二、特殊平行四边形 142.四边形的两条对角线互相垂直,这个四边形
北师大版数学九年级上册特殊的平行四边形(含中考真题解析)
特殊的平行四边形知识点名师点晴矩形1.矩形的性质会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.2.矩形的判定会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形菱形1.菱形性质能应用这些性质计算线段的长度2.菱形的判别能利用定理解决一些简单的问题正方形1.正方形的性质了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2.正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明☞2年中考1.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定.2.(连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.3.(徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【答案】A.【解析】试题分析:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE 是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.考点:菱形的性质.4.(柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH 其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(南充)如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:2D.1:3【答案】D.【解析】试题分析:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为3cm,∴BE=22AB AE-=1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB=22AB OA-=3(cm),∴BD=2OB=23cm,∴AC:BD=1:3.故选D.考点:菱形的性质.7.(安徽省)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.6【答案】C.考点:1.菱形的性质;2.矩形的性质.8.(十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=53,且∠ECF=45°,则CF的长为()A.102B.53C5103D1053【答案】A.考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.9.(鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.201421)(B.201521)(C.201533)(D.201433)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.10.(广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.【答案】93.【解析】试题分析:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=12BD=FG,EH∥BD∥FG,EF=12AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt△AOB中,由勾股定理得:OB=22AB OA=33,∴BD=63,∵EH=12BD,EF=12AC,∴EH=33,EF=3,∴矩形EFGH的面积=EF•FG=93cm2.故答案为:93.考点:1.中点四边形;2.菱形的性质.11.(凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233-,23-).的交点,∴点P的坐标为方程组3(13)1y xy x⎧=⎪⎨⎪=-⎩的解,解方程组得:3323xy⎧=⎪⎨=⎪⎩,所以点P的坐标为(33,23-),故答案为:(233-,23).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(03),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.【答案】(0.5,32.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】试题分析:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.考点:1.含30度角的直角三角形;2.正方形的性质.14.(南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】9 2.【解析】试题分析:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴'''BP BEAA AE=,即164BP=,BP=32,CP=BC﹣BP=332-=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S、3S 、…n S ,则n S 的值为(用含n 的代数式表示,n 为正整数).【答案】232n -.故答案为:232n .考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.17.(齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】20142(3).考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【答案】(1)证明见试题解析;(21010.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.19.(恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到△ABG≌△CBE,即可得到结论;(2)由△ABG≌△CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,∵AB=CB,∠ABG=∠CBE,BG=BE,∴△ABG ≌△CBE(SAS),∴AG=CE;(2)如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.考点:1.全等三角形的判定与性质;2.正方形的性质.20.(武汉)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求EFAK的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.【答案】(1)①32;②3(8)2S x x=-,S的最大值是24;(2)245或24049.试题解析:(1)①∵EF∥BC,∴AK EFAD BC=,∴EF BCAK AD==128=32,即EFAK的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题.21.(荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE.【解析】试题分析:(1)先证出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;(2)由△ABP≌△CBP,得到∠BAP=∠BCP,进而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.1.(宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.(14)n﹣1 D.14n【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选B.考点:1.正方形的性质2.全等三角形的判定与性质.2.(山东省淄博市)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B.2C.3D. 2【答案】C.考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质.3.(山东省聊城市)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.3B. 3 3C.3D93【答案】B.【解析】试题分析:∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=23cos30BO=︒,∴BF=BE=23,∵EF=AE+FC,AE=CF,EO=FO∴CF=AE=3,∴BC=BF+CF=33,故选B.考点:1.矩形的性质;2.菱形的性质.4.(广西来宾市)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形【答案】B.考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质.5.(贵州铜仁市)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=26,则MF的长是()A15B15C.1 D.15【答案】D.考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.【解析】试题分析:∵AE=13AB,∴BE=2AE.由翻折的性质得,PE=BE,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP)=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE.故①正确.∵BE=PE,∴EF=2PE.∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE 与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【例3】如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E ﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙【答案】B.考点:正方形的性质.☞1年模拟1.(山东省潍坊市昌乐县中考一模)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【答案】D.【解析】试题分析:根据平行四边形的菱形的性质得到A、B、C选项均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形.故选D.考点:1.菱形的判定与性质;2.平行四边形的判定与性质.2.(广东省广州市中考模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7 B.0.9 C.2−2 D2【答案】C.【解析】试题分析:如图,∵∠B=45°,AE⊥BC,∴∠BAE=∠B=45°,∴AE=BE,由勾股定理得:BE2+AE2=22,解得:2,由题意得:△ABE≌△AB1E,∴∠BAB1=2∠BAE=90°,2,∴2,2-2,∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F,∵CF∥AB,∴△CFB1∽△BAB1,∴11B CCFAB BB=,解得:2,∴△AEB1、△CFB1的面积分别为:12212=,21(22)3222⨯=-,∴△AB1E与四边形AECD重叠部分的面积=1(322)222--=.故选C.考点:1.菱形的性质;2.翻折变换(折叠问题).4.(山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2)B.(2,-2)C.(2,-2)D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B.考点:正方形的判定.7.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是.34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算.8.(河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.【答案】3【解析】试题分析:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE ⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴3,BH=23,设OG=OE=x,则3-3,3-x,在RT△OEH中,EH2+OE2=OH2,即(3-3)2+x2=3-x)2,解得3,∴⊙O的半径为3.故答案为:3考点:1.切线的性质;2.矩形的性质.9.(山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.10.(山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是.5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型.12.(北京市平谷区中考二模)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【答案】(1)见解析(22532【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12BC.同理,AF=CF=12AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形.13.(山东省日照市中考模拟)如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上的点,且S△AOE=163,求经过D、E两点的直线的解析式,并判断△AOE 与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE∽△DAO.(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】试题分析:(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值;(2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA>OB ,∴OA=4,OB=3.在Rt△AOB中,由勾股定理有AB=225OA OB+=,∴sin∠ABC=54OAAB=;(3)根据计算的数据,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(-3,0);②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F (3,8);③AC是对角线时,做AC垂直平分线L,AC解析式为y=-43x+4,直线L过(32,2),且k值为34(平面内互相垂直的两条直线k值乘积为-1),L解析式为y=34x+78,联立直线L 与直线AB求交点,∴F(4751-,722-);④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=245,勾股定理得出,AN=75,做A关于N的对称点即为F,AF=145,过F做y轴垂线,垂足为G,FG=145×35=4225,∴F(-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型.14.(河北省中考模拟二)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B 作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC=3,∴扇形ACC′230(3)3604ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B (AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD′=3-1,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=3122-,3322C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。
《特殊平行四边形》全章复习与巩固(基础)知识讲解
《特殊平行四边形》全章复习与巩固(基础)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题. 【知识网络】【要点梳理】 要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】 类型一、矩形1、(常州期末)如图,在△ABC 中,AB=AC ,D 为BC 的中点,AE ∥BC ,DE ∥AB . 试说明: (1)AE=DC ;(2)四边形ADCE 为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论. 【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.2、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,22AC+=.6810∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即222(8)4x x -=+,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,222DC FC DF +=,解得x =85,BF =DE =3.4,则DEF 1=DE AB 2S ⨯△=12×3.4×3=5.1.类型二、菱形3、(遵义)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F . (1)求证:△AEF≌△DEB; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.【答案与解析】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线, ∴AE=DE,BD=CD , 在△AFE 和△DBE 中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.4、如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=12(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1 B.2 C.3 D.4【答案】C;【解析】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=12BC,GN=12AD,∴EG=12(BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.【总结升华】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.类型三、正方形5、如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【思路点拨】(1)问通过证明三角形全等来证明角相等;(2)先证明四边形MPND是矩形,再证明一组邻边相等,从而证明四边形MPND是正方形.【答案与解析】证明:(1) ∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.【总结升华】熟记正方形的判定定理,有一组邻边相等的矩形是正方形.6、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式1】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.【变式2】(黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【答案】65°.提示:∠ABE=90°-20°=70°,由正方形的性质知,∠BAC=45°,∴∠AEB=180°-45°-70°=65°,由正方形的对称性可知,∠AED=∠AEB=65°.【巩固练习】一.选择题1.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.22.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°3.(武进区一模)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.32B232.75D24. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角5.正方形具备而菱形不具备的性质是()A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.207.(桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.48. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a二.填空题9.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是_______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于_______.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16.(昆明校级期中)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.三.解答题17.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.18.(无棣县期中)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE∥BC,CE∥AD,AE、CE交于点E.(1)证明:四边形ADCE是矩形.(2)若DE交AC于点O,证明:OD∥AB且OD=AB.19.(崂山区一模)已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案与解析】一.选择题1.【答案】C;【解析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.2.【答案】B;【解析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.3.【答案】D;4.【答案】D;5.【答案】A;6.【答案】B;【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.7.【答案】B;【解析】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.8.【答案】C;【解析】OE=a,则AD=2a,菱形周长为4×2a=8a.二.填空题9.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF∥CG,EG∥CA,求出∠BEG =∠B,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG =AC +BC ,代入求出即可. 10.【答案】24;11.【答案】).2,22(+;【解析】过D 作DH ⊥OC 于H ,则CH =DH =2,所以D 的坐标为).2,22(+ 12.【答案】4;【解析】根据菱形的性质得出OA =OC ,根据三角形的中位线性质得出OE =12AB ,代入求出即可.13.【答案】16;【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积. 14.【答案】13; 【解析】设BD =x ,1412,62x x ⨯==,所以边长=222313+=. 15.【答案】832cm ;43cm ;【解析】由题意知△ABC 为等边三角形,AE =23,面积为832cm ,BD =2AE = 43cm .16.【答案】6.【解析】∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形, ∵两张纸条的宽度都是3,∴S 四边形ABCD =AB×3=BC×3, ∴AB=BC,∴平行四边形ABCD 是菱形,即四边形ABCD 是菱形. 如图,过A 作AE⊥BC,垂足为E , ∵∠ABC=60°,∴∠BAE=90°﹣60°=30°, ∴AB=2BE,在△ABE 中,AB 2=BE 2+AE 2, 即AB 2=AB 2+32, 解得AB=2, ∴S 四边形ABCD =BC•AE=2×3=6.故答案是:6.三.解答题17.【解析】证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C, ∵在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CBE(SAS ), ∴BF=BE . 18.【解析】 证明:(1)∵AB=AC,AD 是△ABC 的角平分线,∴AD⊥BC,且BD=CD , ∵AE∥BC,CE∥AD,∴四边形ADCE 是平行四边形, ∴四边形ADCE 是矩形;(2)∵四边形ADCE 是矩形, ∴OA=OC,∴OD 是△ABC 的中位线,∴OD∥AB 且OD=12AB. 19.【解析】(1)证明:∵四边形ABCD 是正方形,∴AB=CB ,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°, 在△ABE 和△CBE 中,,∴△ABE ≌△CBE (SAS ), ∴AE=CE .(2)解:点E 在BD 的中点时,四边形AFBE 是正方形;理由如下:由折叠的性质得:∠F=∠AEB ,AF=AE ,BF=BE , ∵∠BAD=90°,E 是BD 的中点, ∴AE=BD=BE=DE , ∵AE=CE ,∴AE=BE=CE=DE=AF=BF ,∴四边形AFBE 是菱形,E 是正方形ABCD 对角线的交点, ∴AE ⊥BD ,∴∠AEB=90°,∴四边形AFBE是正方形.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE = AF,∴Rt RtABE ADF△≌△.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA =∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF. 即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.A DB EFOC。
平行四边形及特殊平行四边形知识点总结
平行四边形及特殊平行四边形知识点总结平行四边形、矩形、菱形、正方形的共同性质是:对边平行且相等,对角线相等。
其中,矩形还有一个特殊性质是有一个角为直角,菱形还有一个特殊性质是四条边相等,正方形则同时满足矩形和菱形的特殊性质。
2.判定方法小结:1)判定平行四边形的方法:①两组对边分别平行;②两组对边分别相等;③两组对角分别相等;④对角线互相平分;⑤一组对边平行且相等。
2)判定矩形的方法:①有一个角是直角;②对角线相等;③有三个角是直角;④对角线相等且互相平分。
3)判定菱形的方法:①有一组邻边相等;②对角线互相垂直;③四边都相等;④对角线互相垂直平分。
4)判定正方形的方法:①有一组邻边相等且有一个角是直角;②对角线互相垂直且相等;③对角线互相垂直平分且相等。
3.基础达标训练:1)两条对角线的四边形是平行四边形;2)两条对角线的四边形是矩形;3)两条对角线的四边形是菱形;4)两条对角线的四边形是正方形;5)两条对角线的平行四边形是矩形;6)两条对角线的平行四边形是菱形;7)两条对角线的平行四边形是正方形;8)两条对角线的矩形是正方形;9)两条对角线的菱形是正方形。
1.以不在同一直线上的三个点为顶点作平行四边形,最多能作1个。
2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是8cm和12cm。
3.在平行四边形ABCD中,直线通过两对角线交点O,分别与BC和AD相交于点E和F。
已知BC=7,CD=5,OE=2,则四边形ABEF的周长为多少?答案:C。
16解析:根据平行四边形的性质,AE=CD=5,BF=BC=7.由于OE=2,因此EF=BC-OE=5.所以ABEF是一个边长分别为5和7的矩形,周长为2(5+7)=16.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为多少?答案:B。
6解析:由于CE∥BD,DE∥AC,因此三角形AOD和BOC相似,三角形COE和DOE相似。
特殊平行四边形
特殊平行四边形知识点01 菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2. 性质:菱形除具有平行四边形的一切性质外,还有一些特殊性质:(1) 菱形的四条边都相等;(2) 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.注意:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分;(2) 菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心;(3) 菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.3. 判定:定义判定:邻边相等的平行四边形是菱形菱形的判定定理1:四条边都相等的四边形是菱形菱形的判定定理2:对角线互相垂直的平行四边形是菱形【例1】菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直【例2】如图,菱形ABCD中,E,F分别是AD,BD的中点,若4EF ,则菱形ABCD的周长为( )知识精讲A .8B .16C .24D .32【例3】如图,在ABC 中,90,6,8B AB BC ∠=︒==,将ABC 沿DE 折叠,使点C 落在边AB 上的点C '处,并且//C D BC ',则CD 的长是( )A .409B .509C .154D .254【例4】如图,在ABC 中,作以A ∠为内角,四个顶点都在ABC 边上的菱形时,如下的作图步骤是打乱的.①分别以点A ,G 为圆心,大于12AG 的长为半径在AG 的两侧作弧,两弧相交于点M ,N ;②作直线MN 分别交AB ,AC 于点P ,Q ,连接PG ,GQ ;③分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧相交于ABC 内一点F ,连接AF 并延长交边BC 于点G ;④以点A 为圆心,小于AC 长为半径作弧,分别交AB ,AC 于点D ,E .则正确的作图步骤是( )A .②④①③B .④③②①C .②④③①D .④③①②【例5】一个菱形的边长为5,两条对角线的长度之和为14,则此菱形的面积为___________.【例6】如图,在四边形ABCD 中,AB =AD ,CB =CD ,点F 是AC 上一点,连接BF 、DF .(1)证明:△ABF ≌△ADF ;(2)若AB //CD ,试证明四边形ABCD 是菱形.知识点02矩形1. 定义:有一个内角是直角的平行四边形叫做矩形.注意:矩形的定义既是矩形的基本性质,也是判定矩形的基本方法.2. 性质:矩形除具有平行四边形的一切性质外,还有一些特殊性质.(1) 矩形的四个角都是直角;(2) 矩形的两条对角线相等.注意:(1) 矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2) 矩形也是轴对称图形,有两条对称轴(分别是通过对边中点的直线).对称轴的交点就是对角线的交点 (即对称中心).3. 判定:定义:有一个内角是直角的平行四边形是矩形矩形的判定定理1:有三个角是直角的四边形是矩形.矩形的判定定理2:对角线相等的平行四边形是矩形.【例1】直角三角形的斜边长为10,则斜边上的中线长为( ).A .2B .3C .4D .5【例2】如图,矩形ABCD 绕点A 逆时针旋转()090αα︒<<︒得到矩形AB C D ''',此时点B '恰好在DC 边上,若15B BC '∠=︒,则α的大小为( )A .15︒B .25︒C .30D .45︒【例3】如图,在矩形ABCD 中,AD =3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为_____.【例4】 如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,且2AB =,3BC =,那么图中阴影部分的面积为__________.【例5】如图,在ABC ∆中,AB AC =,BAC ∠的平分线AD 交BC 于点D ,E 为AB 的中点,若12BC =,8AD =,则DE 的长为_____.【例6】已知:在矩形ABCD 中,点E 在BC 边上,连接DE ,且DE BC =,过点A 作AF DE ⊥于点F .求证:AB AF =;【例7】如图,矩形纸片ABCD 中,AB =CD =4,AD =BC =8,∠BAD =∠B =∠C =∠D =90°,将纸片沿EF 折叠,使点C 与点A 重合,使点G 与点D 重合.(1)求证:AE =AF ;(2)求GF 的长.【例8】如图,在菱形ABCD中,AC,BD相交于点O,过B,C两点分别作AC,BD的平行线,相交于点E.(1)求证:四边形BOCE是矩形;(2)连接EO交BC于点F,连接AF,若∠ABC=60°,AB=2,求AF的长.知识点03 正方形1. 定义:有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形.2. 正方形与矩形、菱形的关系矩形邻边相等正方形菱形一个角是直角正方形3. 性质定理正方形即是矩形又是菱形,因而它具备两者所有的性质.性质定理1:正方形的四个角都是直角;正方形的四条边都相等.性质定理2:正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角.4. 判定定理:定义:有一组邻边相等并且有一个内角是直角的平行四边形是正方形判定定理1:有一组邻边相等的矩形是正方形.判定定理2:有一个内角是直角的菱形是正方形.【例1】设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则它们之间的关系用图形来表示正确的是()A.B.C.D.【例2】下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线互相垂直的四边形是正方形【例3】有一正方形卡纸,如图①,沿虚线向上翻折,得到图②,再沿虚线向右翻折得到图③,沿虚线将一角剪掉后展开,得到的图形是( )A.B.C.D.【例4】如图,四边形ABCD为矩形,E、F、G、H为AB、BC、CD、DA的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形【例5】如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点C 折叠纸片,使点C 落在MN 上的点F 处,折痕为BE .若AB 的长为1,则FM 的长为( )A .1B .2C .2D .12【例6】已知点P 是正方形ABCD 内部一点,且PAB △是正三角形,则∠CPD =______度.【例7】边长分别为a 和2a 的两个正方形按如图的样式摆放,则图中阴影部分的面积为_____.【例8】如图,直线l 过正方形ABCD 的顶点A ,点B 、D 到直线l 的距离分别为1、3,则正方形的边长为_______.【例9】如图,在等边ABE △下方作一个正方形BCDE ,连接AC ,AD .(1)求证:ABC ≌AED ;(2)求CAD 的度数.【例10】.如图,已知平行四边形ABCD ,若M ,N 是BD 上两点,且BM =DN ,AC =2OM ,(1)求证:四边形 AMCN 是矩形;(2)△ABC 满足什么条件,四边形AMCN 是正方形,请说明理由.1.如图,在平行四边形ABCD 中,AE 、BF 分别是∠DAB 、∠CBA 的角平分线,AE 、BF 交于O 点,与DC 分别交于E 、F 两点。
特殊四边形的性质和判定定理
特殊四边形的性质和判定定理名称 性质判定平行四边形1、对边平行且相等。
2、对角相等。
3、对角线互相平分。
4、是中心对称图形。
5、S=a b (a 、b 分别表示底和这一底上的高)推论:三角形的中位线平行于三角形的第三边.并且等于第三边的一半。
1、两组对边分别平行的四边形叫做平行四边形。
(定义)2、两组对边分别相等的四边形是平行四边形。
3、对角线互相平分的四边形是平行四边形。
4、一组对边平行且相等的四边形叫做平行四边形。
矩形矩形除了具有平行四边形的所有性质外.还有以下性质:1、四个角都是直角。
2、对角线相等。
3、既是中心对称图形.又是轴对称图形。
4、S= a b (a 、b 分别表示长和宽)推论:直角三角形斜边上的中线等于斜边的一半。
1、有一个角是直角的平行四边形叫做矩形。
2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形菱形除了具有平行四边形的所有质外.还有以下性质:1、四条边都相等。
2、两条对角线互相垂直。
并且每一条对角线平分一组对角。
3、既是中心对称图形.又是轴对称图形。
4、S= a b (a 、b 分别表示两条对角线长。
)1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、边相等到的四边形是菱形。
正方形除了具有平行四边形、矩形、菱形的所有性质外.还有以下性质: 1、对角线和边的夹角是45º。
2、S= a ²(a 表示两边长。
) 1、一组邻边相等的矩形是正方形。
2、有一个是直角的菱形是正方形。
3、对角线相垂直的矩形是正方形。
4、对角线相等的菱形是正方形。
等腰梯形1、两腰相等。
2、同一底上的两个角相等。
3、对角线相等。
4、轴对称图形1、对角线相等的梯形是等腰梯形。
2、同一底上两个角相等的梯形是等腰梯形。
梯形中常见辅助线AB CDABCDABC DABCD A BCD例1 如图.E 、F 分别为正方形ABCD 的边BC 、CD 上的一点.AM ⊥EF.垂足为M.若AM=AB.求证:EF=BE+CF例2 已知:如图.正方形ABCD 中.延长AD 到E.使DE=AD.再延长DE 到F.使DF=BD.连接BF 交CD 于Q.交CE 于P 。
初中数学:《特殊平行四边形》大单元教学设计
A
D
符号语言
B
C
四边形ABCD是平行四边形,且AB AD ABCD是菱形.
猜想:对角线互相垂直的平行四边形是菱形.
已知:在 ABCD 中,AC ⊥ BD,
求证:四边形ABCD是菱形。
证明:∵四边形ABCD是平行四边形,
A
∴OA=OC. ∵ AC ⊥ BD, ∴BD垂直平分AC
学习活动设计
【活动步骤】 1.提出问题:菱形的性质有对边平行且相等,四条边都相等.那么什么样 的平行四边形是菱形 2.提出问题:菱形的性质有对角线互相平分且垂直,那么什么样的平行 四边形是菱形? 3.指导学生探究,交流。 4.进一步提出问题:四边形能转化成菱形吗? 5.指导学生探究,交流.
定义法:
学习活动设计
第二课时:矩形的判定
活动一:探究平行四边形到矩形的转化 【活动步骤】 1. 提出问题:矩形的性质有:四个角都是直角,对角线相等且
互相平分,那么什么样的平行四边形是矩形? 2.指导学生探究,交流.
矩形的判定方法1:
有一个角是直角的平行四边形是矩形.
几何语言:
A
D
∵四边形ABCD为平行四边形
8.类比:如何把菱形转化为正方形?如何判断一个菱形是正方形? 如何 把矩形转化为正方形?如何判断一个矩形是正方形?
专题划分
专题一
01
菱形的性质及判定
(3课时)
02
专题三
03
正方形的性质及判定 (2课时)
专题二
矩形的性质及判定 (3课时)
1
专题一
菱形的性质及判定
(3课时)
专题学习目标
1.理解和掌握菱形作为特殊的平行四边形,不仅具有平行四边形的所有性质,还具有 其特有性质. 2.系统掌握菱形的性质和判定,并能运用有关知识进行推理证明和计算; 3. 通过探索、归纳菱形的特征,识别、了解它与平行四边形之间的包含关系. 4.让学生在探索知识之间的相互联系及应用的过程中,体验并获取推理的方法和技巧. 5.通过探索、观察、猜想、分析、归纳、推理,培养并提高学生分析问题,解决问题的 能力.态
初二数学特殊的平行四边形试题答案及解析
初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20【答案】C【解析】∵四边形ABCD是菱形,∴AB=AD,又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【解析】设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2.4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.20【答案】B【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.5.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.6.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.7.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个【答案】C【解析】先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC="90°" D.AG⊥BE【答案】C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.9.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【答案】C【解析】A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.10.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【答案】B【解析】由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.11.如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是菱形【答案】C【解析】由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.12.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_______度.【答案】65【解析】因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.13.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.14.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为_______.【答案】【解析】后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的,所以平行四边形ABCn On的面积为.15.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.16.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【答案】AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.17.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.计算:∠PBA=∠PCQ=30°.【答案】解:∵四边形ABCD是矩形.∴∠ABC=∠BCD=90°.∵△PBC和△QCD是等边三角形.∴∠PBC=∠PCB=∠QCD=60°.∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°.∴∠PBA=∠PCQ=30°.【解析】因为矩形的内角是直角,等边三角形的内角是60∘,所以根据这两个特殊角可以计算角的度数.18.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.19.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;(2) 若AB∥CD,试证明四边形ABCD是菱形;(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.【答案】解:(1) ∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC =∠DAC.∵ AB=AD,∠BAF =∠DAF,AF=AF.∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE =∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2) ∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD,∵AB="AD" , CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF.∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC =∠DEF=90°.∴∠EFD =∠BCD.【解析】(1)利用已知条件和公共边,证得△ABC≌△ADC,即可证明∠BAC=∠DAC;再证明△ABF≌△ADF,得到∠AFB=∠AFD,再利用对顶角相等,易知结论;(2)有平行线的性质和(1)中结论,易知∠DAC=∠ACD,所以AD=CD,进而证得AB=CB=CD=AD,即可证明结论;(3)当BE⊥CD时,有(2)可知BC="CD" ,∠BCF=∠DCF,利用△BCF≌△DCF证得∠CBF=∠CDF,再利用等角的余角相等即可证明结论∠EFD =∠BCD.20.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.。
对角线相互垂直的四边形
对角线相互垂直的四边形四边形是几何学中的一种基本图形,常见的有矩形、正方形等。
而在四边形中,如果两条对角线相互垂直,将会呈现出一些特殊的性质和应用。
本文将围绕对角线相互垂直的四边形展开讨论。
首先,让我们来了解一些基本概念。
四边形是一个由四条边组成的闭合图形,而对角线是连接四边形两个相对顶点的线段。
当这两条对角线相互垂直时,我们称其为垂直对角线。
那么,对角线相互垂直的四边形有哪些特点呢?第一点,对角线相互垂直的四边形必然是一个平行四边形。
这是根据几何学中的定理得出的结论。
我们知道,平行四边形的对边是平行且相等的,而对角线的相对顶点则会成为平行四边形的对边,因此可以推导出对角线相互垂直时四边形一定是平行四边形。
第二点,根据垂直对角线的性质,我们可以推导出对角线的长度是相等的。
这是因为垂直的直角三角形中,斜边(对角线)的长度相等。
因此,对角线相互垂直的四边形的对角线长度必然相等。
除了上述基本性质外,对角线相互垂直的四边形还有一些有趣的应用。
其中之一是对角线的长度可以用来计算四边形的面积。
以矩形为例,假设矩形的两条对角线的长度分别为d1和d2,那么矩形的面积可以通过公式S = (1/2) * d1 * d2来计算。
这个公式的推导可以通过将矩形分成两个相等的直角三角形,利用三角形面积公式得出。
另一个有趣的应用是利用垂直对角线的性质在实际生活中进行测量和设计。
一个典型的例子是建筑设计领域中的正交平台。
正交平台是指地面和墙面之间的结构,正常情况下,地面和墙面之间的角度是直角,也就是对角线相互垂直。
这种结构设计的好处是可以保证墙体的垂直性,从而更好地支撑整个建筑物。
此外,对角线相互垂直的四边形还有许多其他应用,如电子屏幕的分辨率计算、舞台背景的搭建等。
这些应用都是基于垂直对角线的特性,通过利用该特性进行测量、计算和设计,实现更好的效果和效率。
综上所述,对角线相互垂直是指四边形的两条对角线相互垂直,这种特殊的情况下四边形具有一些独特的性质和应用。
北师大版-数学九年级上册知识点归纳总结
北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
北师大版九年级数学上册知识点附常见题型解题技巧
北师大版九年级数学上册知识点附常见题型解题技巧第一章特殊平行四边形1、菱形的性质与判定①菱形的定义:一组邻边相等的平行四边形叫做菱形。
②菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定①矩形的定义:有一个角是直角的平行四边形叫矩形。
矩形是特殊的平行四边形。
②矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)③矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定①正方形的定义:一组邻边相等的矩形叫做正方形。
②正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)③正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系⑤梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1、认识一元二次方程只含有一个未知数的整式方程,且都可以化为ax 2 +bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax 2 +bx+c=0 (a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
特殊的平行四边形专题(题型详细分类)要点
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
特殊四边形知识与考点解析
特殊四边形知识考点解析1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形不相邻两个顶点连成的线段叫对角线。
性质:平行四边形对边相等。
平行四边形对角相等, 邻角互补.平行四边形的对角线互相平分。
若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
推论:夹在两条平行线间的平行线段相等。
判定:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形.两条对角线互相平分的四边形是平行四边形。
(2)菱形:定义:一组邻边相等的平行四边形叫做菱形。
菱形的性质:菱形的四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形.对角线互相垂直平分的四边形是菱形。
四条边都相等的四边形是菱形。
菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1.L2/2)。
(3)矩形:定义:有一个内角是直角的平行四边形叫做矩形。
矩形的性质:矩形的对角线相等;四个角都是直角。
矩形的判别方法:有一个角是直角的平行四边形是矩形。
对角线相等的平行四边形是矩形;对角线相等且平分的四边形是矩形;有三个角是直角的四边形是矩形。
直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。
(4)正方形:定义:一组邻边相等的矩形叫做正方形。
正方形的性质:正方形具有平行四边形、菱形、矩形的一切性质。
正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
(5)梯形:定义:一组对边平行而另一组对边不平行的四边形叫做梯形。
一组对边平行且不相等的四边形叫做梯形。
第十八章 平行四边形及特殊的平行四边形 知识点总结及经典习题
《平行四边形》的基本知识、主要考点、配套试题全章知识脉络:平行四边形◆考点 1.平行四边形的两组对边分别平行且相等推论:平行四边形一组邻边的和为周长的一半对边平行内错角相等(有“角平分线”会产生“等腰三角形”)1.□ABCD 的周长为 34cm,且 AB=7cm,则 BC= cm。
2.□ABCD 的周长为 26cm,相邻两边相差 3cm,则 AB= cm。
3、如果ABCD 的周长为 28cm,且 AB:BC=2∶5,那么 AB=cm,BC= cm,CD=_____cm,4、如图,□ABCD 中,CE 平分∠BCD,BG 平分∠ABC,BG 与 CE 交于点F。
(1)求证:AB=AG;(2)求证:AE=DG;(3)求证:CE⊥BG。
E GA DFB C推论:平行四边形◆考点 2.平行四边形的两组对角分别相等的邻角互补1 .平行四边形的一个角为 50 度,则其余三个角分别为。
2.平行四边形相邻两个角相差 40 度,则相邻两角度数分别为。
3、□ABCD 中两邻角∠A:∠B=1:2,则∠C=_______度4、在□ABCD 中,若∠A-∠B=70°,则∠A=______,∠B=______,∠ C=______,∠D=______.◆考点 3.平行四边形的对角线互相平分推论 1:经过平行四边形对角线交点的直线具备双重平分作用:①该直线平分平行四边形的面积;②该直线在平行四边形内的部分被对角线平分。
1.如图,□ABCD 中,AC 、BD 交于点O ,△AOB 与△BOC 的周长相差2,AD且AB=5,则BC= 。
OBC2.如图△ABC 中,AB=3,AC=5,则 BC 边上的中线 AD 长度的取值范A围是 。
BCD3.平行四边形的一条对角线长为 10,则它的两边可能长为( A .5 和 5B .3 和 9C .4 和 15D .10 和 204.平行四边形的两条对角线长分别 6 和 10,则它的边长不可能是 ) A .3B .4C .7D .85.平行四边形的一条边长为 8,则它两条对角线可以是( A .6 和 12B .6 和 10C .6 和 8D .6 和 66.如图,□ABCD 中,AC 、BD 交于点 O ,过点 O 作 OE ⊥AC 交 AD 于 E , 连接 CE ,若△CDE 的周长为 12,则□ABCD 的周长为)()。
对角线垂直的四边形定理
对角线垂直的四边形定理对角线垂直的四边形定理是几何学中的一个重要定理,它指出如果一个四边形的对角线互相垂直,那么这个四边形一定是菱形。
这个定理可以用来解决许多与菱形有关的问题。
首先,我们需要了解什么是菱形。
菱形是一种有两条对称轴的四边形,它的四个边长相等,且相邻两条边互相垂直。
因此,如果一个四边形的对角线互相垂直,那么它必须满足这些条件。
证明这个定理需要用到勾股定理。
假设我们有一个四边形ABCD,其中AC和BD是对角线,并且它们互相垂直。
我们需要证明这个四边形是菱形。
首先考虑三角形ABC和三角形CDA。
由于AC和BD互相垂直,所以它们交于点E,并且AE=EC和BE=ED(因为AE、EC、BE、ED都是对半分割AC和BD得到的)。
因此,三角形ABC和三角形CDA都是等腰三角形。
接下来考虑三角形ABE和三角形CDE。
由于AE=EC和BE=ED,所以三角形ABE和三角形CDE的底边分别相等。
又因为AC和BD互相垂直,所以∠AEB和∠CED是直角。
因此,根据勾股定理,AB²+BE²=AE²和CD²+DE²=CE²。
将这些结果结合起来可以得到AB²+BE²=CD²+DE²。
又因为AB=CD (因为ABCD是四边形),所以BE=DE。
因此,四边形ABCD的相邻两条边长相等,即它是一个菱形。
这个定理有许多应用。
例如,在解决几何问题时,我们可以通过观察对角线是否垂直来判断一个四边形是否是菱形。
如果一个四边形的对角线互相垂直,则我们可以确定它是菱形,并且可以使用菱形的性质来解决问题。
另外,这个定理还可以用于证明其他几何定理。
例如,在证明平行四边形对角线互相平分的定理时,我们可以使用对角线垂直的四边形定理来证明其中一条线段是菱形的对角线,并且由此推导出结论。
总之,对角线垂直的四边形定理是几何学中一个重要的基础性质,它不仅有着广泛的应用,而且可以帮助我们更好地理解和掌握几何学的知识。
一-四边形与特殊四边形的关系
(二)选择题:
1.下面判定四边形是平行四边形的方法中,错误的是( D )。 (A)一组对边平行,另一组对边也平行;(B)一组对角相等,另一组对角也相等;
(C )一组对边平行,一组对角相等; (D)一组对边平行,另一组对边相等
2.正方形具有而菱形不一定具有的性质是( B )。
(A)对角线互相平分。
(B)对角线相等。
10.等腰梯形在同一底上的两个角 相 等 ,对角线 相 等 。
11.如图(1), ABCD中,∠1 = ∠B =50°,则∠2 = 80° 。
A
D
A
D
B
1
2 C
O
(1)
B
C
(2)
12.如图(2),菱形有一个内角是120°,有一条对角线长是8㎝, 那么菱形边长是 8㎝ 或 38√3 ㎝ 。
13.已知:正方形的边长是4㎝,则它的对角线的长是 4√2 ㎝ ,
C
5.作梯形的中位线
A E B
D F C
7.构建三角形
E
6.构建大平行四边形
A
D
F
O
B
C
E
A
D
B
C
面积是 16 ㎝ 2
。
14.已知,正方形的对角线的长是6 ㎝,则它的边长是 3√2 ㎝ , 面积是 18 ㎝2 。
15.已知:正方形的面积是12 ㎝2,则它的边长是 2√3 ㎝ , 对角线的长是 2√6 ㎝ 。
九、几种常见的平行四边形辅助线的画法:
1.对角线
A
D
A
D
B
C
B
C
2.构建新的平行四边形
D A
四、对角线与特殊四边形的关系
1.对角线互相平分的四边形是平行四边形
证明平行四边形的方法
证明平行四边形的方法
平行四边形是一种特殊的四边形,它有着独特的性质和特点。
在几何学中,我们常常需要证明一个四边形是平行四边形,下面我将介绍几种证明平行四边形的方法。
1. 直角边相等法。
如果一个四边形的两条相对边相等,并且对角线互相垂直,那么这个四边形就是平行四边形。
这是因为直角边相等的四边形是矩形,而矩形是特殊的平行四边形。
2. 对角线互相平分法。
如果一个四边形的对角线互相平分,并且相交于一点,那么这个四边形就是平行四边形。
这是因为对角线互相平分的四边形是菱形,而菱形是特殊的平行四边形。
3. 同位角相等法。
如果一个四边形的两组对应角相等,那么这个四边形就是平行四边形。
这是因为同位角相等的四边形是平行四边形。
4. 同位角和内错角互补法。
如果一个四边形的两组对应角互补,那么这个四边形就是平行四边形。
这是因为同位角和内错角互补的四边形是平行四边形。
5. 对边平行法。
如果一个四边形的对边平行,那么这个四边形就是平行四边形。
这是平行四边形的定义。
以上是几种证明平行四边形的方法,通过这些方法我们可以轻松地证明一个四边形是平行四边形。
在实际问题中,我们经常需要利用这些方法来解决各种几何问题,因此熟练掌握这些方法对我们的学习和工作都是非常有益的。
希望大家能够认真学习并灵活运用这些方法,提高自己的几何学能力。
《特殊平行四边形》大单元教学设计
《特殊平行四边形》大单元教学设计一、教材分析《特殊平行四边形》在初中数学知识树中的地位如下图所示:《特殊平行四边形》是北师大版九年级上册第一章的内容,是在学生学习了平行四边形的定义、性质与判定的基础上进行的.《特殊平行四边形》是对平行四边形的纵向拓展,同时也是对推理证明的巩固与加深.《特殊平行四边形》为证明线段相等、平行,证明角相等,证明直线互相垂直提供了新的方法,为学生后续几何学习奠定了基础,具有承上启下的作用.二、学情分析1.进一步认识并掌握特殊平行四边形的定义、性质定理、判定定理及它们之间的相互关系.2.能综合运用特殊平行四边形相关定理解决问题,进一步体会从一般到特殊、从特殊到一般、转化等数学思想,归纳总结解题的基本方法,积累活动经验.三、新课标要求1、经历图形的抽象、分类、性质探讨的过程,掌握图形与几何的基础知识和基本技能。
2、在参与观察、实验、猜想、证明等数学活动中,发展合情推理和演绎推理能力。
3、探索并掌握直角三角形的性质定理:直角三角形斜边的中线等于斜边的一半。
4、理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系。
5、探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直。
探索并证明矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。
正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
四、单元教学目标1、经历菱形、矩形、正方形概念的抽象过程,以及它们的性质与判定的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力。
2、理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系,进一步体会从一般到特殊的思考问题的方法,增强发现问题和提出问题的能力。
3、证明菱形、矩形、正方形的性质定理及判定定理,并能够证明其他相关结论。
特殊的平行四边形
特殊的平行四边形内容分析平行四边形在边和角上的特殊性,分别得到菱形和矩形,矩形和菱形在边和角上的特殊性得到正方形.矩形、菱形、正方形都是特殊的平行四边形.从对称性考虑,平行四边形只是中心对称图形,三种特殊平行四边形都既是中心对称图形又是轴对称图形.计算面积时,菱形和正方形都还能用对角线长的乘积的一半来运算.尤其要掌握当矩形的对角线夹角是60°时,两对角线和较短的边构成的三角形是等边三角形,即较短的边长是对角线长的一半.当菱形两边的较小夹角是60°时,它是由两个等边三角形合成的,可由等边三角形的特殊性来研究.知识结构模块一:矩形知识精讲知识点1:矩形1. 定义:有一个内角是直角的平行四边形叫做矩形.注意:矩形的定义既是矩形的基本性质,也是判定矩形的基本方法.2. 性质:矩形除具有平行四边形的一切性质外,还有一些特殊性质.(1) 矩形的四个角都是直角;(2) 矩形的两条对角线相等.注意:(1) 矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2) 矩形也是轴对称图形,有两条对称轴(分别是通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).3. 判定:矩形的判定定理1:有三个内角是直角的四边形是矩形.矩形的判定定理2:对角线相等的平行四边形是矩形.例题解析【例1】下列命题中真命题是()A.对角线互相垂直的四边形是矩形B.对角线相等的四边形是矩形;C.四条边都相等的四边形是矩形;D.四个内角都相等的四边形是矩形;【难度】★【答案】【解析】【例2】已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC BD⊥时,四边形ABCD是矩形C.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【难度】★【答案】【解析】【例3】(1)矩形的两条对角线的夹角为60,则对角线与较短边之比是_________;(2)已知在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC=_________.【难度】★【答案】【解析】【例4】矩形的一角平分线分矩形一边为1厘米和3厘米两部分,则这个矩形的面积为__________平方厘米.【难度】★★【答案】【解析】【例5】如图所示,矩形ABCD的对角线AC、BD交于点O,BE AC⊥于点E,CF BD⊥于点F,求证:BE=CF.【难度】★★【答案】【解析】【例6】如图,在矩形ABCD中,AB=3,AD=4,P是AD上不与A、D重合的一动点,PE⊥AC,PF⊥BD,E、F为垂足,则PE+PF的值为.【难度】★★【答案】【解析】AB CDE FO【例7】 已知:若从矩形ABCD 的顶点C 作BD 的垂线交BD 于E ,交∠BAD 的平分线于F . 求证:△CAF 是等腰三角形. 【难度】★★ 【答案】 【解析】【例8】 已知:矩形ABCD 中,延长BC 至E ,使BE =BD ,F 为DE 中点,连接AF 、CF . 求证:AF ⊥CF . 【难度】★★ 【答案】 【解析】【例9】 如图所示,在矩形ABCD 中,BC =8,AB =6,把矩形折叠使点C 与点A 重合,求折叠EF 的长. 【难度】★★ 【答案】 【解析】【例10】 如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,使点D 落在点D '处,CD '交AB 于点F ,则重叠部分△AFC 的面积为 ________.【难度】★★ 【答案】 【解析】ABCDEF【例11】 将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH =3,EF =4,求AD AB 的值. 【难度】★★★ 【答案】 【解析】1. 定义:有一组邻边相等的平行四边形叫做菱形.2. 性质:菱形除具有平行四边形的一切性质外,还有一些特殊性质:(1) 菱形的四条边都相等;(2) 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.注意:(1) 菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分;(2) 菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心; (3) 菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.3. 判定:菱形的判定定理1:四条边都相等的四边形是菱形 菱形的判定定理2:对角线互相垂直的平行四边形是菱形模块二:菱形知识精讲A BCD EFGH MN例题解析【例12】平行四边形ABCD的对角线AC、BD相交于点O,下列条件中,不能判定它为菱形的是( )A.AB=AD B.AC⊥BD C.∠A=∠D D.CA平分∠BCD 【难度】★【答案】【解析】【例13】下列命题中,真命题是( )A.一组对边平行且有一组邻边相等的四边形是平行四边形B.两条对角线相等的四边形是矩形C.等边三角形既是轴对称图形又是中心对称图形D.对角线互相垂直平分的四边形是菱形【难度】★【答案】【解析】【例14】(1)菱形的两条对角线长的比是3:4,边长为10厘米,菱形的面积是_________;(2)菱形的两条对角线长的比是2:3,面积是12cm2,则它的两条对角线的长分别是_____cm、_____cm,该菱形的周长是_______cm.【难度】★【答案】【解析】【例15】(1)菱形有一个内角为60,一条较短的对角线长为6,则菱形的边长为_________;(2)如图,在菱形ABCD中,60ABC∠=,4AC=,则BD=.【难度】★【答案】【解析】【例16】 如图,在菱形ABCD 中,AC =4,BD =6,P 是AC 上一动点(P 与C 不重合),PE //BC交AB 于点E ,PF //CD 交AD 于点F ,连结EF ,求图中阴影部分的面积. 【难度】★★ 【答案】 【解析】【例17】 如图,在ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC分别交于点E 、F .求证:(1)AOE COF ≌;(2)四边形AFCE 是菱形. 【难度】★★ 【答案】 【解析】【例18】 如图O 是菱形ABCD 对角线的交点,作//DE AC ,//CE BD ,DE 、CE 交于点E , 四边形OCED 是矩形吗?证明你的结论. 【难度】★★ 【答案】 【解析】【例19】 如图,矩形纸片ABCD 中,=4AB ,8AD ,将纸片折叠,使得点B 与点D 重合,折痕为EF .(1)求证:四边形BEDF 是菱形; (2)求菱形BEDF 的边长. 【难度】★★ 【答案】 【解析】OFEDCBAOED CBADACB 【例20】 如图, ABC 中,90ACB ∠=,CD AB ⊥,AE 平分BAC ∠交CD 于F ,EG AB ⊥交AB 于G .求证:四边形CEGF 是菱形. 【难度】★★ 【答案】 【解析】【例21】 如图,菱形ABCD 的边长为4 cm ,且∠ABC =60°,E 是BC 的中点,P 点在BD 上,则PE+PC 的最小值为________. 【难度】★★★ 【答案】 【解析】【例22】 如图,菱形ABCD 的边长为2,BD =2,E ,F 分别是边AD ,CD 上的两个动点且满足AE +CF =2.(1)判断△BEF 的形状,并说明理由; (2)设△BEF 的面积为S ,求S 的取值范围. 【难度】★★★ 【答案】 【解析】GF ED CBA【例23】 已知△ABC 是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB 、AC 于点F 、G ,连接BE .(1)如图1所示,当点D 在线段BC 上时, ①试说明:△AEB ≌△ADC②探究四边形BCGE 是怎样特殊的四边形,并说明理由.(2)如图2所示,当点D 在BC 的延长线上时,探究四边形BCGE 是怎样特殊的四边 形,并说明理由.(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理 由.图1 图2【难度】★★★ 【答案】 【解析】ABCD EF GABCDG E模块三:正方形知识精讲1. 定义:有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形.2. 正方形与矩形、菱形的关系矩形邻边相等正方形菱形一个角是直角正方形3. 性质定理正方形即是矩形又是菱形,因而它具备两者所有的性质.性质定理1:正方形的四个角都是直角;正方形的四条边都相等.性质定理2:正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角.4. 判定定理:判定定理1:有一组邻边相等的矩形是正方形.判定定理2:有一个内角是直角的菱形是正方形.例题解析【例24】下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形【难度】★【答案】【解析】【例25】 如果要证明平行四边形ABCD 为正方形,那么我们需要在四边形ABCD 是平行四边形的基础上,进一步证明( )A .AB =AD 且AC ⊥BD B .AB =AD 且AC =BD C .∠A =∠B 且AC =BD D .AC 和BD 互相垂直平分 【难度】★ 【答案】 【解析】【例26】 在下列图形中,①等边三角形,②正方形,③正五边形,④正六边形.其中既是轴对称图形又是中心对称的图形有( )A .1个B .2个C . 3个D . 4个 【难度】★ 【答案】 【解析】【例27】 (1)如图(1),已知P 正方形ABCD 对角线BD 上一点,且BP =BC ,则ACP 度数是 ;(2)如图(2),正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OB 延长线上一点, CE =BD ,∠ECB 的度数是_________. 【难度】★★ 【答案】 【解析】【例28】 如图,正方形ABCD 的对角线AC 上截取CE =CD ,作EF ⊥AC 交AD 于点F .求证:AE =EF =FD . 【难度】★★ 【答案】 【解析】ABCDEO(2) (1)AB CDE F【例29】 如图,已知E 是正方形ABCD 的边BC 上的任意一点,BF ⊥AE ,垂足为G ,交CD于点F .求证:AE =BF . 【难度】★★ 【答案】 【解析】【例30】 已知:正方形ABCD 中,F 为CD 延长线上的一点,CE ⊥AF 于E ,交AD 于M .求证:∠MFD =45°. 【难度】★★ 【答案】 【解析】【例31】 已知:Q 为正方形ABCD 的CD 边的中点,P 为CD 上一点,且∠BAP =2∠QAD .求证:AP =PC +BC . 【难度】★★ 【答案】 【解析】【例32】 已知:在正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN于N .求证:MD =MN . 【难度】★★★ 【答案】 【解析】ABCDEF G ABCDEFMABCDPQABCDEM N【例33】 已知:AE 为正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:OF =12CE .【难度】★★★ 【答案】 【解析】【例34】 如图所示,正方形ABCD 中,∠EAF =45°,AP ⊥EF 于点P .求证:AP =AB .【难度】★★★ 【答案】 【解析】【例35】 正方形ABCD 被两条分别与边AB 、BC 平行的线段EF 、GH 分割成4个小矩形,P 是EF 与GH 的交点,若矩形PFCH 的面积恰好是矩形AGPE 面积的2倍,求∠HAF 的大小. 【难度】★★★ 【答案】 【解析】A BCD EFOABC D EF PA BCDE FGH P【例36】 如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG DE ⊥,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1)由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论.(2)联结DF ,如果正方形的边长为2,设AE x =,DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.(3)如果正方形的边长为2,FG 的长为52,求点C 到直线DE 的距离.(备用图) 【难度】★★★ 【答案】 【解析】【习题1】 四边形ABCD 的对角线AC 与BD 交于点O .①若=AB AD ,则平行四边形ABCD 是 形; ②若=AC BD ,则平行四边形ABCD 是 形; ③若90ABC ∠=,则平行四边形ABCD 是 形; ④若BAO DAO ∠=∠,则平行四边形ABCD 是 形. 【难度】★ 【答案】 【解析】随堂检测G F EDCBAD CBA【习题2】 已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 是,它是正方形 【难度】★ 【答案】 【解析】【习题3】 .在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为 ( ) A .16a B .12aC .8aD .4a【难度】★ 【答案】 【解析】【习题4】 把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=( )A .110°B .115°C .120°D .130°【难度】★ 【答案】 【解析】【习题5】 如图,正方形ABCD 中,E 为边CD 上的一个动点,延长BC 至F ,使C F C E =,联结DF ,BE 与DF 相交于G 点,下列结论正确的个数是( )①BG DF ⊥; ②90F CEB ∠+∠=;③90FDC ABG ∠+∠=; ④BE DF =.A .1B .2C .3D .4 【难度】★★ 【答案】 【解析】【习题6】 如图所示,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,求∠CDF 的度数. 【难度】★★ 【答案】 【解析】【习题7】 如图所示,正方形ABCD 中,EF ⊥GH 于点P .求证:EF =GH .【难度】★★ 【答案】 【解析】【习题8】 如图,在线段AE 上取一点B ,使AB BE >,以AB 、BE 为边在AE 同侧作正方形ABCD 和BEFG ,在AB 上取AH BE =,在BC 的延长线上取一点K ,使C K B G =. 求证:四边形HFKD 为正方形. 【难度】★★ 【答案】 【解析】【习题9】 如图所示,菱形PQRS 内接于矩形ABCD ,使得点P 、Q 、R 、S 分别为边AB 、BC 、CD 、DA 上的点.已知PB =15,BQ =20,PR =30,QS =40.求矩形ABCD 的周长. 【难度】★★ 【答案】 【解析】KHG F EDC BAACDEFA BCD E FH P G【习题10】 已知:如图边长为a 的正方形ABCD 的对角线AC 、BD 交于点O ,E 、F 分别为DC 、BC 上的点,且=DE CF . 求证:(1)EO FO ⊥.(2)M 、N 分别在OE 、OF 延长线上,OM ON a ==,四边形MONG 与正方形ABCD重合部分的面积等于214a . 【难度】★★★ 【答案】 【解析】【习题11】 如图1所示,在矩形ABCD 中,把∠B 、∠D 分别翻折,使点B 、点D 恰好落在对角线AC 上的点E 、F 处,折痕分别为CM 、AN . (1)求证:△AND ≌△CBM(2)请连接MF 、NE ,证明四边形MFNE 是平行四边形.四边形MFNE 是菱形吗?请 说明理由.(3)点P 、Q 是矩形的边CD 、AB 上的两点,连接PQ 、CQ 、MN ,如图2所示, 若PQ =CQ ,PQ ∥MN ,且AB =4,BC =3,求PC 的长度. 【难度】★★★ 【答案】 【解析】图1 图2ONM GFED CBA ABCDEFP NM N MABCDEF课后作业【作业1】已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC BD∠=∠∥,A C∥,AB CD=,AB CD=B.AD BCC.AO BO CO DO===,AC BD⊥D.AO CO==,AB BC=,BO DO【难度】★【答案】【解析】【作业2】下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形.【难度】★【答案】【解析】【作业3】现有以下四个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③有一个角为直角且对角线互相平分的四边形为矩形;④菱形的对角线的平方和等于边长的平方的4倍.其中,正确的命题有()A.①②B.③④C.③D.①②③④【难度】★【答案】【解析】【作业4】 如图,在矩形ABCD 中,AB =1,ADAF 平分∠DAB ,过点C 作CE ⊥BD于E ,延长AF ,EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ; ④BE =3ED .正确的是( )A .②③B .③④C .①②④D .②③④ 【难度】★★ 【答案】 【解析】【作业5】 如图,矩形ABCD 的长为a ,宽为b ,如果12341(S S )2S S ==+,则4S =( )A .38abB .34abC .23abD .12ab【难度】★★ 【答案】 【解析】【作业6】 如图,将矩形ABCD (AB <AD )沿BD 折叠后,点C 落在点E 处,且BE 交AD 于点F .(1)若AB =4,BC =8,求DF 的长;(2) 当DA 平分∠EDB 时,如果AB =3,求BC 的值. 【难度】★★ 【答案】 【解析】ABCDEF【作业7】 如图,已知有一块面积为1的正方形ABCD ,M 、N 分别为AD 、BC 上的中点,将点C 折到MN 上,落在P 点的位置,折痕为BQ ,连结PQ . 求:(1) MP 的长;(2)PQ 的长. 【难度】★★ 【答案】 【解析】【作业8】 如图所示,在菱形ABCD 中,∠D =∠EAF =60°,∠BAE =20°.求∠CEF 的度数. 【难度】★★ 【答案】 【解析】【作业9】 如图所示,设M 、N 分别为正方形ABCD 的边AD 、CD 的中点,且CM 与BN 交于点P ,求证:P A =AB . 【难度】★★ 【答案】 【解析】【作业10】 如图,已知P 为矩形ABCD 内一点,P A =3,PD =4,PC =5,求PB 的长. 【难度】★★ 【答案】 【解析】FABCDEABCDMN P【作业11】 (1)如图(1)所示,点E 是正方形ABCD 的边AD 上一点,BF 平分EBC ∠,交CD 于点F ,求证:BE AE CF =+;(2)如图(2)所示,在正方形ABCD 中,点E 在DC 的延长线上,点F 在CB 的延长 线上,45EAF ∠=,求证:DE BF EF -=.【难度】★★★【答案】【解析】【作业12】 如图(1)所示,四边形ABCD 是由两个全等的等腰直角三角形斜边重合在一起组成的平面图形.如图(2)所示,点P 是边BC 上一点,PH ⊥BC 交BD 于点H ,连接AP 交BD 于点E ,点F 为DH 中点,连接AF ;(1)求证:四边形ABCD 为正方形;(2)当点P 在线段BC 上运动时,∠P AF 的大小是否会发生变化?若不变,请求出∠P AF 的值;若变化,请说明理由;(3)求证:222BE DF EF +=.【难度】★★★【答案】【解析】A B C D E F A B C D E F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、特殊平行四边形
142.四边形的两条对角线互相垂直,这个四边形 ( )
A.一定是矩形 B.一定是菱形 C.一定是正方形 D.形状不确定
点评此题考查特殊平形四边形的判定.
143.下列命题中正确的是
A.对角线相等的平行四边形是矩形 B.一组对边平行且有一个角是直角的四边形是矩形 C.对角线相等的四边形是矩形 D.对角线互相垂直的平行四边形是矩形
点评此题考查矩形的判定,解题的关键是对矩形的判定要熟,也可同上例一样,举出反例推翻结论,以说明某个结论是错误的.
144.在下列条件中,能判断四边形ABCD是菱形的是 ( )
A.对角线互相垂直 B.对角线互相平分 C.对角线相等 D.对角线互相垂直平分
点评此题考查菱形的判定,解题的关键是对菱形的判定要熟,也可仿例1举出反例说明A、B、C是错误的.
145.菱形的对角线为6cm和8cm,则菱形的周长为 cm,面积为 cm2.
点评此题考查菱形的性质与三角形的综合应用.
146.如图3-21,已知:AD是△ABC的角平分线,DE//AC交AB于E,DF//AB交AC于F.求证:四边形AEDF是菱形.
点评因为菱形是特殊的平行四边形,所以证菱形通常是证平行四边形加一组邻边相等.
147.已知:如图3—22所示,在矩形ABCD中,E在CD上,且AE=AB=2AD ,求∠BEC.
点评在直角三角形中,300所对的直角边等于斜边的一半,这个命题的逆命题虽然也正确,但不能直接运用,若确要运用,则必须进行证明.
148.如图3一23,在口ABCD中,BC=2AB,AE=AB=BF,且点E、F在直线AB上,CE交AD于点M,DF交BC 于点N,求证:CE⊥DF
点评利用矩形的四个角为直角、菱形的对角线互相垂直是证明线段互相垂直的重要方法.
149.如图3—24,M、N 分别是口ABCD的对边AD、BC的中点,且AD=2AB,AN、BM相交于P点;CM、DN 相交于Q点.求证:MN=PQ.
点评在证线段相等时,可考虑运用矩形的对角线相等证明.本例是反复运用菱形、矩形的判定和性质的综合题,值得借鉴.
150.已知:如图3—25所示,E为正方形ABCD的BC边上任意一点,∠EAD的平分线交CD于F 求证:BE+DF=AE
点评 证明两条线段和等于一条线段,通常有两种思考方法,一是延长两条线段中的一条,将两条线段的和构成一条线段,再证这条线段与较长线段相等;二是在较长的线段上截取一条线段等于两条线段中的一条,再证剩下的部分与另一条相等,本例用到了第一种方法.
151.我们把任一四边形四边的中点依次连接成的四边形叫做中点四边形.(1)这个中点四边形有什么特征?请证明你的结论;(2)若要使这个中点四边形是矩形,则原四边形至少要具备的一个条件是什么?(3)若要使这个中点四边’形是菱形,则原四边形至少要具备的一个条件又是什么?以上写出条件即可,不必证明.
点评 第(2)问容易错答为四边形ABCD 为菱形或正方形;第(3)问容易错答为四边形ABCD 为矩形或正方形.
152.如图3-27,过正方形ABCD 的顶点B 作BE∥CA,且作AE=AC ,又CF∥AE. 求证.2
1
;AEB BCF ∠=
∠
点评由于正方形具有平行西边形、矩形、菱形的所有的性质,因此作出AG⊥BE构造新的正方形具有创意,同时利用计算将证的结论进行转化是常见的技巧.
153.某村计划开挖一条长为1500 m的水渠,渠道的横断面为等腰梯形如图3—28:渠道深为0.8 m,下底宽为1.2 m,坡角为450
(1)共需挖土多少m37
(2)实际开挖时,每天比原计划多挖土20 m3,结果比原计划提前4天完工.求原计划每天挖土多少m3
点评挖土体积数等于渠道体积,因此求梯形的面积为本题关键.同时,在实际问题中,应舍去不合题意的解.
154[一题多解]如图3—29,已知菱形ABCD的边长为2 cm,∠BAD=1200,对角线AC、BD相交于点0.求:这个菱形的对角线长和面积.
点评由解法1可知:菱形的面积等于它的两条对角线长的乘积的一半.
155.如图3—31,在正方形ABCD中,E是对角线AC上的一点,且CE=CD=1,过点E作AC的垂线,交AD 于点F,连接CF.
求:∠DCF的度数和DF的长度.
点评此题与正方形有关,因为正方形具有平行四边形、矩形、菱形的一切特征,解题时,应抓住这一特性,并注意将其转换到三角形中,以便更好的解决问题.
变式题如图3—32,正方形ABCD的对角线交于0点,E是OA上的任意一点,CF⊥BE于F,CF交 0B 于G.求证:OE=OC.
点评在与正方形有关的问题中,应抓住正方形的特性突破题目的症结.
156.[一题多解]如图3—33,E,F是正方形ABCD的边BC、DC上的点,AE、AF分别与对角线相交于点M、N.若∠EAF=500,求∠CME+∠CNF的度数.
点评利用正方形的对称性作角或线段的转换十分便利.尤其应注意解法2的快捷.
157 [2002,长沙市]图3—34中阴影部分表示的四边形是.
点评解此题的关键是要熟悉四边形之间的关系.
158 [2002,重庆市]已知:如图3—35,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=300,那么△ECD 的面积是 ( )
32.A 3.B 23.C 33
.D
点评 此题考查矩形和三角形的综合应用.
159.[2003,黄冈市]已知:如图3—36,等腰梯形ABCD 中,AB=CD ,AD∥BC,E 是梯形外一点;且EA=ED ,求证:EB=EC 。
点评 利用特殊的四边形证明线段相等,角相等是中考的热门题
160.[一题多解][2001,山西省]已知:如图3—37,将矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /
交AD 于E ,AD=8,AB=4,求△BED 的面积.
点评特殊四边形的折叠问题,是近期中考命题热点.解这类题的关键是要理解折叠的性质.。