幂的运算 提高练习题

合集下载

《幂的运算》习题精选及答案

《幂的运算》习题精选及答案

3《幂的运算》提咼练习题4、a 与b 互为相反数,且都不等于0, n 为正整数,则下列各、选择题1、计算(-2) 100+ (- 2) 99所得的结果是()2、当m 是正整数时,下列等式成立的有()(1) a 2n = (a m ) 2; (2) a 2m = (a 3) m ;(3) a 2m =( -a m ) 2;(4) a 2n = (-a 2) mA 4个B 3个C 2个D 1个 组中一定互为相反数的是()A a n 与 b nB 、a 2n 与 b 2nC a 2n+1 与 b 2n+1D a 2n -1 与-b 2n -15、下列等式中正确的个数是()① a 5+a 5=a 10;②(-a ) 6? (- a ) 3?a=a 10;③-a 4? (- a )5=a 20; ④25+25 =26.A 0个B 1个C 2个D 3个A 、2x+3y=5xyB ( - 3x 2y ) 3=- 9x 6y 3 ,32.1 2、4 44% y •(-尹y ) = -2x yC 、D 、( x - y )=x 3、解答题3、下列运算正确的是()二、填空题 6、计算:x 2?x 3=/2、3./ 3、2(-a ) + ( - a )=A 、- 299B 、- 2C 、299D 2mnm+2n7、若 2 =5, 2 =6,则 2 = _________& 已知3x (x n+5) =3x n+1+45,求x 的值9、若1 +2+3+ • • +n=a,求代数式(x n y) (x n 1y2) (x n 2y3) ••- (x2y n 1) (xy n10、已知2x+5y=3,求4x?32y的值.11> 已知25n?2?1tf=57?24,求m n.12、已知a x=5, a x+y=25,求『+(的值.的值.13、若x m+2^16, x n=2,求x*的值.14、比较下列一组数的大小.8131, 2741, 96115、如果a2+a=0 (a^0),求a2005+a2004+12 的值.1 2n -120、若x=3a n, y=-2" ,当a=2, n=3时,求a n x- ay 的值.16、已知9n+1—32n=72,求n 的值.21、已知:2x=4y+1, 27y=3x- J 求x - y 的值.18、若(aVb) 3=a9b15,求2m+n的值.22、计算: (a- b) m+3? (b-a)2? (a- b) m? (b- a)19、计算:a n-5(a n+1b3叶2) 2+ (a n-1b m「2) 3( -b3m+2)23、若(a m+1b n+2) (a2n- 1b2n) =a5b3,则求m+n的值.24、用简便方法计算:2(1) (2 l) 3X423( - 0.25 ) 12X412(3) 0.52X 25X 0.1251(4) [ ( ') 2]3X(23) 3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2) 1°°+ (-2) 所得的结果是( )A、-2"B、- 2C、2" D 2考点:有理数的乘方。

七年级数学幂的运算

七年级数学幂的运算

《蓦的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1.(4分)(2011春•江都市期末)计算(・2)lw+(-2广所得的结果就是()A.-2驴B.-2C.2WD.22.(4分)(2014春•肥东县校级期中)当m就是正整数时,下列等式成立的有()⑴打七(『)2;⑵广=(疽)“;⑶广=(-丁))(4)^=(・f)・.A.4个B.3个C.2个D.1个3.(4分)(2012春•化州市校级期末)下列运算正确的就是()A.2x+3y二5xyB.(-3x2y)3=-9x*yC.4、3y2.(.§心2)二D・(x・yf4.(4分)a与b佥为相反数,R都不等于0,n为正整数,则下列各组中一定互为相反数的就是()A.a"与b”B.a2"与广C.a2*”与b",D.a*'与・b& '5.(4分)下列等式中正确的个数就是()①a'+a二a°;®(-a)'-(- a)-a-a°;③-a•(-a)-a20;④2+2’二2七A.0个 R.1个 C.2个 D.3个二、填空题供2小题,每小题5分,满分10分)13.(5分)(2009秋•丹棱县期中)计算:x'・x'=;(・])'+(・/)』■14.(5分)(2014春•临清市期中)若2・=5,2n=6,则2.七.三、解答题(共17小题,满分。

分)1.已知3x(x"+5)=3x n,,+45.求x的值.2.(2011春•深阳市校级月考)若l+2+3+・・f=a,求代数式(x-y)(广了)(X-Y)-(x2y-*)(xy”)的值.3.(2010春•高邮市•月考)己知2x+5y=3,求4、・32‘的值.4.已知25°・2U(T=5'・2',求■、n.5.已知a w=5,a o,=25,求a'+a'的值.6.若xf=16,x"=2,求Jr1 的值.7.已知10"=3,10p=5,10r=7,试把105写成底数就是10的亲的形式・8.比较下列一组数的大小.81,27",9619.如果a!+a=0(a^0),求af f2的值.10.(2014春•无锡期中)已知9-1-32n=72,求n的值.16.(2010春•佛山期末)若(aW3=aV\求L的值.17.计算:寸七耻护十+①心")%.如)19.若x=3a',y=-l a2n"L当a=2,n=3时,求a x-ay的值.20.(2008春•昆山希期末)已知:2'=4,u l27x=3'',求x-y的值.21.vt-算:(a■ b)八(b-a)2- (a-b)"・(b-a)5.22.若(a-b2) (a a,"b2n)=ay.!/l'J求m+n的值.23.用简便方法计算:⑴⑵(・0、25),2X4'2(3)0、5-X25X0.125⑷[(0,5)2]3X(23)3<13.1幕的运算》2010年提高练习题参考答案与试题解析一、选择题(共5小题,每小题4分,满分20分)11.(4分)(2011春•江都市期末)计算(-2)件(-2产所得的结果就是(A.-2敦B.-2C.2列D.2考点:有理数的乘方.分析:本题考查有理数的乘方运算,(・2严表示100个(・2)的乘积,所以(・2)叫(-2)5(-2).解答:解:(-2)'°°+(・2)"=(・2)”[(-2)+l]K故选C.点评:乘方就是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次慕就是负数,负数的偶数次幕就是正数;・1的奇数次蒂就是・1,・1的偶数次幕就是1.12.(4分)(2014春•肥东县校级期中)当m就是正整数时,下列等式成立的有()(l)a%3)2;⑵a2'=(aT;⑶呻二(・的七⑷a^(・了》.A.4个B. 3个C.2个D.1个考点:慕的乘方与积的乘方.分析:根据基的乘方的运算法则计算即可,同时要注意m的奇偶性.解答:解:根据差的乘方的诞算法则可判断(D(2)都正确;因为负数的偶数次方就是正数,所以(3)a、(・aT正确;(4)aF・a』).只有m为偶数时才正确,当m为奇数时不正确;所以⑴⑵⑶正确.故选B.点评:本题主要考查界的乘方的性质,需要注意负数的奇数次蒂就是负数,偶数次界就是正数.15.(4分)(2012春•化州市校级期末)下列运算正确的就是()A.2x+3y二5xyB.(・3x2y)3=・9x e y3C・4x3y2・(・§xy2)=-2x4y4 D.(x-y)=x・y考点:单项式乘单项式;笊的乘方与积的乘方;多项式乘多项式.分析:根据蒂的乘方与积的乘方、合并同类项的运算法则进行逐■计算即可.解答:解:A、2x与3y不就是同类项,不能合并,故本选项错误;B、应为(-3x03二-27xV,故本选项错误;c、4xV-(-*邛2)=-2x M正确;D、应为(x-y)3=x3-3x2y+3xy2 -矿,故本选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项•积的乘方、单项式的乘法,需要熟练掌握性质与法蚓;(2)同类项的概念就是所含字母相I可,相何字母的指数也相同的项就是同类项,不就是同 类项的一定不能合并.1«. (4分)a 与b 互为相反数,且都不等FO, n 为正整数,则卜.列各组中一定互为相反数的就是()A.I 与1/ &广与广 C.a 2"”与b 2"” D. a 2n ''与-驴…> > > > h t中中中中媲 A B c D U n 考点:有理数的乘方;相反数.分析:两数互为相反数,与为0,所以a+b =0.本题只要把选项中的两个数相加,瞧与就是否为0,若为(),则两数必定互为相反数.解答:解:依题意,得a+b=0,即a=- b.n 为奇数,/+b 』0 ;n 为偶数,a+b=2a r ,错误;g+b"=2武错误;af 2e =0,正确;疽「,-"'=2寸",错误.C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次藉相等,奇次器互为相反数.24. (4分)下列等式中正确的个数就是()®a+a 5=a 10:②(-a)6•(- a)3-a^a'°;③-a'•(- a)5^30;④分成迓.A. 0个B. 1个C. 2个D. 3个考点:幕的乘方与积的乘方;整式的加减;同底数蒂的乘法.分析:①利用合并同类项来做;②③都就是利用同底薮案的艰法公式做(注意一个负数的偶次环就是正数,奇次馨就是负数);④利用乘法分配律的逆运算.解答:解:①.・方*土2房故①的答案不正确;② V(-a)e -(-U )3=(-a)9= -a 9,故②的答案不正确;③ V - a*•(- a)3=a 9,故③的答案不正确;④ 牙+2』2 X 25=2g .所以正确的个数就是1,故选B.点评:本题主要利用了合并同类项、同底数幕的乘法、乘法分配律的知识,注意指数的变化.二、填空题(共2小题,每小题5分,满分10分)13. (5分)(2009秋•丹棱县期中)计算:〒项=X ’ ;(-』)%(- a 3)?=0.考点:幕的乘方与积的乘方;同底数帝的乘法.分析:第一小题根据同底数幕的乘法法则计算即可;第二小题利用'希的乘方公式即可解决问题.解答:解:x 2*xW;(-a 2)V(-a a )2=-a fi +a 6=0.点评:此题主要考查了同底数帝的乘法与舔的乘方法则,利用两个法则容易求出结果.14. (5分)(2014春•临清市期中)若2・=5, 2七6,则2"^ 180 .考点:皋的乘方与积的乘方.分析:先逆用同底数同的乘法法则把Z%化成2・・2”・2。

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。

本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。

一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。

通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。

总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有( )(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是( )A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0。

幂的运算练习题及答案

幂的运算练习题及答案

《幂的运算》提高练习题5、下列等式中正确的个数是()551063104520;);③﹣aa;②(﹣)=a?(﹣a)?(﹣①a?a=a+aa=a一、选择题556.④2=2+299100)(﹣2)所得的结果是( 21、计算(﹣) + A、0个 B、1个 C、2个 D、3个9999D、22 A、﹣、 B、﹣2C2二、填空题2、当m是正整数时,下列等式成立的有()232332= ﹣aa))+算、计:x(?x_________= ;(﹣62mm2m2m2m22m a(﹣)aa1()a=(a);(2)=(a);(3);=_________ .m22m(﹣a=a.))(4mnm+2n= _________ .=6,则27、若2=5,2D 2C 个、个、个13B 4A 、个、三、解答题3)、下列运算正确的是(nn+1+45,求x=3x的值。

3x8、已知(x+5)3263A 、=﹣y9x)(﹣B2x+3y=5xy 、3xy﹣x、、 D(C333)y=x﹣y9、若1+2+3+…+n=a,则下列各为正整数,n,互为相反数,且都不等于与、4ab0nn﹣12n﹣232n﹣1n)的值.xyx)求代数式(xy(xy)(y)…(xy()组中一定互为相反数的是()2nnn2n ba、B 与a、A b与1﹣1﹣2n+12n2n2n+1CD b与、a与﹣a、byx,求4的值.?3210、已知2x+5y=3n+12n=72,求n的值.﹣316、已知9 4nm7m?2?10、=5n?2.,求11、已知25nm3915m+n的值.2abb b),求=a18、若(yx+yxx a的值.+a、已知12a,=5a,求=25n﹣5n+13m﹣22n﹣1m﹣233m+2)b)a+ab((﹣、计算:19a)b(m+nm+2nn,的值.xx=2,求x13、若=16nn x﹣ayn=3时,求a、若x=3a的,y=﹣,当a=2,20值.61413198114、比较下列一组数的大小.,27,xy+1yx﹣1,求x=3﹣y的值.21、已知:2=4,27m+3222004m20055)a﹣b?()b﹣a?()a﹣b?()b﹣a(、计算:22的值.+12+aa,求(a≠0)+a=0a、如果15.(3)×25×m+1n+22n﹣12n53,则求m+n的值.b))(a=abb、若(23a、用简便方法计算:243323)2×(])([)4(2 2×4(1)2)(1212)(2×4(﹣)2mm22m2m2mm2;(a4);(3)a)a=(a));(2)aa=(=)(﹣(1答案与评分标准2m2m.)(﹣aa=205一、选择题(共小题,每小题4分,满分分) A、4个 B、3个99100)、计算(﹣12)+(﹣2)所得的结果是( C、2个 D、1个99、﹣2、﹣ A2 B考点:幂的乘方与积的乘方。

幂的运算提升练习题

幂的运算提升练习题

幂的运算提升练习题幂的运算是数学中常见且重要的一种运算方式。

它通常以"底数的指数次幂"的形式出现。

幂运算可以帮助我们解决很多实际问题,例如计算复利、处理大数运算等等。

本文将通过一些练习题来提升我们的幂运算能力。

问题一:计算幂的值1. 计算 2的3次幂。

2. 计算 (-3)的2次幂。

3. 计算 5的0次幂。

4. 计算 0的5次幂。

5. 计算 (-2)的4次幂。

问题二:幂运算的性质1. 如果一个数的指数为0,则结果是多少?2. 如果一个数的指数为负数,则结果是多少?3. 如果一个数的底数为1,则结果是多少?4. 任何数的0次幂为多少?问题三:幂运算的乘法和除法1. 计算 2的3次幂乘以2的2次幂。

2. 计算 4的3次幂除以4的2次幂。

3. 计算 3的4次幂乘以3的负2次幂。

4. 计算 6的负3次幂除以6的负4次幂。

问题四:幂运算的加法和减法1. 计算 2的3次幂加上3的2次幂。

2. 计算 4的3次幂减去2的4次幂。

3. 计算 5的负2次幂加上3的负3次幂。

4. 计算 6的4次幂减去2的负3次幂。

问题五:幂运算的混合运算1. 计算 2的3次幂乘以3的2次幂再除以2的3次幂。

2. 计算 4的2次幂加上3的3次幂再乘以2的负2次幂。

3. 计算 5的2次幂减去3的负2次幂再乘以4的3次幂。

4. 计算 6的负2次幂加上2的负3次幂再除以3的负4次幂。

通过解答以上问题,可以提升我们的幂运算能力,并加深对幂运算性质的理解。

幂运算在数学中扮演着重要的角色,熟练掌握幂运算对于进一步学习和应用数学知识都具有重要意义。

幂的运算不仅仅是纯粹的算术运算,更是逻辑思维和问题解决能力的锻炼。

通过解决这些练习题,我们可以培养抽象思维和逻辑推理能力,提高数学素养。

同时,幂的运算能够帮助我们更好地理解数学概念和解决实际问题,例如计算利息、处理大数运算等等,对于学习和应用数学知识都具有重要意义。

在解答问题的过程中,我们可以运用一些技巧,例如利用指数的乘法和除法规则、运用负指数的性质等等。

(完整版)《幂的运算》练习题及答案

(完整版)《幂的运算》练习题及答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

(完整版)《幂的运算》习题精选及答案

(完整版)《幂的运算》习题精选及答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,96115、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

幂的运算提高练习题培优

幂的运算提高练习题培优

《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2).A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3xx2)=﹣2x4x4D、(x﹣y)3=x3﹣y3C、4x3x2?(﹣124、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6?(﹣a)3?a=a10;③﹣a4?(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题(共2小题,每小题5分,满分10分)6、计算:x2?x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题(共17小题,满分70分)8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x?32y的值.11、已知25m?2?10n=57?24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式_________ .15、比较下列一组数的大小.8131,2741,96116、如果a2+a=0(a≠0),求a2005+a2004+12的值.17、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣1x2x﹣1,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3?(b﹣a)2?(a﹣b)m?(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(21)2×42 (2)(﹣0.25)12×4124)2]3×(23)3(3)0.52×25×0.125(4)[(12答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

幂的运算练习题及答案

幂的运算练习题及答案

《幂的运算》提咼练习题一、选择题1计算(-2) 100+ (- 2) 99所得的结果是( )A、- 299B、- 2C、299D、22、当m是正整数时,下列等式成立的有( )(1) a2m= (a m) 2; (2) a2m= (a2) m; (3) a2m= (-a m) 2;2m / 2、m(4) a = (- a ).A、4个B、3个C、2个D、1个3、下列运算正确的是( )A、2x+3y=5xyB、(- 3x2y) 3= - 9x6y3.321 2、n 4 44x y • ( -^xy ) = -2x yC、/D、(x-、3 3 3y) =x - y 各组中一定互为相反数的是( )n n 2n 2nA、a 与bB、a 与b2n+1 2n+1 2n -1 2n -1C、a 与bD、a 与-b5、下列等式中正确的个数是( )①a5+a5=a10;②(-a) 6? (- a) 3?a=a10;③-a4?(-④ 25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2?x3= _______ ; (—a2)3+ (- a3) 2= __7、若2m=5 , 2n=6,贝U 2m+2n= _______ .三、解答题、5 20a) =a ;4、a与b互为相反数,且都不等于 0, n为正整数,则下列9、若 1+2+3+ …+n=a ,求代数式(x n y) (x n1y2) (x n 2y3)…(x2y n1) (xy n)的值. 12、已知 a x=5 , a x+y=25,求 a x+a y的值.m+2n n m+n13、若 x =16 , x =2,求 x 的值.10、已知 2x+5y=3,求 4x?32y的值.14、比较下列一组数的大小. 8131, 2741, 961 11、已知25m210n=57?24,求m、n.n - 5 / n+1 3m - 2、 2 / n -1. m - 2、 319、计算:a (a b ,15、如果 a 2+a=0 (a^ 0),求 a 2005+a 2004+12 的值.1 2n -1 n 尹 20、若 x=3a , y=- ,当 a=2, n=3 时,求 的值.16、已知 9n+1 - 32n =72,求 n的值. 21、已知:2=^1,27=3 1,求 x-y 的值. 18、若(a n b m b) 3=a 9b 15,求 2m+n 的值./ n+i.3m - 2、 2 / n T.m - 2、 3 , . 3m+2 (ab ) + (a b ) (-b n a x- ay22、计算: (a-b) m+3? (b - a) 2? (a- b) m? (b - a)23、若(a m+1b n+2) (a2n- 1b2n) =a5b3,则求 m+n 的值.12 12(2) (- 0.25) X 424、用简便方法计算:1(1) (2 b 2X42(3) 0.52X 25 X 0.125。

幂的运算 提高培优练习题

幂的运算 提高培优练习题

幂的运算提高培优练习题幂的运算提高培优练题例题:例1.已知 $3x(x+5)=3x^{n+1}+45$,求 $x$ 的值。

例2.若 $1+2+3+。

+n=a$,求代数式值。

例3.已知 $2x+5y-3=0$,求 $4x\cdot 32y$ 的值。

例4.已知 $25m\cdot 2\cdot 10n=57\cdot 24$,求 $m$、$n$。

例5.已知 $ax=5$,$ax+y=25$,求 $ax+ay$ 的值。

例6.若 $xm+2n=16$,$xn=2$,求 $xm+n$ 的值。

例7.已知 $10a=3$,$10b=5$,$10c=7$,试把 $105$ 写成底数是 $10$ 的幂的形式。

例8.比较下列一组数的大小:$8131$,$2741$,$961$。

例9.如果 $a^2+a=0$($a\neq 0$),求$a^{2009}+a^{2008}+12$ 的值。

例10.已知 $9n+1-32n=72$,求 $n$ 的值。

练:1.计算 $(-2)^{100}+(-2)^{99}$ 所得的结果是()A。

$-2$ B。

$2$ C。

$-299$ D。

$299$2.当 $n$ 是正整数时,下列等式成立的有()(1)$a^{2m}=(a^m)^2$(2)$a^{2m}=(a^2)^m$(3)$a^{2m}=(-a^m)^2$ A。

4个 B。

3个 C。

2个 D。

1个3.计算:$(-a^2)^3+(-a^3)^2$。

4.若 $2^m=5$,$2^n=6$,则 $2^{m+n}=$。

5.下列运算正确的是()A。

$2x+3y=5xy$ B。

$(-3x^2y)^3=-9x^6y^3$ C。

$4x^3y^2\cdot (-xy^2)=-2x^4y^4$ D。

$(x-y)^3=x^3-y^3$6.若 $(anbmb)^3=a^9b^{15}$,求 $2m+n$ 的值。

7.计算:$an-5(an+1b^{3m-2})^2+(an-1b^{m-2})^3(-b^{3m+2})a^{2m}=(-a^2)^m$。

幂的运算练习题及答案

幂的运算练习题及答案

幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。

在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。

1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。

幂的运算(提高练习题)

幂的运算(提高练习题)

幂的运算(提高练习题)幂的运算(提高练习题)1. 概述幂是数学中常用的运算符号,用于表示一个数被自身乘若干次。

幂运算在数学、物理和计算机科学等领域中都有广泛应用。

本文将介绍幂运算的几个重要性质和应用,并提供一些提高练习题供读者练习。

2. 幂运算的定义和性质2.1 幂运算的定义对于实数a和正整数n,幂运算表示为a的n次幂,记作a^n。

其中a称为底数,n称为指数。

2.2 幂运算的性质2.2.1 幂的乘法法则对于任意的实数a和正整数n、m,有以下性质:a^n * a^m = a^(n+m)2.2.2 幂的除法法则对于任意的实数a和正整数n、m(其中m≠0),有以下性质:a^n / a^m = a^(n-m)2.2.3 幂的乘方法则对于任意的实数a和正整数n、m,有以下性质:(a^n)^m = a^(n*m)2.2.4 幂的相反数的乘方对于任意的非零实数a和正偶数n,有以下性质:(-a)^n = a^n(当n为正偶数时)3. 幂运算的应用幂运算在数学和实际问题中都有广泛应用,下面介绍几个常见的应用场景。

3.1 几何中的幂运算在几何学中,幂运算用于计算面积、体积等几何量。

例如,计算正方形的面积可以使用幂运算:边长为a的正方形的面积是a^2。

3.2 物理中的幂运算在物理学中,幂运算用于表示物理量的倍增或倍减关系。

例如,速度的平方可以表示为v^2,表示速度v被自身乘以2次。

3.3 计算机科学中的幂运算在计算机科学中,幂运算用于设计和实现数据结构、算法等。

例如,二叉树的高度可以通过幂运算来计算:一个二叉树的高度为h,那么它最多包含2^h个节点。

4. 提高练习题下面是一些幂运算的提高练习题,供读者巩固和应用所学知识。

4.1 计算题(1) 计算2^3 * 2^-2的值。

(2) 计算(-5)^4 * (-5)^3的值。

(3) 若a^2 = 16,则a的值是多少?4.2 应用题(1) 一辆车以每小时60公里的速度行驶,行驶2小时后,它的行驶里程是多少?(2) 在一个正方形花坛中,每条边上种植了相同的玫瑰花,已知花坛的面积是12平方米,求每条边的长度。

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。

1. 计算 2^3。

答案:2^3 = 8。

2. 计算 (-3)^4。

答案:(-3)^4 = 81。

3. 计算 (4^2)^3。

答案:(4^2)^3 = 4^6 = 4096。

4. 计算 (2^3)(2^4)。

答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。

5. 计算 (2^3)^4。

答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。

6. 计算 (2^3)/2。

答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。

7. 计算 (2^4)/(2^2)。

答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。

8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。

9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。

10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。

11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。

12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。

13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。

14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。

...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。

每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。

祝您练习顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算实验班检测题姓名:_________________ 得分:___________________________(1-6每题2分,7-23题每题5分,24题8分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2=_________.7、若2m=5,2n=6,则2m+2n=_________.8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式_________.15、比较下列一组数的大小.8131,2741,96116、如果a2+a=0(a≠0),求a2005+a2004+12的值.17、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3错题提炼:1、小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分,已知小颖在上坡路上的平均速度是4.8千米/小时,而她在下坡路上平均速度是12千米/时.小颖上坡、下坡各用了多长时间?若设小颖上坡用了x小时,下坡用了y小时,则可列出方程组为_________.2、在一次剪纸活动中,小聪依次剪出6张正方形纸片拼成如图所示的图形,若小聪所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③面积相等,那么正方形⑤的面积为_________.3、如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s,按此规律推断,以s,n为未知数的二元一次方程为s=_________.4、某人步行了5小时,先沿着平路走,然后上山,最后又沿原路返回.假如他在平路上每小时走4里,上山每小时走3里,下山的速度是6里/小时,则他从出发到返回原地的平均速度是_________里/小时.5、甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A 工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?6、(2011•娄底)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.7、(2011•长春)在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.8、长江航道两旁城市相距240km,一艘轮船顺流而下需4h,逆流而上返回需6h,设船在静水中速度为xkm/h,水速为ykm/h,依题意列方程组_________.9、(2011•台湾)在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系()A、B、C、D、10、从甲地到乙地的路有一段上坡路与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分,从乙地到甲地需42分.若设从甲地到乙地的坡路长为xkm,平路长为ykm,那么可列方程组为_________.11、某班学生参加运土劳动,一部分同学抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生为x人,挑土的学生为y人,则可列方程组_________.12、(2007•雅安)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是_________.13、如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置()A、3个球B、4个球C、5个球D、6个球答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

分析:本题考查有理数的乘方运算,(﹣2)100表示100个(﹣2)的乘积,所以(﹣2)100=(﹣2)99×(﹣2).解答:解:(﹣2)100+(﹣2)99=(﹣2)99[(﹣2)+1]=299.故选C.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个考点:幂的乘方与积的乘方。

分析:根据幂的乘方的运算法则计算即可,同时要注意m的奇偶性.解答:解:根据幂的乘方的运算法则可判断(1)(2)都正确;因为负数的偶数次方是正数,所以(3)a2m=(﹣a m)2正确;(4)a2m=(﹣a2)m只有m为偶数时才正确,当m为奇数时不正确;所以(1)(2)(3)正确.故选B.点评:本题主要考查幂的乘方的性质,需要注意负数的奇数次幂是负数,偶数次幂是正数.3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、D、(x﹣y)3=x3﹣y3考点:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式。

分析:根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可.解答:解:A、2x与3y不是同类项,不能合并,故本选项错误;B、应为(﹣3x2y)3=﹣27x6y3,故本选项错误;C、,正确;D、应为(x﹣y)3=x3﹣3x2y+3xy2﹣y3,故本选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法则;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣1考点:有理数的乘方;相反数。

分析:两数互为相反数,和为0,所以a+b=0.本题只要把选项中的两个数相加,看和是否为0,若为0,则两数必定互为相反数.解答:解:依题意,得a+b=0,即a=﹣b.A中,n为奇数,a n+b n=0;n为偶数,a n+b n=2a n,错误;B中,a2n+b2n=2a2n,错误;C中,a2n+1+b2n+1=0,正确;D中,a2n﹣1﹣b2n﹣1=2a2n﹣1,错误.故选C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次幂相等,奇次幂互为相反数.5、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个考点:幂的乘方与积的乘方;整式的加减;同底数幂的乘法。

分析:①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算.解答:解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3=(﹣a)9=﹣a9,故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选B.点评:本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识,注意指数的变化.二、填空题(共2小题,每小题5分,满分10分)6、计算:x2•x3=x5;(﹣a2)3+(﹣a3)2=0.考点:幂的乘方与积的乘方;同底数幂的乘法。

分析:第一小题根据同底数幂的乘法法则计算即可;第二小题利用幂的乘方公式即可解决问题.解答:解:x2•x3=x5;(﹣a2)3+(﹣a3)2=﹣a6+a6=0.点评:此题主要考查了同底数幂的乘法和幂的乘方法则,利用两个法则容易求出结果.7、若2m=5,2n=6,则2m+2n=180.考点:幂的乘方与积的乘方。

相关文档
最新文档