平移和旋转在全等三角形中的巧用

合集下载

全等三角形解题方法与技巧

全等三角形解题方法与技巧

“三步曲”证全等牢记判定定理:SSS SAS ASA AAS HL一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离出基本图形)二看条件:(一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。

)1、利用公共边(或公共角)相等例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么?练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。

求证:EB=ED 。

DA E CB2、利用对顶角相等例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗?练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。

求证:∠ACE=∠BDF 。

3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由.练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

AED CBA BCDEFO4、利用平行线的性质得出同位角、内错角相等例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数.练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。

(二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。

基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。

例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△.例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 .例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .图1图2D CE A BCEBFDAFEDCBH练习1:已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥CD 于F 。

华师大版七下数学10轴对称、平移与旋转全等三角形教学设计

华师大版七下数学10轴对称、平移与旋转全等三角形教学设计

华师大版七下数学10轴对称、平移与旋转全等三角形教学设计一. 教材分析《华师大版七下数学》第十章主要讲述了轴对称、平移与旋转全等三角形的相关知识。

本章内容是学生进一步理解几何图形的性质,掌握图形的变换,以及运用全等三角形解决实际问题的基础。

通过本章的学习,学生能够理解轴对称、平移与旋转的性质,掌握它们之间的联系,并能运用这些知识解决一些简单的实际问题。

二. 学情分析学生在六下时已经学习了图形的变换,对平移、旋转和轴对称有了一定的了解。

但是,对于如何运用这些性质解决实际问题,以及如何证明两个三角形全等,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过实际操作,理解并掌握这些知识,并能运用到解决问题中。

三. 教学目标1.理解轴对称、平移与旋转的性质,掌握它们之间的联系。

2.能够运用全等三角形的性质解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:轴对称、平移与旋转的性质,全等三角形的判定和运用。

2.教学难点:如何运用全等三角形的性质解决实际问题。

五. 教学方法采用问题驱动法、合作学习法和案例教学法。

通过设置问题,引导学生思考和探索,培养学生的解决问题的能力;通过合作学习,让学生在讨论中理解和掌握知识;通过案例教学,让学生学会将理论知识运用到实际问题中。

六. 教学准备1.准备相关的教学案例和问题。

2.准备教学PPT,内容包括轴对称、平移与旋转的性质,全等三角形的判定和运用。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用轴对称、平移与旋转的性质解决问题。

例如,一个长方形纸片通过轴对称、平移与旋转可以变成另一个长方形,如何求出这两个长方形的面积关系。

2.呈现(10分钟)通过PPT展示轴对称、平移与旋转的性质,全等三角形的判定和运用。

让学生直观地理解这些知识,并通过例题演示如何运用这些知识解决问题。

3.操练(10分钟)让学生分组进行合作学习,每组选择一个实际问题,运用轴对称、平移与旋转的性质和全等三角形的判定进行解决。

“平移、旋转和轴对称”单元教材解读与教学建议

“平移、旋转和轴对称”单元教材解读与教学建议

“平移、旋转和轴对称”是苏教版教材三年级上册第六单元的内容,本单元的内容属于“图形的运动”。

图形的运动,对学生认识丰富多彩的现实世界、形成初步的空间观念,以及加强对图形美的感受和欣赏是十分重要的。

20世纪80年代,几何图形运动的内容大幅度进入欧美各国的小学数学课程。

学生在生活中常常有机会接触平移、旋转、轴对称等现象,并积累了有关各种形状积木拼摆的经验。

因此,我国在21世纪的数学课程改革中,也开始重视几何图形运动对形成空间观念的重要意义。

一、《标准(2011年版)》的要求图形的运动在义务教育数学课程中最基本的形式有两种:一是形状和大小不变,仅仅位置发生变化(合同运动);二是形状不变而大小变化(相似运动)。

按照《标准(2011年版)》的要求,第一、二学段中图形的运动主要是合同运动,涉及图形的平移、旋转、轴对称及少量简单的图形相似的内容。

平移和旋转都是学生在日常生活中经常看到的现象。

从数学的意义上讲,平移和旋转是两种基本的图形变换。

图形的平移和旋转对于帮助学生建立空间观念,掌握变换的数学思想方法有很大作用。

图形的放大和缩小是对图形相似运动的直接感知,能为第三学段研究图形的相似运动和位似运动打下基础。

而图案的欣赏与设计,则为学生用数学的眼光看世界、看生活提供了机会,也可以进一步感受数学的美,感受数学的应用价值。

通过图形的运动探索发现并确认图形的一些性质,有助于学生发展几何直观,有利于学生提高研究图形性质的兴趣,体会研究图形性质可以有不同的方法。

小学阶段的教学内容大致如下:第一学段:结合实例,感受平移旋转和轴对称现象;能辨认简单图形平移后的图形;通过观察、操作,初步认识轴对称图形。

第二学段:通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。

通过观察、操作等,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,会在方格纸上将简单图形旋转90º。

全等三角形解题方法与技巧

全等三角形解题方法与技巧

全等三角形解题方法与技巧精心编写,铸就精品全等三角形解题方法与技巧学习数学要多做习题,边做边思索。

先知其然,然后知其所以然。

——苏步青目录1 概述 (1)2 全等三角形知识归纳 (2)2.1 全等形 (2)2.2 全等三角形的定义 (2)2.3 全等三角形的性质 (2)2.4 全等三角形的判定方法 (2)2.5 全等三角形的书写规范 (4)2.6 全等三角形模型 (5)2.6.1 几何变换型全等模型 (5)2.6.2 三垂直模型 (6)2.6.3 手拉手模型 (6)2.6.3.1 定义 (6)2.6.3.2 任意等腰三角形下的手拉手模型 (7)2.6.3.3 等边三角形下的手拉手模型 (9)2.6.3.4 等腰直角三角形下的手拉手模型 (10)2.6.4 半角模型 (11)2.6.4.1 定义 (11)2.6.4.2 半角模型解题思路 (13)2.6.4.3 半角模型1(等边三角形内含半角)解题方法 (13)2.6.4.4 半角模型2(等腰直角三角形内含半角)解题方法 (15)2.6.4.5 半角模型3(正方形内含半角)解题方法 (16)3 全等三角形题型中常用到的知识点 (18)3.1 “8”字模型找角相等 (18)3.2 角平分线 (18)3.2.1 角平分线的性质定理 (18)3.2.2 角平分线的判定定理 (18)3.3 等腰三角形 (18)3.3.1 等腰三角形的定义 (18)3.3.2 等腰三角形的性质 (18)3.3.3 等腰三角形的判定 (19)3.4 等边三角形 (19)3.4.1 等边三角形的定义 (19)3.4.2 等边三角形的性质 (19)3.4.3 等边三角形的判定 (19)3.5 直角三角形 (19)3.5.1 直角三角形的性质 (19)3.6 等腰直角三角形 (20)3.6.1 等腰直角三角形的性质 (20)3.6.2 等腰直角三角形的判定 (20)4 全等三角形解题方法与技巧 (21)4.1 灵活选择全等三角形的判定方法 (21)4.2 找全等三角形条件的方法 (21)4.2.1 找边相等的方法 (21)4.2.2 找角相等的方法 (21)4.2.3 善于发现和利用隐藏条件找三角形全等的条件 (22)4.3 二次全等证明思路 (22)5 常见的构造全等三角形解题方法 (24)5.1 构造全等三角形的思路 (24)5.2 题目中出现角平分线 (24)5.2.1 辅助线作法 (24)5.2.2 例题 (25)5.3 题目中出现中点或者中线 (25)5.3.1 辅助线作法1:倍长中线 (25)5.3.2 辅助线作法2:类倍长中线 (26)5.3.3 例题 (27)5.4 题目中出现等腰或者等边三角形 (27)5.4.1 辅助线作法1:倍长中线法 (27)5.4.2 辅助线作法2:作三线之一(中线、高线、角平分线) (27)5.4.3 辅助线作法3:过某已知点作一条边的平行线 (28)5.4.4 例题 (28)6 典型考题解题方法 (31)6.1 证明边或角相等 (31)6.1.1 解题方法 (31)6.1.2 例题 (31)6.2 证明线段和差问题(形如:AB+BC=CD,AB=AD-CD) (32)6.2.1 解题方法 (32)6.2.2 例题 (33)6.3 证明线段倍分问题(2倍或1/2关系,如AB=2CE,MN=1/2BN) (34)6.3.1 解题方法 (34)6.3.2 例题 (34)6.4 证明二倍角关系 (35)6.4.1 解题方法 (35)6.4.2 例题 (35)6.5 手拉手模型题型 (36)6.5.1 解题方法 (36)6.5.2 例题 (36)6.6 半角模型题型 (38)6.6.1 解题方法 (38)6.6.2 例题 (38)6.7 全等三角形中的动点问题题型 (38)6.7.1 解题方法 (38)6.7.2 例题 (39)7 全等三角形题型的书写方法 (41)7.1 书写方法 (41)7.2 常见子模块几何语言 (42)7.2.1 三角形全等 (42)7.2.2 角的平分 (42)7.2.3 角平分线性质定理 (42)7.2.4 角平分线判定定理 (43)7.2.5 轴对称 (43)7.2.6 等腰三角形“三线合一”的书写 (43)7.2.7 各模型 (44)7.3 实例讲解 (44)8 致谢 (46)1概述精心编写,铸就精品1 概述全等三角形是初中数学的重点和难点,同学们学习时往往感到比较困难,主要表现为两点:(1)不会思考:看见题时不知应该从何处思考,经常是东想一想、西想一下,思考很混乱,这种思考方式导致只能解答简单题型;(2)不会书写:没有掌握全等三角形几何题型的书写方法,导致书写顺序混乱、因果关系错误,涂涂改改,卷面潦草。

初中数学三角形全等常用几何模型及构造方法大全(初二)

初中数学三角形全等常用几何模型及构造方法大全(初二)

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1. 旋转半角模型2. 自旋转模型3. 共旋转模型4. 中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1. 半角:有一个角含1/2角及相邻线段2. 自旋转:有一对相邻等线段,需要构造旋转全等3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

教师用:全等三角形问题中常见的8种辅助线的作法

教师用:全等三角形问题中常见的8种辅助线的作法

教师用:全等三角形问题中常见的8种辅助线的作法8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形3)遇到角平分线在三种添辅助线的方法(1)可以自角平分线上的某一点向角的两边作垂线(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点DC B A 再向角平分线上的某点作边线,构造一对全等三角形。

4) 过图形上某一点作特定的平分线,构造全等三角形5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知AB-BE <2AD<AB+BE 故AD 的取值范围是1<AD<4ED F CB A例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知EG=EF在△BEG中,由三角形性质知EG<BG+BE故:EF<BE+FC例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA解:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD由于DC=AC,故∠ADC=∠DAC在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG 故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 应用:1、(09崇文二模)以的两边AB 、AC 为腰分别向外作等腰RtABD∆和等腰RtACE∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.ABC ∆EDCBA二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC解:(截长法)在AB 上取中点F ,连FD △ADB 是等腰三角形,F 是底AB 中点,由三线合一知DF ⊥AB ,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC解:(截长法)在AB 上取点F ,使AF =AD ,连FE △ADE ≌△AFE (SAS ) ∠ADE =∠AFE , ∠ADE+∠BCE =180°PQCBA∠AFE+∠BFE =180° 故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

五年级第二讲图形的平移和旋转

五年级第二讲图形的平移和旋转

五年级第二讲图形的平移和旋转(共9页)-本页仅作为预览文档封面,使用时请删除本页-图形的平移和旋转知识点讲解:平移的概念:平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移的条件:确定一个平移运动的条件是平移的方向和距离。

平移特征:1、平移前后图形的形状、大小不变,只是位置发生改变。

2、新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。

3、新图形与原图形的对应线段平行且相等,对应角相等。

旋转的概念:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

在画旋转图形时,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

旋转的特征:1、对应点到旋转中心的距离相等。

2、对应点与旋转中心所连线段的夹角等于旋转角。

3、旋转前、后的图形全等。

旋转三要素:①旋转中心②旋转方向③旋转角度课堂练一练一.涂色1、把图形向右平移7格后得到的图形涂上颜色。

2、把图形向左平移5格后得到的图形涂上颜色。

3、把图形向右平移4格后得到的图形涂上颜色。

二、利用平移知识画图或填空1.画出小船向右平移6格后的图形2.、画出向右平移6格后的图形3、(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)小飞机向()平移了()格。

4、(1)绕O点顺时针旋转 90度。

(2)向右平移5格78平移和旋转练习题(一)一、连一连。

升旗时国旗的运动时针的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动旋转把握汽车的方向盘二、操作。

1、向( )平移了( )格。

2、把上面的小船图向上平移5格3、把上图中的三角形绕垂足顺时针旋转180°小学数学平移和旋转练习题(二)一、看图填一填。

1、长方形向()平移了()格。

2、六边形向()平移了()格。

3、五角星向()平移了()格。

《中心对称》图形的平移与旋转

《中心对称》图形的平移与旋转

平移的应用
平移可以用于绘制平行线、平行 四边形等图形。
平移可以用于解决一些几何问题 ,如将一个图形绕某个点旋转一 定角度后,再将其平移到另一个
位置。
平移可以用于设计一些美丽的图 案,如将一个图形进行多次平移
后可以得到一些重复的图案。
02 中心对称图形的旋转
旋转的定义
旋转是图形在某一点为中心, 按照一定的角度和方向进行的 旋转运动。
平移前后的两个图形 是全等图形。
平移不改变图形的形 状、大小和方向,只 改变图形的位置。
平移的性质
01
平移不改变图形的形状、大小和方向,只改变图形的位 置。
02
平移前后的两个图形是全等图形,它们的对应线段相等 且平行(或共线),对应角相等,对应点所连接的线段 平行且相等。
03
平移具有传递性,即如果图形A经过平移得到图形B,那 么图形B再经过平移一定可以得到图形A。
四边形平移旋转的实例
总结词
四边形作为中心对称图形,在平移和旋转后仍然保持其形状和大小不变,但方向可能会发生改变。
详细描述
四边形是一种具有固定角度和长度的多边形,其平移和旋转后仍然保持其形状和大小不变。例如,一个正方形可 以沿着其中心点进行旋转,每次旋转的角度为90度,这样旋转四次后,正方形又回到了原来的位置。此外,正方 形还可以进行平移,即将其沿着某个方向移动一定的距离,其形状和大小也不会发生改变。
旋转中心是固定不动的,而图 形上的其他点随着旋转中心进 行旋转。
旋转的角度和方向决定了图形 旋转后的形态。
旋转的性质
旋转的性质包括旋转前后的图形 形状、大小、方向、角度等保持
不变。
旋转过程中,图形上的点到旋转 中心的距离保持不变,即旋转半

模型构建专题:全等三角形中的常见七种解题模型全攻略(学生版)

模型构建专题:全等三角形中的常见七种解题模型全攻略(学生版)

模型构建专题:全等三角形中的常见七种解题模型【考点导航】目录【典型例题】【模型一平移型模型】【模型二轴对称型模型】【模型三四边形中构造全等三角形解题】【模型四一线三等角模型】【模型五三垂直模型】【模型六旋转型模型】【模型七倍长中线模型】【典型例题】【模型一平移型模型】1(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,点E,C在线段BF上,AB∥DE,AB=DE,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠B=40°,∠D=70°,求∠ACF的度数.【变式训练】1(2023秋·浙江·八年级专题练习)如图,在△ACD和△CBE中,点A、B、C在一条直线上,∠D=∠E,AD⎳EC,AD=EC.求证:△ACD≌△CBE.2(2023秋·浙江·八年级专题练习)如图,已知△ABC≌△DEF,点B,E,C,F在同一条直线上.(1)若∠BED=140°,∠D=75°,求∠ACB的度数;(2)若BE=2,EC=3,求BF的长.3(2023春·山西太原·八年级统考期中)综合与实践--探索图形平移中的数学问题问题情境:如图1,已知△ABC是等边三角形,AB=6,点D是AC边的中点,以AD为边,在△ABC外部作等边三角形ADE.操作探究:将△ADE从图1的位置开始,沿射线AC方向平移,点A,D,E的对应点分别为点A ,D ,E .(1)如图2,善思小组的同学画出了BA =BD 时的情形,求此时△ADE平移的距离;(2)如图3,点F是BC的中点,在△ADE平移过程中,连接E F 交射线AC于点O,敏学小组的同学发现OE =OF始终成立!请你证明这一结论;拓展延伸:(3)请从A,B两题中任选一题作答,我选择题.A.在△ADE平移的过程中,直接写出以F,A ,D 为顶点的三角形成为直角三角形时,△ADE平移的距离.B.在△ADE平移的过程中,直接写出以F,D ,E 为顶点的三角形成为直角三角形时,△ADE平移的距离.【模型二轴对称型模型】1(2023秋·内蒙古呼伦贝尔·八年级校考期中)如图,AB=AD,BC=DC,求证:∠B=∠D.【变式训练】1(2023春·四川成都·七年级成都嘉祥外国语学校校考期中)如图,在中,,是的中点,,且,求证:.2(2023秋·河南南阳·八年级统考期末)如图,点E、F是线段上的两个点,与交于点M.已知,,.(1)求证:;(2)若.求证:是等边三角形.3(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形中,,,、相交于点,求证:(1);(2).【模型三四边形中构造全等三角形解题】中点.求证:DE=DF.【变式训练】这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形中,,.求证:.证明:(2)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)2如图,在四边形ABCD中,CB⊥AB于点B,CD⊥AD于点D,点E,F分别在AB,AD上,AE =AF,CE=CF.(1)若AE=8,CD=6,求四边形AECF的面积;(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想.3在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?【模型四一线三等角模型】1(2023春·广西南宁·七年级南宁市天桃实验学校校考期末)(1)问题发现:如图1,射线AE在∠MAN的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,若∠BAC=∠BFE=∠CDE=90°,求证:△ABF≌△CAD;(2)类比探究:如图2,AB=AC,且∠BAC=∠BFE=∠CDE.(1)中的结论是否仍然成立,请说明理由;(3)拓展延伸:如图3,在△ABC中,AB=AC,AB>BC.点E在BC边上,CE=2BE,点D、F在线段AE上,∠BAC=∠BFE=∠CDE.若△ABC的面积为15,DE=2AD,求△BEF与△CDE的面积之比.【变式训练】1已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①如图1,若∠BCA=90°,∠α=90°,求证:BE=CF;②如图2,若∠α+∠BCA=180°,探索三条线段EF,BE,AF的数量关系,并证明你的结论;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.2(2023春·上海·七年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【模型五三垂直模型】1(2023春·辽宁本溪·七年级统考期末)已知∠ACB=90°,AC=BC,AD⊥NM,BE⊥NM,垂足分别为点D,E.(1)如图①,求证:AD=BE+DE(2)如图②,(1)中的结论还成立吗?如果不成立,请写出线段AD,BE,DE之间的数量关系,并说明理由.【变式训练】1(2023春·甘肃酒泉·八年级校联考期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;2如图,已知:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN,BE⊥MN.(1)当直线MN绕点C旋转到图(1)的位置时,求证:△ADC≅△CEB;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系:.【模型六旋转型模型】1在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【变式训练】2(2023秋·湖南长沙·八年级长沙市湘郡培粹实验中学校考开学考试)【问题初探】△ABC和△DBE是两个都含有45°角的大小不同的直角三角板(1)当两个三角板如图(1)所示的位置摆放时,D 、B ,C 在同一直线上,连接AD 、CE ,请证明:AD =CE 【类比探究】(2)当三角板ABC 保持不动时,将三角板DBE 绕点B 顺时针旋转到如图(2)所示的位置,判断AD 与CE 的数量关系和位置关系,并说明理由.【拓展延伸】如图(3),在四边形ABCD 中,∠BAD =90°,AB =AD ,BC =34CD ,连接AC ,BD ,∠ACD =45°,A 到直线CD 的距离为7,请求出△BCD 的面积.3(2023·全国·九年级专题练习)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45°的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD 中,以A 为顶点的∠EAF =45°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.易证得EF =BE +FD .大致证明思路:如图2,将△ADF 绕点A 顺时针旋转90°,得到△ABH ,由∠HBE =180°可得H 、B 、E 三点共线,∠HAE =∠EAF =45°,进而可证明△AEH ≌△AEF ,故EF =BE +DF .任务:如图3,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠BAD =120°,以A 为顶点的∠EAF =60°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.请参照阅读材料中的解题方法,你认为结论EF =BE +DF 是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.4(2023·山西大同·校联考模拟预测)综合与实践课上,李老师让同学们以“等腰直角三角形的旋转”为主题开展数学活动.数学兴趣小组将两块大小不同的等腰直角三角形AOB 和等腰直角三角形COD 按图1的方式摆放,∠AOB =∠COD =90°,随后保持△AOB 不动,将△COD 绕点O 按逆时针方向旋转α0°<α<90° ,连接BC ,AD ,延长BC 交AD 于点M .该数学兴趣小组进行如下探究,请你帮忙解答:,【初步探究】(1)如图1,直接写出线段BC 和AD 的关系:.(2)如图2,当CD∥BO时,则α=.【深入探究】(3)如图3,当0°<α<90°时,连接OM,兴趣小组认为不仅(1)中的结论仍然成立,而且在△COD旋转过程中,∠CMO的度数不发生变化,请给出推理过程并求出∠CMO的度数.【拓展延伸】(4)如图3,试探究线段AM,BM,OM,之间是否存在某种特定的数量关系,若存在,直接写出数量关系式;若不存在,请说明理由.【模型七倍长中线模型】1(2023春·全国·七年级专题练习)[阅读理解]课外兴趣小组活动时,老师提出了如下问题:如图1,在ΔABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连结BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,其理由是什么?(2)AD的取值范围是什么?[感悟]解题时,条件中出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和结论转化到一个三角形中.[问题解决](3)如图3,AD是ΔABC的中线,BE交AC于点F,且AE=EF,试说明AC=BF.【变式训练】1(2023春·四川达州·七年级四川省大竹中学校考期末)(1)阅读理解:如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,这样就把AB,,集中在中,利用三角形三边的关系可判断线段的取值范围是;则中线的取值范围是;(2)问题解决:如图②,在中,是边的中点,于点,交于点,交于点,连接,此时:与的大小关系,并说明理由.(3)问题拓展:如图③,在四边形中,,,,以为顶点作,边,分别交,于,两点,连接,此时:、与的数量关系2(2023春·江苏泰州·七年级统考期末)【发现问题】(1)数学活动课上,王老师提出了如下问题:如图1,在中,,,求边上的中线的取值范围.【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长到E,使得;②连接,通过三角形全等把、、转化在中;③利用三角形的三边关系可得的取值范围为,从而得到的取值范围是.方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(2)如图2,是的中线,是的中线,且,,下列四个选项中:直接写出所有正确选项的序号是.①②③④【问题拓展】(3)如图3,,,与互补,连接、,E 是的中点,求证:.(4)如图4,在(3)的条件下,若,延长交于点F ,,,则的面积是.。

例谈“旋转法”构造全等三角形,外显解题思路与技巧

例谈“旋转法”构造全等三角形,外显解题思路与技巧

例谈“旋转法”构造全等三角形,外显解题思路与技巧证明三角形全等是解决线段与角相等或和、差、倍、分关系的重要方法,应用“全等三角形”来解题时,通常需要添加辅助线,而很多同学在寻找辅助线的添法时往往感到无从下手,这也是很多学生认为几何比较难的重要原因.平移、旋转和翻折是图形运动中的三种全等变换,经过全等变换后的图形与原图形是全等的. 因此,我们可以借助全等变换的方法帮助我们识别复杂图形中的全等图形,同时我们还可以利用全等变换将分散的条件集中,从而寻求添加辅助线的方法. 本文主要从图形旋转的角度,通过几个具体的例题分析来谈谈什么时候构造旋转,怎样构造旋转,同时如何从学生的角度探索辅助线的叙述方法,从而帮助我们有效的解决问题,现呈现出来,希望得到指正.1. 旋转对应线段例1 已知如图1(1),以△ABC的AB,AC为边向三角形外作等边△ABD,△ACE,连接CD,BE相交于点O.求证:OA平分∠DOE.解析本题是旋转的基本模型,要证OA平分∠DOE,即证∠DOA = ∠EOA.可证∠DOA与∠EOA所在的三角形全等,或者证明∠DOA与∠EOA和同角(或等角)相等.由题目条件易知:AD = AB,∠DAC = ∠BAE,AC = AE,所以△DAC ≌△BAE.即△DAC绕点A逆时针旋转60°与△BAE重合.所以可旋转三角形的重要线段(或对应线段),从而构造三角形全等.方法1 (构造对应高相等)如图1(2),过点A作AP ⊥CD于点P,AQ⊥BE于点Q,则∠APD = ∠AQB = 90°. 因为△DAC ≌△BAE,所以∠ADP = ∠ABQ,AD = AB,所以△ADP ≌△ABQ,所以AP = AQ,又AO = AO,所以△APO ≌△AQO(HL). 所以∠DOA = ∠EOA,即OA 平分∠DOE.方法2 (构造一般对应线段)如图1(3),在线段BE 上截取BF = DO,因为△DAC ≌△BAE,所以∠ADO = ∠ABF,AD = AB,所以△ADO ≌△ABF,所以∠DOA = ∠BFA,AO = BF,所以∠EOA = ∠BFA. 所以∠DOA = ∠EOA,即OA 平分∠DOE.说明:△DAC绕点A逆时针旋转60°与△BAE重合,在旋转过程中,两个三角形的对应元素始终相等,线段AO 作为△DAC中的线段,在旋转过程中必有某线段AF与之对应,因此可构造△ADO ≌△ABF. 但是我们在叙述辅助线的时候,不易在BE上取点F,使得AF = AO,所以要变换辅助线的叙述方法,在线段BE上截取BF = DO.拓展:如图2,以△ABC的AB、AC为边向三角形外正方形ABDE、ACFG,连接CE交AB于点H,连接BG交CE于点O.求证:(1)BG⊥CE;(2)OA平分∠EOG .说明:还可以向外构造正五边形得到类似的结论.2. 旋转等腰三角形的顶角例2 如图3(1),△ABC是正三角形,△BDC是等腰三角形,且∠BDC = 120°,以点D为顶点作∠MDN = 60°,分别交AB、AC于M、N,连接MN.(1)探索线段BM、CN、MN的数量关系,并加以证明;(2)当M、N分别在边AB、CA的延长线上时,其他条件不变,如图3(2),探索BM、CN、MN之间的数量关系,并给出证明.分析(1)如图3(2),从△BDC是等腰三角形入手,可以将△BDM绕点D旋转120°,则点B落在点C,点M 落在点E,点N、C、E共线,然后证明△MDN ≌△EDN 即可.(2)如图3(4),同理将△BDM绕点D旋转120°,则点B落在点C,点M落在点F,点A、F、C,在共线,然后证明△MDN ≌△FDN即可.解析(1)MN = BM + CN. 如图3(2),延长NC到E,使得CE = BM . 因为△BDC是等腰三角形,且∠BDC = 120°,所以BD = CD,∠DBC = ∠DCB = 30°.又因为△ABC是正三角形,所以∠ABC = ∠ACB = 60°,所以∠MBD = ∠ECD = 90°,所以△BMD ≌△CED (SAS),所以DM = DE,∠BDM = ∠CDE. 因为∠MDN = 60°,∠BDC = 120°,所以∠MDN = ∠EDN = 60°,所以△MDN ≌△EDN(SAS),所以MN = EN. 所以MN = CE + CN,即MN = BM + CN.(2)MN = CN - BM. 如图3(4),在CN上截取CF = BM,由(1)可知∠MBD = ∠FCD = 90°,BD = CD,所以△BMD ≌△CFD(SAS). 所以DM = DF,∠BDM = ∠CDF,所以∠MDN = ∠FDN = 60°,所以△MDN ≌△FDN(SAS),所以MN = FN. 所以MN = CN - CF,即MN = CN - BM.说明:△BDM绕点D旋转120°,则点B落在点C,点M落在点E,因为∠NCD + ∠ECD = 180°,因此点N、C、E共线. 本题说明点共线比较容易,而当我们在旋转后,证明共线问题较困难时,我们可借鉴本题解析中的方法,转变角度,变换辅助线的叙述方法,来回避共线问题的证明.总结当然,利用“旋转法”添加辅助线的题型还很多,例如旋转30°、60°、90°、120°、150°、180°等. 只要我们心中有“旋转”的思想,在具体问题中注意变换辅助线的方法,通常都会使问题迎刃而解.。

初中三角形全等教学策略的几个技巧

初中三角形全等教学策略的几个技巧

初中三角形全等教学的几个策略运用和反思靖远县三滩中学崔巧芳730615初中数学中三角形的全等,其实是对平面几何中两个图形关系的研究。

三角形的全等是两个形状、大小都相同的三角形,其中一个三角形可以经过平移、旋转、对称等运动与另一个三角形完全重合。

三角形全等是两个三角形之间最常见的关系,探究三角形全等的判定条件,掌握全等三角形的四种判定方法,渗透分类思想,逐步学会写出逻辑推理的证明过程,,对于培养学生的逻辑推理能力和数学思维,有着相当重要的作用。

策略一:置疑设景,激发思维在新课程标准的框架下,这一章的教学中,要求学生不仅要学会如何去识别全等的三角形,还要让学生掌握其中的思维方式。

利用初中生所特有的好奇心,激发学生对数学的学习兴趣。

利用生活中学生所熟悉的三角形的存在和应用,带领学生探索三角形全等的条件,让学生体会到分析问题、解决问题的方法,积累数学活动的经验。

例如,元旦联欢会,为活跃气氛,班委会想让班级每个同学自制一个小彩旗,可怎样才能使全班的彩旗形状、大小完全相同呢?又如,我们修建人字架的房屋,怎样才能使房顶的所有人字架大小相等呢?由学生带着浓厚的兴趣尝试把实际问题转化为数学问题:怎样画一个三角形与已知三角形全等?在解决这个问题的过程中,鼓励学生大胆猜想,激发同学们的主动性和创造性。

学生可能会提出很多方案,对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过已知三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。

学生的思维在此产生碰撞,要使两个三角形全等到底需要满足哪些条件?教师进一步明确本节课研究的方向,引出课题。

牵住了学生的思维的鼻子。

策略二:手动心思,验证思维兴趣是学生最好的老师。

在兴趣引导下学生自发地学习和探索,更需要多方面的配合。

此时此刻,教师可利用早就让学生准备好的学具,开始手动心思的活动。

教师带领学生利用身边随处可见的东西——纸,经过折叠、剪裁以后,亲手制造出两个完全相等的三角形,这两个三角形就是全等三角形。

全等三角形经典例题

全等三角形经典例题

全等三角形经典例题(全等三角形的概念和性质)类型一、全等形和全等三角形的概念1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )(答案)B ;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B 答案中的两个三角形经过翻转180°就可以重合,故选B ;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角 类型三、全等三角形性质3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,那么DAE ∠等于( ).A 。

60° B 。

45° C 。

30° D.15°(答案)D ;(解析)因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE,所以∠FAE=∠DAE ,又因为60BAF ∠=︒,所以∠FAE =∠DAE =90602︒-︒=15°.(点评)折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:(变式)如图,在长方形ABCD 中,将△BCD 沿其对角线BD 翻折得到△BED ,若∠1=35°,则∠2=________。

(答案)35°;提示:将△BCD 沿其对角线BD 翻折得到△BED,所以∠2=∠CBD ,又因为AD ∥BC ,所以∠1=∠CBD ,所以∠2=35°.4、 如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.(答案)∠α=80°(解析)∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x ,∠2=5x ,∠3=3x ,∴28x +5x +3x =36x =180°,x =5° 即∠1=140°,∠2=25°,∠3=15°∵△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的, ∴△ABE ≌△ADC ≌△ABC ∴∠2=∠ABE ,∠3=∠ACD∴∠α=∠EBC +∠BCD =2∠2+2∠3=50°+30°=80°(点评)此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题。

全等三角形的图形全等变换

全等三角形的图形全等变换
培养其合理猜想、探索、推理、论证能力。培养其独立思考、分析问题、解决问题的能力。
鼓励学生讨论、交流、探究,允许他们有不同的拼图方法和结论,培养其合作精神。
活动九
7.两个全等三角形的综合变换:
学生思考、探究解题思路和方法,小组合作交流;
师作图巡视、指导。
(1)一个长方形沿着一条对角线对折剪开,拼成如图位置的两个三角形,使点B、F、C、D在同一直线上.①求证:AB⊥DE;②若PB=BC,找出一对全等三角形,并证明出它们的正确性。
小结
学生谈感受和收获
培养学生的归纳总结能力
作业
教材P—114 (3)(5)(8)
选做题:上面活动九中的“迁移题”
分层次教学
板书
设计

注意渗透分类思想
活动七
5.两个全等三角形的“旋转”加“平移”变换:
学生演示,师作图指导。
特点:三角形旋转任一角度到不同位置再沿着某条直线平移到不同位置。(如图)
已知:等腰△ABC的直角顶点C放在直线a上,作AD⊥a于D,作BE⊥a于E.找出一对三角形,并证明它们是正确的结论.
结论: △ACD≌△CBE;
让学生从实践演示中探究三角形全等的结论,并迁移出其他正确结论。
活动四
2.两个全等三角形的“翻折”变换:
学生演示,师作图指导。
特点:沿着某条直线 “翻折1800”到不同位置。(如图)或沿着过某个点所在的直线“翻折”1800到不同位置。
结论:△ABC≌△ABD; △ABO≌△CDO.
迁移:连接CD,推导出CD被AB垂直平分;AB平分∠CAD。
全等三角形的图形全等变换
课 题
全等三角形的图形全等变换
讲课教师
学校
时间

全等三角形的图形变换

全等三角形的图形变换

全等三角形的图形变换
全等三角形是指三条边长相等的三角形。

这种三角形在进行几何变换时,会有一些特殊的性质。

1.平移变换
平移变换是指将图形整体在平面上移动,而不改变它的形状、大小和方向。

对于全等三角形来说,平移变换后仍然是全等三角形。

2.缩放变换
缩放变换是指将图形的大小按照一定比例缩放。

对于全等三角形来说,缩放变换后仍然是全等三角形,只是边长发生了变化。

3.旋转变换
旋转变换是指将图形绕某一点旋转一定角度。

对于全等三角形来说,旋转变换后仍然是全等三角形,只是它的外形发生了变化。

4.镜像变换
镜像变换是指将图形绕某一对称轴对称。

对于全等三角形来说,镜像变换后仍然是全等三角形,只是它的外形发生了变化。

5.仿射变换
仿射变换是指将图形经过平移、缩放和旋转后的变换。

对于全等三角形来说,仿射变换后仍然是全等三角形,只是
它的外形和大小发生了变化。

新课标下《全等三角形》复习课——基于平移、轴对称、旋转的全等探究

新课标下《全等三角形》复习课——基于平移、轴对称、旋转的全等探究

新课标下《全等三角形》复习课——基于平移、轴对称、旋转的全等探究一、教材解析《义务教育数学课程标准》(2022年版)提出义务教育数学课程应使学生通过数学的学习,形成和发展面向未来社会和个人发展所需要的核心素养。

初中阶段,核心素养主要表现在符号意识、抽象能力、几何直观、空间观念、推理意识、推理能力、应用意识和创新意识等方面,本节课是基于学习苏科版八年级数学上册第1章《全等三角形》和第2章《轴对称图形》的一节复习课,学生己经学习了全等三角形的定义、性质及判定,基本掌握了等腰三角形、角平分线的性质和判定。

通过本节复习课进一步启发巩固学生对基于平移、轴对称、旋转的全等三角形中相关知识的复习探究。

全等是相似的特殊情形,全等三角形的学习是后期学习相似的重要基础。

本单元的研究思路、内容和方法与平行线的研究一脉相承,分别从定义一性质一判定一应用四个方面进行展开,并以画图、实验、归纳、猜想、证明为探究学习方法。

通过平移、轴对称、旋转等方法来构造全等三角形,既体现了图形的运动变化,也体现了探索三角形全等的合同变换的思想。

二、学情分析学生已学习并基本掌握全等三角形这章的基础内容,基本能应用全等三角形的性质和判定等知识进行一些简单的计算和证明。

但是,在新课学习的过程中,学生还未能从整体的角度分析掌握全等三角形,还无法从研究思路、研究方法、知识结构等角度对整章知识进行整合梳理,还未形成对全等三角形知识的整体认识;学生运用平移、轴对称、旋转的方法来构造图形的意识不强,学习不够系统,观察能力、想象能力和演绎推理能力还有待提高;推理的逻辑性与条理性还不强。

三、教学目标1. 知识与技能目标:复习全等三角形的相关知识,回顾平移、轴对称、旋转的性质,能灵活构造并运用三角形全等的判定解决相关问题。

2. 过程与方法目标:让学生学会观察和分析图形,能灵活地运用平移、轴对称、旋转三种全等变换的思路找出或构造图形中的全等图形。

3. 情感与态度目标:引导启发学生积极思考,主动探究,启迪学生思维,培养良好的几何学习习惯。

巧用白板 突破教学难点——小学数学《平移和旋转》教学反思

巧用白板  突破教学难点——小学数学《平移和旋转》教学反思

巧用白板突破教学难点——小学数学《平移和旋转》教学反思教育是社会发展的重要保证,而教师则是教育事业中的中坚力量。

在小学数学教学中,有时会遇到一些难点,例如教授平移和旋转这个抽象的概念。

本文将介绍巧用白板,突破《平移和旋转》教学难点的方法和反思。

一、引言在小学数学教学中,平移和旋转是较为抽象的概念,很多学生可能会感到困惑。

作为教师,我们应该积极寻找教学方法,帮助学生更好地理解和掌握这些概念。

二、巧用白板白板是教师教学中常用的教具之一,它既可以展示内容,又可以进行互动。

以下是一些巧用白板的方法,帮助突破《平移和旋转》教学难点。

1. 绘制示意图在讲解平移和旋转的概念时,可以在白板上绘制示意图。

通过几何图形的演示,学生可以更加直观地理解平移和旋转的含义。

教师可以使用不同颜色的笔或标记工具来标示移动前后的位置,以便学生更清楚地观察和理解。

2. 互动操作白板也可以用来进行互动操作。

教师可以将学生分成小组,每个小组在白板上进行平移和旋转操作。

通过实际操作,学生可以更好地掌握平移和旋转的方法和原理。

教师可以鼓励学生积极参与,共同讨论,并及时给予指导和反馈。

3. 练习演算在白板上进行练习演算是提高学生能力的有效方法。

教师可以提供一些练习题,在白板上演示解题过程,引导学生思考和探究。

通过观察和思考,学生可以更深入地理解平移和旋转的规律和特点。

三、教学反思教学反思是教师成长的重要环节,通过反思我们可以发现教学中存在的问题并及时改进。

在教授《平移和旋转》这个知识点时,我发现学生在理解平移和旋转的概念时存在困惑。

为了解决这个问题,我采取了巧用白板的方法。

首先,我在白板上绘制了示意图,通过图形的移动和旋转演示,让学生直观地感受到平移和旋转的含义。

学生对示意图产生了浓厚的兴趣,并积极参与讨论和观察。

其次,我组织了学生进行互动操作,每个小组在白板上进行平移和旋转操作。

通过实际操作,学生更好地理解了平移和旋转的方法和原理,并培养了团队合作意识。

初三数学完美正方巧妙构造

初三数学完美正方巧妙构造

完美正方巧妙构造——例析一类形外正方形问题的解法谢文剑以三角形或梯形中的若干条边为边向外作正方形构成的图形中,证明线段、角或面积之间的关系,此类题目常见于竞赛和中考题中,根据已知条件,通过仔细的观察和分析,充分利用正方形边角的性质,通过旋转、平移等变换,找出全等三角形,巧妙构造基本图形,是解决这类问题的有效手段.一、利用旋转平移变换,构造全等三角形利用正方形的边长相等,角为90°进行旋转,找出全等三角形,从而找出解决的桥梁.例1 (2002年某某省竞赛试题)如图1,在△ABC中,∠ACB=90°,分别以AC、AB 为边,在△ABC外作正方形ACEF和正方形AGBH,过C作CK⊥AB,分别交AB和GH于D、K,则正方形ACEF的面积S1与矩形AGKD的面积S2的大小关系为()(A)S1=S2(B)S1>S2(C)S1<S2(D)不能确定分析:连结FB、GC,AF∥EB,AG∥CK,则有S正方形AFCE=2S△FAB,S矩形AGKD=2S△ACG,而△ACG可由△FAB绕A点顺时针旋转90°而得,它们是全等三角形,S△ACG=S△FAB,所以可得S1=S2,故选(A)。

例2 (2003年市竞赛题)如图2,以△ABC的三边为边,向形外分别作正方形ABDE、CAFG、BCHK,连接EF、GH、KD,求证:以EF、GH、KD为边可构成一个三角形,并且所构成的三角形面积等于△ABC的面积的3倍。

分析:可以利用正方形的对边平行而且相等,作出一个以EF、GH、KD为边的三角形,把△AEF沿AB平移,△HCG沿CB方向平移,使A、C重合于B,F、G重合于I,△DBI ≌△AEF,△BIK≌△HCG,且可得∠EAF+∠GCH+∠DBK=360°,因此可拼成一个三角形,然后再证明S△DIK=3S△ABC,把△GCH绕C点旋转90°,得到△BCG′,可得A,C,G ′在一条直线上,且C 为AG ′的中点。

平移和旋转在全等三角形中的巧用

平移和旋转在全等三角形中的巧用

平移和旋转在全等三角形中的巧用巧妙的运用平移和旋转进行图形变换, 可以使学生以动态的角度识别图形,有利于学生建立空间观念。

在全等三角形中,结合具体的实例,下面谈谈平移和旋转的巧用。

1、 点的平移已知:如图(1),在△ABC 中,M 在BC 上,D 在AM 上,AB=AC ,DB=DC 。

求证:BM=MC 。

A BCDM图(4)A BCDM 图(3)BACD M 图(2)图(1)M DCBA对于图(1)可做以下点的平移: (1)如果点D 平移到AM 的延长线上,如图(2),其他条件不变,原结论是否成立?(2)如果点D 平移到MA 的延长线上,如图(3),其他条件不变,原结论是否成立?(3)如果点D 平移到线段AD 上,如图(4),其他条件不变,原结论是否成立?2、 图形的平移(1)如图(1),A 、E 、F 、C 在一条直线上,AE=CF ,过E 、F 分别作DE ⊥AC ,BF ⊥A C ,垂足分别为E 、F ,若AB=CD,求证:BD 平分EF 。

图(2)图(1)D G F ECBAG FE CB A(2)若将△DEC 沿AC 方向平移变为图(2), 其他条件不变,原结论是否成立?请说明理由。

3、 线的旋转(1)如图,已知Rt △ABC 的直角顶点B 在直线l 上, AB=AC ,过A 、C 分别作l 的垂线AD 、CE,垂足为D、E 。

求证:BD=CE。

lE B D CA图(3)图(2)图(1)ACD BEllEBDCA(2)把直线l 绕着点B 逆时针旋转为图(2), 其他条件不变,原结论是否成立?请说明理由。

(3)把直线l 绕着点B 逆时针旋转为图(3), 其他条件不变,原结论是否成立?请说明理由。

4、图形的旋转(1)如图(1),点C 为线段AB 延长线上的一点,△AMC ,△BNC 都是等边三角形,且在线段AB 的同侧。

求证:AN=BM 。

图(3)BNC AMMACNB图(2)图(1)BN CAM(2)把△CBN 绕着点C 顺时针旋转变为图(2), 其他条件不变,原结论是否成立?请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平移和旋转在全等三角形中的巧用
巧妙的运用平移和旋转进行图形变换, 可以使学生以动态的角度识别图形,有利于学生建立空间观念。

在全等三角形中,结合具体的实例,下面谈谈平移和旋转的巧用。

1、 点的平移
已知:如图(1),在△ABC 中,M 在BC 上,D 在AM 上,AB=AC ,DB=DC 。

求证:BM=MC 。

A B
C
D
M
图(4)
A B
C
D
M 图(3)
B
A
C
D M 图(2)
图(1)
M D
C
B
A
对于图(1)可做以下点的平移: (1)如果点D 平移到AM 的延长线上,如图(2),其他条件不变,原结论是否成立?
(2)如果点D 平移到MA 的延长线上,如图(3),其他条件不变,原结论是否成立?
(3)如果点D 平移到线段AD 上,如图(4),其他条件不变,原结论是否成立?
2、 图形的平移
(1)如图(1),A 、E 、F 、C 在一条直线上,AE=CF ,过E 、
F 分别作DE ⊥AC ,BF ⊥A C ,垂足分别为E 、F ,若AB=CD,求证:BD 平分EF 。

图(2)
图(1)
D G F E
C
B
A
G F
E C
B A
(2)若将△DEC 沿AC 方向平移变为图(2), 其他条件不变,原结论是否成立?请说明理由。

3、 线的旋转
(1)如图,已知Rt △ABC 的直角顶点B 在直线l 上, AB=AC ,过A 、C 分别作l 的垂线AD 、CE,垂足为D、E 。

求证:BD=CE。

l
E B D C
A
图(3)
图(2)
图(1)
A
C
D B
E
l
l
E
B
D
C
A
(2)把直线l 绕着点B 逆时针旋转为图(2), 其他条件不变,原结论是否成立?请说明理由。

(3)把直线l 绕着点B 逆时针旋转为图(3), 其他条件不变,原结论是否成立?请说明理由。

4、图形的旋转
(1)如图(1),点C 为线段AB 延长线上的一点,△AMC ,
△BNC 都是等边三角形,且在线段AB 的同侧。

求证:AN=BM 。

图(3)
B
N
C A
M
M
A
C
N
B
图(2)图(1)
B
N C
A
M
(2)把△CBN 绕着点C 顺时针旋转变为图(2), 其他条件不变,原结论是否成立?请说明理由。

(3)把△CBN 绕着点C 顺时针继续旋转变为图(3), 其他条件不变,原结论是否成立?请说明理由。

相关文档
最新文档