受限制时,从9节课中任意安排3节,有39504A =种排法,其中上午连排3节的有33318A =种,下午连排3节的有33212A =种,则这位教师一天的课表的所有排法有504-18-12=474种,故选A .2.【云南省玉溪一中2013届高三上学期期中考试理】341()x x-展开式中常数项为 【答案】4-【解析】展开式的通项为341241441()()(1)k kk k k k k T C x C x x--+=-=-,由1240k -=,得3k =,所以常数项为3344(1)4T C =-=-。

3.【云南省昆明一中2013届高三新课程第一次摸底测试理】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 。

【答案】30【解析】四名学生两名分到一组有24C 种,3个元素进行全排列有33A 种,甲乙两人分到一个班有33A 种,所以有23343336630C A A -=-=.4.【云南省玉溪一中2013届高三第四次月考理】某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率中等于514757512C +C C C 的是( )A.()1P ξ=B.()1P ξ≤C.()1P ξ≥D.()2P ξ≤【答案】B【解析】()1P ξ==1457512C C C ,57512C (0)C P ξ==,所以514757551212C C C (0)(1)C C P P ξξ=+==+,选B. 5.【云南省玉溪一中2013届高三第四次月考理】在65)1()1(x x -+-的展开式中,含3x 的项的系数是 【答案】-30【解析】5(1)x -的展开式的通项为5(1)k k k C x -,6(1)x -的展开式的通项为6(1)k k kC x -,所以3x 项为333333356(1)(1)30C x C x x -+-=-,所以3x 的系数为30-.6.【云南省昆明一中2013届高三新课程第一次摸底测试理】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤; ④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。

2013年高考真题解析分类汇编(理科数学)10:排列、组合及二项式定理2013年高考真题解析分类汇编

2013年高考真题解析分类汇编(理科数学)10:排列、组合及二项式定理2013年高考真题解析分类汇编

2013高考试题解析分类汇编(理数)10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-D已知(1+ax )(1+x )5的展开式中x 2的系数为+a •=5,解得a=﹣1,故选D .2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243 B .252 C .261 D .279B有重复数字的三位数个数为91010900⨯⨯=。

没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252-,选B.仁为太傅谢安的孙子试卷试题等到平定京邑后化学教案高祖进驻石头城化学教案景仁与百官同去拜见高祖化学教案高祖注视着他3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5 B .6 C .7 D .8 B因为m 为正整数,由(x+y )2m 展开式的二项式系数的最大值为a ,以及二项式系数的性质可得a=,同理,由(x+y )2m+1展开式的二项式系数的最大值为b ,可得 b=.再由13a=7b ,可得13=7,即 13×=7×,即 13=7×,即 13(m+1)=7(2m+1).解得m=6,故选B .4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168D(x+1)3的展开式的通项为T r+1=C 3r x r 令r=2得到展开式中x 2的系数是C 32=3, (1+y )4的展开式的通项为T r+1=C 4r y r 令r=2得到展开式中y 2的系数是C 42=6,(1+x )3(1+y )4的展开式中x 2y 2的系数是:3×6=18,故选D .5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14 B .13C .12D .10B方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为( )A .4 B .5 C .6 D .7B展开式的通项公式为5211(3)()3k n kn kkk n kk nnT C x C xx x---+==。

2013年高考全国卷理科数学高清解析版

2013年高考全国卷理科数学高清解析版

2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】()f x 的定义域为M=[-1,1],故2. 根据下列算法语句, 当输入x 为60输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61【答案】C【解析】故选择C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】A 【解析】4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】由题设可知区间[481,720]长度为240,落在区间内的人数为12人。

5. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D) 4π【答案】A【解析】由题设可知矩形ABCD 面积为2,曲边形DEBF 的面积为22124ππ-=-,选A.6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = 2z =(C) 若12||z z =, 则2112··z z z z =(D) 若12||||z z =, 则2122z z =【答案】D【解析】设12,,z a bi z c di =+=+若12||0z z -=,则12||()()z z a c b d i -=-+-,12z z =,则,a c b d ==-,所以12z z =,故22c d =+,所以1122..z z z z =,故C 项正确;a ,b ,c , 若cos cos sin b C c B a A +=, 则△ABC 的形 (A) 锐角三角形 (B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B【解析】因为cos cos sin b C c B a A +=,所以由正弦定理得2sin cos sin cos sin B C C B A +=,所以2sin()sin B C A +=,所以2sin sin A A =,所以sin 1A =,所以△ABC 是直角三角形。

2013年全国高考理科数学试卷分类汇编4:数列含答案

2013年全国高考理科数学试卷分类汇编4:数列含答案

2013 年全国高考理科数学试题分类汇编 4:数列一、选择题1 .( 2013 年高考上海卷(理) ) 在数列 { a n } 中, a n 2n1, 若一个 7 行 12 列的矩阵的第 i行第 j 列的元素 aa a j a a j ,( i 1,2, ,7; j 1,2, ,12 ) 则该矩阵元素能取到 i ,j i i 的不同数值的个数为( ) (A)18 (B)28 (C)48 (D)63【答案】 A.2 .( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 已知数列 a n 满足 3a n 1 a n 0, a 2 4 的前10, 则 a n 项和等于 3(A) 6 1 3 10 (B) 1 1 310 (C) 3 1 3 10 (D) 3 1+3 109 【答案】 C3 .( 2013 年高考新课标1(理)) 设 A n B n C n 的三边长分别为 a n , b n , c n , A n B n C n 的面积为 S n , n 1,2,3, , 若b 1c 1,b 1 c 1 2a 1 , a n1 a n , b n 1c n an, c n 1b n a n , 则 ( ) 2 2 A.{ Sn} 为递减数列 B.{ Sn} 为递增数列C.{ S2n-1 } 为递增数列 ,{ S2n} 为递减数列D.{ S2n-1 } 为递减数列 ,{ S2n} 为递增数列【答案】 B4 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数 y=f (x) 的图 像如图所示 , 在区间a,b 上可找到 n(n 2) 个不同的数 x 1,x 2 ...,x n , 使得 f (x 1 ) f (x 2 ) f (x n )则 n 的取值范围是x 1 = = ,x 2 x n(A) 3,4 (B) 2,3,4 (C) 3,4,5 (D) 2,3【答案】 B5 .( 2013 年普通高等学校招生统一考试福建数学(理)试题(纯 WORD版))已知等比数列{ a n }第 1 页共 19 页的公比为 q, 记 b n a m( n 1) 1 a m( n 1)2... a m (n 1) m , cn am(n 1) 1 am( n 1) 2 ... am (n 1) m (m, n N * ), 则以下结论一定正确的是 ( ) A. 数列 {b n }为等差数列, 公差为 q mB.数列 { b n } 为等比数列 , 公比为q 2mC.数列 { c n }为等比数列, 公比为 q m2 D. 数列 { c n } 为等比数列 , 公比为 q mm【答案】 C6 (. 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理)(纯 WORD 版含答案))等比数列 a n 的前 n 项和为 S n , 已知S 3a 2 10a 1 , a 5 9 , 则 a 1 1 (B)111(A)3 (C)(D)39 9【答案】 C7(. 2013 年高考新课标 1(理))设等差数列 a n 的前 n 项和为 S n , S m 1 2, S m 0,S m 1 3 , 则 m ( )A.3B.4C.5D.6【答案】C8 .( 2013 年普通高等学校招生统一考试辽宁数学 (理)试题( WORD 版))d 0下面是关于公差 的等差数列a n 的四个命题 :p 1 : 数列 a n 是递增数列; p 2 : 数列 na n是递增数列;p 3 : 数列a n 是递增数列; p 4 : 数列 a n 3nd 是递增数列;n 其中的真命题为(A)p 1, p 2 (B ) p 3 , p 4 (C) p 2 ,p 3 (D) p 1, p 4 【答案】D9 .( 2013 年高考江西卷(理) ) 等比数列 x,3x+3,6x+6,.. 的第四项等于A.-24B.0 C.12 D.24 【答案】A二、填空题10.( 2013 年高考四川卷(理))在等差数列{ a n } 中 , a2a18 , 且 a4为 a2和 a3的等比中项 ,求数列 { a n} 的首项、公差及前n 项和 .【答案】解 : 设该数列公差为 d , 前 n 项和为 s n . 由已知 , 可得第2 页共 19 页2a1 2d 8, a1 3d 2a1 d a1 8d .所以 a1 d 4,d d 3a10 ,解得 a14,d 0 , 或a11,d 3 , 即数列a n的首相为 4, 公差为 0, 或首相为 1, 公差为 3.所以数列的前 n 项和 s4n 或s n3n2n n211(. 2013 年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等差数列an的前 n 项和为 S , 已知S 0,S25 , 则 nS 的最小值为 ________.n 115 n【答案】4912.( 2013 年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10,, 第n个三角形数为n n 11 n21 n . 记第 n 个k边形数为2 2 2N n,k k 3 , 以下列出了部分k 边形数中第 n 个数的表达式 :三角形数N n,3 1 n2 1 n2 2正方形数N n,4 n2五边形数N n,5 3 n2 1 n2 2六边形数N n,6 2n2n可以推测 N n,k 的表达式 , 由此计算 N 10,24 ___________.选考题【答案】 100013.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))在正项等比数列{ an }中 , a5 12,a6a73, 则满足a1a2 ana1a2an 的最大正整数n 的值为_____________.【答案】1214.( 2013 年高考湖南卷(理))设Sn 为数列an的前n 项和 ,Sn( 1)nan12n,nN , 则(1) a3 _____;(2)S1S2 S100___________.【答案】 1 ; 1( 110016 3 21)第3 页共19页15.( 2013 年普通高等学校招生统一考试福建数学 (理) 试题(纯 WORD 版))当 x R, x 1时 ,有如下表达式 :1x x 2 ... x n ... 1 1 .x 1 1 1 11 1 两边同时积分得 :21dx 2 xdx 2 x 2dx ... 2 x n dx ... 2 dx. 0 0 0 0 0 1 x从而得到如下等式 : 1 1 1 ( 1 )2 1 ( 1 ) 3 ... 1 ( 1 )n1 ... ln 2.2 2 23 2 n 1 2 请根据以下材料所蕴含的数学思想方法, 计算 :0 11 1 1 2 1 2 1 3 1 n 1 n1C n 2 2C n( 2 ) 3C n( 2 ) ... n 1C n( 2) _____ 【答案】 n 1 [( 3 )n1 1]1 216.( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案)) 已知a n 是等差数 列, a 1 1, 公差 d0 , S n 为其前 n 项和 , 若 a 1 , a 2 , a 5 成等比数列 , 则S 8 _____ 【答案】6417.( 2013 年上海市春季高考数学试卷( 含答案 ) )若等差数列的前 6 项和为 23, 前 9 项和为 57, 则数列的前 n 项和 S n =__________. 【答案】 5 n 2 7 n6618.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))在等差数列 an 中 , 已知 a 3a 810, 则 3a 5 a 7 _____.【答案】 2019.( 2013 年高考陕西卷(理) ) 观察下列等式 :12 112 2 2 3 12 22 32 6122232421照此规律 ,2- 2232-n-1n2 (- 1) n 1第 n 个等式可为___1 ( - 1)2n(n 1)____.【答案】2-2232-n-1n2( -1)n1n(n 1) 1 ( -1)220.( 2013 年高考新课标1(理))若数列 { a n } 的前 n 项和为 Sn=2a n1, 则数列{a n } 的通项3 3第 4 页共 19 页公式是 a n =______.【答案】 a n = ( 2)n 1 .21.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图 , 互不 - 相同的点 A1 , A2 , X n , 和 B1, B2, B n , 分别在角 O的两条边上 , 所有 A n B n相互平行 , 且所有梯形 A n B n B n 1 A n 1的面积均相等 . 设 OA n a n . 若 a11, a22, 则数列a n的通项公式是_________.【答案】 a n3n 2, n N *22.( 2013 年高考北京卷(理))若等比数列 { an} 满足a2+a4=20,a3+a5=40, 则公比q=_______;前n 项和 Sn=___________.【答案】 2, 2n 1 223.( 2013 年普通高等学校招生统一考试辽宁数学(理)试题( WORD版))已知等比数列a n是递增数列 , S n是a n 的前 n 项和 , 若 a1,a3是方程x25x 4 0 的两个根 , 则S6 ____________. 【答案】 63三、解答题24.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))设函数f n (x) 1 x x2x2x n n) , 证明 : 22 2n2(x R, nN3( Ⅰ) 对每个n N n , 存在唯一的x n[2,1] , 满足 f n( x n );31( Ⅱ ) 对任意p N n , 由 ( Ⅰ ) 中x n构成的数列x n满足 0xnx np .n【答案】解: ( Ⅰ) n 2 3 4 n当 x 0时, y x 2是单调递增的f n( x) 1 x x 2x2x2x 2是 x的n 2 3 4n第 5 页共 19 页单调递增函数 , 也是 n 的单调递增函数 .且 f n (0) 1 0, f n (1) 1 1 0. 存在唯一 x n (0,1], 满足 f n( x n ) 0,且1 x 1 x 2 x 3 x n 0当 x (0,1).时, f n ( x) 1 x x 2 x 3x 4x n 1 x 2 1 x n 1 xx 2122 2222 22x 1 4 1 x4 1 x0 f n ( x n ) 1 x n xn 2 1 (x n 2)(3x n 2)0 x n2 4 1 x n [ ,1]3综上 , 对每个nN n , 存在唯一的 x n [ 2 ,1] , 满足 f n( x n )0 ;( 证毕 )3( Ⅱ) 由题知 1 x n x n p 0, f n ( x n ) 1 x n x n 2 x n 3 x n 4 x n n0 22 32 42 n 2 23 4 n n 1 n pf n p ( x n p ) 1 x n p x n p x n p xnpx n p x n p x n p 0 22 32 4 2 n 2 (n 1)2(n p)2上 式相减:x n 2 x n 3 x n 4x n n2 xn p 3xn p 4xn p nxn p n 1 n p x nx nxn pxn p 22 32 42 n 2 p 22 32 42 n 2 ( n 1) 2( n p) 2223 34 4nnn 1n px n - x n p ( xn p - xnxn p - xn xn p - xn xn p -xn )( xn p xn p ) 2 2 3 24 2 n 2 (n 1) 2 (n p) 2111 xn - xn 1 .n n p n pn法二 :第 6 页共 19 页25 .( 2013 年 高 考 上 海 卷( 理 )) (3分 +6 分 +9 分 ) 给 定 常 数 c 0 , 定 义 函 数 f ( x) 2 | x c 4 | | x c |, 数列 a 1 ,a 2 , a 3 , 满足 a n 1 f (a n ), n N *.(1) 若 a c 2 , 求 a 及 a ;(2) 求证 : 对任意 nN * , a 1 a c ,; 1 2 3 n n (3) 是否存在 a 1 , 使得 a 1 , a 2 , a n , 成等差数列 ? 若存在 , 求出所有这样的 a 1 , 若不存在 , 说 明理由 .【答案】 :(1)因为 c0 , a 1( c 2) , 故 a 2 f (a 1) 2| a 1 c 4| |a 1c | 2 , a 3 f (a 1) 2| a 2 c 4| | a 2 c | c 10第 7 页共 19 页(2) 要证明原命题 , 只需证明 f ( x) x c 对任意 x R 都成立 ,f ( x) x c 2 | x c 4 | | x c | xc即只需证明2 | x c 4 | | x c | +x c 若 x c 0 , 显然有2 | x c 4 | | x c | +x c=0 成立 ; 若 x c 0 , 则 2 |x c 4 | |x c | + x c x c 4 x c 显然成立 综上 , f ( x) x c 恒成立 , 即对任意的nN *, a n 1 a n c (3) 由(2)知, 若 { a n } 为等差数列 , 则公差 d c 0 , 故 n 无限增大时 , 总有 a n 0 此时 ,a n 1 f (a n ) 2(a nc 4)(a n c) a n c 8即 d c 8故 a 2f (a 1 ) 2| a 1 c 4| |a 1 c | a 1 c 8, 即2 | a 1 c 4 | | a 1 c | a 1 c 8,当 a c 0 时 , 等式成立 , 且 n 2 时 , a0 , 此时 { a } 为等差数列 , 满足题意 ; 1 n n 若 a 1 c 0 , 则 |a 1 c 4| 4 a 1 c 8 , 此时 ,a 20,a 3 c 8, , a n ( n 2)(c 8) 也满足题意 ;综上 , 满足题意的 a 1 的取值范围是 [c, ) { c 8} .26.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) ) 本小题满分10分 . k 个:1, 2, 2 , 3,,3 ,,3 ,4 , k- 1 k -1设 数 列 ( ) , ,( ) , 即 当 a n - -- 4 , , 4 - 1k - - - - 1 k( k ) k ( )k 1 1 n k k 1 k N 时 , a n k ,记S n a 1 a 2 a n n N , 对2 2 (- 1)于 l N , 定义集合 P l n S n 是 a n 的整数倍,nN ,且 1 n l(1) 求集合 P 11 中元素的个数 ;(2) 求集合 P 2000 中元素的个数 .【答案】 本题主要考察集合. 数列的概念与运算 . 计数原理等基础知识 , 考察探究能力及运用 数学归纳法分析解决问题能力及推理论证能力.第 8 页 共 19 页(1)解 :由 数 列a n的 定义 得 : a 1 1 , a 22 , a3 2 , a4 3 , a5 3 , a6 3 , a7 4 , a8 4 , a 94 ,a104, a 11 5 ∴ S 1 1, S 2 1 , S 3 3 , S 40 , S 3 , S 6 , S 2 , S 8 2 , S 9 6 ,5 6 7 S1010 ,S 11 5 ∴ S 1 1 a 1 , S 4 0 a 4 ,S 51 a 5 , S 62 a 6 , S 11 1 a 11 ∴集合 P 11 中元素的个数为5 (2) 证明 : 用数学归纳法先证(21) Si ( 2i 1) i i事实上 ,① 当 i 1时 ,Si( 2i 1) S 31 (2 1)3 故原式成立② 假设当 i m 时 , 等式成立 , 即(2 1) 故原式成立 Sm(2 m 1) m m 则: i m 1, 时 ,S( m1)[ 2( m 1) 1} S ( m 1)( 2m 3} Sm(2m 1) ( 2m 1) 2 (2m 2)2m(2m 1) (2m 1) 2 (2m 2)2(2m 2 5m 3) ( m 1)( 2m 3)综合①②得 :Si (2 i 1) i (2 i 1) 于是S( i 1)[ 2i 1} Si ( 2i 1} (2i 1) 2 i (2i 1) (2i 1)2 (2i 1)(i 1) 由上可知 : S i ( 2i 1} 是 (2i1) 的倍数而 a 1)( 2i 1} j 2i 1( j 1,2, ,2i 1) , 所以 SSj i 1) 是( i i (2i 1)j i (2 i 1)(2a(i 1)( 2i 1} j ( j 1,2,,2i1) 的倍数又S( i 1)[2i1}(i1)(2 1)不是2i 2 的倍数 ,i而(2 2)( 1,2, ,2 2) a(i1)(2i1} j i j i所以(22) (2 1)( 1) (22)不是S( i1)( 2i1) j S(i1)(2i1) j i i i j i第 9 页共 19 页a(i 1)( 2 i 1} j ( j 1,2, ,2i 2) 的倍数故当 l i(2i1) 时, 集合 P l 中元素的个数为1 3 (2i -1) i2 于是当li( 2i 1) j (1 j 2i 1)时 , 集合 P l 中元素的个数为 i 2 j 又 2000 31 (2 31 1) 47 故集合 P 2000 中元素的个数为312 47 100827.( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 在公差为 d 的等 差数列 { a n } 中 , 已知 a 1 10 , 且 a 1 ,2a 2 2,5a 3 成等比数列 .(1) 求 d, a n ; (2) 若 d 0 , 求 | a 1 | | a 2 | | a 3 | | a n | . 【答案】 解:(Ⅰ) 由已知得到 :(2 a 2 2) 2 5a a 4(a d 1)2 50(a 2d ) (11 d ) 2 25(5 d ) 1 3 1 1121 22d d 2 125 25d d 2 3d 4 0d 4d 1a n 4n 或6a n 11 n ; ( Ⅱ) 由 (1) 知 , 当d0 时 , a n 11 n , ①当 1 n 11 时 ,a n0 | a 1 | | a 2 | | a 3 | | a n | a 1 a 2a 3a n n(10 11 n)n(21 n)2 2②当 12 n时 ,a n 0 | a 1 | | a 2 | | a 3 | | a n | a 1 a 2 a 3a11 (a 12 a 13 a n ) 2( a 1 a 2 a 3 a 11 ) (a 1 a 2 a 311(21 11) n(21 n) n 2 21n 220a n ) 2 2 2 2n(21 n) ,(1 n 11)所以 , 综上所述 : | a || a | | a || a 2 ; n |1 2 3n221n 22012)2,( n28.( 2013 年高考湖北卷(理))已知等比数列a n 满足 :a2a310 , a1a2a3 125 .第 10 页共 19 页(I)求数列 a n的通项公式 ;(II) 是否存在正整数m , 使得1 1 11 ?若存在 , 求 m 的最小值 ; 若不存在 , 说a1a2a m明理由 .【答案】解 :(I) 由已知条件得 : a25 , 又a2q 1 10 , q 1或 3 ,所以数列an的通项或 a n53n2(II) 若 q 1, 1 111或 0 , 不存在这样的正整数m ;a1a2a m 5m9 , 不存在这样的正整数 m .若q 3, 1 1 1 9 1 1a1a2a m10 31029.( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列 a 的前nn 项和为 S n , 且S44S2 , a2 n2a n1. ( Ⅰ) 求数列a n的通项公式 ;( Ⅱ) 设数列b n 前 n 项和为 T n , 且T n a n1( 为常数 ).令 c n b2n(nN * ) . 求数2n列 c n的前 n 项和 R n .【答案】解:( Ⅰ) 设等差数列an 的首项为a1 , 公差为d , 由S44S2 ,a2n 2a n 1得4a16d 8a14da1 (2n 1)2a1 2(n 1)d 1 ,解得,a1 1, d 2因此a n2n 1( nN * )T nn2 1( Ⅱ) 由题意知 : nb nT n T n nn1所以n12n22时 ,2n 1第 11 页共 19 页2n 2 1 n 1故, c n b2n22n 1 ( n1)( 4)(n N * )R n0 ( 1) 0 1 ( 1)1 2 ( 1) 2 3 ( 1) 3(n 1) ( 1) n 1所以4 4 4 4 4 ,1 R n0 ( 1)1 1 (1 )2 2 (1 )3(n 2) ( 1) n 1(n 1) ( 1)n 则4 4 44 4 43 R n( 1 )1 ( 1 )2( 1 )3 (1 )n1(n 1) (1 ) n两式相减得44 4 4 4 4 1 (1 )n1)(1 )n4 4 (n11 44R n 1 3n 1) (44n 1整理得9的前 n 项和Rn 13n 1所以数列数列c n9 (4 4n 1 ) 30.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分16 分 . 设{ a} 是首项为a, 公差为 d 的等差数列(d0) , S是其前n项和 .记n nb n nS n, n N*, 其中c为实数 .n2 c(1 ) 若c 0 ,且 b1,b2,b4成等比数列 , 证明 : S nk n2S k ( k,nN* );(2 ) 若 { b n } 是等差数列 , 证明 : c0 .【答案】证明 : ∵ { a n} 是首项为 a , 公差为 d 的等差数列 ( d 0) ,S n是其前 n 项和∴ S n na n(n 1) d2(1) ∵0 ∴S n a n 1 dc bnn 2∵ b1, b2,b4成等比数列∴b2 2 b1b4∴ (a 1 d ) 2 a( a3 d )2 2∴1ad 1 d 2 0 ∴1 d( a1 d ) 0 ∵ d 0 ∴ a 1 d∴ d 2a2 4 22 2∴ S n na n(n 1) d na n(n 1) 2a n 2a2 2第 12 页共 19 页∴左边 =S nk(nk) 2 a n2 k 2 a 右边 = n 2S k n2 k 2 a∴左边 =右边∴原式成立(2) ∵ { b n } 是等差数列∴设公差为d1 , ∴b n b1(n1) d1带入b nnSn得:n2 cb1(n 1)d1nS n1d )n3(b1d1 a1 2cd1 n c(d1b1) 对n 2 c∴ ( d1 d ) n2 2n N 恒成立d1 1 d02∴ b1d1a 1 d02cd10c(d1b1 ) 0由①式得 : d1 1 d∵ d 0 ∴ d102由③式得 : c 0法二 : 证 :(1)若 c 0 , 则 a n a ( n 1)d , S n n[(n1)d 2a] , b n(n 1)d 2a .2 2当 b1, b2,b4成等比数列 ,b22b1b4 ,d 23d即: a a a , 得 : d 22ad , 又d0 , 故d 2a .22由此 : S n n 2 a ,S nk( nk) 2an 2k 2 a , n2S kn 2 k 2a .故: S nk n2S k ( k, n N * ).nS n n2(n1)d2a(2) b n2, n2c n 2 cn2(n 1)d2ac(n1)d 2ac(n1)d2a 2 2 2n2 c(n 1)d2ac(n 1)d 2an 22 . ( ※) 2 c若 { b n} 是等差数列 ,则 b n An Bn 型.观察 ( ※) 式后一项 , 分子幂低于分母幂 ,第 13 页共 19 页c(n 1) d 2a1)d 2a ( n 1)d2a故有 :2 (n≠0, n20 , 即 c 0 , 而2c 2故 c 0. 经检验 , 当c 0 时 {b n} 是等差数列 . 31.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))等差数列a n 的前 n 项和为 S n , 已知 S3=a22, 且 S1 , S2 , S4成等比数列 ,求 a n的通项式 .【答案】32.( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为 3 的等比2数列{ a n } 不是递减数列 , 其前3 3 5 54 4成等差数n 项和为 S n ( n N *) , 且S + a ,S+a , S + a列. ( Ⅰ) 求数列 { a n } 的通项公式 ;( Ⅱ )设 T nS n1 ( nN* ) ,求数列 { Tn } 的最大项的值与最小项的值 .S n【答案】第 14 页共 19 页-33 .(2013 年高考江西卷(理))正项数列 {a n} 的前项和{an} 满足: sn2 (n2n 1)sn ( n2n) 0(1) 求数列 {a n} 的通项公式an;(2) 令b nn 12, 数列{b} 的前 n 项和为 T n . 证明 : 对于任意的 n* 5 2nN , 都有T n(n 2) a 64【答案】 (1) 解 : 由S n2(n2n 1)S n(n2n) 0 , 得S n(n2n) (S n1) 0 .由于an 是正项数列 , 所以 S 0, S n2n.n n于是 a1S12,n 2时 , an S n S n 1 n2n (n 1)2(n 1) 2n .综上 , 数列a n的通项 a n2n .(2) 证明 : 由于an2n, bnn 1. (n2) 2a n2则 b n n 1 1 1 1 .-4n2(n2)216 n2( n 2)2第 15 页共 19 页T n 1 1 1 1 1 1 1 ⋯ 1 11132 22 4232 52 (n 1)2 (n 1)2n 2 ( n 2)216 1 1 1 1 1 1 1 516 2 2 (n 2 (n 2) 2 (1 2 ) 64 . 1) 16 234.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))设数列 a n 的前n项和为 S n . 已知 a 1 2S na n 1 2 n 2 n * 1,1 n , N . n 3 3( Ⅰ) 求 a 2 的值 ;( Ⅱ) 求数列 a n 的通项公式 ;( Ⅲ) 证明 : 对一切正整数n, 有 11 1 7 . a 1 a2 a n 4【答案】 .(1) 解 : 2S n an1 1 n2 n 2, n N . n3 3 当n 1 时 , 2a 1 2S 1a 2 1 1 2 a 2 2 3 3 又a 11, a 2 4(2)解 :2S n a n 1 1n 2 n 2 , n N . n 332S n na n 1 1 n3 n 22n na n 1 n n 1 n 2① 33 3当 n 2时 , 2S n 1 n 1 a n n 1 n n 1 ②3 由① — ②, 得2S n2S n 1 na n 1 n 1 a n n n 1 2a n 2S n 2S n 12a n na n 1 n 1 a n n n 1a n 1 a n 1 数列 a n 是以首项为a 1 1 , 公差为 1 的等差数列 .n 1 n n1 a n 1 1 n 1 n, a n n2 n 2n当 n 1时 , 上式显然成立 . a n n2 , n N *(3) 证明 : 由(2) 知 ,a nn2 ,n N *第 16 页共 19 页①当 n 1时 , 1 1 7 , 原不等式成立 .a 1 4 ②当 n 2 时 , 111 1 7原不等式亦成立 .a 1 a 2 , 4 4 ③当 n 3时,n 2n 1 n 1 , 1 n 1 1 1n 2 n111 1 1 11 1111a 1 a 2a n 12 22n 21 32 4 n 2 n n 1 n 11 1 1 1 1 1 1 1 111 1 1 111 1 32 2 42 3 5 2 n 2 n 2 n 1 n 121 1 1 1 1 1 111111 1 32 43 5n 2 n n 1 n 12 1 1 1 117 1117 112 n n 14 2n n 14 2 当 n 3时 ,, 原不等式亦成立 .综上 , 对一切正整数 n ,有 11 1 7 .a 1 a 2 a n 4 35.( 2013 年高考北京卷(理) )已知 { a } 是由非负整数组成的无穷数列 , 该数列前 n 项的最大n 值记为 An, 第 n 项之后各项 a n 1 , a n 2 , 的最小值记为 Bn,dn=An- Bn . (I) 若 { an} 为 2,1,4,3,2,1,4,3,, 4 的数列 ( 即对任意* a n ), 写出是一个周期为 n ∈N , a n 4 d1, d2 , d3, d4 的值 ;(II) 设 d 为非负整数 , 证明 : dn=- d( n=1,2,3) 的充分必要条件为 { an} 为公差为 d 的等差数列 ;(III) 证明 : 若 a =2, d =1( n=1,2,3,), 则 { a } 的项只能是 1 或者 2, 且有无穷多项为 1.1 n n【答案】 (I) d1d21,d3 d4 3.(II)( 充分性 ) 因为a n 是公差为d 的等差数列 ,且 d 0, 所以 a1a2a n.因此 A n a n , B n a n 1 ,d n a n a n1 d (n 1,2,3, ) .( 必要性 ) 因为 d n d0 (n 1,2,3, ) , 所以 A n B n d n B n .第 17 页共 19 页又因为a n A n , a n1B n,所以 ana n1.于是 Ana n , B n a n1.因此 a n 1a n B n A n d n d , 即 an是公差为 d 的等差数列 .(III) 因为a12,d11, 所以A1a1 2,B1A1 d11. 故对任意n 1,a n B1 1.假设 a (n2) 中存在大于2的项 .n设 m 为满足a n 2 的最小正整数 , 则m 2, 并且对任意1 km,a k 2 ,.又因为a1 2 ,所以 A m 12 , 且A m a m 2 .于是 B m A m d m 2 1 1,Bm1min a m , B m 2 .故 d m 1A m 1B m12 2 0 , 与 d m11 矛盾 .所以对于任意n 1, 有 a 2 , 即非负整数列an的各项只能为 1 或 2.n因此对任意n 1, a 2 a , 所以 A 2 .故B n A n d n 2 1 1.n 1 n因此对于任意正整数n , 存在 m 满足mn , 且 a m1, 即数列a n有无穷多项为1.36.( 2013 年高考陕西卷(理))设 { a n } 是公比为 q 的等比数列 .( Ⅰ) 导 { a n } 的前 n 项和公式 ; ( Ⅱ ) 设 q≠1, 证明数列 { a n1} 不是等比数列 . 【答案】解:( Ⅰ) 分两种情况讨论 .①当q 1时,数列 { a n } 是首项为 a1的常数数列,所以S n a1a1a1na1 .②当q 1时,S n a1a2a n 1 a n qS n qa1qa2qa n 1qa n .上面两式错位相减: (1-q)S n a1(a2qa1 ) (a3 qa2 ) (a n qa n 1 ) qa n a1qa n .nSna1 qan . a1 (1 q ) .1 - q1- qna 1 ,(q1) ③综上 , Sna 1 (1q n )(q 1)1 ,q( Ⅱ ) 使用反证法 .第 18页 共 19 页设 { a n } 是公比 q≠1的等比数列 , 假设数列 { a n1} 是等比数列 . 则①当n N *,使得 an 1 =0 成立 , 则{ a n1}不是等比数列 .②当n N *,使得 an 1 0 成立 , 则an 1 1 a1q n 1 恒为常数a n 1 a1 q n 1 1a1q n 1 a1qn11当 a1 0时, q1. 这与题目条件≠1矛盾 .q③综上两种情况 , 假设数列 { a n 1} 是等比数列均不成立 , 所以当q≠1时 ,数列{ an1} 不是等比数列 .第 19 页共 19 页。

2013年高考数学全国卷(理科)

2013年高考数学全国卷(理科)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数 球的面积公式 24R S π=第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i i++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .12.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x x M ,则=M C N R A .)2,1(B .[]2,0C.∅ D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为(1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β(4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .48.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是 A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.第Ⅱ卷共包括填空题和解答题两道大题.二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R ∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围. 18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.第14题图(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F 为AD 的中点.(Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.AB CDEF20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分) 已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准选择题(本大题共12小题,每小题5分,共60分.) B D B A D B B D B C C B填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题 17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+ 由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分 19.(本小题满分12分) 解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分(Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴EF ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V . (12)分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . ABCDEF G20.(本小题满分12分) 解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y ……………………………………9分当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分21.(本小题满分12分) 解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . (4)分解得:2,2-==b a ∴122)(2+-=x x x f . …………………………………………6分(Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立 化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x , 将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B 由AB AC 2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622kkk x +-=+② …………………………………………12分- 11 - / 11 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

全国各地2013届高考数学 押题精选试题分类汇编10 排列组合及二项式定理 理

全国各地2013届高考数学 押题精选试题分类汇编10 排列组合及二项式定理 理

2013届全国各地高考押题数学(理科)精选试题分类汇编10:排列组合及二项式定理一、选择题1 .(2013届天津市高考压轴卷理科数学)二项式8(2x -的展开式中常数项是( )A .28B .-7C .7D . -28 【答案】C【解析】展开式的通项公式为488831881()(()(1)22k k k k k k kk x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选 C .2 .(2013届广东省高考压轴卷数学理试题)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( ) A .60 B .48 C .42 D .36【答案】B 先把两个女生选好在捆绑在一起22326C A =假设捆在一起的女生记为A,B,另一个女生记为C,两个男生记为甲乙,从左到右编号1~5 (一)A,B 排在1,2号,那么甲可以选3,4.若甲选3,则C,乙无要求,有2种;如果甲选4号,则C 只能选5号,有一种.则共3种情形(二)A,B 排在2,3号,那么甲只能选4号, C 只能选5号,有一种. (三)A,B 排在3,4号,那么甲只能选2号, C 只能选1号,有一种. (二)A,B 排在4,5号,情形同(一)共3种 则总数为N=6*8=48种 3 .(2013届浙江省高考压轴卷数学理试题)若从1,2,3,,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有 ( ) A .60种 B .63种 C .65种 D .66种 【答案】A【解析】 若四个数之和为奇数,则有1奇数3个偶数或者3个奇数1个偶数.若1奇数3个偶数,则有1354=20C C 种,若3个奇数1个偶数,则有3154=40C C ,共有2040=60+种.4 .(2013届全国大纲版高考压轴卷数学理试题)一圆形餐桌依次有 ( ) A . B . C . D .E 、F 共有6个座位.现让3个大人和3 个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总 数为 ( ) ( ) A .6 B .12 C .72 D .144【答案】C .若( ) A .C .E 坐大人,则B .D .F 坐小孩;EFDCBA若 B .D .F 坐大人,则( ) A .C .E 坐小孩.共有3333272A A =种方法.5 .(2013新课标高考压轴卷(一)理科数学)设0(cos sin )a x x dx π=⎰-,则二项式26()ax x+展开式中的3x 项的系数为 ( )A .-20B .20C .-160D .160【答案】C 【解析】因为00(cos sin )(sin cos )2a x x dx x x ππ=⎰-=+=-,所以二项式为26262()()a x x x x+=-,所以展开式的通项公式为261231662()()(2)k k k k k k k T C x C x x--+=-=-,由1233k -=得3k =,所以333346(2)160T C x x =-=-,所以3x 项的系数为160-.选C .6 .(2013新课标高考压轴卷(一)理科数学)某车队准备从甲、乙等7辆车中选派4辆参加救援物资的运输工作,并按出发顺序前后排成一队,要求甲、乙至少有一辆参加,且若甲、乙同时参加,则它们出发时不能相邻,那么不同排法种数为 ( ) A .360 B .520 C .600 D .720【答案】C 【解析】若甲乙只有一个参加,则有124254480C C A =.若甲、乙同时参加,则有222523120C A A =,所以共有600种排法,选C . 7 .(2013届山东省高考压轴卷理科数学)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有 ( ) A .12 B .18 C .24 D .48【答案】C 【解析】分三步:把甲、乙捆绑为一个元素A ,有22A 种方法;A 与戊机形成三个“空”,把丙、丁两机插入空中有23A 种方法;考虑A 与戊机的排法有22A 种方法.由乘法原理可知共有22A 23A 22A 24=种不同的着舰方法.故应选C .二、填空题8 .(2013届全国大纲版高考压轴卷数学理试题)若()1,112>∈⎪⎭⎫ ⎝⎛-n N n x n的展开式中4-x 的系数为,n a 则⎪⎪⎭⎫⎝⎛+++∞→n n a a a 111lim 32 =.【答案】2.22(1)(1)2n n n n a C -=-=1112()1n a n n ⇒=-- 23111111111212122311lim 212n n a a a n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫∴-= ⎪⎝⎭ 9 .(2013届新课标高考压轴卷(二)理科数学)二项式9)1(xx -的展开式中含x 5的项的系数是( )【答案】3610.(2013届陕西省高考压轴卷数学(理)试题)若7)1(axx -展开式中含x 的项的系数为280,则a =【答案】21-【解析】77217711rrr r r r r T C x C x ax a --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以33471T C x a ⎛⎫=- ⎪⎝⎭,所以33711280,.2C a a ⎛⎫-==- ⎪⎝⎭11.(2013届上海市高考压轴卷数学(理)试题)6)1(xx -的展开式中,系数最大的项为第_______________项.【答案】3或5【解析】6)1(xx -的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 12.(2013届四川省高考压轴卷数学理试题)七名同学站成一排合影留念,要求甲必须站在正中间,乙丙两位同学要站在一起,则不同的站法有__________种. 【答案】24013.(2013届湖南省高考压轴卷数学(理)试题)若())(...2120132013102013R x x a x a a x ∈+++=-,【答案】-114.(2013届福建省高考压轴卷数学理试题)从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是________(用数字回答).【答案】10【解析】考虑三位数“没0”和“有0”两种情况.【1】没0:2必填个位,22A 种填法;【2】有0:0填个位,23A 种填法;0填十位,2必填个位,12A 种填法;所以,偶数的个数一共有22A +23A +12A =10种填法.15.(2013届安徽省高考压轴卷数学理试题)已知二项式51cos )(+θx 的展开式中2x 项的系数与445)(+x 的展开式中3x 项的系数相等,则θcos =_______________.【答案】51cos )(+θx 中2x 的系数是325cos C θ,445)(+x 中3x 的系数是1454C ⨯,所以令321545cos 4C C θ=⨯得,cos θ=16.(2013届江西省高考压轴卷数学理试题)已知展开式66106)1(x a x a a x +++=- ,则06a a +的值为______.【答案】217.(2013届浙江省高考压轴卷数学理试题)521⎪⎭⎫ ⎝⎛+x x 展开式中4x 的系数为_______(用数字作答) .【答案】10【解析】251031551()()rr r r r r T C x C x x--+==,10-3r=4,r=2,代入得2443510T C x x ==18.(2013届山东省高考压轴卷理科数学)(2013滨州市一模)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________. 【答案】-160词【解析】,3,2)1(,)12()1(,2|)cos (sin 36616600=∴-=-=-∴=-==--+⎰r x C T x x x x a x dx x a r r r r r ππ所以常数项为-160.19.(2013届广东省高考压轴卷数学理试题)若23*0123(1)()n n n x a a x a x a x a x n N -=++++⋅⋅⋅+∈,且13:1:7a a =,则5_____a =【答案】56- ()()1133111276n n C a n n n a C -===---得n=8,55856a C =-=-。

【VIP专享】2013年全国高考理科数学试题分类汇编:数列

【VIP专享】2013年全国高考理科数学试题分类汇编:数列

D.数列{cn}为等比数列,公比为 qmm 【答案】C
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2013全国各地高考理科数学试题及详解汇编(二).pptx

2013全国各地高考理科数学试题及详解汇编(二).pptx

1
1
11
中点.
(Ⅰ)在平面 ABC 内,试作出过点 P 与平面 A1BC 平行的直线l ,说明理由,并证明直线l
平面 ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l 交 AB 于点 M ,交 AC 于点 N ,求二面角 A A1M N 的余弦值

C
D
AP
B
C1
D1
A1
B1
20.(本小题满分 13 分)
D. 2
4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选 出三人分别担任书记、组织委员和宣传委员,并且要求乙是上届组织委员不能连任原职,则
换届后不同的任职结果有( )
A.16 种
B.18 种
C.20 种
D.22 种
5.(5分)若在区域
为( )
A.
B.
内任取一点 P,则点 P 恰好在单位圆x2+y2=1 内的概率
C.
D.
6.(5分)设直线 l 的方程为:x+ysinθ﹣2013=0(θ∈R),则直线 l 的倾斜角 α 的范围是( )
A. [0,π)
B.
C.
D.
7.(5 分)下列命题正确的有 ①用相关指数R2 来刻画回归效果越小,说明模型的拟合效果越好; ②命题 p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x ﹣2 x﹣1≤0”;
①若 A, B,C 三个点共线, C 在线段上,则 C 是 A, B,C 的中位点;
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点 A, B,C, D 共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.

2013全国各地高考理科数学试题及详解汇编(一)

2013全国各地高考理科数学试题及详解汇编(一)

A ( a 0, b 0 )的离心率为 ,则 C 的渐近线方程为 2 a b 2 1 1 C.y x B.y x D . y x 3 2
【命题意图】本题主要考查双曲线的几何性质,是简单题.
5 c 2 a 2 b2 b 1 b2 1 c 5 【解析】由题知, ,即 = 2 = ,∴ 2 = ,∴ = ,∴ C 的渐近线 2 4 a a 2 a a 4 a 2 1 方程为 y x ,故选 C . 2 5、运行如下程序框图,如果输入的 t [1,3] ,则输出 s 属于
| 4 3i | 4 42 32 (3 4i) 3 4 = = i ,故 z 的虚部为 ,故选 D. 3 4i 5 (3 4i)(3 4i) 5 5
3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查, 事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生 视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A、简单随机抽样 B、按性别分层抽样 C、按学段分层抽样 D、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题. 【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽 样方法是按学段分层抽样,故选 C. 4、已知双曲线 C :
C .[-4,3] D .[-2,5] A .[-3,4] B .[-5,2] 【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.
【解析】有题意知,当 t [1,1) 时, s 3t [3,3) ,当 t [1,3] 时, s 4t t [3, 4] , ∴输出 s 属于[-3,4],故选 A .
1 22 4 4 2 2 = 16 8 ,故选 A . 2 2m 9、设 m 为正整数,( x y) 展开式的二项式系数的最大值为 a , ( x y)2m1 展开式的二项式系数的最大值为 b ,若 13 a =7 b ,

2013全国各地高考理科数学试题及详解汇编(上,78页)

2013全国各地高考理科数学试题及详解汇编(上,78页)

2 1 a1 ,解得 a1 =1, 3 3 2 1 2 2 1 2 当 n ≥2 时, an = Sn Sn1 = an -( an 1 )= an an 1 ,即 an = 2an1 , 3 3 3 3 3 3 n 1 ∴{ an }是首项为 1,公比为-2 的等比数列,∴ an = (2) .
2013 年高考理科数学试题解析(课标Ⅰ) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 4 页。全卷满分 150 分。考试时间 120 分钟。 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页。 2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3. 全部答案在答题卡上完成,答在本试题上无效。 4. 考试结束,将本试题和答题卡一并交回。 第Ⅰ卷 一、 选择题共 12 小题。每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。 1、已知集合 A={x|x2-2x>0} ,B={x|- 5<x< 5},则 ( ) A、A∩B= B、A∪B=R C、B⊆A D、A⊆B 【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(- ,0)∪(2,+ ), ∴A∪B=R,故选 B. 2、若复数 z 满足 (3-4i)z=|4+3i |,则 z 的虚部为 ( ) 4 4 A、-4 (B)- (C)4 (D) 5 5 【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题. 1 ,故选 D. 18 9 x 2 2 x, x 0 11、已知函数 f ( x ) = ,若| f ( x ) |≥ ax ,则 a 的取值范围是 ln( x 1), x 0 A . (, 0] B . (,1] C .[-2,1] D .[-2,0]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理
一、选择题
1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5
)1)(1(x ax ++的
展开式中2
x 的系数为5,则=a ( )
A .4-
B .3-
C .2-
D .1-
【答案】D
2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重
复数字的三位数的个数为
( )
A .243
B .252
C .261
D .279
【答案】B
3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21
()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =
( )
A .5
B .6
C .7
D .8
【答案】B
4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()84
11+x y +的展开
式中22
x y 的系数是 ( )
A .56
B .84
C .112
D .168
【答案】D
5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈
-,且关于x
的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )
A .14
B .13
C .12
D .10
【答案】B
6 .(2013年上海市春季高考数学试卷(含答案))10
(1)x +的二项展开式中的一项是
( )
A .45x
B .290x
C .3120x
D .4252x
【答案】C
7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得
()3n
x n N n
+⎛
+∈ ⎝
的展开式中含有常数项的最小的为
( )
A .4
B .5
C .6
D .7
【答案】B
8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到
lg lg a b -的不同值的个数是
( )
A .9
B .10
C .18
D .20
【答案】C
9 .(2013年高考陕西卷(理))
设函数6
1,00.,
()x x f x x x ⎧⎛⎫
-<⎪ ⎪=⎝≥⎭
⎨⎪
⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为
( )
A .-20
B .20
C .-15
D .15
【答案】A
10.(2013年高考江西卷(理))(x 2
-
32x
)5
展开式中的常数项为 ( )
A .80
B .-80
C .40
D .-40
【答案】C 二、填空题
11.(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为22
36=23⨯,
所以36的所有正约数之和为
2222222
2(133)(22323)(22323)(122)133)91
++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________
【答案】4836
12.(2013年高考四川卷(理))二项式5()x y +
的展开式中,含23x y 的项的系数是_________.(用数字作答)
【答案】10
13.(2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活
动,选出的3人中男女同学都有的概率为________(结果用数值表示).
【答案】
4
5
14.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母排
成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)
【答案】480
15.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科
医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有人的选派方法种数
是___________(用数字作答) 【答案】590
16.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案)
)6
x ⎛
- ⎝ 的二项展开式中的常数
项为______.
【答案】15
17.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式5
3
)1(
x
x -的展开式中常数项为A ,则=A ________. 【答案】10-
18.(2013年高考上海卷(理))设常数a R ∈,若5
2a x x ⎛⎫+ ⎪⎝
⎭的二项展开式中7
x 项的系数为10-,则
______a =
【答案】2a
=-
19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果
分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】96
20.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))若
8
x

+

的展开式中4x的
系数为7,则实数a=______.
【答案】
2
1
21.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).
【答案】480。

相关文档
最新文档