4.3用一元二次方程解决问题(4)利润问题辅导
一元二次方程实际应用之利润问题
年卡应降价x元, 则每件平均利润应是( 0.3-x)元,总
件数应是( 500+x÷0.1×100)
• 解:设每张贺年卡应降价x元
• 则 (0.3-x)(500+1000x) =120 • 解得: • 答:每张贺年卡应降价0.1元.
营销问题
• 例1 某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,尽快减少 库存,商场决定采取适当的降价措施。经调查发 现,如果每件衬衫降价1元,商场平均每天可多售 出2件。(1)若商场平均每天销售这种衬衫的盈 利要达到1200元,每件衬衫应降价多少元?(2) 每天衬衫降价多少元时,商场平均每天盈利最多?
解:设这种服装的成本为x元,依题意,得: 1.4x× 80% -x=15
解得: x =125 答:这种服装的成本为125元。
一件夹克按成本价提高50%后标价,后因季 节关系按标价的8折出售,每件以60元卖出,这种 夹克每件的成本价是多少元?
解:设这种夹克的成本价为x元,依题意,得: (1+50%)x× 80%=60
(a-21)(350-10a)=450
1、某商店从厂家以每件21元的价格购进一批商品,若每 件商品售价为x元,则每天可卖出(350-10x)件,但物价局限 定每件商品加价不能超过进价的20%.商店要想每天赚400 元,需要卖出多少件商品?每件商品的售价应为多少元?
解 : 设每件商品的售价应为x元, 根据题意, 得
整理得: x2 40x 7600 0.
解这个方程, 得 x1 20, x2 380.
答 : 应多种桃树20棵或380棵.
例7 (2010南京)某批发商以每件50元的价格 购进800件T恤.第一个月以单价80元销售, 售出了200件;第二个月如果单价不变,预计 仍可售出200件,批发商为增加销售量,决定 降价销售,根据市场调查,单价每降低1元, 可多售出10件,但最低单价应高于购进的价格; 第二个月结束后,批发商将对剩余的T恤一性 清仓,清仓时单价为40元.设第二个月单价降 低x元.
一元二次方程应用——利润问题
文本解读新课程NEW CURRICULUM一元二次方程应用———利润问题鲍丽丽(河北省承德市兴隆县蘑菇峪中学)利润是与生活实际联系极其密切的问题,我们知道商品的价格直接影响销售数量,商家会根据实际情况作出价格的上调与下降,那么销售数量也会随之降低与增加,从而经常会利用一元二次方程解决生活中的利润问题,这类题型都会出现的关键词“每涨x元或降x元,就减少y件或增加y件”,我们称这类问题为“每增每降”问题,举例说明:例:某商店将进价为20元/盒的百合,在参考价28-38元范围内定价为36元/盒销售,这样平均每天可出售40盒。
经调查发现,在进货价不变的情况下,若每盒下调1元,平均每天就多卖10盒,要使利润达到750元,应将每盒下调多少元?解:设应将每盒售价下调x元,由题意得:(36-x-20)(40+10x)=750解方程,得:x1=1,x2=11(不合题意,舍去)答:应将每盒售价下调1元。
解决“每增每降”问题要抓住“五个量、两个等量关系式、两个变化过程和一个关键句”,找出五个量即进价、售价、单利润、数量、总利润和一个关键句“每…每…”,根据“单利润=售价-进价、总利润=单利润×数量”两个等量关系列出方程。
在解出方程后一定要注意是否舍根。
变式1:某商店将进价为20元/盒的百合,在参考价28-38元范围内定价为36元/盒销售,这样平均每天可出售40盒。
经调查发现,在进货价不变的情况下,若每盒下调1元,平均每天就多卖10盒,要使利润达到750元,应将每盒定价多少元?这里我们要注意的问题是“每盒定价多少元?”我们可设每盒定价x元,根据题意,得:(36-x-20)[40+10(36-x)]=750,那么方程复杂了,解方程增加了难度,如果我们按上面的问题设应将每盒售价下调x元就简单了,因此我们解题时最好设变化量来解决问题。
变式2:某商店将进价为20元/盒的百合,在参考价28-38元范围内定价为36元/盒销售,这样平均每天可出售40盒。
每每问题(用一元二次方程解决实际问题)
练习:
1.某商场购进一种单价为40元的篮球,如果以单 价60元出售,那么每天可售出50个,根据销售 经验,售价每降低5元,销售量相应的增加10 个,要想获得每天700元的利润,应降价多少 元?
2.某商场销售一批名牌衬衫,平均每天可售出20 件,每件盈利40元,为了扩大销售,增加盈利, 尽快减少库存,商场决定采取适当的降价措施, 经调查发现,如果每件衬衫每降价一元,平均 可多售出2件,若商场平均每天要盈利1200元, 每件衬衫应降价多少元?
在进货价钱不变的情况下,若
每千克再涨价一元,日销售量 减少20千克,现在将该商场要 保证每天盈利6000元,同时又
要使顾客得到实惠,那么每千 克应涨价多少元?
单件利润×卖出件数=总利润
解:设每千克水果应涨价x元, 依题意得方程: (10+x) (500-20x)=6000, 整理,得x2-15x+50=0, 解这个方程,得x1=5,x2=10. 要使顾客得到实惠,应取x=5. 答:每千克水果应涨价5元.
3.某西瓜经营户以2元/kg的价格购进一
批西瓜,以3元/kg的价格销售,每天 可售出200kg,为了扩大销量,该经
营户决定降价销售,经调查发现,这 种西瓜每降价0.1元/kg,每天就可多 售出40kg,另外每天的房租等固定开 支共计24元,该经营户要想每天盈利 200元,应将每千克西瓜的销售价降 低多少元?
利润,销售价钱应该定为多少 元?
单件利润×卖出件数=总利润
解:设售价为x元,根据题意可 得: (x-40)[90-3×(x-50)]=900, 整理可得:x2-120x+3500=0, 解答得::销x售1=价70钱,应x2该=5定0,为70元或 50元时,平均每天获得900元 如果每千克盈利10元,每天可 售出500千克,经市场调查发现,
解一元二次方程的实际应用利润问题(共6张PPT)
调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
经调查发现,设在降一定价范x围元内,衬衫的单价每降 1 元,商场平均每天可多日售利出润2件=. 单件利润×销售数量
日利润=单件利润×销售数量
单利润 调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
薄利多销是指低价低利扩大销售的策略.
ቤተ መጻሕፍቲ ባይዱ
设每台冰箱应降价x元
原来 现在
单台利润
400
400-x
日利润=单台利润×日销售台数
台数
日利润
8
3200
4800
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡” 的实施,商场决定采取合适的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少 元?
解一元二次方程的实际应用利润 问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是降价,降 价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量随之变化,根 据该数量关系通常可以列一元二次方程解决有关利润的问题.
解一元二次方程的实际应用利润问题
件数
总利润
原来 为了扩大销售,增加盈利,商场决定采取适当的降价措施.
解得x1=10,x2=20 日利润=单件利润×销售数量
40
20
800
经调查发现,在一定现范围在内,衬衫的单价每4降0-1 元x,商场平均每天可2多0售+出22x件.
1200
则(40-x)(20+2x)=1200
利润问题一元二次方程含答案
利润问题_一元二次方程含答案利润问题是一个常见的经济问题,指的是企业在销售产品或提供服务后所获得的净利润。
利润问题可以通过一元二次方程来进行求解。
下面我将详细介绍利润问题及如何用一元二次方程求解。
假设某企业销售某种产品,每个产品的售价为x元,每个产品的成本为y元,该企业预计销售量为z个产品。
那么该企业的总收入R、总成本C和总利润P可以表示为以下方程:
R = xz (总收入等于售价乘以销售量) C = yz (总成本等于成本乘以销售量) P = R - C (总利润等于总收入减去总成本)
现在我们来具体解决一个利润问题。
假设某企业销售某种产品,每个产品的售价为20元,每个产品的成本为10元,该企业预计销售量为50个产品。
我们来计算该企业的总收入、总成本和总利润。
总收入R = 20 * 50 = 1000元总成本C = 10 * 50 = 500元总利润P = 1000 - 500 = 500元
通过上述计算可得,该企业的总收入为1000元,总成本为500元,总利润为500元。
利润问题在实际生活中非常常见,企业通常会根据产品的售价和成本来计算预期的利润。
利润问题的求解可以帮助企业了解其经营状况,并根据情况做出相应的调整。
同时,利润问题也可以帮助个人了解自己的收入和支出情况,从而做出理性的消费决策。
一元二次方程应用-销售利润问题
习数学的兴趣
问题1:
华润万家超市销售一种月饼,其进价为
每份40元,按每份60元出售,平均每天可售出
100份.中秋节为促销,决定适当降价,单价每
降低1元,则平均每天获利2240
元,并尽量让利于顾客.每份月饼应售价多少
(1)单利润=售价—进价
(2)总利润=单利润×销售数量
售价−进价
利润
(3)利润率=
× %=
× %
进价
进价
(4)售价=进价×(1+利润率)
打折数
(5)售价=标价×
➢ 以一元二次方程解决实际问题为载体,进
一步探索数学建模的基本方法
➢ 通过小组讨论、独立思考的方式,在分析
销售问题的过程中培养数学思维
销量
元
元
份
份
设每份月饼应售价元,那么降价了多
少元呢?增加销量又是多少?
售价
降价
60−
销售量
原销量
增加销量
100
10(60−)
如果设每份月饼降价元,数量关系中
的每部分基本代数式如何表示?
降价
单利润
− −
销售量
原销量
增加销量
100
10
通常情况下,一般采用间接设法可降
题需要注意哪些地方?
通常采用间接设法,设降价(涨价)可以降低列方程和解方
程的复杂程度,但要注意题目要求,如果求售价记得求出售价
列方程时先逐个表示单利润、销量(基础销量±价格变化增
加或减少的销量)的代数式,再依据等量关系列方程
解方程时要先化为一般式,再选择适合自己的解法
中考一元二次方程应用题利润问题
一、引言中考一元二次方程应用题一直是考试中的热门话题,其中利润问题更是备受关注。
利润作为商业运作的核心指标,涉及到成本、售价和数量等多个因素,需要通过数学方法来解决。
本文将从深度和广度两个方面对中考一元二次方程应用题中的利润问题展开全面评估,并撰写一篇高质量的文章,以帮助读者更全面地理解这一概念。
二、基础知识梳理在深入讨论利润问题之前,首先需要对一元二次方程的基本知识进行回顾。
一元二次方程一般具有形如ax²+bx+c=0的形式,其中a、b、c分别为系数,x为未知数。
利润问题则是在这一基础上进行拓展,将具体的经济运作情境融入到方程中,通过数学方法求解出最优的经营方案。
三、利润问题的实际情境和建模在针对中考一元二次方程应用题的利润问题时,常常涉及到实际的商业情境,比如生产成本、销售价格、市场需求等。
对这些情境的建模可以帮助我们更好地理解和解决问题,比如通过设定变量来表示成本、售价和销售数量,进而得出一个关于利润的一元二次方程。
将实际情境与数学模型相结合,有助于培养学生的实际应用能力。
四、应用题实例分析为了更好地帮助读者理解,我们以一个具体的中考一元二次方程应用题为例进行分析。
假设某企业生产一种商品,每件商品的生产成本为a 元,售价为b元,每件商品的销售量为x件。
根据市场调研,销售量与售价之间存在一元二次关系,造成了销售量的减少。
在这一情境下,我们将生产成本、售价和销售量分别表示为a、b、x,利润则可以由这些变量构成的一元二次方程来表示和求解。
五、个人观点和理解在解决中考一元二次方程应用题中的利润问题时,除了要掌握数学的基本方法外,还需要具备一定的实际应用能力。
我个人认为,利润问题不仅是数学知识的应用,更是对学生综合思维能力和动手能力的考察。
通过这类应用题的学习,学生可以培养自己的商业思维和解决实际问题的能力,为将来的社会生活和职业发展打下坚实的基础。
六、总结在本文中,我们从深度和广度两个方面对中考一元二次方程应用题中的利润问题进行了全面评估。
用一元二次方程解决实际问题(销售问题)
初三备课组
4.3用一元二导问研学
导预疑学
1、会找出销售问题中的等量关系2、会确定单件利润和销量3、会用一元二次方程解决销售问题
= 售价—进价
●售价、进价、利润的关系式:
单件利润
●进价、利润、利润率的关系:
利润率=
进价
单件利润
×100%
感谢您的下载观看
要想平均每天盈利1200元,那么每件童装应该降价多少元?
单件利润
销量
总利润
降价前
降价后
列方程解应用题的基本步骤:
尽快减少库存
变式1:扬州万家福商城在销售中发现:“宝宝乐”牌童装平均每天可售出20件,每件盈利40元.
为了迎接”十一”国庆节,商场决定采取适当的降价措施.
经调查发现,如果每件童装降价4元,那么平均每天就可多售出8件.
1、销售问题中主要的等量关系:单件利润= 售价—进价 总利润=单件利润 × 销量
3、列方程解决销售问题的基本步骤为:审、设、列、解、验、答
2、价格降则销量增, 价格增则销量降
5、要注意题目中的限定条件
4、计算时要先将方程化成一般式,优先考虑十字相乘法
题1:某商场礼品柜台购进大量贺卡,一种贺卡平均每天可销售500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的措施,调查发现,如果每降价0.1元,那么商场平均每天多售出300张,商场要想每天盈利160元,每张贺卡应该降价多少元?
要想平均每天盈利1200元,那么每件童装应该降价多少元?
单件利润
销量
总利润
降价前
降价后
降价(元)
多售(件)
4
8
8
?
12
?
x
?
用一元二次方程解决利润类问题教学案例
用一元二次方程解决利润类问题教学案例要想了解市场经济中的作用,学习一元二次方程绝对是必不可少的知识点。
为了帮助学生更好地掌握一元二次方程和利润问题,本文将采用一个实际的教学案例,结合数学知识探究如何用一元二次方程解决利润问题。
一、一元二次方程的概念一元二次方程是指一个二次未知数的方程,即一元多项式F(x)在给定的范围内有两个不同的实数解,这就是一元二次方程的概念。
一元二次方程的标准形式为:ax2+bx+c=0,其中a、b、c是常数,且a不能等于0, x是未知数。
二、用一元二次方程解决利润问题在计算经济中,我们可以用一元二次方程来解决利润问题。
这一内容也是一元二次方程解题的重要内容。
下面以教学案例来讲解用一元二次方程解决利润类问题的方法:案例:企业从一家供应商购买某产品,售价为x元,支付给供应商的费用为450元,以及20元的运输费用,问企业的利润有多少?解:据题意,企业的利润可以用公式表示为:利润=售价-购买费用-运输费用即:P=x-450-20由此可得一元二次方程:P=x-470解得:x=470+P,即售价为470元加上利润P元。
结论:根据一元二次方程,当售价达到470元时,企业的利润P即为零;售价超过470元时,利润就大于零;售价小于470元时,利润就是负数。
三、教学意义以上就是关于一元二次方程和利润计算的一个教学案例,旨在通过案例的讲解帮助学生更好地掌握一元二次方程,深入理解利润计算的原理和方法。
从上述案例可以看出,一元二次方程在经济学中有着非常重要的地位,它不仅可以用来解决利润问题,而且可以用来解决一些收入、支出、财务成本等问题,这对经济管理有着重要的意义。
综上所述,一元二次方程在解决利润类问题方面有着非常重要的作用,但教学方法也很重要,不同的案例会使学生更好地理解一元二次方程的使用,帮助他们更好地应用。
因此,在未来的数学教学中,倡导学生运用一元二次方程解决利润计算问题,会更有利于他们学习数学知识,为未来的经济管理提供支持。
一元二次方程应用——利润问题
一元二次方程应用——利润问题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一元二次方程应用——利润问题课标与教材:本节课的主题是发展学生的应用意识,这也是方程教学的重要任务。
但学生应用意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。
因此,本节教学中选用实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的初步形成。
显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。
为此,本节课的学习重点是:1.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程。
2.通过列方程解应用题,进一步提高学生的分析问题、解决问题的意识和能力。
难点:分析具体问题中的数量关系,找出等量关系,列出方程。
创新支点:认真审题,理解题意学情分析:学生的知识技能基础:学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,对于实际问题的应用,学生虽然已经在七年级、八年级进行了有关的训练,但还是有一定的难度。
学生活动经验基础:由于本节内容针对的学习者是九年级上学期的学生,已经具备了一定的生活经验和初步的解一元二次方程的经验,乐意并能够与同伴进行合作交流。
学习目标:①通过分析销售问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
②经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,从中感受到数学学习的意义;③能够利用一元二次方程解决有关利润问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;④在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
一元二次方程应用专题--利润问题(含答案)
8.某商场以每件 元的价格购进一批商品,当每件商品售价为 元时,每月可售出 件,为了迎接“双 ”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价 元,那么商场每月就可以多售出 件.要使商场每月销售这种商品的利润达到 元,且更有利于减少库存,则每件商品应降价多少元?
每千克核桃应降价多少元?
在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
13.一商店销售某种商品,平均每天可售出 件,每件盈利 元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于 元的前提下,经过一段时间销售,发现销售单价每降低 元,平均每天可多售出 件.
且更有利于减少库存,则每件商品应降价 元.
9.
【答案】
解:设销售单价应定为 元,
由题意,得 ,
解得 , ,
∵尽可能让利消费者,
∴ .
答:销售单价应定为 元.
10.
【答案】
,
设该商品的销售单价为 元 ,则当天的销售量为 件,
依题意,得: ,
整理,得: ,
解得: , .
答:当该商品的销售单价为 元或 元时,该商品的当天销售利润是 元.
所以每千克核桃应降价 元,
此时,售价为: (元),
∴ .
答:该店应按原售价的 折出售.
13.
【答案】
设每件商品降价 元时,该商店每天销售利润为 元,
根据题意得 ,
整理,得 ,
解得: , .
∵要求每件盈利不少于 元,
∴ 应舍去,
(完整版)一元二次方程应用题之利润问题
(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。
该公司希望通过调整销售价格来最大化利润。
现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。
请求解这个问题。
解决方法:设销售价格为p元,销售商品的数量为q件。
由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。
设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。
由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。
根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。
方程的极值点对应的销售价格就是能够使利润最大化的价格。
因为a=0,所以只需要求二次项的系数b即可。
结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。
注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。
在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。
因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。
一元二次方程的应用利润问题
优化
使用求根公式解一元二次方 程,找到满足条件的最小利 润。
一元二次方程在利润问题中的局限性与 注意事项
局限性 注意事项
一元二次方程假设利润与销售量之间存在线性 关系,可能无法准确描述复杂的实际情况。
在应用一元二次方程解决利润问题时,需要严 谨地制定方程模型,考虑各种因素的影响。
总结与收尾
1 总结
一元二次方程的应用利润 问题
利润问题可以帮助我们了解如何最大化或最小化利润,通过一元二次方程来 解决这些问题。
利润问题的背景与定义
背景
利润是指企业在销售产品或提供服务后,获 得的收入与成本之间的差额。
定义
利润问题涉及计算和优化利润的数学模型和 方法。
一元二次方程的形式与解法
形式
一元二次方程的一般形式是ax²+ bx + c = 0,其 中a、b和c是常数。
1
分析现状
了解产品的成本和销售情况,找到利
建立方程
2
பைடு நூலகம்
润最大化的关键因素。
根据产品成本和销售量之间的关系,
建立一元二次方程。
3
解方程
使用求根公式解一元二次方程,得到 可能的最大利润。
实际案例2 :利润最小化
问题
我们希望在满足一定条件下, 找到能够最小化利润的解决 方案。
方案
根据特定的要求和限制条件, 建立一元二次方程。
2 收尾
利润问题涉及建立与利润相关的一元二次 方程,并使用求根公式解方程,找到最优 解。
掌握一元二次方程的应用技巧,可以帮助 我们在利润问题中做出明智的决策。
解法
使用一元二次方程的求根公式可以求得方程的解。
应用一元二次方程解决利润问题的步骤
教案一元二次方程的应用利润问题
一元二次方程的应用——利润问题教学设计(江西省赣州市安远县第三中学胡周明 342100)教学目标:1.知识与技能目标(1)以一元二次方程解决的实际问题为载体,使学生初步掌握数学建模的基本方法.(2)通过对一元二次方程应用问题的学习和研究,让学生体验数学建模的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.2.过程与方法目标通过自主探索、合作交流,使学生经历动手实践、展示讲解、探究讨论等活动,发展学生数学思维,培养学生合作学习意识、动手、动脑习惯,激发学生学习热情。
3.情感态度与价值观目标使学生认识到数学与生活紧密相连,数学活动充满着探索与创造,让他们在学习活动中获得成功的体验,建立自信心,从而使学生更加热爱数学、热爱生活. 教学重点:列一元二次方程解利润问题应用题.教学难点:发现利润问题中的等量关系,将实际问题提炼成数学问题.关键:建立一元二次方程的数学模型教法:创设情境——引导探究——类比归纳——鼓励创新.学法:自主探索——合作交流——反思归纳——乐于创新.教学过程:一、复习回顾,引入新知1、提问1、以前我们学习了列几次方程解应用题?①列一元一次方程解应用题;②列二元一次方程组解应用题;③列分式方程解应用题提问2、列方程解应用题的基本步骤怎样①审(审题);②找(找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系);③设(设元,包括设直接未知数和间接未知数);④表(用所设的未知数字母的代数式表示其他的相关量);⑤列(列方程);⑥解(解方程);⑦检验(注意根的准确性及是否符合实际意义).2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的百分率为x,•那么预计2004年的产量将是________.3. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、探索新知1、问题3分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x 元,•则每件平均利润应是(0.3-x )元,总件数应是(500+0.1x ×100) 解:设每张贺年卡应降价x 元,则(0.3-x )(500+1000.1x )=120 解得:x=0.1 答:每张贺年卡应降价0.1元.2、例2:2010年4月30日,龙泉山旅游度假区正式对外开放后,经过试验发现每天的门票收益与门票价格成一定关系.门票为40元/人时,平均每天来的人数380人,当门票每增加1元,平均每天就减少2人。
一元二次方程解应用题利润问题
一元二次方程的应用:列一元二次方程解应用题的步骤:与列一元一次方程解应用题类似,列一元二次方程解应用题的一般步骤也可以归纳为:审题、设未知数、列方程、解答、检验和作答。
1)审题:需要明确题目中已知量、未知量及问题中的等量关系;2)设未知数:一般是求什么设什么,也有个别间接设的情形;3)列方程:找出等量关系,列代数式表示相等关系中的各个量。
4)解:求出所列方程的解。
5)检验:检验方程的解是否符合题意。
6)写出答案。
利润问题:销售中的利润问题的关系式:利润=售价-进价利润率=利润/进价=(售价-进价)/进价售价=进价*(1+利润率)总利润=进价*(1+利润率)例:某百货商店服装柜台在销售中发现某品牌童装平均每天可售出20件,每件盈利40元,为了迎接“六一”儿童节,商场决定采取适当降价措施,扩大销售量,增加盈利,减少库存,市场调查发现,如果每件童装降价4元,那么平均每天就可以多销售8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应该降价多少元?例:某商场将进货价为30元的台灯以40元售出,平均每月能售出600盏,调查表明,这种台灯的售价每上涨1元,其销售量就将减少10盏,为了实现平均每月10000元的销售利润,这种台灯的售价应该定为多少元?这时应进台灯多少盏?例:商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件。
设每件商品降价x元。
据此规律,请回答:(1)商场日销售量增加——件,每件商品盈利——元。
(用含x的代数式表示)(2)在上述条件不变、销量正常情况下,每件商品降价为多少元时,商场日盈利可以达到2100元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用一元二次方程解决问题(4)—利润问题 2015.8.12
典型例题:
例1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增加盈利,商场决定采取适当的降价措施。
经调查发现,在一定范围内,衬衫的单价每降一元,商场平均每天可多售出2件。
如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应降多少元?
单件利润可售件数总利润
原来(降价前)
现在(降价后)
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,且让消费者得到实惠,销售单价应定为多少?
(月销售利润=月销售量×销售单价-月销售成本.)
单利润件数总利润
原来
现在
课堂练习
1、某种服装,平均每天可销售20件,每件盈利44元;若每件降价1元,则每天可多售5件。
如果每天要盈利1600元,且尽快减少库存,每件应降价多少元?
单利润件数总利润
原来
现在
2、某商场礼品柜台购进大量贺年卡,一种贺年卡平均每天可销售500张,每张盈利0.3元。
为了尽快减少库存,商场决定采取适当的措施。
调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天多售出300张。
商场要想平均每天盈利160元,每张贺年卡应降价多少元?
单利润件数总利润
原来
现在
课后练习
1、某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件。
如果商店销售这批服装要获利润12000元,那么这种服装售价应定为多少元?该商店应进这种服装多少件?
单利润件数总利润
原来
现在
2、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
3、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?。