二次函数学案(精品,强烈推荐)
二次函数教案(优秀5篇)
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教案(3篇)
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
二次函数 (24张PPT)学案
1.1二次函数导学案一、教材4页请用适当的函数解析式表示下列问题情境中的两个变量 y 与 X 之间的关系·(1)圆的面积 y (cm2)与圆的半径 x (cm)(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y元;(3)一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)上述三个问题中的函数解析式具有哪些共同的特征?总结:我们把形如y=ax2+bx+c(其中a,b,C是常数,a≠0)的函数叫做 ,称:a 为,b为,c为常数项,二、教材58页做一做1.下列函数中,哪些是二次函数?⑴y=x2;⑵y=-1x2;⑶y=2x2-x-1;⑷y=x(1-x);⑸y=(x-1)2-(x+1)(x-1);2、分别说出下列二次函数的二次项系数、一次项系数和常数项?⑴y=x2+1⑵ y=-3x2+7x-12 ⑶y=2x(1-x)三、教材5页例题例1、如图 1-2,一张正方形纸板的边长为2cm,将它剪去 4 个全等的直角三角形(图中阴影部分) ,设AE=BF=CG=DH=X(cm),四边形EFGH的面积为y(cm2) . (1)求y关于x的函数表达式和自变量x的取值范围.(2)当x分别为 0.25, 0.5, 1, 1.5, 1.75 时,求对应的四边形EFGH的面积,并列表表示.例2:已知二次函数y=x²+bx+c,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.待定系数法求二次函数解析式的基本步骤:;.。
二次函数教学设计(精选6篇)
二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数教案(全)
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
二次函数复习学案(1)
二次函数复习学案(1)班级姓名等级【考点透视】1、理解二次函数的概念;2、会化二次函数的一般式为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3、会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(x-h)2+k的图象,了解特殊与一般相互联系和转化的思想;4、会用待定系数法求二次函数的解析式(一般式、顶点式、交点式);5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和一元二次不等式之间的联系。
【知识梳理】1.二次函数的图象:在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质:我们通常从以下5个方面来理解二次函数的性质,并利用性质解决问题:1、开口方向:由a决定;2、顶点坐标( , );3、对称轴: ;4、极值: ;5函数增减性: 3.利用待定系数法确定二次函数解析式:(1)一般地,所给条件是抛物线上任意三点(或任意三对x,y•的值)•可设一般式为:y=ax2+bx+c,组成三元一次方程组来求解,这是通用的,也是最复杂的方法;(2)若已知顶点坐标或对称轴或最大值时,可设顶点式为:y=a(x-h)2+k,顶点是(h,k),这是简便方法;(3)若已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴或已知一元二次方程ax2+bx+c=0的两个根,都可设交点式为:y=a(x-x1)(x-x2)来求解,简便方法.4.二次函数与一元二次方程的关系:抛物线y=ax2+bx+c,当y=0时转化为一元二次方程ax2+bx+c=0,即(1)当抛物线与x轴有两个交点时==>方程ax2+bx+c=0有两个不相等实根==>⊿ 0,反之,也成立;(2)当抛物线y=ax2+bx+c与x轴有一个交点==>方程ax2+bx+c=0有两个相等实根==>⊿ 0,反之,也成立;(3)当抛物线y=ax2+bx+c与x轴有交点==>•方程ax2+bx+c=0有实根==>⊿ 0,反之,也成立;(4)当抛物线y=ax2+bx+c与x轴无交点==>•方程ax2+bx+c=0无实根==>⊿ 0,反之,也成立;5.二次函数与一元二次不等式的关系:利用二次函数的图象可以解一元二次不等式:1、求一元二次方程ax2+bx+c=0的根;2、利用抛物线与x轴的交点和a 的取值画出二次函数y=ax 2+bx+c 的大致图象;2、结合函数图形解一元二次不等式。
《二次函数》教案8篇(二次函数应用教案设计)
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
《二次函数》教案(优秀7篇)
《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
二次函数教案【精选3篇】
二次函数教案【精选3篇】总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能使我们及时找出错误并改正,快快来写一份总结吧。
那么如何把总结写出新花样呢?这里给大家分享一些关于数学二次函数解题技巧,方便大家学习。
为朋友们精心整理了3篇《二次函数教案》,亲的肯定与分享是对我们最大的鼓励。
二次函数教案篇一一、教材分析:《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。
这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。
这也突出了课标的要求:注重知识与实际问题的联系。
本节教学时间安排1课时二、教学目标:知识技能:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.能够利用二次函数的图象求一元二次方程的近似根。
数学思考:1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
解决问题:1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
数学《二次函数》优秀教案(精选8篇)
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
初中数学二次函数教案(5篇)
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
最新-二次函数数学教案(优秀11篇)二次函数教案
二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。
《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。
【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。
【教学重点】二次函数的概念。
【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。
一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。
二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。
《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
二次函数教案(通用3篇)
Prevention is the best way to solve a crisis.精品模板助您成功!(页眉可删)二次函数教案(通用3篇)二次函数教案1一、教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。
本节内容的教学,在函数的教学中有着承上启下的作用。
它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2、教学目标(1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学的重、难点重点:二次函数的概念和解析式。
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。
②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。
让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。
教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。
同时考虑到学生的.个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。
中考数学一轮复习《二次函数》学案(精品)
二次函数复习学案学习目标:1.了解二次函数的知识结构框架,进一步巩固二次函数概念2.掌握用待定系数法求二次函数的解析式;3.掌握二次函数的图象性质,并灵活运用二次函数的图象性质解决问题;4.通过探究进一步体会函数的一般研究方法及数形结合等思想,提高分析问题、解决问题的能力。
学习重点:二次函数的图像及性质。
学习难点:教学难点:二次函数的知识结构框架的建立以及二次函数图像性质的灵活运用。
教学过程一、引入二、小组讨论1.二次函数包含哪些知识点?2.请用思维导图或框架图或表格形式把知识点罗列出。
三、小组展示四、命题分析二次函数是海南中考必考的内容之一,常与几何知识综合作为压轴题出现。
二次函数考查有以下特点:考点一:二次函数解析式的确定;考点二:二次函数图象的性质(二次函数的开口方向、顶点、对称轴、增减性、最大(或最小)值等;考点三:二次函数图象的平移;考点四:二次函数与一元二次方程、不等式的关系;考点五:二次函数与几何图形的综合运用。
五、知识运用例1:如图1,已知抛物线与x 轴交于点A (-1,0),B (3,0)且过点C (0,-3)(1)求出抛物线的解析式、对称轴和顶点D 坐标;(2)当=x 时,y 有最 (填“大”或“小”)值,这个值是(3)当x 取何值时,函数值3-=y ?当x 取何值时,0≤y ; (4)设),(11y x E 和),(22y x F 是抛物线上两个不同点,且121<<x x , 请比较21y y 与的大小关系; (5)若将抛物线进行平移,使平移后抛物线的顶点为(-1, -1),写出平移后的抛物线解析式。
图1ABC六、中考演练1.(2014年海南)将抛物线y =x 2平移得到抛物线y =(x +2)2,则这个平移过程正确的是A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位2. (2014广东)二次函数)0(2≠++=a c bx ax y 的大致图象如图2所示,关于该二次函数,下列说法错误的是( )A. 函数有最小值B. 对称轴是直线x =21 C. 当x <21时,y 随x 的增大而减小 D. 当-1<x <2时,y >0七、我也来命中考题根据右图请你于你的组员编一道中考题,参考信息: )0,1(A ,)0,3(B ,)3,0(C图2八、课堂检测1.如图,直线434+-=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积九、小结通过本节课复习,你有什么收获?掌握了哪些方法?。
2022年初中数学《二次函数》精品学案10
第二十二章 二次函数第10课时 实际问题与二次函数〔1〕一、阅读教科书:二、学习目标:几何问题中应用二次函数的最值.三、课前根本练习1.抛物线y =-(x +1)2+2中, 当x =___________时, y 有_______值是__________.2.抛物线y =12x 2-x +1中, 当x =___________时, y 有_______值是__________. 3.抛物线y =a x 2+b x +c 〔a ≠0〕中, 当x =___________时, y 有_______值是__________.四、例题分析:〔P15的探究〕用总长为60m 的篱笆围成矩形场地, 矩形面积S 随矩形一边长l 的变化而变化, 当l 是多少时, 场地的面积S 最大?五、课后练习1.直角三角形两条直角边的和等于8, 两条直角边各为多少时, 这个直角三角形的面积最大, 最大值是多少?2.从地面竖直向上抛出一小球, 小球的高度h 〔单位:m 〕与小球运动时间t 〔单位:s 〕之间的关系式是h =30t -5t 2.小球运动的时间是多少时, 小球最高?小球运动中的最大高度是多少?3.如图, 四边形的两条对角线AC 、BD 互相垂直, AC +BD =10, 当AC 、BD 的长是多少时, 四边形ABCD 的面积最大?4.一块三角形废料如下图, ∠A =30°, ∠C =90°, AB =12.用这块废料剪出一个长方形CDEF, 其中, 点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF面积最大, 点E 应造在何处?六、目标检测 如图, 点E 、F 、G 、H 分别位于正方形ABCD 的四条边上, 四边形EFGH 也是正方形.当点E 位于何处时, 正方形EFGH 的面积最小? 14.2.1 平方差公式【学习目标】:1.经历探索平方差公式的过程.2.会推导平方差公式, 并能运用公式进行简单的运算. 学习重点: 平方差公式的推导和应用学习难点: 理解平方差公式的结构特征, 灵活应用平方差公式. 学习过程:Ⅰ.提出问题, 创设情境[师]你能用简便方法计算以下各题吗?〔1〕2001×1999 〔2〕998×1002D C B A FE D C B AⅡ.导入新课计算以下多项式的积.〔1〕〔x+1〕〔x-1〕〔2〕〔m+2〕〔m-2〕〔3〕〔2x+1〕〔2x-1〕〔4〕〔x+5y〕〔x-5y〕结论:两个数的和与这两个数的__________的积, 等于这两个数的___________.即:〔a+b〕〔a-b〕=a2-b2例1:运用平方差公式计算:〔1〕〔3x+2〕〔3x-2〕〔2〕〔-x+2y〕〔-x-2y〕例2:计算:〔1〕〔y+2〕〔y-2〕-〔y-1〕〔y+5〕〔2〕102×98Ⅲ.随堂练习计算:〔1〕〔a+b〕〔-b+a〕〔2〕〔-a-b〕〔a-b〕〔3〕〔3a+2b〕〔3a-2b〕〔4〕〔a5-b2〕〔a5+b2〕〔5〕〔a+2b+2c〕〔a+2b-2c〕〔6〕〔a-b〕〔a+b〕〔a2+b2〕反思归纳1、本节课学习的内容。
二次函数全章导学案(史上最全!)
导学案【2 】26.1.1二次函数(第一课时)一.预习检测案一般地,形如____________________________的函数,叫做二次函数.个中x是________,a是__________,b是___________,c是_____________.二.合作探讨案:问题1: 正方体的六个面是全等的正方形,假如正方形的棱长为x,表面积为y,写出y与x的关系. 问题2: n边形的对角线数d与边数n之间有如何的关系?提醒:多边形有n条边,则有几个极点?从一个极点动身,可以连几条对角线?问题3: 某工场一种产品如今的年产量是20件,筹划往后两年增长产量.假如每年都比上一年的产量增长x倍,那么两年后这种产品的数目y将随筹划所定的x的值而定,y与x之间的关系如何表示?问题4:不雅察以上三个问题所写出来的三个函数关系式有什么特色?小组交换.评论辩论得出结论:经化简后都具有的情势.问题5:什么是二次函数?形如.问题6:函数y=ax²+bx+c,当a.b.c知足什么前提时,(1)它是二次函数? (2)它是一次函数?(3)它是正比例函数?例1: 关于x的函数mmxmy-+=2)1(是二次函数, 求m的值.留意:二次函数的二次项系数必须是的数.三.达标测评案:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2;(3)y=3x3+2x2;(4)y=2x2-2x+1; (5)y=x2-x(1+x);(6)y=x-2+x.2.若函数y=(a-1)x2+2x+a2-1是二次函数,则( )A.a=1B.a=±1C.a≠1D.a≠-13.必定前提下,若物体活动的路段s(米)与时光t(秒)之间的关系为s=5t2+2t,则当t=4秒时,该物体所经由的旅程为A.28米B.48米C.68米D.88米4.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.5.一个圆柱的高级于底面半径,写出它的表面积S与半径R之间的关系式.6.n支球队参加竞赛,每两支之间进行一场竞赛.写出竞赛的场数m与球队数n之间的关系式.7.已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.26.1.2 二次函数y =ax 2的图象与性质(第二课时)一.预习检测案:画二次函数y =x 2的图象.【提醒:绘图象的一般步骤:①列表;②描点;③连线(用腻滑曲线).】由图象可得二次函数y =x 2的性质: 1.二次函数y =x 2是一条曲线,把这条曲线叫做______________.2.二次函数y =x 2中,二次函数a =_______,抛物线y =x 2的图象启齿__________. 3.自变量x 的取值规模是____________.4.不雅察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的_________. 是以,抛物线与对称轴的交点叫做抛物线的_____________. 6.抛物线y =x 2有____________点(填“最高”或“最低”) .二.合作探讨案:例1 在统一向角坐标系中,画出函数y =12x 2,y =x 2,y =2x 2的图象.y =x 2的图象刚画过,再把它画出来.归纳:抛物线y =12x 2,y =x 2,y =2x 2的二次项系数a_______0;极点都是__________;对称轴是_________;极点是抛物线的最_________点(填“高”或“低”) .x … -3 -2 -1 0 1 2 3 … y =x 2……x … -4 -3 -2 -1 0 1 2 3 4 … y =12x 2 ……x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y =2x 2……例2 请在统一向角坐标系中画出函数y =-x 2,y =-12x 2, y =-2x 2的图象.归纳:抛物线y =-x 2,y =-12x 2, y =-2x 2的二次项系数a______0,极点都是________, 对称轴是___________,极点是抛物线的最________点(填“高”或“低”) . 总结:抛物线y =ax 2的性质1.抛物线y =x 2与y =-x 2关于________对称,是以,抛物线y =ax 2与y =-ax 2关于_______ 对称,启齿大小_______________.2.当a >0时,a 越大,抛物线的启齿越___________; 当a <0时,|a | 越大,抛物线的启齿越_________;是以,|a | 越大,抛物线的启齿越________,反之,|a | 越小,抛物线的启齿越________.三.达标测评案:1.填表:2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象启齿向下,则m____________. 4.如图,① y =ax 2② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a.b.c.d 的大小,用“>”衔接. ___________________________________x … -4 -3 -2 -1 0 1 2 3 4 … y =-x 2… … y=-12x 2… … y =-2x 2 ……图象(草图) 启齿偏向 极点 对称轴 有最高或最低点 最值a >0当x =____时,y 有最___值,是______. a <0当x =____时,y 有最____值,是______.启齿偏向极点 对称轴 有最高或低点 最值y =23x 2当x =____时,y 有最_____值,是______. y =-8x 25.函数y =37x 2的图象启齿向_______,极点是__________,对称轴是________,当x =___________时,有最_________值是_________. 6.二次函数y =mx22 m 有最低点,则m =___________.7.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 规模为___________.8.写出一个过点(1,2)的函数表达式_________________.26.1.3二次函数y =ax 2+k 的图象与性质(第三课时)一.预习检测案:在统一向角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表描点并绘图1.不雅察图像得:2.可以发明,把抛物线y =x 2向______平移______个单位,就得到抛物线y =x 2+1;把抛物线y =x 2向_______平移______个单位,就得到抛物线y =x 2-1. 3.抛物线y =x 2,y =x 2-1与y =x 2+1的外形_____________.二.合作探讨案:1. y =ax 2y =ax 2+k启齿偏向 极点 对称轴有最高(低)点最值a >0时,当x =______时,y 有最____值为________; a <0时,当x =______时,y 有最____值为________.增减性2.抛物线y =2x 2向上平移x … -3 -2 -1 0 1 2 3 … y =x 2+1 … … y =x 2-1……启齿偏向极点 对称轴 有最高(低)点 最值3个单位,就得到抛物线__________________;抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.是以,把抛物线y =ax 2向上平移k(k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m(m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是经由过程平移得到的,从而它们的外形__________, 由此可得二次函数y =ax 2与y =ax 2+k 的外形__________________. 三.达标测评案:1.填表函数 草图 启齿偏向 极点对称轴 最值 对称轴右侧的增减性y =3x 2y =-3x 2+1 y =-4x 2-52.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________. 3.写出一个极点坐标为(0,-3),启齿偏向与抛物线y =-x 2偏向相反,外形雷同的抛物线解析式____. 4.抛物线y =-13x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.5.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.26.1.3二次函数y =a(x-h)2的图象与性质(第四课时)教授教养目的:会画二次函数y =a(x-h)2的图象,控制二次函数y =a(x-h)2的性质,并要会灵巧运用.一.预习检测案:画出二次函数y =-12(x +1)2,y -12(x -1)2的图象,并斟酌它们的启齿偏向.对称轴.极点以及最值.增减性.x … -4 -3 -2 -1 0 1 2 3 4 … y =-12(x +1)2… … y =-12(x -1)2……先列表:描点并绘图. 请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12(x +1)2 ,y =-12x 2,y =-12(x -1)2的外形大小____________.②把抛物线y =-12x 2向左平移_______个单位,就得到抛物线y =-12(x +1)2 ;把抛物线y =-12x 2向右平移_______个单位,就得到抛物线y =-12(x +1)2 .总结常识点:函数启齿偏向极点对称轴 最值增减性y =-12(x +1)2y =-12(x -1)21. y=ax2y=ax2+k y=a (x-h)2启齿偏向极点对称轴最值增减性(对称轴左侧)3.对于二次函数的图象,只要|a|相等,则它们的外形_________,只是_________不同.三.达标测评案:1.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.2.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.3.将抛物线y=-13(x-1)2向右平移2个单位后,得到的抛物线解析式为____________.4.抛物线y=2 (x+3)2的启齿___________;极点坐标为____________;对称轴是_________; 当x>-3时,y______________;当x=-3时,y有_______值是_________.26.1.3二次函数y=a(x-h)2+k的图象与性质(第五课时)一.预习检测案:画出函数y=-12(x+1)2-1的图象,指出它的启齿偏向.对称轴及极点.最值.增减性.列表二.合作探讨案2.把抛物线y=-12x2向____平移_____个单位,再向____平移_______个单位,就得到抛物线y=-12(x+1)2-1.总结常识点: 1.填表(a>0)函数关系式图象(草图) 启齿偏向极点对称轴最值对称轴右侧的增减性y=1 2 x2y=-5 (x+3)2 y=3 (x-3)2x …-4 -3 -2 -1 0 1 2 …y=-12(x+1)2-1 ……函数启齿偏向极点对称轴最值增减性y=-12(x+1)2-12.用配办法求抛物线y=ax2+bx+c(a≠0)的极点与对称轴.二.教室探讨案:(a>0)y=ax2y=ax2+k y=a(x-h)2y=a(x-h)2+k y=ax2+bx+c 启齿偏向极点对称轴最值增减性(对称轴左侧)三.常识点运用例1 求y=x2-2x-3与x轴交点坐标.例2 求抛物线y=x2-2x-3与y轴交点坐标.3.a.b.c以及△=b2-4ac对图象的影响.(1)a决议:启齿偏向.外形 (2)c决议与y轴的交点为(0,c) (3)a与-b2a配合决议b的正负性 (4)△=b2-4ac⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与xxx例3 如图,由图可得:a_______0,b_______0,c_______0,△______0例4 已知二次函数y=x2+kx+9.①当k为何值时,对称轴为y轴;②当k为何值时,抛物线与x轴有两个交点;③当k为何值时,抛物线与x轴只有一个交点.四.达标测评案:1. 用极点坐标公式和配办法求二次函数y=12x2-2-1的极点坐标.2.二次函数y=2x2+bx+c的极点坐标是(1,-2),则b=________,c=_________.3.已知二次函数y=-2x2-8x-6,当________时,y随x的增大而增大;当x=________时,y 有______值是_____.4.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.5.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.6.抛物线y=4x2-2x+m的极点在x轴上,则m=__________.26.1.5 用待定系数法求二次函数的解析式(第七课时)3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(个中x1.x2是抛物线与x轴交点的横坐标)现实问题中求二次函数解析式:例4 要建筑一个圆形喷水池,在池中间竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中间的程度距离为1m处达到最高,高度为3m,水柱落地处离池中间3m,水管应多长?三.达标检测案:1.已知二次函数的图象过(0,1).(2,4).(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的极点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y=ax2+bx+c的图像与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的极点坐标.4.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开端沿边AB向B以2mm/s 的速度移动,动点Q从点B开端沿边BC向C以4mm/s的速度移动,假如P.Q分离从A.B同时动身,那么△PBQ的面积S随动身时光t若何变化?写出函数关系式及t的取值规模.26.2 用函数的不雅点看一元二次方程(第八课时)教授教养目的:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax 2+bx +c =0根的判别式△=b 2-4ac 断定二次函数y =ax 2+bx +c 与x 轴的公共点的个数. 一.预习检测案:1.问题:如图,以40m/s 的速度将小球沿与地面成30°角的偏向击出时,球的飞翔路线将是一条抛物线.假如不斟酌空气阻力,球的飞翔高度h(单位:m)与飞翔时光t(单位:s)之间具有关系h =20t -5t 2.斟酌以下问题:(1)球的飞翔高度可否达到15m ?如能,须要若干飞翔时光? (2)球的飞翔高度可否达到20m ?如能,须要若干飞翔时光? (3)球的飞翔高度可否达到20.5m ?为什么? (4)球从飞出到落地要用若干时光?2.不雅察图象:(1)二次函数y =x 2+x -2的图象与x 轴有____个交点,则一元二次方程x 2+x -2=0的根的判别式△=_______0;(2)二次函数y =x 2-6x +9的图像与x 轴有_ __个交点,则一元二次方程x 2-6x +9=0的根的判别式△=_____0;(3)二次函数y =x 2-x +1的图象与x 轴________公共点,则一元二次方程x 2-x +1=0的根的判别式△_______0.二.合作探讨案:1.已知二次函数y =-x 2+4x 的函数值为3,求自变量x 的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x 2+4x =3又可以看作已知二次函数__________________的函数值为3的自变量x 的值.一般地:已知二次函数y =ax 2+bx +c 的函数值为m,求自变量x 的值,可以看作解一元二次方程 ax 2+bx +c =m.反之,解一元二次方程ax 2+bx +c =m 又可以看作已知二次函数y =ax 2+bx +c 的值为m 的自变量x 的值.2.二次函数y =ax 2+bx +c 与x 轴的地位关系:一元二次方程ax 2+bx +c =0的根的判别式△=b 2-4ac.(1)当△=b 2-4ac >0时 抛物线y =ax 2+bx +c 与x 轴有两个交点; (2)当△=b 2-4ac =0时 抛物线y =ax 2+bx +c 与x 轴只有一个交点; (3)当△=b 2-4ac <0时 抛物线y =ax 2+bx +c 与x 轴没有公共点.QPCBA用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是若干4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形何订价才能使利润最大?剖析:调剂价钱包括涨价和降价两种情形,用如何的等量关系呢?解:(1)设每件涨价x元,则每礼拜少卖_________件,现实卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每礼拜多卖_________件,现实卖出__________件.四.达标测评案:1.某种商品每件的进价为30元,在某段时光内若以每件x元出售,可卖出(100-x)件,应若何订价才能使利润最大?2.蔬菜基地栽种某种蔬菜,由市场行情剖析知,1月份至6月份这种蔬菜的上市时光x(月份)与市场售价P(元/千克)的关系如下表:上市时光x/(月份)1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这种蔬菜每千克的栽种成本y(元/千克)与上市时光x(月份)知足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时光x(月份)的一次函数关系式;(2)若图中抛物线过A.B.C三点,写出抛物线对应的函数关系式;(3)由以上信息剖析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为若干?(收益=市场售价-栽种成本)3. 某宾馆客房部有60个房间供旅客栖身,当每个房间的订价为天天200元时,房间可以住满.当每个房间天天的订价每增长10元时,就会有一个房间空间.对有旅客入住的房间,宾馆需对每个房间天天支出20元的各类费用.设每个房间天天的订价增长x元,求:(1)房间天天入住量y(间)关于x(元)的函数关系式;(2)该宾馆天天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部天天的利润w(元)关于x(元)的函数关系式,当每个房间的订价为若干元时,w有最大值?最大值是若干?。
《二次函数》学案2
《二次函数》学案一、学习目标:1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3. 能够利用尝试求值的方法解决实际问题.二、教学重难点:1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验. 2.能够表示简单变量之间的二次函数关系.三、导学问题:1、研讨问题1:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(独立思考)①说一说问题中有哪些变量?其中哪些是自变量?哪些因变量?②设果园增种x棵橙子树,则果园共有棵橙子树,这时平均每棵树结个橙子y个,请写出y与X之间的关系式:③如果果园橙子的总产量为y= 。
化简得:y=2、研讨问题2银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量。
在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的。
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期y(元)的表达式(不考储存转存。
如果存款额是100元,那么请你写出两年后的本息和虑利息税)(合作交流)①本金:;②一年到期后,利息:;本息和;③两年到期后,本金;利息:;本息和;④请写出y与x之间的关系式:试试身手:请用适当的函数解析式表示下列问题中的两个变量 y 与 x 之间的关系:①某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y= 即:y=②用总长为60 m的篱笆围成矩形场地,矩形面积y (m2)与矩形一边长x(m)之间是函数关系y= 即:y=③设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是210元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).3、研讨问题3:上面三个问题中的函数解析式具有哪些共同的特征?说一说二次函数的定义及一般形式呢?一般地形如的函数叫做x的二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数复习学案教学目标:1、理解二次函数的概念,能结合二次函数的图象掌握二次函数的性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象;2、会用待定系数法求二次函数的解析式,能较熟练地利用函数的性质解决函数与方程、不等式以及几何图形等知识相结合的综合题;3、掌握二次函数模型的建立,能运用二次函数的知识解决实际问题。
教学难点和重点:重点:1、求二次函数的顶点、对称轴,根据图象概括二次函数图象的性质。
2、用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
3、利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。
难点:1、二次函数图象的平移。
2、会运用二次函数知识解决有关综合问题。
学习方法:在理解的基础上掌握二次函数的知识,多思考,灵活运用所学知识。
教学过程:二次函数复习提纲知识要点梳理知识点一:二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 知识点二:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .4.用待定系数法求二次函数的解析式(1)一般式:.已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:.(由此得根与系数的关系!)5。
二次函数图象的平移规律任意抛物线y a x h k =-+()2可以由抛物线y ax =2经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
知识点三:二次函数与一元二次方程的关系1.函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.2. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解知识点四:利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.方法指导: 1.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相同两点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失。
2.直线与抛物线的交点(1)轴与抛物线得交点为(0,).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图象与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切;③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故例1、已知抛物线y 1=2x 2-8x +k +8和直线y 2=mx +1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x 取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y 2=mx +1上,所以有4m =3m +1,解得m =1所以y 1=x +1,P(3,4). 因为点P(3,4)在抛物线y 1=2x 2-8x +k +8上,所以有 4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10 (2)依题意,得⎩⎨⎧y =x +1y =2x 2-8x +10解这个方程组,得⎩⎨⎧x 1=3y 1=4,⎩⎨⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).例2、如图,抛物线y =ax 2+bx +c 过点A(-1,0),且经过直线y =x -3与坐标轴的两个交点B 、C 。
(1)求抛物线的解析式; (2)求抛物线的顶点坐标,(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标。
课堂小结:1.归纳二次函数三种解析式的求法:一般式、顶点式、交点式。
2.强调二次函数与方程、不等式、三角形,一次函数等知识综合的综合题解 题思路。
3. 常见的数学思想方法:方程思想、转化思想,化归思想、待定系数法、数形结合法等等。
课堂练习:一、填空。
1. 如果一条抛物线的形状与y =-13x 2+2的形状相同,且顶点坐标是(4,-2),它的解析式是_____________。
2.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且过(3,0),则a +b +c =____________。
二、选择。
3.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是( )A.a>0,bc>0 B. a<0,bc<0 C. a>O,bc<O D. a<0,bc>04.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为( ) A.y=-x2+2x+3 B. y=x2-2x-3C.y=-x2-2x+3 D. y=-x2-2x-35.若二次函数y=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( )A.a+c B. a-c C.-c D. c6.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是( )A.4个 B.3个 C. 2个 D.1个7. 在同一坐标系中一次函数和二次函数的图象可能为()三、解答题。
8. 已知抛物线y=x2-(2m-1)x+m2-m-2。
(1)证明抛物线与x轴有两个不相同的交点,(2)分别求出抛物线与x轴交点A、B的横坐标x A、x B,以及与y轴的交点的纵坐标yc(用含m的代数式表示)(3)设△ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。
课后作业:1.二次函数y=-x2+6x-5,当时,,且随的增大而减小。
2.抛物线的顶点坐标在第三象限,则的值为()A. B. C. D..3.抛物线y=x2-2x+3的对称轴是直线()A.x =2 B.x =-2 C.x =-1 D.x =14.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3 B.5 C.-3和5 D.3和-55.抛物线y=x2-x的顶点坐标是()6.二次函数的图象,如图1-2-40所示,根据图象可得a、b、c与0的大小关系是()A.a>0,b<0,c<0 B.a>0,b>0,c>0C.a<0,b<0,c<0 D.a<0,b>0,c<07.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5 t-4.9 t2(t的单位s;h中的单位:m)可以描述他跳跃时重心高度的变化.如图,则他起跳后到重心最高时所用的时间是()A.0.71s B.0.70s C.0.63s D.0.36s8.已知抛物线的解析式为y=-(x—2)2+l,则抛物线的顶点坐标是()A.(-2,1) B.(2,l) C.(2,-1) D.(1,2)9.若二次函数y=x2-x与y=-x2+k的图象的顶点重合,则下列结论不正确的是() A.这两个函数图象有相同的对称轴 B.这两个函数图象的开口方向相反C.方程-x2+k=0没有实数根 D.二次函数y=-x2+k的最大值为10.抛物线y=x2 +2x-3与x轴的交点的个数有()A.0个 B.1个 C.2个 D.3个11.抛物线y=(x—l)2 +2的对称轴是()A.直线x=-1 B.直线x=1 C.直线x=2 D.直线x=212.已知二次函数的图象如图所示,则在“① a<0,②b>0,③c< 0,④b2-4ac>0”中,正确的判断是()A、①②③④B、④C、①②③D、①④13.已知二次函数(a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A.l个 B.2个 C.3个 D.4个(第14题图)14.如图,抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有()A.最大值1 B.最小值-3 C.最大值-3 D.最小值115.用列表法画二次函数的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A.506 B.380 C.274 D.18216.将二次函数y=x2-4x+ 6化为 y=(x—h)2+k的形式:y=___________17.若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c=________(只要求写一个).18.抛物线y=(x-1)2+3的顶点坐标是____________.19.二次函数y=x2-2x-3与x轴两交点之间的距离为_________.20. 已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。