2019秋九年级数学上册 8 微专题 利用相似的性质解决三角形与矩形、正方形的综合问题习题讲评课件 冀教版

合集下载

[推荐学习]2018-2019学年九年级数学上册-第四章-图形的相似《相似三角形的性质及应用》知识讲

[推荐学习]2018-2019学年九年级数学上册-第四章-图形的相似《相似三角形的性质及应用》知识讲

[推荐学习]2018-2019学年九年级数学上册-第四章-图形的相似《相似三角形的性质及应用》知识讲相似三角形的性质及应用--知识讲解【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】要点一、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比.∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方.∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.【典型例题】类型一、相似三角形的应用1. 在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上。

已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是 1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()A.24mB.22mC.20mD.18m【答案】 A.【解析】过点D做DN⊥CD交光线AE于点N,则1.60.82DN DE ==,DN=14.4,又∵AM:MN=1.6:1,∴AM=1.6MN=1.6BD=1.6×6=9.6(m).∴塔高AB=AM+DN=14.4+9.6=24(m),所以选A.【总结升华】解决本题的难点是把塔高的影长分为在平地和斜坡上两部分;关键是利用平地和斜坡上的物高与影长的比得到相应的部分塔高的长度. 举一反三:【变式】已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m 宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m ,窗口高AB=1.8m,求窗口底边离地面的高度BC.【答案】作EF⊥DC交AD于F.∵AD∥BE,∴又∵,∴,∴.∵AB∥EF,AD∥BE,∴四边形ABEF是平行四边形,∴EF=AB=1.8m.∴m.2. 如图,直立在B处的标杆AB=2.4m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8m,FB=2.5m,人高EF=1.5m,求树高CD.【答案与解析】解:过E 作EH⊥CD 交CD 于H 点,交AB 于点G ,如下图所示:由已知得,EF⊥FD,AB⊥FD,CD⊥FD, ∵EH⊥CD,EH⊥AB, ∴四边形EFDH 为矩形,∴EF=GB=DH=1.5米,EG=FB=2.5米,GH=BD=8米, ∴AG=AB﹣GB=2.4﹣1.5=0.9米, ∵EH⊥CD,EH⊥AB, ∴AG∥CH, ∴△AEG∽△CEH,∴EHEG CH AG, 解得:CH=3.78米,∴DC=CH+DH=3.78+1.5=5.28米. 答:故树高DC 为5.2米.【总结升华】本题考查了相似三角形在实际问题中的运用,关键是正确作出辅助线,构造出相似三角形.类型二、相似三角形的性质3.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于().A. 2:5B.14:25C.16:25 D. 4:21【思路点拨】相似三角形的面积比等于相似比的平方,但是一定要注意两个三角形是否相似. 【答案】B.【解析】由已知可得AB=10,AD=BD=5,设AE=BE=x, 则CE=8-x,在Rt△BCE中,x2-(8-x)2=62,x=,由△ADE∽△ACB得,S△BCE:S△BDE=(64-25-25):25=14:25,所以选B.【总结升华】关键是要确定哪两个是相似三角形.举一反三【变式】在锐角△ABC 中,AD,CE 分别为BC,AB 边上的高,△ABC 和△BDE 的面积分别等于18和2,DE=2,求AC 边上的高.【答案】过点B 做BF⊥AC,垂足为点F ,∵AD,CE 分别为BC,AB 边上的高, ∴∠ADB=∠CEB=90°, 又∵∠B=∠B, ∴Rt△ADB∽Rt△CEB, ∴,BD AB BD BEBE CB AB CB==即,且∠B=∠B, ∴△EBD∽△CBA,∴221189BED BCADE AC S S⎛⎫=== ⎪⎝⎭△△,∴13DE AC =,又∵DE=2, ∴AC=6, ∴11862ABC AC BF S =⋅=∴△,BF=.4. 如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015= .【思路点拨】本题考查相似三角形的判定与性质以及正方形的性质,根据已知条件得到A1B1=3,AA1=2,同理:A2A3=2(3)2,A3A4=2(3)3,从而找出规律答案即可求出.【答案与解析】2(3)2014解:∵四边形ABCB1是正方形,∴AB=AB1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=3,AA1=2,∴A1B2=A1B1=3,∴A1A2=23,同理:A2A3=2(3)2,A3A4=2(3)3,…∴An An+1=2(3)n,∴A2014A2015=2(3)2014,故答案为:2(3)2014.【总结升华】本题是相似性质的运用与找规律相结合的一道题,要注意从特殊到一般形式的变换规律.举一反三:【变式】如图,已知中,,,,,点在上, (与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.【答案】(1)∵,.,∽....(2)∵的周长与四边形的周长相等.,=6.,∽..,, .。

北师大版九年级数学上册 相似三角形解答题培优专题(含答案)

北师大版九年级数学上册  相似三角形解答题培优专题(含答案)

2019-2020相似三角形解答题培优专题(含答案)一、解答题1.如图,在Rt ABC ∆中,90B ︒∠=,6cm AB =,8cm BC =,点P 由点A 出发沿AB 方向向终点B 以每秒1cm 的速度匀速移动,点Q 由点B 出发沿BC 方向向终点C 以每秒2cm 的速度匀速移动,速度为2cm /s .如果动点同时从点A ,B 出发,当点P 或点Q 到达终点时运动停止.则当运动几秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似?2.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .3.如图1,在Rt ABC 中,90,4,2B AB BC ∠︒===,点,D E 分别是边,BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.1()问题发现①当0α=o 时,AE BD = ;②当180α=o 时,AEBD= . 2()拓展探究 试判断:当0360α︒≤︒<时,AEBD的大小有无变化?请仅就图2的情形给出证明. 3()问题解决 CDE △绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.4.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时AD CP的值.5.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)6.在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t 的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm. (2)当△PBQ 的面积等于3 时,求t 的值.(3) (如图2),若E 为边CD 中点,连结EQ 、AQ.当以A 、B 、Q 为顶点的三角形与△EQC 相似时,直接写出满足条件的t 的所有值.7.如图l ,在ABCD 中,点M ,N 分别在边AD 和BC 上,点E ,F 在对角线BD 上,且AM CN =,12BE DF BD =<.(1)求证:四边形MENF 是平行四边形: (2)若6AB =,10BC =,8BD =.①当四边形MENF 是菱形时,AM 的长为______; ②当四边形MENF 是正方形时,BE 的长为______; ③当四边形MENF 是矩形且6AM =时,BE 的长为______.8.已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.9.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果AFBF=DFAD.求证:EF=EP.10.如图,在△ C中,过点C作CD,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若, C,,求AB的长.11.已知:如图,点A .F ,E .C 在同一直线上,AB ∥DC ,AB=CD ,∠B=∠D . (1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG=5,求AB 的长.12.如图,直线 AB 与坐标轴交与点(0,6),(8,0)A B , 动点P 沿路线O B A →→运动.(1)求直线AB 的表达式;(2)当点P 在OB 上,使得AP 平分OAB ∠时,求此时点P 的坐标;13.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2) 求证:21=2EG AF GF ⋅; (3)若AG=6,EG=25,求BE 的长.14.如图,在△ABC 中.AC=BC=5.AB=6.CD 是AB 边中线.点P 从点C 出发,以每秒2.5个单位长度的速度沿C-D-C 运动.在点P 出发的同时,点Q 也从点C 出发,以每秒2个单位长度的速度沿边CA 向点A 运动.当一个点停止运动时,另一个点也随之停止,设点P 运动的时间为t 秒.(1)用含t 的代数式表示CP 、CQ 的长度. (2)用含t 的代数式表示△CPQ 的面积.(3)当△CPQ 与△CAD 相似时,直接写出t 的取值范围.15.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B.C ,且AB=8,DC=6,BC=14,BC 上是否存在点P 使△ABP 与△DCP 相似?若有,有几个?并求出此时BP 的长,若没有,请说明理由.16.如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB ,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.17.如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF ⊥AE 于 F .(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点 P 在射线 AD 上运动时,设 PA =x ,是否存在实数 x ,使以 P ,F ,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.18.已知:如图,△ABC 是等边三角形,点D 、E 分别在BC ,AC 且BD =CE ,AD 、BE 相交于点M ,求证:(1)△AME ∽△BAE ;(2)BD 2=AD×DM . 19.△ABC 中,AB =AC =5,BC =6,过AB 上一点D 作DE‖ C ,D ‖ C 分别交AC 、BC 于点E 和F(1)如图1,证明:△ADE∽△DBF;(2)如图1,若四边形DECF是菱形,求DE的长;(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.20.如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.(1)求证:△EAB∽△ABC;(2)若AD=2,求AB的长;(3)在(2)的条件下,求DF的长.21.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB =12,DE =1,BM =5,求DN 的长.22.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,求线段BE 的长.23.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==, 证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD 的面积为 .24.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.25.如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB向点B以2m/s的速度移动,点Q从点B开始沿BC向点C以4m/s的速度移动,如果P,Q分别从AB,BC同时出发,经过几秒△PBQ与△ABC相似?26.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?27.如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.28.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?29.如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点D作DE∥BC交AC于E,过E作EF∥AB交BC 于F,连结DF.(1)若点D是AB的中点,证明:四边形DFEA是平行四边形;(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.30.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.31.(1)观察发现:如图1,在Rt△ABC中,∠B=90°,点D在边AB上,过D作DE∥BC交AC于E,AB=5,AD =3,AE=4.填空:①△ABC与△ADE是否相似?(直接回答);②AC=;DE=.(2)拓展探究:将△ADE绕顶点A旋转到图2所示的位置,猜想△ADB与△AEC是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将△ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.32.如图1,一次函数y=12x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△P AC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.33.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=45,∠BAC=45°.(1)直接写出点A的坐标________点C的坐标________;(2)若反比例函数y=kx的图象经过点B,求k的值;(3)如图过点B作BD⊥y轴于点D;在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,直接写出满足条件的点P的坐标;若不存在,请说明理由.34.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 2,CE=4,则DE的长为______.35.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.参考答案1.当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似 【解析】 【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似;则PB =(6−t )cm ,BQ =2tcm ,分两种情况:①当PB BQAB BC=时;②当BP BQBC BA=时;分别解方程即可得出结果. 【详解】解:设(04)t t <…秒后,以点Q ,B ,P 为顶点的三角形与ABC ∆相似,则(6)cm PB t =-,2cm BQ t =.∵90B ︒∠=,∴分两种情况讨论:①当PBQ ABC ∆∆∽时,PB BQ AB BC =,即6268t t-=,解得 2.4t =; ②当QBP ABC ∆∆∽时,BP BQBC BA=,即6286t t -=,解得1811t =. 综上所述,当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.2.(1)①四边形CEGF 是正方形;②2;(2)线段AG 与BE 之间的数量关系为AG=2BE ;(3)35 【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG2CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得; (3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC 2a =,由AG GHAC AH=得2AH a 3=、1DH a 3=、10CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE=,GE ∥AB , ∴2AG CGBE CE==, 故答案为:2; (2)连接CG ,由旋转性质知∠BCE=∠ C =α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB=, ∴△ACG ∽△BCE ,∴2AG CABE CB==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GHAC AH=得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,CH=22CD DH+=103a,∴由AG AHAC CH=得2632103aaa=,解得:a=35,即BC=35,故答案为:35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(1)①5;②5;(2) 5;(3) 35 5【解析】【分析】(1)①根据勾股定理和三角形中位线的性质,即可得到答案;②根据平行线的性质即可得到答案;(2)根据相似三角形的性质和判定即可得到答案;(3) 根据勾股定理即可得到答案.【详解】解:()1①当0α︒=时,Rt ABC Q V 中,90B ∠︒=,22222425AC AB BC ∴++===,点,D E 分别是边,BC AC 的中点,115122AE AC BD BC ∴==,==,5AEBD∴=. ②如图1﹣1中,当180α︒=时, 可得//AB DE ,AC BCAE BD =Q , 5AE ACBD BC∴==. 故答案为:55①,②. 2()如图2,当0360α︒≤︒<时,AEBD的大小没有变化, ECD ACB ∠∠Q =, ECA DCB ∴∠∠=,又5EC ACDC BC==Q, ECA DCB ∴V V ∽,5AE ECED DC∴==. ()3①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE V 中,5,2CE BC ==,22541BE EC BC ∴--===,5AE AB BE ∴+==,5AEBD=Q, 555BD ∴==.②如图3﹣2中,当点E 在AB 线段上时,易知1,413BE AE -===, 5AEBD=Q, 355BD ∴=, 综上所述,满足条件的BD 的长为355. 【点睛】本题考查勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定,解题的关键熟练掌握勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定. 4.(1)1,60︒(2)45°(3)22-,22+ 【解析】 【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题. (2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆, PC BD ∴=,ACP ABD ∠=∠, AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=, PAC DAB ∴∠=∠,2AB ADAC AP ==, DABPAC ∴∆∆,PCA DBA ∴∠=∠,2BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45∴∠=∠=,EFC ABC︒PAO︒∠=,45∴∠=∠,PAO OFH∠=∠,POA FOH∴∠=∠,H APO=,90∠=,EA ECAPC︒∴==,PE EA ECEPA EAP BAH∴∠=∠=∠,∴∠=∠,H BAH∴=,BH BA∠=∠=,ADP BDC︒45∴∠=,90ADB︒∴⊥,BD AHDBA DBC︒∴∠=∠=,22.5ADB ACB︒∠=∠=,90∴A,D,C,B四点共圆,DCA ABD︒∠=∠=,DAC DBC︒∠=∠=,22.522.5∴∠=∠=,22.5DAC DCA︒DA DC ∴=,设=AD a ,则DC AD a ==,22PD a =, 2222ADa CPa a∴==-+c .如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,22PD a =,22PC a a ∴=-, 2222ADa PCa a∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(1)2;(2)此过程中AE BD 的大小有变化,3AEBD=(3)2 osβ 【解析】 【分析】1)如图1,过E 作EF ⊥AB 于F ,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD 是矩形,得到EF=BD ,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论; (2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论; (3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即BC DCAC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论. 【详解】解:(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, 故填:2,(2)此过程中AEBD的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD , ∴△ACE ∽△BCD ,∴AE ACBD BC=, 在△ABC 中,如图2,过点B 作BF ⊥AC 于点F ,则AC=2CF ,在Rt △BCF 中,3cos302CF BC BC ︒=⋅=, ∴AC=3BC .∴3AE ACBD BC==; (3)由题意知,△ABC 和△EDC 都是等腰三角形,且∠ACB=∠ECD=β, ∴∠ACB=∠CAB=∠ECD=∠CED=β, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD ,∴△ACE∽△BCD,∴AE AC BD BC=,在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,在Rt△BCF中,C = C• osβ,∴ C=2 C osβ.∴AE ACBD BC==2 osβ,故答案为2 osβ.【点睛】本题考查了相似形的综合题、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,属于中考常考题型.6.(1)PB=4-t;QB=2t;CQ=8-2t;(2)1或3;(3)或或.【解析】【分析】(1)根据题意写出结果即可;(2)利用三角形的面积公式列方程求解即可;(3)根据相似三角形的性质,分两种情况列式求解即可.【详解】(1)由题意得,①PB=4-t;②QB=2t;③CQ=8-2t;(2)∵△PBQ的面积等于3,∴2t(4-t)=3×2,解之得,t=1或3;(3)当△ABQ~△QCE时,,∴,解之得,x1=,x2=;当△ABQ~△ECQE时,,∴,解之得,t=.∴满足条件的t的所有值为或或.【点睛】本题考查了列代数式,一元二次方程的应用,相似三角形的性质及分类讨论的数学思想,熟练掌握分类讨论的数学思想是解答本题的关键. 相似三角形的性质:如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.7.(1)证明见解析,(2)①5.②1.③41045 .【解析】【分析】(1)如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .利用对角线互相平分的四边形是平行四边形证明即可.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.利用平行线等分线段定理即可解决问题.②在①的基础上,OE OM =时,四边形MENF 是正方形.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .当OE OF OM ON ===时,四边形MENF 是矩形. 【详解】(1)证明:如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .四边形ABCD 是平行四边形, AC ∴与BD 互相平分且交于点O ,//AMCN ,AM CN =,∴四边形ANCM 是平行四边形,AC ∴与MN 互相平分且交于点O ,OM ON ∴=,OB OD =,BE DF =,OE OF ∴=,∴四边形MENF 是平行四边形.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.6AB CD ==,10AD BC ==,8BD =, 222AD AB BD ∴=+,90ABD ∴∠=︒,90MOF ABD ∴∠=∠=︒,//OM AB ∴, OB OD =, 5AM DM ∴==.②在①的基础上,满足OM OE =时,四边形MENF 是正方形, 易知132OM AB ==, 3OE OF ∴==, 8BD =,1·(86)12BE DF ∴==-=.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .//MH AB ,:::MH AB DM DA DH DB ∴== :64:10:8MH DH ∴==,125MH ∴=,165DH =, 164455OH ∴=-=, 224105OM MH OH ∴=+=, 当OE OF OM ON ===时,四边形MENF 是矩形,1810410(8)4255BE DF ∴==-=-. 故答案为:5,1,41045-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,矩形的判定,菱形的判定,正方形的判定,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(1)y =34x +94;(2)D 点位置见解析,D (134,0);(3)符合要求的m 的值为12536或259.【解析】 【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34 AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2= C• D.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴ P• D= • Q,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴ P• = D• Q,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用正方形的性质得AB=AD ,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE ≌△DAF ,则BE=AF ,然后利用等线段代换可得到结论;(2)利用AF DF BF AD =和AF=BE 得到BE BFDF AD=,则可判定Rt △BEF ∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP .【详解】(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°, ∵BE ⊥AP ,DF ⊥AP , ∴∠BEA=∠AFD=90°, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 在△ABE 和△DAF 中12BEA AFDAB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF , ∴BE=AF ,∴EF=AE ﹣AF=AE ﹣BE ;(2)如图,∵AF DFBF AD=, 而AF=BE ,∴BE DFBF AD =, ∴BE BFDF AD=, ∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.10.证明见解析;.【解析】【分析】由E是AC的中点知 E CE,由CD知 E CDE,据此根据“ S”即可证△ E ≌△CED,从而得CD,结合CD即可得证;证△∽△ CD得,据此求得CD,由CD及可得答案.C CD【详解】E是AC的中点,E CE , CD , E CDE , 在△ E 和△CED 中, ,△ E ≌△CED S , CD ,又 CD ,即 CD , 四边形AFCD 是平行四边形; CD , △ ∽△ CD ,CCD,即CD,解得:CD,四边形AFCD 是平行四边形, CD,. 【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.11.(1)证明见解析;(2)AB=10.【解析】分析:(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.详解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中===,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.点睛:此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.12.(1)y=34x+6;(2)P(3,0).【解析】【分析】1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10,进而判断出△AOP∽△CBP,求出OP,即可得出结论;方法2、先判断出OP=PM,设OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,进而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出结论.【详解】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴680bk b⎧⎨+⎩==,∴346kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=34-x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴OP OA=BP BC=35,∴OP3=OB8,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB-OP=8-m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB-AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8-m)2,∴m=3,∴P(3,0).故答案为:(1)y=34x+6;(2)P(3,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的定义,相似三角形的判定和性质,正确作出辅助线构造出相似三角形是解题的关键.13.(1)证明见解析;(2)证明见解析;(3)BE的长为125 5.【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明D 2= O• ,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.14.(1)当0<t≤85时,CP=2.5t,CQ=2t;当8552t<≤时,CP=8-2.5t,CQ=2t.(2)当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=232t;当8552t<≤时,S△CPQ=12•PC•sin∠ CD•CQ=1 2×(8-2.5t)×35×2t=232425t t-+.(3)0<t≤85或80t41=s【解析】【分析】(1)分两种情形:当0<t≤85时,当85<t52≤时,分别求解即可.(2)分两种情形:当0<t≤85时,当85<t≤52时,根据S△CPQ=12•PC•sin∠ CD•CQ分别求解即可.(3)分两种情形:当0<t≤85,可以证明△QCP∽△DCA,当85<t52≤,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD=22AC AD-=2253-=4,当0<t≤85时,CP=2.5t,CQ=2t,当85t52<≤时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD=ADAC=35,∴当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=23t2当85t52<≤时,S△CPQ=12•PC•sin∠ CD•CQ=12×(8-2.5t)×35×2t=2324t t25-+.(3)①当0<t≤85时,∵CP=2.5t,CQ=2t,∴CQCP=45,∵CDCA=45,∴CQ CD CP CA=,∵∠PCQ=∠ACD,∴△QCP ∽△DCA ,∴0<t≤85时,△QCP ∽△DCA , ②当85t 52<≤时,当∠QPC=90°时,△QPC ∽△ADC , ∴CP CQ CD CA =, ∴8 2.5t 2t 45-=, 解得:80t 41=, 综上所述,满足条件的t 的值为:0<t≤85或80t 41=s 时,△QCP ∽△DCA . 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【解析】 【分析】设BP=x ,表示出PC=14-x ,然后分BP 与CP 是对应边,BP 与DC 是对应边两种情况,利用相似三角形对应边成比例列式求解即可. 【详解】设BP=x ,则PC=14−x ,BP 与CP 是对应边时,=BP ABCP DC, 即8146x x =-,解得x=8,BP 与DC 是对应边时,=BP ABDC CP, 即8=614x x-, 解得x1=6,x2=8,所以,BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【点睛】此题考查相似三角形的判定,解题关键在于根据相似三角形的性质对应边成比例列出方程. 16.(1)DPE QDA ∽,见解析;(2)2DP =或5DP =. 【解析】 【分析】(1)通过等角转换,可得出三角相等,即可判定DPE QDA ∽;(2)首先根据已知条件求出DQ ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论. 【详解】(1)DPE QDA ∽根据已知条件,得∠DAQ=∠PED=90° 又∵∠ADQ+∠PDE=∠DPE+∠PDE=90° ∴∠ADQ =∠DPE ,∠AQD=∠PDE ∴DPE QDA ∽(2)由已知条件,得22224225DQ AD AQ =+=+=设DE 为x ∵DPE QDA ∽∴DA PEAQ DE= ∴PE 为2x ∵PEQADQ △△∴分两种情况:①AQ DAPE EQ = 即24225x x=- 解得255x =∴()2222DP x x =+=②AQ DAEQ PE= 即24225xx =- 解得5x =()2225DP x x =+=【点睛】此题主要考查三角形相似的性质,熟练掌握,即可解题.17.(1)见解析;(2)存在,x的值为2或5.【解析】【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE, 若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=22=25AB BE,∴EF=12AE=5.∵5==225,PE EF PEAE EB,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线. 18.(1)见解析;(2)见解析.【解析】【分析】。

沪科版-数学-九年级上册-如何应用相似多边形的性质解决问题

沪科版-数学-九年级上册-如何应用相似多边形的性质解决问题

初中-数学-打印版
如何应用相似多边形的性质解决问题?
如何应用相似多边形的性质解决问题?
难易度:★★★
关键词:相似的图形的性质
答案:
相似多边形的性质即对应角相等,对应边成比例,相似多边形的面积比等于对应边比的平方,同时也要对性质学会逆向应用解决问题。

【举一反三】
典例:在矩形ABCD中,E、F分别为AB、CD的中点,如果矩形ABCD∽矩形BCFE,那么AD∶AB=________,相似比是________,面积比是________.
思路导引:一般来讲,解决本题首先要熟记相似多边形的性质,另外解决此题的关键在于E、F分别为AB、CD的中点。

标准答案:∶2 ∶1 2∶1
初中-数学-打印版。

九年级上册第四章图形的相似重点题型归纳

九年级上册第四章图形的相似重点题型归纳

九年级上册第四章图形的相似重点题型归纳图形的相似是初中数学中的一个重要概念,它在解决图形变换和比例问题中起到关键作用。

在九年级上册的第四章中,我们学习了图形的相似性质及其相关的题型。

本文将对这些重点题型进行归纳总结,帮助同学们理解和掌握。

1. 相似三角形的判定和性质相似三角形是指具有相同形状但大小不同的三角形。

我们可以利用以下条件判定两个三角形是否相似:- AA判定法:如果两个三角形的对应角相等,那么它们是相似三角形。

- SSS判定法:如果两个三角形的对应边成比例,那么它们是相似三角形。

- SAS判定法:如果两个三角形的两对边成比例且夹角相等,那么它们是相似三角形。

相似三角形的性质:- 对应角相等:相似三角形对应角相等,即它们的内角相等。

- 对应边成比例:相似三角形的对应边成比例,即它们的对应边的长度比相等。

2. 相似三角形的应用相似三角形的应用涉及到长度、面积、坐标等方面的计算和问题求解。

以下是常见的相似三角形的应用题型:- 根据已知条件求解未知长度:利用相似三角形的性质,我们可以根据已知条件的比例关系计算未知长度。

- 根据已知条件求解面积:相似三角形的面积比等于对应边的长度比的平方。

- 坐标变换问题:当一个图形通过平移、旋转或缩放而变换时,我们可以利用相似三角形的性质求解坐标的变换关系。

3. 黄金分割黄金分割是指将一条线段分成两部分,使整体线段与较长部分之比等于较长部分与较短部分之比。

黄金分割具有以下特点:- 黄金分割比例是1:(√5+1)/2,约等于1:1.618。

- 黄金分割线段具有美学上的完美比例,被广泛应用在建筑、绘画等领域。

- 黄金矩形具有一些特殊性质,例如,它的长边和短边的比例等于整个矩形和长边之比。

4. 相似图形的比例尺比例尺用于表示实际对象与图形之间的比例关系。

当我们绘制地图、建筑设计等图形时,需要确定适当的比例尺。

常见的比例尺形式包括文字比例尺和线性比例尺。

- 文字比例尺:用文字描述实际距离与图形上距离的比例关系,例如,“1cm表示10公里”。

相似三角形性质1应用三角形内接矩形问题

相似三角形性质1应用三角形内接矩形问题
相似三角形的性质(2)
挑战一下吧!
在△ABC中,有一个内接正三角形DEF, 点D、E、F分别在AB、CA、BC上,DE//BC, 已知BC=6cm,BC上的高为AH=3cm.求DE的 长.
如果正方形的一边落在三角形的一边上,其余两个顶点 分别在三角形的另外两条边上,则这样的正方形叫做三 角形的内接正方形. (1)如图①,在△ABC中,BC=a,BC边上的高AD=ha, EFGH是△ABC的内接正方(2)在Rt△ABC中,AB=4,AC=3,∠BAC=90度.请在 图②,图③中分别画出可能的内接正方形,并根据计算 回答哪个内接正方形的面积最大;
(3)在锐角△ABC中,BC=a,AC=b,AB=c,且a<b<c. 请问这个三角形的内接正方形中哪个面积最大?并说明 理由.

相似三角形的性质课件北师大版数学九年级上册

相似三角形的性质课件北师大版数学九年级上册
九年级北师上册
7.类似三角形的性质
学习目标
1.通过阅读课本及自主学习,理解并掌握类似三角形对应线段
的比、周长比、面积比与类似比之间的关系,培养学生的运
算能力与几何直观能力.
2.通过合作学习,掌握定理的证明方法,培养学生的逻辑推理
能力.
3.通过教师讲授,学生能利用类似三角形的性质解决相关问题,
培养学生解决问题的能力.
++
′ ′ +′ ′ +′ ′
= ,
= , 即 类 似 三 角 形 的
周长比等于类似比.
教师讲评
知识点5:类似三角形的面积比与类似比的关系
如图,如果 △ ∽△



⋅ =
′ ′



∴ =
′ ⋅ =





,且 ′ ′
新知导入
在生活中,我们经常利用类似的知识解决建筑类问题.如图,小王根据图
纸上的△ABC,以1:2的比例建造了模型房梁△A’B’C’, CD和C’D’分
别是它们的立柱。
(1)试写出△ABC与△A’B’C’的对应边之间的关系,对应角之间的关系。
(2)△ACD与△A’C’D’类似吗?为什么?如果类似,指出它们的类似比。
∴ ∠ = ∠, ∴△ ∽△ , ∴


=
即类似三角形对应角平分线的比等于类似比.

.

教师讲评
知识点3:类似三角形对应中线的比与类似比的关系
如图, ∵△ ∽△ , ∴ ∠ = ∠,


=

,

∵AM,DN 分别是 △ 和 △ 的中线,

九年级数学上册 第四章 图形的相似 5 相似三角形判定定理的证明 如何综合应用相似三角形的性质与判

九年级数学上册 第四章 图形的相似 5 相似三角形判定定理的证明 如何综合应用相似三角形的性质与判

九年级数学上册第四章图形的相似5 相似三角形判定定理的证明如何综合应用相似三角形的性质与判定解题?素材 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第四章图形的相似5相似三角形判定定理的证明如何综合应用相似三角形的性质与判定解题?素材 (新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第四章图形的相似5相似三角形判定定理的证明如何综合应用相似三角形的性质与判定解题?素材(新版)北师大版的全部内容。

如何综合应用相似三角形的性质与判定解题?难易度:★★★关键词:相似三角形答案:解决此类题目的一般思路是先运用相似三角形的判定证得两三角形相似,再依据相似三角形的性质证出等积式或比例式成立。

【举一反三】典例:已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB;(2)DE·DC=AE·BD.思路引导:一般来讲,解决本题般思路是先运用相似三角形的判定证得两三角形相似,再依据相似三角形的性质证出等积式或比例式成立。

标准答案:(1)∵四边形ABCD是等腰梯形,∴AC=DB,∵AB=DC,BC=CB,∴△ABC≌△BCD,(2)∵△ABC≌△BCD,∴∠ACB=∠DBC,∠ABC=∠DCB,∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC,∵ED∥AC,∴∠EDA=∠DAC,∴∠EDA=∠DBC,∠EAD=∠DCB,∴△ADE∽△CBD,∴DE︰BD=AE︰CD,∴DE·DC=AE·BD.以上就是本文的全部内容,可以编辑修改。

九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案

九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案

相似三角形的性质及应用【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则2 1122=1122ABCA B CBC AD k B C k A DSk S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

 1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长. 要点诠释: 1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离; 2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比; 3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的性质1. △ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由.【答案】设另两边长是xcm,ycm,且x<y. (1)当△DEF中长4cm线段与△ABC中长5cm线段是对应边时,有, 从而x=cm,y=cm. (2)当△DEF中长4cm线段与△ABC中长6cm线段是对应边时,有, 从而x=cm,y=cm. (3)当△DEF中长4cm线段与△ABC中长7cm线段是对应边时,有, 从而x=cm,y=cm. 综上所述,△DEF的另外两边的长度应是cm,cm或cm,cm或cm,cm三种可能.2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.【答案】∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC.∵AD⊥BC,∴AD⊥EH,MD=EF.∵矩形两邻边之比为1:2,设EF=xcm,则EH=2xcm.由相似三角形对应高的比等于相似比,得,∴,∴,∴.∴ EF=6cm,EH=12cm.∴举一反三1、如图,在和中,,,,的周长是24,面积是48,求的周长和面积.【答案】在和中,, . 又∵∽,相似比为. 的周长为,的面积是.2、有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2. ∴△ABC∽△A1B1C1∽△A2B2C2 且,, ∴, ∴.3、如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B 重合,折痕为DE,则S△BCE:S△BDE等于() A. 2:5 B.14:25 C.16:25 D. 4:21【答案】B.【解析】由已知可得AB=10,AD=BD=5,设AE=BE=x, 则CE=8-x, 在Rt△BCE中,x2-(8-x)2=62,x=, 由△ADE∽△ACB得, S△BCE:S△BDE=(64-25-25):25=14:25,所以选B.4、在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC 边上的高.【答案】过点B 做BF⊥AC,垂足为点F ,∵AD,CE 分别为BC,AB 边上的高,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴Rt△ADB∽Rt△CEB,∴,BD AB BD BEBE CBAB CB ==即,且∠B=∠B,∴△EBD∽△CBA,∴221189BED BCADE AC SS⎛⎫=== ⎪⎝⎭△△,∴13DE AC =,又∵DE=2,∴AC=6,∴11862ABC AC BF S =⋅=∴△,B F=.5、已知:如图,在△ABC 与△CAD 中,DA∥BC,CD 与AB 相交于E 点,且AE︰EB=1︰2,EF∥BC 交AC 于F 点,△ADE 的面积为1,求△BCE 和△AEF 的面积.【答案】∵DA∥BC, ∴△ADE∽△BCE. ∴S △ADE :S △BCE =AE 2:BE 2. ∵AE︰BE=1:2, ∴S △ADE :S △BCE =1:4. ∵S △ADE =1, ∴S △BCE =4. ∵S△ABC:S△BCE=AB:BE=3:2,∴S△ABC=6. ∵EF∥BC,∴△AEF∽△ABC. ∵AE:AB=1:3,∴S△AEF:S△ABC=AE2:AB2=1:9.∴S△AEF==.6、如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长. (2)当的周长与四边形的周长相等时,求的长.【答案】(1)∵,∽. (2)∵的周长与四边形的周长相等.=6,∽.类型二、相似三角形的应用3. 如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?【答案】如上图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少? ∵AB⊥BC,CD⊥BC ∴∠ABO=∠DCO=90° 又∵∠AOB=∠DOC ∴△AOB∽△DOC. ∴ ∵BO=50m,CO=10m,CD=17m ∴AB=85m 即河宽为85m.4. 如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否相似?为什么?(2)求古塔的高度.【答案】(1)△ABC∽△ADE.∵BC⊥AE,DE⊥AE,∴∠ACB=∠AED=90°∵∠A=∠A,∴△ABC∽△ADE(2)由(1)得△ABC∽△ADE∴∵AC=2m,AE=2+18=20m,BC=1.6m,∴∴DE=16m即古塔的高度为16m。

相似矩形中考复习(知识点+题型分类练习)

相似矩形中考复习(知识点+题型分类练习)

相似矩形中考复习(知识点+题型分类练习)在中考数学中,相似矩形是一个重要的知识点。

了解相似矩形的性质和应用能够帮助我们解决各种与之相关的问题。

本文将为您提供一份相似矩形的考试复资料,包括知识点介绍和题型分类练。

知识点介绍定义与性质相似矩形是指具有相同形状但可能不同大小的矩形。

它们的对应边长成比例,对应角度相等。

根据相似矩形的性质,我们可以推导出以下定理:1. 相似矩形的对应边长成比例。

2. 相似矩形的对应角度相等。

3. 相似矩形的对应边长之比等于对应边长之比的绝对值。

判断相似矩形的条件在判断两个矩形是否相似时,可以利用以下条件:1. 对应边长成比例;2. 对应角度相等;3. 任意两组对应边长之比相等。

相似矩形的应用相似矩形的性质在实际问题中有着广泛的应用。

以下是一些常见的应用场景:1. 比例尺:利用相似矩形的性质,我们可以确定比例尺,并在地图上进行测量和计算距离。

2. 图形的相似变换:通过相似矩形的变换,我们可以进行图形的放大或缩小操作。

3. 面积的计算:利用相似矩形边长之比的平方,我们可以计算出相似矩形的面积。

题型分类练1. 下图中的两个矩形ABCD和EFGH是否相似?如果相似,请说明判断依据。

2. 在一个矩形中,AB和CD是相邻边,BC和AD是对角线。

若AB = 3,BC = 4,求矩形的面积。

3. 某条长方形的长和宽成比例为3:2,已知长为12,求宽。

4. 矩形的长宽之比为5:3,面积为60,求长和宽各是多少?5. 已知矩形的长宽之比为2:1,面积为16,求矩形的长和宽。

总结相似矩形是中考数学中的一个重要知识点,掌握相似矩形的定义、性质和判断条件对于解决各种与之相关的问题非常关键。

通过题型分类练,我们可以加深对相似矩形的理解和应用。

希望本文提供的复资料能对您的考试备考有所帮助。

九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(良心出品必属精品)

九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(良心出品必属精品)

.相像三角形的性质及应用【学习目标】1、探究相像三角形的性质,能运用性质进行相关计算;2、经过典型实例认识现实生活中物体的相像,能运用图形相像的知识解决一些简单的实质问题(怎样把实质问题抽象为数学识题) . 【重点梳理】重点一、相像三角形的性质1.相像三角形的对应角相等,对应边的比相等 .2. 相像三角形中的重要线段的比等于相像比 .相像三角形对应高,对应中线,对应角均分线的比都等于相像比.3. 相像三角形周长的比等于相像比∽,则由比率性质可得:4. 相像三角形面积的比等于相像比的平方∽,则分别作出与的高11k A DS△ABCBC ADk B C和22=k 2,则1 1S △A BCA DBC ADB C22重点解说:相像三角形的性质是经过比率线段的性质推证出来的 .重点二、相像三角形的应用 1. 丈量高度丈量不可以抵达顶部的物体的高度, 往常使用“在同一时辰物高与影长的比率相等”的原理解决 .重点解说:丈量旗杆的高度的几种方法:. 1.平面镜丈量法影子丈量法手臂丈量法标杆丈量法2.丈量距离丈量不可以直接抵达的两点间的距离,常结构以下两种相像三角形求解。

1.如甲图所示,往常可先丈量图中的线段 DC、 BD、CE的距离(长度),依据相像三角形的性质,求出 AB的长 .2.如乙图所示,可先测 AC、DC及 DE的长,再依据相像三角形的性质计算 AB 的长 .重点解说:1.比率尺:表示图上距离比实地距离减小的程度,比率尺 = 图上距离 / 实质距离 ;2.太阳离我们特别遥远,所以能够把太阳光近似当作平行光芒.在同一时辰,两物体影子之比等于其对应高的比 ;3.视点:察看事物的着眼点(一般指察看者眼睛的地点);4.仰(俯)角:察看者向上(下)看时,视野与水平方向的夹角.【典型例题】种类一、相像三角形的性质1.△ABC∽△ DEF,若△ ABC的边长分别为5cm、6cm、7cm,而4cm是△ DEF 中一边的长度,你能求出△DEF的此外两边的长度吗?试说明原因.【答案】设另两边长是 xcm, ycm,且 x< y.(1)当△ DEF中长 4cm线段与△ ABC中长 5cm线段是对应边时,有,进而 x=cm,y=cm.(2)当△ DEF中长 4cm线段与△ ABC中长 6cm线段是对应边时,有,进而 x= cm,y= cm.(3) 当△ DEF中长 4cm线段与△ ABC中长 7cm线段是对应边时,有2.,进而 x=cm,y=cm.综上所述,△DEF的此外两边的长度应是cm,cm或cm,cm或cm,cm三种可能 .2.以下图,已知△ ABC中, AD是高,矩形 EFGH内接于△ ABC中,且长边 FG在 BC上,矩形相邻两边的比为1:2,若 BC=30cm,AD=10cm.求矩形 EFGH的面积 .【答案】∵四边形EFGH是矩形,∴ EH∥ BC,∴ △ AEH∽△ ABC.∵AD⊥BC,∴AD⊥EH, MD=EF.∵矩形两邻边之比为1:2,设 EF=xcm,则 EH=2xcm.由相像三角形对应高的比等于相像比,得,∴,∴,∴.∴EF=6cm, EH=12cm.∴贯通融会1、如图,在和中,,,,的周长是 24,面积是 48,求的周长和面积.【答案】在和中,,.又∵∽,相像比为.. 3的周长为,的面积是.2、有同一三角形地块的甲、乙两地图,比率尺分别为1∶200 和 1∶500,求:甲地图与乙地图的相像比和面积比.【答案】设原地块为△ ABC,地块在甲图上为△ A1B1C1,在乙图上为△ A2B2C2.∴ △ABC∽△A1B1C1∽△ A2B2C2且,,∴,∴.3、如图,直角三角形纸片的两直角边长分别为 6、8,按如图那样折叠,使点 A 与点 B 重合,折痕为 DE,则 S△BCE:S△BDE等于()A. 2 : 5 B .14:25 C .16:25 D. 4:21【答案】 B.【分析】由已知可得AB=10,AD=BD=5,设 AE=BE=x, 则 CE=8-x,在 Rt△ BCE中, x2 -(8-x)2=62 ,x=,由△ ADE∽△ ACB得,S△BCE:S△BDE=(64-25-25 ): 25=14:25,所以选 B.4、在锐角△ ABC中, AD,CE分别为 BC,AB边上的高,△ ABC和△ BDE的面积分别等于 18 和 2, DE=2,求 AC边上的高 .4..【答案】过点 B 做 BF⊥ AC,垂足为点 F,∵AD,CE分别为 BC,AB边上的高,∴∠ ADB=∠ CEB=90°,又∵∠ B=∠ B,∴Rt△ADB∽Rt △CEB,∴BD AB,即BD BE ,BE CB AB CB且∠ B=∠B,∴△ EBD∽△ CBA,∴ S△BED 2DE 2 1 , S△BCA AC 18 9∴ DE 1 , AC 3 又∵ DE=2,∴AC=6,∴S△ABC 1AC BF 18, BF=6. 25、已知:如图,在△ ABC与△ CAD中, DA∥BC, CD与 AB订交于 E 点,且 AE︰ EB=1︰2,EF∥BC交 AC于 F 点,△ ADE的面积为 1,求△ BCE和△ AEF 的面积.【答案】∵ DA∥BC,∴△ ADE∽△ BCE.2 2∴S△ADE:S △BCE=AE:BE .∵AE︰ BE=1:2,∴S△ADE:S △BCE=1:4 .∵S△ADE=1,∴ S△BCE=4.∵S△ABC:S △BCE=AB:BE=3:2,∴S△ABC=6.∵EF∥BC,∴△ AEF∽△ ABC.. 5.2 2∵AE:AB=1:3,∴S△AEF:S △ABC=AE:AB =1:9 .∴S△AEF= = .6、如图,已知中,,,,,点在上,( 与点不重合),点在上.(1) 当的面积与四边形的面积相等时,求的长 .(2) 当的周长与四边形的周长相等时,求的长 .【答案】(1)∵,∽.(2) ∵的周长与四边形的周长相等.=6,∽.6..种类二、相像三角形的应用3.如图,我们想要丈量河两岸相对应两点 A、 B 之间的距离 ( 即河宽 ) ,你有什么方法?【答案】如上图,先从 B 点出发与 AB成 90°角方向走 50m到 O处立一标杆,而后方向不变,持续向前走 10m到 C 处,在 C处转 90°,沿 CD方向再走17m抵达 D处,使得 A、 O、 D在同一条直线上.那么 A、B 之间的距离是多少?∵AB⊥BC, CD⊥BC∴∠ ABO=∠ DCO=90°又∵ ∠AOB=∠DOC∴△ AOB∽△ DOC.∴∵BO=50m, CO=10m,CD=17m∴AB=85m即河宽为 85m.4.如图:小明欲丈量一座古塔的高度,他站在该塔的影子上前后挪动,直到他自己影子的顶正直好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是 1.6 m ,他的影长是 2 m.(1) 图中△ ABC与△ ADE能否相像 ?为何 ?(2) 求古塔的高度..7.【答案】 (1) △ABC∽△ ADE.∵BC⊥AE, DE⊥AE,∴∠ ACB=∠AED=90°∵∠ A=∠A,∴△ ABC∽△ ADE(2)由(1) 得△ ABC∽△ ADE∴∵AC=2m,AE=2+18=20m,,∴∴DE=16m即古塔的高度为 16m。

沪科版-数学-九年级上册-相似图形的性质是什么 如何应用性质解题

沪科版-数学-九年级上册-相似图形的性质是什么 如何应用性质解题

初中-数学-打印版
相似图形的性质是什么?如何应用性质解题?
相似图形的性质是什么?如何应用性质解题?
难易度:★★★
关键词:相似图形的性质
答案:
相似图形的对应角相等,对应线段成比例。

利用这一性质可求角的度数或线段的长度。

【举一反三】
典例:如果多边形ABCDEF与多边形A′B′C′D′E′F′ 相似,且∠A=74°,则∠A′的度数是()
A、 16°
B、 37°
C、 74°
D、 106°
思路导引:一般来讲,解决本题要准确把握相似图形的性质相似图形的对应角相等,对应线段成比例,并知道这是求角的度数和线段长度的一条思路。

标准答案:C
初中-数学-打印版。

沪科版-数学-九年级上册-如何利用相似多边形的性质解决生活实际问题

沪科版-数学-九年级上册-如何利用相似多边形的性质解决生活实际问题

初中-数学-打印版
初中-数学-打印版 如何利用相似多边形的性质解决生活实际问题?
如何利用相似多边形的性质解决生活实际问题?
难易度:★★★★
关键词:相似的图形的性质
答案:
由相似多边形的性质得到等式
,解出。

【举一反三】
典例:在一矩形ABCD 的花坛四周修筑小路,使得相对两条小路的宽均相等。

花坛AB =20米,AD =30米,试问小路的宽x 与y 的比值为多少时,能使小路四周所围成的矩形A`B`C`D`能与矩形ABCD 相似?请说明理由。

思路导引:一般来讲,解决本题要把握相似多边形的性质从而得到等式
,解出。

标准答案: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档