利润问题一元二次方程含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习2:利润问题(一元二次方程应用)

1、某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个.根据销售经验,售价每提高1元.销售量相应减少10个.

(1)假设销售单价提高x 元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销售量是_________个.(用含x 的代数式表示)(4分)

(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大

利润,此时篮球的售价应定为多少元?(8分)

答案:(1)10x +,50010x -; (2)设月销售利润为y 元,

由题意()()1050010y x x =+-, 整理,得()2

10209000y x =--+. 当20x =时,y 的最大值为9000,

205070+=.

答:8000元不是最大利润,最大利润为9000元,此时篮球的售价为70元.

2.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角). ⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数; ⑵求y 与x 之间的函数关系式;

⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少? (1)每个面包的利润为(x-5)角,卖出的面包个数为160-20(x-7)=300-20x (2)y=(x-5)(300-20x )??其中5≤x≤15 (3)y=-20x 2+400x-1500, 当x = 400

?2×(?20)

=10时,y 最大,此时最大利润y=500(角).

3、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每

件的销售价 (元/件)可看成是一次函数关系:

1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);

2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?

分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。

在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与之间的函数关系,这个函数是二次函数.

要求销售的最大利润,就是要求这个二次函数的最大值.

解:(1)由题意,销售利润与每件的销售价之间的函数关系为

=(-42)(-3+204),即=-3 2+ 8568

(2)配方,得=-3(-55)2+507

∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.

4、(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.

(1)每天的销售数量m(件)与每件的销售价格x(元)的函数

表达式是.(3分)

(2)求该商场每天销售这种商品的销售利润y(元)与每件的销

售价格x(元)之间的函数表达式;(4分)

(3)每件商品的销售价格在什么范围内,每天的销售利润随着销

售价格的提高而增加?(3分)

(1)设出一次函数的一般表达式m=kx+b,将(0,100)(100,0)代入得:

100=b

0=100k+b

,解得:k=-1,b=100,即m=-x+100(0≤x≤100),故答案为:m=-x+100(0≤x≤100);

(2)解:每件商品的利润为x-50,所以每天的利润为:y=(x-50)(-x+100)∴函

数解析式为y=-x2+150x-5000=-(x-75)2+625;(3)∵x=-b

2a

=-

150

2×(?1)

=75,

∴在50<x<75元时,每天的销售利润随着x的增大而增大

5、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.

(1)试求y与x之间的关系式;

(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?

解:(1)依题意设y=kx+b,则有

所以y=-30x+960(16≤x ≤32).

(2)每月获得利润P=(-30x+960)(x-16) =30(-x+32)(x-16) =30(+48x-512)

=-30

+1920.

所以当x=24时,P 有最大值,最大值为1920.

6、每件商品的成本是120元,在试销阶段发现每件售价(m 元)与产品的日销售量(x 件)始终存

在下表中的数量关系,但每天的盈利(元)却不一样。

每件售价m 元 130 140 150 165 170 每日销售x 件 70 60 50 35 30

⑴用含m 的代数式分别表示出每个产品的利润: , 产品的日销售量: ; (2) 为找到每件产品的最佳定价,商场经理请一位营销策划员通过计算,在不改变每件售价(m 元)与日销售量(x 件)之间的数量关系的情况下,每件定价为m 元时,每日盈利可以达到最佳值1600元。请你做营销策划员,m 的值应为多少?

.解:若定价为m 元时,售出的商品为 [70-(m -130)]件

列方程得

整理得025*******

=+-m m

∴m 1=m 2=160 答:m 的值是160 练习题

1、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量(件)与每件的

销售价 (元)满足一次函数:

(1)写出商场卖这种商品每天的销售利润 与每

件的销售价间的函数数关系式.

(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

2.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x 元,该经销店的月利润为y 元. (1)当每吨售价为240元时,计算此时的月销售量; (2)求y 与x 的函数关系式(不要求写出x 的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元?

相关文档
最新文档