2018-2019学年人教B版高中数学-选修2-3教学案-第一课时 基本计数原理(Word)
【2019-2020年度】人教B版高中数学-选修2-3教学案-第一课时排列与排列数公式(Word)
【2019-2020年度】人教B版高中数学-选修2-3教学案-第一课时排列与排列数公式(Word)[例1](1)选2个小组分别去植树和种菜;(2)选2个小组种菜;(3)选10人组成一个学习小组;(4)从1,2,3,4,5中任取两个数相除;(5)10个车站,站与站间的车票.[思路点拨] 解决本题的关键是要明确排列的定义,看选出的元素在安排时是否与顺序有关,若有关,则是排列问题,否则就不是.[精解详析] (1)植树和种菜是不同的,存在顺序问题,是排列问题.(2)(3)不存在顺序问题,不是排列问题.(4)两个数相除与这两个数的顺序有关,是排列问题.(5)车票使用时有起点和终点之分,故车票的使用是有顺序的,是排列问题.[一点通]判断是不是排列问题,要抓住排列的本质特征:(1)取出的元素无重复(2)取出的元素必须按顺序排列.元素有序还是无序是判断是否是排列问题的关键.1.下列叙述正确的是( )A.排列和排列数是同一个概念B.排列和排列数有时是同一个概念C.排列与排列数没有关系D.排列数是对排列在“数”的角度的反应答案:D2.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票价格(假设来回的票价相同);(2)选3个人分别担任班长、学习委员、生活委员;(3)某班40名学生在假期相互通信.解:(1)票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(3)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.[例2](1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)由1,2,3,4四个数字能组成多少个没有重复数字的四位数?试全部列出.[思路点拨] (1)直接列举数字;(2)先画出树形图,再结合图形写出.[精解详析](1)所有两位数是12,21,13,31,14,41,23,32,24,42,34,43,共有12个不同的两位数.(2)画出树形图,如图所示.由上面的树形图知,所有的四位数为:1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413 ,2431,3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,43 12,4321,共24个四位数.[一点通]在排列个数不多的情况下,树形图是一种比较有效的表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二个元素,再按此元素分类,依次进行,直到完成一个排列,这样能不重不漏,然后按树形图写出排列.3.A,B,C三名同学照相留念,呈“一”字形排队,所有排列的方法种数为( )A.3 B.4C.6 D.12解析:列举如下:A—B—C,A—C—B,B—A—C,B—C—A,C—A—B,C—B—A.答案:C4.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有( ) A.6种 B.9种C.11种 D.23种解析:法一:设四张贺卡分别为A,B,C,D.由题意知,某人(不妨设为A卡的供卡人)取卡的情况有3种,据此将卡的不同分配方式分为三类,对于每一类,其他人依次取卡分步进行.用树状图表示,如图.共有9种不同的分配方式.法二:让A,B,C,D四人依次拿一张别人送出的贺年卡,则可以分三步:第一步,A先拿,有3种不同的方法;第二步,让被A拿走的那张贺年卡的主人拿,共有3种不同的取法;第三、四步,剩下的两个人都各有1种取法.由分步乘法计数原理知,四张贺年卡不同的分配方式有3×3×1×1=9种.答案:B[例3] ( )A.A B.A11100C.A D.A13100(2)计算;(3)解方程3A=4A.[思路点拨] 直接应用排列数公式即可.[精解详析] (1)选 C A=100×99×...×(100-12+1)=100×99× (89)(2)=9×8×7×6×5+9×8×7×610×9×8×7×6×5-10×9×8×7×6==.(3)由3A=4A得=.∴=.化简得x2-19x+78=0,解得x1=6,x2=13.∵x≤8,且x-1≤9,∴原方程的解是x=6.[一点通]1.计算排列数或解含有排列数的方程或不等式时,要注意先提取公因式化简,然后计算.这样做往往会减少运算量.2.连续正整数(因式)的乘积可以写成某个排列数A,其中最大的数是排列元素的总个数n,而因式的个数是取出的元素个数m.5.5A+4A=( )A.107 B.323C.320 D.348解析:原式=5×5×4×3+4×4×3=348.答案:D6.下列各式中与排列数A相等的是( )A.错误!B.n(n-1)(n-2)…(n-m)C.A-1nD.A·A m n-1解析:∵A=,A·A=n错误!=n=,∴A=A·A.答案:D7.已知A=30,则x等于________.解析:A=x(x-1)=30,解得x1=6,x2=-5(舍去).答案:61.判断一个问题是否是排列的思路:排列的根本特征是每一个排列不仅与选取的元素有关,而且与元素的排列顺序有关.这就说,在判断一个问题是否是排列时,可以考查所取出的元素,任意交换两个,若结果变化,则是排列问题,否则不是排列问题.2.关于排列数的两个公式:(1)排列数的第一个公式A=n(n-1)(n-2)…(n-m+1),连乘积的特点是:第一个因数是n,后面每一个因数都比它前面一个因数少1,最后一个因数是n-m+1,共有m个因数相乘.(2)排列数的第二个公式A=适用于与排列数有关的证明、解方程、解不等式等,在具体运用时,应注意先提取公因式再计算,同时还要注意隐含条件“n,m∈N+,m≤n”的运用.1.4·5·6·…·(n-1)·n等于( )A.A B.A-4nC.n!-4! D.A-3n解析:原式可写成n·(n-1)·…·6·5·4,故选D.答案:D2.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学和物理学习小组;②从甲、乙、丙三名同学中选出两名同学参加一项活动;③从a,b,c,d四个字母中取出2个字母;④从1,2,3,4四个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A.1个 B.2个C.3个 D.4个解析:①是排列问题,因为两名同学参加的学习小组与顺序有关;②不是排列问题,因为两名同学参加的活动与顺序无关;③不是排列问题,因为取出的两个字母与顺序无关;④是排列问题,因为取出的两个数字还需要按顺序排成一列.答案:B3.已知A-A=10,则n的值为( )A.4 B.5C.6 D.7解析:由A-A=10,得(n+1)n-n(n-1)=10,解得n=5.答案:B4.某段铁路所有车站共发行132种普通车票,那么这段铁路共有的车站数是( )A.8 B.12C.16 D.24解析:设车站数为n,则A=132,n(n-1)=132,解得n=12(n=-11舍去).答案:B5.满足不等式>12的n的最小值为________.解析:由排列数公式得>12,即(n-5)(n-6)>12,解得n>9或n<2.又n≥7,所以n>9,所以n的最小值为10.答案:106.集合P={x|x=A,m∈N+},则集合P中共有________个元素.解析:因为m∈N+,且m≤4,所以P中的元素为A=4,A=12,A=A=24,即集合P中有3个元素.答案:37.解下列方程或不等式.(1)A=140A;(2)A<6A.解:(1)∵∴x≥3,由A=140A得(2x+1)2x(2x-1)(2x-2)=140x(x-1)(x-2),化简得4x2-35x+69=0,解得x1=3或x2=(舍),∴方程的解为x=3.(2)原不等式可化为<6×,化简得x2-19x+84<0,∴7<x<12,又∴3≤x≤8,∴x=8,∴原不等式的解集为{8}.8.写出下列问题的所有排列.(1)甲、乙、丙、丁四名同学站成一排;(2)从编号为1,2,3,4,5的五名同学中选出两名同学任正、副班长.解:(1)四名同学站成一排,共有A=24个不同的排列,它们是:甲乙丙丁,甲丙乙丁,甲丁乙丙,甲乙丁丙,甲丙丁乙,甲丁丙乙;乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙,乙丁丙甲;丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.(2)从五名同学中选出两名同学任正、副班长,共有A=20种选法,形成的排列是:12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54.。
高二数学(选修2-3人教B版)-计数原理全章总结
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
新人教B版高中数学(选修2-3)1.1《基本计数原理》word教案
1.1 基本计数原理 BCA案教学目标:1.掌握分类加法计数原理和分步乘法计数原理;能根据具体问题的特征,利用两个原理解决一些简单的实际问题;2.从实例入手体会两个基本计数原理的思想与方法,培养学生分析问题解决问题的能力;3.启发学生发现和提出问题,鼓励学生创造性的利用分类转化等思想和方法解决问题。
教学重点:从实例入手理解分类加法计数原理和分步乘法计数原理。
教学难点:在练习中熟练应用两个基本计数原理。
B案(课前预习)使用说明:认真阅读课本第3页,完成以下问题:1.某旅行团从南京到上海,可以乘汽车,也可以乘火车,假定汽车每日有3班,火车每日有2班,那么一天中从南京到上海共有多少种不同的走法?2.后来该旅行团改变行程,增加杭州两日游,先乘汽车从南京至杭州,两天后再乘汽车从杭州至上海,假定南京至杭州的汽车每天有3班,杭州至上海的汽车每天有2班,那么该团从南京经杭州到上海有多少种不同的方法?C案(课堂合作探究)合作探究一:一个三层书架的上层放有5本不同的数学书,中间放有3本不同的语文书,下层放有2本不同的英语书:(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?探究成果:合作探究二:用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?探究成果:变式练习:用0,1,2,3,4这五个数字可以组成多少个无重复数字的四位偶数?升华提高:合作探究三:我们把一元硬币有国徽的一面叫正面,有币值的一面叫反面。
现依次抛出5枚一元硬币,按照抛出的顺序得到一个由5个“正”或“反”组成的序列,如“正、反、反、反、正”。
问一共可以得到多少个不同的这样的序列?探究成果:当堂检测:1. 一个科技小组中有3名女同学,5名男同学。
从中任选一名同学参加学科竞赛,共有不同的选派方法____种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法_____种。
2018新人教B版高中数学选修2-3全册学案精编
目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图111所示为一个电路图,从左到右可通电的线路共有( )图111A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图112,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图112【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图113所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图113A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。
人教新课标B版高中数学选修2-3第一章计数原理1.2.1排列课件
叙述为: 从4个不同的元素a,b,c,d 中任取3个,然后按 照一定的顺序排成一列,共有多少种不同的排列方法?
abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc; cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.
一个三位数,共可得到多少个不同的三位数?
1
2
3
4
23 4 1 3 4
1 24
12 3
3 4 2 4 2 3 3 41 41 3 2 41 4 1 2 2 3 1 3 1 2
有此可写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243, 312,314,321,324,341,342; 412,413,421,423,431,432。
1、排列:
基本概念
从n个不同元素中取出m (m n)个元素, 按照一定的顺序排成一列,叫做从n个不同元 素中取出m个元素的一个排列。
说明:
1、元素不能重复。(互异性)
2、“按一定顺序”就是与位置有关,这是判断一
个问题是否是排列问题的关键(。 有序性)
3、两个排列相同,当且仅当这两个排列中的元素 完全相同,而且元素的排列顺序也完全相同。
3. 信号兵用3种不同颜色的旗子各一面,每次打出3 面,最多能打出不同的信号有( )
A. 1种 B.3种 C.6种 D.27种
26×25×24×10×9×8=11232000 11232000+11232000=22464000
探究:
问题1:从甲、乙、丙3名同学中选出2名参加一项活 动,其中1名同学参加上午的活动,另1名同学参加 下午的活动,有多少种不同的选法?
高二数学(选修2-3人教B版)-基本计数原理
原理初悟
2019年北京“世园会”举世瞩目,李华同学一家打
算去参观“世园会”,在计划出行的方案中有自驾出行,
乘坐“世园会”公交专线出行.自驾去“世园会”有2条
路线可以选择,乘坐“世园会”公交专线出行有4条路
线可以选择,请问李华一家去参观“世园会”共有多少
种出行方案?
2+4=6(种)
例1、书架的第1层放有4本不同的计算机书,第2层放有3
根据分类加法计数原理从甲地到丁地共有6+8=14
种不同的走法.
甲地
乙地
丙地
丁地
先分类、再分步
练习:某学校的一天的课程表要求如下,每天上午有4节课,
下午有2节课,安排5门不同的课程,其中安排某一门课两
节连在一起上,那么一天不同的课程表安排方案有多少种?
节数 课程
1
2
3
4
5
6
练习:某学校的一天的课程表要求如下,每天上午有4节课,
法……在第n类办法中,有 mn 种不同的方法,
则完成这件事共有N m1 m2 +mn 种不同的方法.
分步乘法计数原理:完成一件事,需要分成n个步骤,做
第1步有 m1 种不同的方法,做第2步有 m2 种不同的方
法……做第n步有 mn 种不同的方法,则完成这
件事共有 N m1 m2 mn 种不同的方法.
出公园.只考虑游玩路线的选择,该游客有多少种不同的走
法?
西门
景点A
东门
3×2=6(种)
情境创设
a1
西门
a1
1
a2
a3
b1
景点A
b2
a2
2
1
东门
人教版数学选修2-3第一章《计数原理》教案
XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。
【B版】人教课标版高中数学选修2-3《事件的独立性》教案1
2.2.2 事件的独立性知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率。
教学难点:有关独立事件发生的概率计算。
教学过程:一、复习引入:1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。
4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。
5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。
6.等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。
7.等可能性事件的概率:如果一次试验中可能出现的结果有n个,而且所有结果都是等可能的,如果事件A包含m个结果,那么事件A的概率()mP An=。
8.等可能性事件的概率公式及一般求解方法。
9.事件的和的意义:对于事件A和事件B是可以进行加法运算的。
10互斥事件:不可能同时发生的两个事件。
()()()P A B P A P B+=+。
一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥。
11.对立事件:必然有一个发生的互斥事件。
()1()1()P A A P A P A +=⇒=-。
12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++ 。
人教B版选修2-3数学1.1计数原理习题
1.1 基本计数原理知识点1 分类加法计数原理例1 从甲地到乙地,可以乘火车,可以乘汽车,也可以乘轮船,还可以坐飞机,一天中,火车有4班,汽车有2班,轮船有3班,飞机有1班,那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?知识点2 分步乘法计数原理例1 二年级一班有学生56人,其中男生38人,从中选取1名男生和1名女生做代表,参加学校组织的社会调查团,选取代表的方法有多少种?例2 某市电话号码有8位数,问该市最大的装机容量为多少?变式1一把数字号码锁共有5个号码,每个号码的圆盘上有0,1,2,…,9共10个数码,现给这把锁确定一个开锁的密码,有一人在这把锁上随意拨出五位号码,它能刚好开启这把锁的可能性是多大?例2 一个书包内有7本不同的小说书,另一个书包内有5本不同的教科书,从两个书包内任取一本书的取法有()A.7种B.5种C.12种D.35种例3 (1)8本不同的书,任选了3本分给3个同学,每人1本,有多少种不同的分法?(2)将4封信投入3个邮筒,有多少种不同的投法?(3)3位旅客到4个旅馆住宿,有多少种不同的住宿方法?变式引申:某高校高二年级一班有优秀团员8人,二班有优秀团员10人,三班有优秀团员6人,学校组织他们去旅游。
(1)推选1人为总负责人,有多少种不同的选法?(2)每班选1人带队,有多少种不同的选法?(3)从他们中选出2人管理生活,要求这2个人不同班,有多少种不同的选法?1. 3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有()种。
例从五种不同的颜色中选出若干种涂在如图所示的①②③④各部分,若要求相邻部分的颜色不同,则不同的涂色方法有多少种?2.将一个四棱锥的每个顶点染上一种颜色,并使一条棱的两端异色,若只有5种颜色可供使用,则不同的染色方法总数为()A.240种B.300种C.350种D.420种3.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有()A.6种B.9种C.11种D,23种4.在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植一种,为有利于作物生长,要求A.B两种作物的间隔不小于6垄,则不同的选垄方法有()种(用数字作答)例1、书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1,2,3层各取一本书,有多少种不同的取法?例2、4张卡片的正、反面分别有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成多少个不同的三位数?例3、用五种不同颜色给图中四个区域涂色,每一区域涂一种颜色,相邻区域不能同色,那么涂色的方法有多少种?。
人教B版选修2-3第一章计数原理全部教案---两个计数原理
1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习〞与“合作学习〞等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规那么做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理〔1〕提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?〔2〕发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有=nN+m种不同的方法.〔3〕知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9〔种〕.变式:假设还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理〔1〕提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的?用列举法可以列出所有可能的:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个,而且它们各不相同,因此共有 6×9 = 54 个不同的.探究:你能说说这个问题的特征吗?〔2〕发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ⨯=种不同的方法.〔3〕知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?[分析]①要完成的事是“取一本书〞,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书〞,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书〞,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 〕从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .〔3〕26232434=⨯+⨯+⨯=N 。
人教B版数学选修2-3《1.1基本计数原理》说课稿
人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。
一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。
2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。
3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。
教学重点是两个基本计数原理的内容。
难点是如何正确是用两个基本计数原理来解决实际问题。
二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。
三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。
采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。
四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。
高二数学精品教案:112基本计数原理和排列组合选修2-3
(2)分步乘法计数原理: 做一件事情,完成它需要分成 n 个步骤,做第一个步骤有 m1 种不同的方法,做第二个步 骤有 m2 种不同的办法……做第 n 个步骤有 mn 种不同的方法,那么完成这件事情共有 N= m1×m2×…×mn 种不同的方法 说明: (1)两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同 方式(分类和分步)完成一件事情的方法总数的计算方法 (2)考虑用哪个计 数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分 步。如果完成一件事情有 n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果 完成一件事情,需要分成 n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才
型与乙型电视机各一台,不同的取法共有( )种
A. 140
B. 84
C. 70
D. 35
4. 四个不同的小球放入编号 1,2,3,4 的四个盒子中 ,则恰有一个空盒的方法共有
N ,且m
n)
C
0 n
C
n n
1
(4)组合数的两个性质:
①
C
m n
C nm n
②
Cm n1
C
m n
C
m n
1
4. 排列和组合的关系:
(1)二者区别的关键:是否和顺序有关
(2)二者的联系:
Anm
C
m n
Amm
5. 解决站队和组数的常用方法:
(1)特殊位置(或元素)优先考虑法:解决在与不在的问题
(2)捆绑法:解决元素相邻的问题
有( )个
高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
人教B版2019年高中数学选修2-3教学案:1.2.2 组合与组合数公式及组合数的两个性质_含解析
第一课时组合与组合数公式及组合数的两个性质[对应学生用书P11][例1](1) 10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路点拨]要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.[精解详析](1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序区别的.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序区别的.[一点通]要区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.1.求从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,得到的对数的个数有多少,是________问题;若把两个数相乘得到的积有几种,则是________问题.(用“排列”“组合”填空)解析:从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,交换a,b的位置后所得对数值不同,应为排列问题;取两个数相乘,如2×3与3×2的积是相等的,没有顺序,故为组合问题.答案:排列组合2.判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?解:(1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站的车票与乙站到甲站的车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中选出3种,按一定顺序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.[例2] (1)1073(2)证明:m C m n =n C m -1n -1;(3)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m 8. [思路点拨] (1)(2)运用公式进行化简即可,(3)先求出m 的值,再进行计算.[精解详析] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.(3)∵1C m 5-1C m 6=m !(5-m )!5!-m !(6-m )!6!, 710C m 7=7×(7-m )!m !10×7!, ∴m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. 而0≤m ≤5,∴m =2.∴C m 8+C 5-m8=C 28+C 38=C 39=84.[一点通] 1.组合数公式C m n =n (n -1)(n -2)…(n -m +1)m !体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.2.组合数公式C m n =n !m !(n -m )!的主要作用:一是计算m ,n 较大时的组合数;二是对含有字母的组合数的式子进行变形和证明.另外,当m >n 2时,计算C m n 可用性质C m n =C n -mn转化,减少运算量.3.C410-C37·A33=________.解析:原式=C410-A37=10×9×8×74×3×2×1-7×6×5=210-210=0.答案:04.若A3n=12C2n,则n=________.解析:∵A3n=n(n-1)·(n-2),C2n=12n(n-1),∴n(n-1)(n-2)=6n(n-1).又n∈N+,且n≥3,∴n=8. 答案:85.解不等式1C3n-1C4n<2C5n.解:n的取值范围是{n|n≥5,n∈N+}.∵1C3n-1C4n<2C5n,∴6n(n-1)(n-2)-24n(n-1)(n-2)(n-3)<240n(n-1)(n-2)(n-3)(n-4).又∵n(n-1)(n-2)>0.∴原不等式化简得n2-11n-12<0,解得-1<n<12.结合n的取值范围,得n=5,6,7,8,9,10,11,∴原不等式的解集为{5,6,7,8,9,10,11}.[例3](10分)5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.[思路点拨]本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断.[精解详析](1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.[一点通]解简单的组合应用题时,要先判断它是不是组合问题,只有当该问题能构成组合模型时,才能运用组合数公式求解.解题时还应注意两个计数原理的运用,在分类和分步时,应注意有无重复或遗漏.6.设集合A={a1,a2,a3,a4,a5},则集合A的含有3个元素的子集共有________个.解析:从5个元素中取出3个元素组成一组就是集合A的含有3个元素的子集,则共有C35=10个.答案:107.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?解:(1)从10名教师中选出2名去参加会议的选法数就是从10个不同的元素中取出2个元素的组合数,即C210=10×92×1=45种.(2)从6名男教师中选2名,有C26种选法,从4名女教师中选2名,有C24种选法.根据分步乘法计数原理可知,共有不同的选法C26C24=90种.1.排列与组合的异同:[对应课时跟踪训练(五)] 1.从7人中选出3人参加座谈会,则不同的选法有()A.210种B.42种C.35种D.6种解析:参加座谈会与顺序无关,是组合问题,共有C37=35种不同的选法.答案:C2.若A3m=6C4m,则m的值为()A.6 B.7C.8 D.9解析:由A3m=6×C4m得m!(m-3)!=6·m!4!(m-4)!,即1m-3=14,解得m=7.答案:B3.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A.C310C35B.C410C25C.C515D.A410A25解析:按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有C410C25种抽法.答案:B4.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是() A.20 B.9C.C39D.C24C15+C25C14解析:分两类:第一类,在直线a上任取一点,与直线b可确定C14个平面;第二类,在直线b上任取一点,与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.答案:B5.若C13n=C7n,则C18n=________.解析:∵C13n=C7n,∴13=n-7,∴n=20.∴C1820=C220=190.答案:1906.10个人分成甲、乙两组,甲组4人、乙组6人,则不同的分组种数为________.(用数字作答)解析:先给甲组选4人,有C410种选法,余下的6人为乙组,故共有C410=210种选法.答案:2107.某科技小组有女同学2名、男同学x名,现从中选出3人去参观展览.若恰有1名女生入选时的不同选法有20种,求该科技小组中男生的人数.解:由题意得C12·C2x=20.解得x=5.故该科技小组有5名男生.8.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法?(1)甲当选且乙不当选;(2)至多有3男当选.解:(1)甲当选且乙不当选,只需从余下的8人中任选4人,有C48=70种选法.(2)至多有3男当选时,应分三类:第一类是3男2女,有C36C24种选法;第二类是2男3女,有C26C34种选法;第三类是1男4女,有C16C44种选法.由分类加法计数原理知,共有C36C24+C26C34+C16C44=186种选法.。
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 1.1 基本计数原理》4
基本计数原理一、教学目标1.通过实例,总结出分类计数原理、分步计数原理;2.了解分类、分步的特征,合理分类、分步;3.体会计数原理的基本原则:不重复,不遗漏.二、教学重点:从实例入手理解分类加法计数原理与分步乘法计数原理;三、教学难点:在练习中熟练应用这两个原理四、教学过程一、新课导入问题情境一:五一假期,王明从葫芦岛出发,到北京旅游,从葫芦岛到北京可以乘坐火车或者汽车,一天中,火车有3班,汽车有2班,问从葫芦岛到北京共有多少种不同的走法思考:如果从葫芦岛到北京,除了3班火车2班汽车外还有2班飞机,那么王明有多少种不同的走法呢?结论:分类计数原理(加法原理):完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2中不同的方法,…,在第n类方式中有m n中不同的方法,那么完成这件事共有N = m1m2…m n种不同的方法.要点分析:(1)分类;(2)相互独立;(3)N = m1m2…m n(各类方法之和).问题情境二:志愿者从葫芦岛赶赴杭州,但需在北京停留,已知从葫芦岛到北京每天有3列火车,从北京到杭州每天有2班飞机该志愿者从葫芦岛到杭州共有多少种不同的方法?思考:如果志愿者去北京的时候需要转一次车后再乘飞机(如图),则共有多少种不同的走法?结论:分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N = m1 ×m2 ×… ×m n种不同的方法.要点分析:(1)分步;(2)每步缺一不可,依次完成;(3)N = m1 ×m2 ×… ×m n(各步方法之积).二、数学运用例1、书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书;(1)从书架上任取一本书,有多少种取法?(2)从书架的上、中、下层各取1本书,有多少种不同的取法3从书架上取两本不同学科的书,有多少种不同的取法变式训练:某班级有男三好学生5人,女三好学生4人。
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 1.1 基本计数原理》5
§分类加法计数原理与分步乘法计数原理一、内容与解析(一)内容:分类加法计数原理与分步乘法计数原理。
(二)解析:本节课要学的内容分类加法计数原理与分步乘法计数原理指的是分类加法计数原理的定义、分步乘法计数原理的定义、两个原理应用,其核心是两个计数原理,理解它关键就是要体会两个计数原理的基本思想及其应用方法。
学生已经学过加法、乘法,本节课的内容要与之建立相关联系。
由于它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法贯穿本章内容的始终,所以在本章有重要的地位,是本学科的重要内容。
教学的重点是两个计数原理,解决重点的关键是结合实例阐述两个计数原理的基本内容,分析原理的条件和结论,特别是要注意使用对比的方法,引导学生认识它们的异同。
二、目标及其解析:(一)教学目标1理解分类加法计数原理;2理解分步乘法计数原理;3会应用两个计数原理解决简单的实际问题(二)解析(1)理解分类加法计数原理就是指将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;(2)理解分步乘法计数原理就是指将一个复杂问题分解为若干“步骤”,先对每一个步骤进行细致分析,再整合为一个完整的过程;(3)会应用两个计数原理解决简单的实际问题就是指根据具体问题的特征选择对应的原理。
三、问题诊断分析在本节课的教学中,学生可能遇到的问题是如何选择对应的原理解决具体问题,产生这一问题的原因是学生无法把具体的问题特征与两个计数的基本思想联系起来。
要解决这一问题,在本节教学时先采取通过典型的、学生熟悉的实例,经过抽象概括而得出两个计数原理,然后按照从单一至综合的方式,安排比较多的例题,引导学生逐步体会两个计数原理的基本思想及其应用方法。
四、教学支持条件分析五、教学过程一引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识 排列组合是一种重要的数学计数方法 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法设计意图:在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理 这节课,我们从具体例子出发来学习这两个原理问题1分类加法计数原理师生活动:问题:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题:从甲地到乙地,可以乘火车,也可以乘汽车如果一天中火车有3班,汽车有2班那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?问题:你能说说以上两个问题的特征吗?结论:分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法 那么完成这件事共有n m N += 种不同的方法问题:如果完成一件事有三类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,在第3类方案中有种不同的方法,那么完成这件事共有多少种不同的方法?问题:如果完成一件事情有类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,有n 类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法……在第n 类办法中有种不同的方法那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事问题2分步乘法计数原理师生活动:问题:用前6个大写英文字母和1—9九个阿拉伯数字,以,,…,,,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:分析:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9 = 54 个不同的号码.问题:你能说说这个问题的特征吗?结论:分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法那么完成这件事共有=N⨯mn种不同的方法问题:如果完成一件事需要三个步骤,做第1步有种不同的方法,做第2步有种不同的方法,做第3步有种不同的方法,那么完成这件事共有多少种不同的方法?问题:如果完成一件事情需要个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……做第n步有种不同的方法那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事问题:分类加法计数原理与分步乘法计数原理异同点?①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成例1在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学 数学化学 会计学医学 信息技术学物理学 法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 54=9(种)变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学那么,这名同学可能的专业选择共有多少种?例2一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类, m1 = 1×2 = 2 条第二类, m2 = 1×2 = 2 条第三类, m3 = 1×2 = 2 条所以, 根据加法原理, 从顶点A到顶点C1最近路线共有N = 2 2 2 = 6 条例3设某班有男生30名,女生24名现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第步选男生.第2步选女生.解:第1步,从30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有24 种不同选择.根据分步乘法计数原理,共有30×24 =72021不同的选法.例4 如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A、B、C、D四个区域依次分四步完成,第一步, m1 = 3 种,第二步, m2 = 2 种,第三步, m3 = 1 种,第四步, m4 = 1 种,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?六、小结1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法那么完成这件事共有=N+nm种不同的方法2.分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法那么完成这件事共有N⨯=mn种不同的方法七、目标检测1.填空:1 )一件工作可以用2 种方法完成,有5 人只会用第1 种方法完成,另有4 人只会用第2 种方法完成,从中选出人来完成这件工作,不同选法的种数是_;2 )从A 村去B 村的道路有3 条,从B 村去C 村的道路有2 条,从A 村经B 的路线有_条.2.现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名. 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?。
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 1.1 基本计数原理》1
1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事有N=m 1×m2×…×mn种不同的方法二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结探究结果:若完成一件事情有n类方法,则用分类计数原理若完成一件事情有n个步骤,则用分步计数原理设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 m2……m n种不同的方法2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n 步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法(二)例题分析例书架上的第1层放着4本不同的计算机书,第2层放着3本不同的文艺书,第3层放着2本不同的体育书。
【人教B版】高中选修2-3数学(理):1.1《基本计数原理》教案设计
1.1 基本计数原理【教学目标】①理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的问题;②培养归纳概括能力;③养成“自主学习”与“合作学习”等良好的学习习惯【教学重点】分类计数原理与分步计数原理的应用【教学难点】分类计数原理与分步计数原理的准确理解一、课前预习1.分类加法计数原理:做一件事,完成它有____办法,在第一类办法中有___种不同的方法,在第二类办法中有___种不同的方法……在第n类办法中有___种不同的方法.那么完成这件事共有___________________种不同的方法.2.分步乘法计数原理:做一件事,完成它需要分成____个步骤,做第一个步骤有___种不同的方法,做第二个步骤有___种不同的方法……做第n个步骤有___种不同的方法.那么完成这件事共有___________________种不同的方法.3.[思考]①如何理解“分类”和“分步”?②两个计数原理的联系与区别是什么?二、课上学习例1、(1)某班三好学生中有男生6人,女生4人,从中选一名学生去领奖,共有多少种不同的选派方法?(2)8本不同的书,任选3本分给3名同学,每人一本,有多少种不同的分法?(3)将4封信投入3个邮筒,有多少种不同的投法?(4)3位旅客到4个旅馆住宿,有多少种不同的住宿方法?例2、三层书架的上层放有10本不同的语文书,中层放有9本不同的数学书,下层放有8本不同的外语书.(1)从书架上任取一本书有多少种取法?(2)从书架上任取语、数、外各一本,有多少种取法?(3)从书架上任取两本不同学科的书,有多少种取法?例3、用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?(4)四位偶数?(5)能被5整除的四位数?三、 课后练习1. 在所有的两位数中,个位数字比十位数字大的两位数字有多少个?2.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法种数有 .A 48种 .B 24种 .C 14种 .D 12种3.设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同的画布置房间,有几种不同的选法?4.由电键组A ,B 组成的串联电路中,如图,要接通电源使电灯发光的方法有几种?5.某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有( )105.A 种 510.B 种 .C 50种 .D 以上都不对6.已知集合}3,2,1,2,1{--=A ,}8,6,4,2,0{=B .现从B A ,中各任取一个元素作为直角坐标系中的点的横坐标和纵坐标,则在第二象限中不同点的个数有( ).A 48种 .B 24种 .C 14种 .D 12种7.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号.从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号码买全,至少要花( ).A 3360元 .B 6720元 .C 4320元 .D 8640元8.有一个圆被两相交弦分成四块,现在用5种不同颜料给四块涂色,要求共边两快颜色互异,每块只涂一色,共有多少种涂色方法?9.用5种不同的颜色给下图中A,B,C,D 四个区域涂色,要求每个区域只涂一种颜色,相邻区域颜色不同,分别求甲、乙中不同的涂色方法.10.我们把一元硬币有国徽的一面叫做正面,有币值的一面叫做反面.现依次抛出5枚一元硬币,按照抛出的顺序得到一个由5个“正”或“反”组成的序列,如“正、反、反、反、正”.问:一共可以得到多少个不同的这样的序列?。
2017-2018学年高中数学人教B版选修2-3教学案:1.1 第一课时 基本计数原理
_1.1基本计数原理第一课时 基本计数原理[对应学生用书P2]分类加法计数原理2014年6月,第20届世界杯足球赛在巴西召开,这是国际体坛的一大盛事.一名志愿者从里约热内卢赶赴圣保罗为游客提供导游服务,每天有7个航班,6列火车.问题1:该志愿者从里约热内卢到圣保罗的方案可分几类?提示:两类,即乘飞机、坐火车.问题2:这几类方案中各有几种方法?提示:第一类方案(乘飞机)有7种方法,第二类方案(坐火车)有6种方法.问题3:该志愿者从里约热内卢到圣保罗共有多少种不同的方法?提示:共有7+6=13种不同的方法.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.分步乘法计数原理2014年6月,第20届世界杯足球赛在巴西召开,这是国际体坛的一大盛事.一名志愿者从里约热内卢赶赴库里奇巴为游客提供导游服务,但需在圣保罗停留,已知从里约热内卢到圣保罗每天有7个航班,从圣保罗到库里奇巴每天有6列火车.问题1:该志愿者从里约热内卢到库里奇巴需要经历几个步骤?提示:两个,即先乘飞机到圣保罗,再坐火车到库里奇巴.问题2:完成每一步各有几种方法?提示:第一个步骤有7种方法,第二个有6种方法.问题3:该志愿者从里约热内卢到库里奇巴共有多少种不同的方法?提示:共有7×6=42种不同方法.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N =m 1×m 2×…×m n种不同的方法.两个基本原理的区别:前者——分类加法计数原理每次得到的是最后结果;后者——分步乘法计数原理每次得到的是中间结果.分类加法计数原理分步乘法计数原理区别一每类方案中的每种方法都能独立完成这件事每一步完成的只是其中的一个环节,只有各步骤都完成了才能完成这件事区别二各类办法之间是互斥的、并列的、独立的各步之间是相互依存的,并且既不能重复,也不能遗漏[对应学生用书P3]分类加法计数原理[例1] 若x ,y ∈N +,且x +y ≤6,试求有序自然数对(x ,y )的个数.[思路点拨] 解答本题可按x (或y )的取值分类解决.[精解详析] 按x 的取值进行分类:x =1时,y =1,2,3,4,5,共构成5个有序自然数对;x =2时,y =1,2,3,4,共构成4个有序自然数对;x =3时,y =1,2,3,共构成3个有序自然数对;x =4时,y =1,2,共构成2个有序自然数对;x =5时,y =1,共构成1个有序自然数对.根据分类加法计数原理,共有N =5+4+3+2+1=15个有序自然数对.[一点通] 利用分类加法计数原理时要注意:(1)要准确理解题意,确定分类的标准.(2)分类时要做到“不重不漏”,即类与类之间要保证相互间的独立性.1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成.从中选出1人来完成这项工作,不同选法的种数是( )A .8B .15C .16D .30解析:第一类:会第1种方法的选1人,有3种选法;第二类:会第2种方法的选1人,有5种选法,共有5+3=8种选法.答案:A2.若x,y∈N+,且x,y所满足的不等式组为Error!试求满足条件的点M(x,y)共有多少个?解:结合图像可知当x=1时,y取1,2;当x=2时,y取1,2,3,4;当x=3时,y取1,2,3;当x=4时,y取1,2;当x=5时,y取1,共有2+4+3+2+1=12(个).3.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解:法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成八类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.法二:按个位上的数字是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个.所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.分步乘法计数原理[例2] 张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?[思路点拨] 张涛要完成人民币定期储蓄和购买国债这两项投资,他的理财目标才算完成,所以用分步乘法计数原理解决.[精解详析] 由题意知,张涛要完成理财目标应分步完成.第一步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第二步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,知张涛共有2×3=6种不同的理财方式.[一点通] 利用分步乘法计数原理时要注意:(1)仔细审题,抓住关键点确立分步标准,有特殊要求的先行安排;(2)分步要保证各步之间的连续性和相对独立性.4.现有4件不同款式的上衣和3条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,则不同的配法种数为( )A.7B.12C.64D.81解析:要完成配套需分两步,第一步,选上衣,从4件上衣中任选一件,有4种不同选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.答案:B5.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( ) A.30个B.42个C.36个D.35个解析:第一步取数b,有6种方法;第二步取数a,也有6种方法.根据分步乘法计数原理,共有6×6=36种方法.答案:C6.火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有多少种?解:以“乘客”来考虑:10名乘客下车可看作10步,每人下车有5种方式,根据分步乘法计数原理,10名乘客不同的下车方式有510种.两个计数原理的初步应用 [例3] (10分)有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?[思路点拨] 从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为四类,然后每一类再分步完成.即解答本题可“先分类,后分步”.[精解详析] 第一类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第二类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第三类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第四类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.[一点通] 在处理比较复杂的有关两个原理的综合题目时,要挖掘条件,先分类,后分步.分类要全,分步要精,确保解题的条理性,化繁为简是此类问题的解题精要所在.7.李芳有4件不同颜色的衬衣、3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”劳动节需选择一套服装参加歌舞演出,则李芳不同的选择穿衣服的方式有( ) A.24种B.14种C.10种D.9种解析:不选连衣裙有4×3=12种方法,选连衣裙有2种.共有12+2=14种.答案:B8.从1,2,3,5,7,9六个数中任取两个数作对数的底数和真数,则所有不同的对数值的个数为________.解析:分两类:第一类取1,1只能为真数,此时对数的值为0;第二类,不取1,分两步.第一步,取底数,有5种方法;第二步,取真数,有4种方法.根据分步乘法计数原理,有5×4个对数值.根据分类加法计数原理,可得不同的对数值有1+5×4=21个.答案:21用两个计数原理解决计数问题时,分清是分类还是分步:(1)分类要做到“不重不漏”.分类过程中,自始至终要按同一标准,最忌采用双重或多重标准分类,会出现重漏现象.分类后再分别对每一类进行计数,最后用分类加法计数原理求和得到总数.(2)分步要做到“步骤完整”——完成了所有步骤,恰好完成了任务且步与步之间不能“重叠”.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)分类问题中类与类是独立的,分步问题中步与步是连续的,用分类加法计数原理、分步乘法计数原理计数,必须确保类的独立、步的连续.[对应课时跟踪训练(一)]1.从甲地到乙地一天有汽车8班、火车3班、轮船2班,某人从甲地到乙地,他共有不同的方法种数为( )A.13 B.16C.24D.48解析:根据分类加法计数原理,不同方法的种数为8+3+2=13.答案:A2.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( )A.182B.14C.48D.91解析:由分步乘法计数原理,得不同取法的种数为6×8=48.答案:C3.某人有3个不同的电子邮箱,他要发5封电子邮件,发送的方法的种数为( ) A.8种B.15种C.243种D.125种解析:每个电子邮件都有3种不同的发送方法,根据分步乘法计数原理,共有3×3×3×3×3=35=243(种).答案:C4.设集合A中有5个元素,集合B中有2个元素,建立A→B的映射,共可建立( ) A.10个B.20个C.25个D.32个解析:根据映射的定义知,集合A中的每一个元素在集合B中都有唯一的元素与之对应.A中每个元素的像均有两种选择,由分步乘法计数原理知,共可建立25个映射.答案:D5.如图,在由电键组A与B所组成的并联电路中,要接通电源,使电灯发光的方法种数是________.解析:在电键组A中有2个电键,电键组B中有3个电键,应用分类加法计数原理,共有2+3=5种接通电源使电灯发光的方法.答案:56.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员参加团体比赛,则入选的3名队员中至少有一名老队员的选法有________种.(用数字作答)解析:分为两类完成,两名老队员、一名新队员时,有3种选法;两名新队员、一名老队员时,有2×3=6种选法,即共有9种不同选法.答案:97.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?解:(1)由分类加法计数原理得,从中任取一个球共有8+7=15种取法.(2)由分步乘法计数原理得,从中任取两个不同颜色的球共有8×7=56种取法.8.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,问:(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限内的点?解:(1)确定平面上的点P(a,b),可分两步完成:第一步确定a的值,有6种不同方法;第二步确定b的值,也有6种不同方法.根据分步乘法计数原理,得到平面上点P的个数为6×6=36.(2)确定平面上第二象限内的点P,可分两步完成:第一步确定a的值,由于a<0,所以有3种不同方法;第二步确定b的值,由于b>0,所以有2种不同方法.根据分步乘法计数原理,得到平面上第二象限内的点P的个数为3×2=6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_1.1基本计数原理
第一课时基本计数原理
[对应学生用书P2]
2014年6月,第20届世界杯足球赛在巴西召开,这是国际体坛的一大盛事.一名志愿者从里约热内卢赶赴圣保罗为游客提供导游服务,每天有7个航班,6列火车.问题1:该志愿者从里约热内卢到圣保罗的方案可分几类?
提示:两类,即乘飞机、坐火车.
问题2:这几类方案中各有几种方法?
提示:第一类方案(乘飞机)有7种方法,第二类方案(坐火车)有6种方法.
问题3:该志愿者从里约热内卢到圣保罗共有多少种不同的方法?
提示:共有7+6=13种不同的方法.
做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.
2014年6月,第20届世界杯足球赛在巴西召开,这是国际体坛的一大盛事.一名志愿者从里约热内卢赶赴库里奇巴为游客提供导游服务,但需在圣保罗停留,已知从里约热内卢到圣保罗每天有7个航班,从圣保罗到库里奇巴每天有6列火车.
问题1:该志愿者从里约热内卢到库里奇巴需要经历几个步骤?
提示:两个,即先乘飞机到圣保罗,再坐火车到库里奇巴.
问题2:完成每一步各有几种方法?
提示:第一个步骤有7种方法,第二个有6种方法.
问题3:该志愿者从里约热内卢到库里奇巴共有多少种不同的方法?
提示:共有7×6=42种不同方法.
做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=
m
1×m 2×…×m n 种不同的方法.
两个基本原理的区别:前者——分类加法计数原理每次得到的是最后结果;后者——分步乘法计数原理每次得到的是中间结果.
[对应学生用书P3]
[例1] 若x ,y + [思路点拨] 解答本题可按x (或y )的取值分类解决. [精解详析] 按x 的取值进行分类:
x =1时,y =1,2,3,4,5,共构成5个有序自然数对; x =2时,y =1,2,3,4,共构成4
个有序自然数对; x =3时,y =1,2,3,共构成3个有序自然数对; x =4时,y =1,2,共构成2个有序自然数对; x =5时,y =1,共构成1个有序自然数对.
根据分类加法计数原理,共有N =5+4+3+2+1=15个有序自然数对. [一点通]
利用分类加法计数原理时要注意: (1)要准确理解题意,确定分类的标准.
(2)分类时要做到“不重不漏”,即类与类之间要保证相互间的独立性.
1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成.从中选出1人来完成这项工作,不同选法的种数是( )
A .8
B .15
C .16
D .30
解析:第一类:会第1种方法的选1人,有3种选法;第二类:会第2种方法的选1
人,有5种选法,共有5+3=8种选法.
答案:A
2.若x ,y ∈N +,且x ,y 所满足的不等式组为⎩
⎪⎨⎪⎧
2x -y ≥0,
x +y ≤6,试求满足条件的点M (x ,
y )共有多少个?
解:结合图像可知 当x =1时,y 取1,2; 当x =2时,y 取1,2,3,4; 当x =3时,y 取1,2,3; 当x =4时,y 取1,2;
当x =5时,y 取1,共有2+4+3+2+1=12(个).
3.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
解:法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成八类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.
法二:按个位上的数字是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个.所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.
[例2] 其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?
[思路点拨] 张涛要完成人民币定期储蓄和购买国债这两项投资,他的理财目标才算完成,所以用分步乘法计数原理解决.
[精解详析] 由题意知,张涛要完成理财目标应分步完成.
第一步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式; 第二步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.
由分步乘法计数原理,知张涛共有2×3=6种不同的理财方式. [一点通]
利用分步乘法计数原理时要注意:
(1)仔细审题,抓住关键点确立分步标准,有特殊要求的先行安排; (2)分步要保证各步之间的连续性和相对独立性.。