第一章 三角形的证明

合集下载

北师大版八年级数学(下) 第一章 三角形的证明 第5节 直角三角形的性质与判定

北师大版八年级数学(下) 第一章  三角形的证明  第5节  直角三角形的性质与判定

北师大版八年级数学(下)第一章三角形的证明第5节直角三角形的性质与判定例1:在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为()A.30°B.45°C.60°D.30°或60°解:∵在△ABC中,∠A=90°,∠B=2∠C,∴2∠C+∠C=90°,∴∠C=30°,故选:A.练习:在Rt△ABC中,∠C=90°,∠A﹣∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°解:∵∠C=90°,∴∠A+∠B=90°,∵∠A﹣∠B=50°,∴2∠A=140°,∴∠A=70°,故选:B.作业:1.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.例2:在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C,⑤∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.2个B.3个C.4个D.5个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形;⑤因为3∠C=2∠B=∠A,∠A+∠B+∠C=∠A+∠A+∠A=180°,∠A=,所以△ABC为钝角三角形.所以能确定△ABC是直角三角形的有①②③④共4个,故选:C.练习:在下列条件中:①∠A=∠B﹣∠C,②∠A﹣∠B=90°,③∠A=∠B=2∠C,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①由∠A+∠B+∠C=180°,∠A=∠B﹣∠C得到:2∠B=180°,则∠B=90°,则△ABC是直角三角形,故符合题意;②∠A﹣∠B=90°得到:∠A>90°,则△ABC不是直角三角形,故不符合题意;③由∠A+∠B+∠C=180°,∠A=∠B=2∠C得到:5∠C=180°,则∠C=36°,则∠A =∠B=72°<90°,则△ABC不是直角三角形,故不符合题意;④由∠A+∠B+∠C=180°,∠A=∠B=∠C得到:∠C=90°,则△ABC是直角三角形,故符合题意;综上所述,是直角三角形的是①④,共2个.故选:B.作业:2. 在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=,∠C=,则x++=180°,解得x=,∴∠A=,,,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.例3:在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2=.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:18练习:如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175B.600C.25D.625解:由勾股定理得,AB2+BC2=AC2,则S=25+400=625,故选:D.作业:3. 已知△ABC中∠C=90°,c为斜边,a、b为直角边,若a+b=17cm,c=13cm,则△ABC的面积为()A.15cm2B.30cm2C.45cm2D.60cm2解:∵a+b=17,∴(a+b)2=289,∴2ab=289﹣(a2+b2)=289﹣c2=289﹣169=120∴ab=30,故选:B.例4:如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.练习:如图,在Rt△ABD中,∠ABD=90°,AD=10,AB=8.在其右侧的同一个平面内作△BCD,使BC=8,CD=2.求证:AB∥DC.证明:∵在Rt△ABD中,∠ABD=90°,AD=10,AB=8,∴BD===6,∵BC=8,CD=2,∴62+(2)2=82,∴△BDC是直角三角形,∴∠BDC=90°,∴∠ABD=∠BDC,∴AB∥DC.作业:4. 如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.例5:如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.练习:如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.(1)连接AC,求证:△ACD是直角三角形;(2)求△ACD中AD边上的高.解:(1)证明:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∴AC=5,∵CD=12,AD=13,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形;(2)解:过点C作CH⊥AD于点H,则S△ACD=AD×CH=AC×CD,∴×13×CH=×5×12,∴CH=.作业:5.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=,∴h=.例6:写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题.该逆命题是命题(填“真”或“假”).解:“如果两个三角形全等,那么这两个三角形的周长相等.”写成它的逆命题:如果两个三角形的周长相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的周长相等,那么这两个三角形全等;假练习:“两直线平行内错角相等”的逆命题是命题.(填“真”或“假”)解:∵原命题的条件为:两直线平行,结论为:内错角相等,∴其逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,是真命题;故答案为:真.作业:6.已知命题“等腰三角形两腰上的高线相等”,它的逆命题是,该逆命题是命题.(“真”、“假”).解:命题“等腰三角形两腰上的高线相等”的逆命题是“如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形”,是真命题,故答案为:如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形;真.。

八下数学第一章三角形的证明讲义

八下数学第一章三角形的证明讲义

第一章三角形的证明1.1等腰三角形(一)一、问题引入:列举我们已知道的公理:.(1)公理:同位角,两直线平行.(2)公理:两直线,同位角.(3)公理:的两个三角形全等.(4)公理:的两个三角形全等.(5)公理:的两个三角形全等.(6)公理:全等三角形的对应边,对应角. 注:等式的有关性质和不等式的有关性质都可以看作公理.二、基础训练:1. 利用已有的公理和定理证明:“两角及其中一角的对边对应相等的两个三角形全等.”2. 议一议:(1)还记得我们探索过的等腰三角形的性质吗?(2)等边对等角三线合一三、例题展示:在△ABC中,AD是角平分线,DE⊥AB, DF⊥AC,试猜想EF与AD之间有什么关系?并证明你的猜想.四、课堂检测:1. 如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A.∠A=∠B ; B . BF=CE; C. AE∥DF; D. AE=DF.2. 如果等腰三角形的一个内角等于500则其余两角的度数为.3.(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为.(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为.4. △ABC中,AB=AC, 且BD=BC=AD,求∠A的度数.5. 如图,已知D.E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE中考真题:已知:如图,△ABC中,AD是高,CE是中线,DC=BE, DG⊥CE,G 是垂足,求证:(1)G是CE中点.(2)∠B=2∠BCE.1.1 等腰三角形(二)一、问题引入:1. 在等腰三角形中作出一些相等的线段(角平分线.中线.高),你能发现其中一些相等的线段吗?你能证明你的结论吗?2.等腰三角形的两底的角平分线相等吗?怎样证明.已知:求证:证明:得出定理: .问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明二、基础训练;1. 请同学们阅读P6的问题(1).(2),由此得到什么结论?2. 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?得出定理: ;简称: .三、例题展示:如图,△ABC 中,D.E 分别是AC.AB 上的点,BD 与CE相交于点O ,给出下列四个条件①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD;④OB=OC,上述四个条件中,哪两个条件可判定是等腰三角形,请你写出一种情形,并加以证明.四、课堂检测:1. 已知:如图,在直角△ABC 中,角C 为45度,AD 垂直于BC,DE 垂直于AB,则图中等腰直角三角形共有( )A.3个B.4个C.5个D.6个2. 已知:如图,在△ABC 中,AB=AC, ∠BAC=1200, D.E 是BC上两点,且第1题 第2题 第3题 第4题AD=BD,AE=CE,猜想△ADE是三角形.3. 如图,在△ABC中,∠ABC与∠ACB的平分线交与点O,若AB=12,AC=18,BC=24,则△ABC的周长为()A.30B.36C.39D.424. 在△ABC中,AB=AC, ∠A=360,BD.CE是三角形的平分线且交于点O,则图中共有个等腰三角形.5. 如图:下午14:00时,一条船从处出发,以28海里/小时的速度,向正北航行,16:00时,轮船到达B处,从A处测得灯塔C在北偏西280,从B处测得灯塔C在北偏西560,求B处到灯塔C的距离.1.1 等腰三角形(三)一、问题引入:1. 已知△ABC中,AB=AC=5cm,请增加一个条件使它变为等边三角形.2. 有一个角是600的等腰三角形是等边三角形吗?试着证明你的结论.得出定理:有一个角是的三角形是等边三角形.二、基础训练:做一做:用两个含300角的三角板,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.根据操作,思考:在直角三角形中,300角所对直角边与斜边有什么关系?并试着证明.得出定理:在直角三角形中,300角所对直角边等于斜边的.三、例题展示:1. 等腰三角形的底角为150,腰长为2a,求腰上的高.2. 判断:(1)在直角三角形中,直角边是斜边的一半.()(2)有一个角是600的三角形是等边三角形.()3. 证明三个角都相等的三角形是等边三角形.四、课堂检测1. 等腰三角形的底边等于150,腰长为20,则这个三角形腰上的高是.2. 在Rt△ABC中,∠ACB=900,∠A =300,CD⊥AB,BD=1,则AB= .3. 在△ABC中,AB=AC,∠BAC=1200,D是BC的中点,DE⊥AC,则AE:EC= .4. 如图,在Rt△ABC中,∠C=900,沿B点的一条直线BE折叠△ABC,使点C恰好落在AB的中点D处,则∠A= .5. 在Rt△ABC中,∠C=300,AD⊥BC,你能看出BD与BC的大小关系吗?中考真题:已知:如图,△ABC中,BD⊥AC,DE⊥AC,点D是AB的中点,∠A=300,DE=1.8,求AB的长.1.3 线段的垂直平分线(一)一、问题引入:“线段的垂直平分线上的点到这条线段的两个端点的距离相等”你能证明这一结论吗?二、基础训练:议一议:写出“线段的垂直平分线上的点到这条线段的两个端点的距离相等”这一命题的逆命题?它是真命题吗?如果是,请证明,并与同伴交流.三、例题展示:例:如图在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB.BC 延长线于F.E求证:(1)∠EAD=∠EDA ;(2)DF ∥AC(3)∠EAC=∠B四、课堂检测:1. 已知:线段AB 及一点P ,PA=PB ,则点P 在 上.2. 已知:如图,∠BAC=1200,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= .3. △ABC 中,∠A=500,AB=AC ,AB 的垂直平分线交AC 于D 则∠DBC 的度数 .4. △ABC 中,DE.FG 分别是边AB.AC 垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠BAC=1260,则∠EAG= .5. 如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 .6. 有特大城市A 及两个小城市B.C ,这三个城市共建一个污水处理厂,使得该厂到B.C 两城市的距离相等,且使A 市到厂的管线最短,试确定污水处理厂的位置.第1题 第4题 第5题中考真题:已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB.BC 于D.E,AE平分∠BAC,若∠B=300,求∠C1.3 线段的垂直平分线(二)一、问题引入:1. 等腰三角形的顶点一定在上.2. 在△ABC中,AB.AC的垂直平分线相交于点P,则PA.PB.PC的大小关系是.3. 在△ABC中,AB=AC,∠B=580,AB的垂直平分线交AC于N,则∠NBC= .4. 已知线段AB,请你用尺规作出它的垂直平分线.A B二、基础训练:1. 三角形的三边的垂直平分线是否相交于一点,这一点到三个顶点的距离是否相等?上面的问题如何证明?定理:三角形三条边的垂直平分线相交于,这一点到三个顶点的距离.三、例题展示:(1)如图,在△ABC中,∠A=400,O是AB.AC的垂直平分线的交点,求∠OCB 的度数;(2)如果将(1)中的的∠A度数改为700,其余的条件不变,再求∠OCB的度数;(3)如果将(1)中的的∠A度数改为锐角a,其余的条件不变,再求∠OCB 的度数.你发现了什么规律?请证明;(4)如果将(1)中的的∠A度数改为钝角a,其余的条件不变,是否还存在同样的规律?你又发现了什么?四、课堂检测:1. 在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A. 三角形三条角平分线的交点;B. 三角形三条垂直平分线的交点;C. 三角形三条中线的交点;D. 三角形三条高的交点.2. 已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状为()A. 锐角三角形;B. 直角三角形;C. 钝角三角形;D. 不能确定3. 等腰Rt△ABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是.4. 已知线段a.b,求作以a为底,以b为高的等腰三角形.a b中考真题:已知:如图,Rt△ABC中,∠ACB=900, ∠BAC=600,DE垂直平分BC,垂足为D,交AB于点E,点F在DE的延长线上,且AF=CE,试探究图中相等的线段.1.4角平分线(一)一、提出问题:1. 角平分线的定义:______________________________________2. 问题1:还记得角平分线上的点有什么性质吗?你是怎样得到的?你能证明它吗?定理归纳:问题2:你能写出这个定理的逆命题?它是真命题吗?如果是,你能证明它?定理归纳:二、基础训练:用尺规怎样做已知角的平分线呢?并对自己的做法加以证明.三、例题解释:例:如图,已知AD为△ABC的角平分线,∠ABC=90°,EF⊥AC,交BC于点D,垂足为F,DE=DC,求证:BE=CF.四、课堂检测1. OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D.E,下列结论中错误的是()A:PD=PE B:OD=OE C:∠DPO=∠EPO D:PD=OD2、如图所示,AD平分∠BAC,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列结论不正确的是()A:△AEG≌△AFG B:△AED≌△AFD C:△DEG≌△DFG D:△BDE≌△CDFFEDC BA3. △ABC中, ∠ABC.∠ACB的平分线交于点O,连结AO,若∠OBC=25°,∠OCB=30°,则∠OAC=_____________°4. 与相交的两直线距离相等的点在()A:一条直线上B:一条射线上C:两条互相垂直的直线上D:以上都不对5. ∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为_________.6. 在RT△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D到AB的距离是________.7. 如图在两条交叉的公路L1与L2之间有两家工厂A.B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试.中考真题:如图,梯形ABCD,ABCD,AD=DC=CB,AD.BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由.1.4 角平分线(二)基础训练:1. 如图:设△ABC的角平分线交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离.引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a.b.c,则三角形的面积S= .2. 已知:△ABC中,BP.CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为.3. 到三角形三边距离相等的点是()A.三条中线的交点;B.三条高的交点;C.三条角平分线的交点D.不能确定三、例题展示:例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E. (1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、课堂检测:1. 到一个角的两边距离相等的点在.2. △ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D 到AB的距离为.3. Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm.4. △ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为.5.Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是.6. 已知:OP 是∠MON 内的一条射线,AC ⊥OM ,AD ⊥ON ,BE ⊥OM ,BF ⊥ON ,垂足分别为C.D.E.F ,且AC=AD 求证:BE=BF中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置.第一章 单 元 检 测一、填空题(每小题3分):1.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.2. 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 三角形.3. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .4. 命题:“全等三角形的对应角相等”的逆命题是 ___________________________________ ___.这条逆命题是______命题(填“真”或“假”)5. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;6. 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,∠DAC = ,BD = cm ;第18题图C B A 第1题 第5题7. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10,则△ODE 的周长为 .8. 如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .9. △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D.若DC=7,则D 到AB 的距离是 .10. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD的长为 .二、选择题(每小题3分)1.等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( )A.90°B.60°C.120°D.150°2.下列两个三角形中,一定全等的是 ( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形3. 到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点4. △ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( ) A.21a B.23a C.23a D.3a 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°三、解答题(每题12分)1. 如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC 的度数(2)AD 和CD 的长.2.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.四、证明题(每题10分)1.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.2. 已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE = CD .求证:BD = DE .五、(本题11分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.。

1.1.4 等边三角形的判定及含30°角的直角三角形的性质

1.1.4 等边三角形的判定及含30°角的直角三角形的性质

温故知新 A
一个三角形满足什么条件就是等边三角形?
等腰三角形的性质定理:等腰三角形的两个底角相等
(等边对等角).
B
C
等腰三角形的判定定理:有两个角相等的三角形是等腰三角形
(等角对等边).
等边三角形的性质定理:等边三角形的三个内角都相等,并且每 个角都等于 60°.
猜想:三个角都相等的三角形是等边三角形
B
C
∴∠A =∠B =∠C = 60°.
∴△ABC 是等边三角形 (三个角都相等的三角形是等边三角形).
归纳小结
判定一个三角形是等边三角形的方法:
等边三角形的判定定理1: 三个角都相等的三角形是等边三角形
等边三角形的判定定理2: 有一角等于60°的等腰三角形是等边三角形
新课讲解
含30°角的直角三角形的性质
第一章 三角形的证明 1.1.4 等腰三角形
(等边三角形的判定及含 30° 角的直角三角形的性质 )
学习目标
1.能用所学的知识证明等边三角形的判定定理(重点) 2.掌握含30° 角的直角三角形的性质并解决有关问题(难点)
温故知新
1.等腰三角形的性质定理
①等腰三角形的两底角相等(等边对等角)
②等腰三角形顶角的平分线、底边上的中线及底边上的高线
有另一种情形呢?
新课讲解
【验证】 第二种情况:有一个底角是 60°.
已知:如图,在△ABC 中,AB = AC,∠B = 60°. A
求证:△ABC 是等边三角形.
证明:∵ AB = AC,∠B = 60° (已知),
∴∠C =∠B = 60° (等边对等角).
60°
∴∠A = 60° (三角形内角和定理).
定理:有一个角是 60° 的等腰三角形是等边三角形.

三角形的证明

三角形的证明

第一章三角形的证明第一讲:1.等腰三角形(1)——等腰三角形的性质(知识回顾)知识点一三角形全等的证明方法:1、 2、 3、 4、例1如图所示,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E,F.求证:BF=CE1.如图,AC与BD交于点O,AB∥CD,若用“ASA”或“AAS”判定△AOB≌△COD,还需要添加的一个条件是.2、两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点.求证:OF=OC.知识点二等腰三角形的性质定理定理:等腰三角形的两底角相等.这个定理简称为等边对等角.例2如图所示,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC,求∠B的度数3、若等腰三角形底边上的高与底边的比为1∶2,则它的顶角等于()A.90°B.60°C.120°D.150°4.已知等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数是( )A.50°B.80C.50°或80°D.40°或65°知识点三等腰三角形性质定理的推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.这条性质通常称为等腰三角形的“三线合一”.是证明那三条线证明: 等腰三角形两底角的平分线相等,高线相等已知:如图,在△ABC中, AB=AC, BD、CE是△ABC的角平分线.求证:BD=CE.拓展点一等腰三角形特殊性质的证明例1求证:等腰三角形两腰上的高的交点到底边两端的距离相等.已知:如图,在△ABC中,AB=AC,CE⊥AB于点E,BD⊥AC于点D,CE,BD交于点O,求证:OB=OC.知识点四等边三角形的性质定理定理:等边三角形的三个内角都相等,并且每个角都等于60°.例4 如图,点P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.拓展点二等边三角形与三角形全等的综合题5、如图,已知△ABC和△ADE都是等边三角形,连接CD,BE.求证:CD=BE习题1、下列各组几何图形中,一定全等的是()A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.3、如果等腰三角形的一个内角等于50°,则其余两角的度数为。

八年级下数学第一章三角形的证明

八年级下数学第一章三角形的证明

三角形的证明【基础知识】1、全等三角形(1)定义: 能够完全 的三角形是全等三角形。

(2)性质:全等三角形的 、 相等。

(3)判定:“SAS ”、 、 、 、 。

三边 :边边边(SSS ) 两边: 边角边(SAS )一边 边角边(ASA ) 角角边(AAS )※※注:SSA,AAA 不能作为判定三角形全等的方法,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角 ※※证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 注意:公共边、公共角、对顶角、最长的边(或最大的角)、最短的边(或最小的角)2、等腰三角形(1)定义:有两条 的三角形是等腰三角形。

(2)性质:①等腰三角形的 相等。

(“等边对等角”)②等腰三角形的顶角平分线、 、 互相重合。

(3)判定:①定义②“ ”3、等边三角形(1) 定义: 的三角形是等边三角形。

(2)性质:①三角都等于②具有等腰三角形的一切性质。

(3)判定:①定义②三个角都相等的三角形是等边三角形③有一个角 是等边三角形。

4、线段的垂直平分线(1)线段的垂直平分线上的点到这条线段的两个端点的距离相等(2)到一条线段两个端点距离相等的点,在这条线段的垂直平分线上5、角平分线(1)角平分线上的点到这个叫的两边的距离相等(2) 在一个角的内部,到角的两边距离相等的点在这个角的平分线上6、直角三角形(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。

(2)勾股定理及其逆定理直角三角形两条直角边的平方和等于斜边的平方如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形 (3)“斜边、直角边”或“HL ”直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等 定理的作用:判定两个直角三角形全等【巩固训练】1、△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,最小边BC=4 cm ,最长边AB 的长是( ) A.5 cm B.6 cm C.5 cmD.8 cm2、△ABC 中,AB=AC ,BD 平分ABC 交AC 边于点D ,∠BDC=75°,则∠A 的度数为 ( )A. 35°B. 40°C. 70°D. 110°3、△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( )A.21a B.23a C.23a D.3a 4、到△ABC 的三个顶点距离相等的点是△ABC 的 ( ) A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边中垂线的交点5、如左下图所示,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8cm ,则线段BC 的长为( )A 、3.8cmB 、7.6cmC 、11.4cmD 、11.2cmy6、如右上图,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( )A .045B .055C .060D .0757、如左下图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处8、如右上图,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( ) A .6B .4C .23D .59、(2012随州)等腰三角形的周长为16,其一边长为6,则另两边为_______________。

8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明

8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明

浙教版-8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明【知识点-部分】一、三角形的内角和定理及推论:1、三角形的内角和定理:三角形三个内角的和等于180°;推论:由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论;推论可以当做定理使用。

2、三角形内角和定理的推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和;推论2:三角形的一个外角大于任何一个和它不相邻的内角。

二、辅助线:1、当问题的条件不够用、不够集中时,需添加辅助线,构造新图形,形成新关系,找到已知与未知的联系,把问题转化成已经会解的情况,我们把在原图上添加的线叫做辅助线。

注:(1)辅助线通常画为虚线;(2)添加辅助线往往结合学习过的定理或概念。

【典型例题-精选部分】【例1】如图所示,∠A,∠1,∠2的从大到小关系是。

【例2】如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为。

【例3】如图,在△ABC中,外角∠CBD和∠BCE的平分线交于点O,且∠BOC=40°,则∠A的度数为。

【例4】将一把直尺与一块三角尺如图放置,若∠1=45°,则∠2的度数为。

【例5】将一副三角尺如图叠放,则图中∠α=°。

【例6】如图,将一张三角形纸片ABC的一角折叠,使点A落在外的处,折痕为DE。

如果,,,那么下列式子中正确的是()A、B、C、D、【例7】已知:如图,∠ADE=∠A+∠B,求证:DE∥BC。

【例8】如图,已知四边形ABDC,求证:∠BDC=∠A+∠B+∠C。

【例9】如图,∠B=36∘,∠D=50∘,AM,CM分别平分∠BAD和∠BCD,AM交BC于点R,CM交AD于点Q,BC与AD交于点P,求∠M的度数。

【例10】如图,在△ABC中,点E在AC上,∠AEB=∠ABC。

(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?【例11】已知:如图一:△ABC 中,BO 平分∠ABC,CO 平分外角∠ACD。

第一章 三角形的证明

第一章 三角形的证明

第一章三角形的证明1.1等腰三角形导学案基础知识基本技能1.等腰三角形(1)概念:有两边相等的三角形叫等腰三角形,其中相等的两边叫腰,另一条边叫底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角.(2)理解:①等腰三角形是特殊的三角形,它具备三角形所有的性质,如内角和是180°,两边之和大于第三边等.②等腰三角形是轴对称图形,这既是等腰三角形的特点也是研究它的重要方法.破疑点等腰三角形有关概念的认识(1)对于等腰三角形问题,我们说角或边时,一般都要指明是顶角还是底角,是底边还是腰,没说明则都有可能,要讨论解决,这是解决等腰三角形最容易忽视和错误的地方;(2)等腰三角形顶角可以是直角,是钝角或锐角,而底角只能是锐角.【例1】等腰三角形两边长分别是5 cm和11 cm,则它的周长是().A.27 cm B.22 cmC.27 cm或22 cm D.无法确定2.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便.(3)适用条件:必须在同一个三角形中.(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.【例2-1】已知等腰三角形的一个角为40°,则其顶角为().A.40°B.80°C.40°或100°D.100°哦,不指明是底角还是顶角时,要分类讨论,还要看三角形内角和是否是180°啊!【例2-2】如图,AD、BC相交于O,AB∥CD,OA=OB,求证:∠C=∠D.3.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质.(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛.(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.(4)应用模式:如图,在△ABC中,解技巧“三线合一”的应用因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活.【例3】如图,在△ABC中,AB=AC,AD⊥BC,交BC于D,BD=5 cm,求底边BC的长.分析:因为是等腰三角形,所以底边上的高也是底边上的中线,所以BC=2BD,即可求出BC的长.4.等腰三角形的判定(1)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).(2)与性质的关系:判定定理与性质定理是互逆的,性质:→;判定:→.(3)理解:性质和判定应用的前提都是在同一三角形中,并且不经过三角形全等的证明,直接由等边得等角或由等角得等边,所以应用起来更简单、便捷.破疑点等腰三角形的判定方法的理解教材中涉及等腰三角形的判定方法主要有两种:一是判定定理;二是定义.另外还有很多方法,如在同一个三角形中,三线中两线重合,也能说明是等腰三角形.但不常用,一般是通过推理得出角相等或边相等,再得出是等腰三角形.【例4】如图,BE平分∠ABC,交AC于E,过E作DE∥BC,交AB于D.试证明△BDE是等腰三角形.5.等边三角形的概念和性质(1)等边三角形①概念:三边都相等的三角形是等边三角形.②认识:它是特殊的等腰三角形,具备等腰三角形的所有性质.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°.(3)拓展:等边三角形是轴对称图形,它有三条对称轴,它三边相等,三个内角相等,各边上的高、中线,对应的角平分线重合,且长度相等.【例5】如图,点M、N分别在等边△ABC的边BC、AC上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.6.等边三角形的判定(1)判定定理:①三个角都相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形.(2)判定方法:等边三角形的判定方法有三种:一是定义,另运用两个定理.(3)拓展理解:对于判定定理①,有时候在一个三角形中只要有两个角是60°也可判定是等边三角形.解技巧巧用条件证明等边三角形在证明三角形是等边三角形时,根据所给已知条件确定选择用哪个方法证明.若已知三边关系,一般选定义法;若已知三角关系,一般选判定定理①;若已知该三角形是等腰三角形,则选判定定理②.【例6】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.基本方法基本能力7.等腰三角形性质和判定的综合应用类似于全等三角形的性质和判定的关系,等腰三角形的性质和判定很多时候也是综合运用的.一方面等腰三角形是特殊的三角形,由等腰三角形性质,可以知道许多相等的线段,相等的角,还能知道垂直关系,成倍数关系的线段或角,所以有时通过判定是等腰三角形来证明角相等、线段相等或垂直关系等;另一方面通过等腰三角形性质和判定的运用,直接由线段相等得到角相等,由角相等到线段相等,省去了全等的证明,简化了过程,因此很多时候,等腰三角形性质和判定的应用更广泛.注意:等腰三角形性质和判定的应用前提是在同一个三角形中.【例7】如图1,在△ABC中,∠B=2∠C,AD是BC边上的高,求证:CD=AB+BD.图1 图28.巧用“三线合一”性质解题(1)性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称“三线合一”性质;(2)应用:它是等腰三角形特有的性质,这条线段是中线、高,也是角平分线,它包含有线段相等、角相等、垂直等关系,涉及量多,应用广泛,是证明线段相等、线段的倍数关系、角相等、角的倍数关系、垂直等常用的方法.构造“三线合一”解决等腰三角形问题在等腰三角形问题中,最常添加的辅助线就是作底边上的高,或作顶角的平分线,或作底边上的中线,这样就可以由其中一线得到其他两线,从而知道更多的条件,以便更好地完成计算、证明.【例8】已知:如图a所示,△ABC中,AB=AC,BF是AC边上的高,求证:∠FBC=∠BAC.图a 图b9.等边三角形的应用等边三角形也称正三角形,它是最特殊的三角形,它除了三边相等,三个内角相等,且每个角都是60°外,还具有很多特殊的性质:如,证明两个等边三角形全等只要有一边相等即可;同一个等边三角形的高、中线、角平分线都相等,并且任何一条高(或中线、顶角的平分线)将等边三角形都分成全等的两个含有30°角的直角三角形;它的高和边长也存在着特殊的比例关系,因此已知是等边三角形,就可以知道其中的许多等量关系.等边三角形的判定也具有自己独特的特点,可以由普通三角形满足条件直接判定,也可以在等腰三角形的基础上进行判定.【例9】(学科内综合题)如下图所示,在等边三角形ABC中,∠B、∠C的角平分线交于点O,OB和OC的垂直平分线分别交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.思维拓展创新应用10.面积法证明等腰三角形的性质面积法是解决几何问题常用的一种的方法,它巧妙地运用面积之间的关系,通过计算的方式,求线段的长度,或用来证明线段之间的数量关系,有时它比运用线段之间的等量关系证明、计算更简捷,更巧妙,因而在特定条件下能出奇制胜,是一种很好的方法.面积法的运用,一般以同一个三角形的面积是相等的为基础,运用不同求法,即底不同、高不同、但面积都等于底×高的一半,或将一个图形分解成不同的图形来求面积,但面积之和相等.通过面积相等联系起各量之间的关系,再运用等式的性质,通过化简求出某些线段的长,或计算出某些线段之间的数量(如比例)关系.解技巧巧用面积法证明线段的关系因为直角三角形的特殊性,所以面积法最常用在直角三角形中求斜边上的高,有时也用在等腰三角形中证明线段相等或求线段的和.11.等腰三角形中的“二推一”模式应用在等腰三角形问题中,“等边、角平分线(等角)、平行”是出现最多,最常见的数量与位置关系,若这三个关系出现在同一图中,一般以其中任意两个条件为题设,推导、证明出第三个条件成立,因此我们称它为等腰三角形中的“二推一”.(1)基本图形:等腰三角形中的“二推一”一般有两种情况,一种是角平分线在外,要用到一个外角等于和它不相邻的两内角和;另一种是角平分线在内,基本图形如图①和图②所示,演变图形类型较多,主要有以下几种:(2)方法:通过角相等作为纽带,将线段相等、线段平行联系起来,在此过程中要用到等量代换得出的角相等,方式一般是:→→;→→.【例11-1】如图1,已知,在△ABC中,AB=AC,BD为腰AC上的高,G为底边BC上任一点,GF⊥AB,GE⊥AC,垂足分别为F、E.求证:GF+GE=BD.分析:要证明BD=GF+GE,按常规思路将BD分成两段,如图2,证明BH=GF,DH=GE.所以过G作BD的垂线,通过证明三角形全等和判定是矩形完成,既复杂又超出现在所学,但用面积法却简单得多.如图3,连接AG,运用面积法,分别表示出△ABG和△ACG的面积,由于同一三角形面积是相等的,所以S△ABC=S△ABG+S△ACG,所以AB·GF+AC·GE=AC·BD,由于AB =AC,经过等量代换和化简即可得到GF+GE=BD.【例11-3】如图,已知△ABC中,AC+BC=24,AO、BO分别是∠BAC、∠ABC的角平分线,MN过O点,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为___.【例11-4】如图,△ABC中,∠ABC、∠ACB的平分线BO、CO相交于点O,OE∥AB,OF ∥AC,△OEF的周长=10,求BC的长.直角三角形学习过程:一、课前准备1.每个命题都是由、两部分组成。

八年级下数学第一章(三角形的证明)-讲义

八年级下数学第一章(三角形的证明)-讲义

知识点一全等三角形的性质及判定1、全等三角形的对应边相等、对应角相等。

2、判定两三角形全等的方法有:SSS、SAS、AAS、ASA、HL。

例:如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?知识点二等腰三角形的性质和判定1、等腰三角形的两个底角相等(简称“等边对等角”)2、等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。

3、等腰三角形两腰上的中线、两腰上的高、两底角的平分线长度均相等。

4、有两个角相等或两条边相等的三角形是等腰三角形。

例:已知等腰三角形一腰上的高与另一腰的夹角是50º,则这个等腰三角形的底角是。

例:在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个三角形周长分为15和12两部分,则这个等腰三角形的底边长。

例:如图,在ABA 1中,∠B=20º,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C 上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为。

知识点三等边三角形的性质和判定1、三条边都相等的三角形是等边三角形。

2、三个角都相等,且都等于60º.3、有一个角等于60º的等腰三角形是等边三角形;三个角或三条边都相等的三角形是等边三角形。

例:如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.M C B A 例:如图1,已知:∠MON=30º,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为 .图1 图2例:如图2,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60º,得到△BAE ,连接ED ,若BC=10,BD=9,则△AED 的周长是 。

北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)

北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)

获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”

北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 第3课时 等腰三角形的判定与反证法

北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 第3课时 等腰三角形的判定与反证法


8.(8分)用反证法证明:等腰三角形的两底角必为锐角. 证明:假设等腰三角形的底角∠B,∠C都是大于等于90°的角, 则____∠__B__+__∠__C_≥_1_8_0_°________, 从而__∠__A_+__∠__B_+__∠__C_______>180°, 这与__三__角__形__内__角__和__为__1_8_0_°__矛盾. 则假设___不__成__立_____, 所以∠B,∠C只能为__锐__角. 故等腰三角形的两底角必为锐角.
6.(4 分)用反证法证明“ 5 是无理数”时,最恰当的证法是先假设 5 是( C ) A.分数 B.整数 C.有理数 D.实数
7.(4 分)(驻马店月考)在用反证法证明命题“在一个三角形中, 至少有一个内角大于或等于 60°”时, 应首先假设___在__一__个__三__角__形__中___,__三__个__内__角__都__小__于__6_0_°_________.
数学 八年级下册 北师版
第一章 三角形的证明
1.1 等腰三角形
第3课时 等腰三角形的判定与反证法
1.(4 分)在△ABC 中,已知∠B=∠C,则下列关系正确的是( B) A.AB=BC B.AB=AC C.BC=AC D.∠A=60° 2.(4 分)满足下列哪组条件可使△ABC 是等腰三角形( D ) A.∠A=50°,∠B=60° B.∠A=50°,∠B=100° C.∠A+∠B=90°
第10题图
11.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.过点O作DE∥BC, 分别交AB,AC于点D,E.若AB=5,AC=4,则△ADE的周长是__9__.
第11题图
三、解答题(共36分) 12.(10分)如图,在四边形ABDC中,AB=AC,∠B=∠C,求证:BD=CD.

三角形的初步认识及全等证明

三角形的初步认识及全等证明
A、3B、4或5C、6或7D、8
4、如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做是运用了三角形的( )
A、全等性B、灵活性C、稳定性D、对称性
5、下列图形中具有稳定性的是( )
A、菱形B、钝角三角形C、长方形D、正方形
6、(2010•荆门)给出以下判断:(1)线段的中点是线段的重心
14、锐角三角形的最大内角α的范围和钝角三角形的最大内角β的范围分别是( )
A、0°<α<90°,90°<β<180°B、60°≤α<90°,90°<β<180°
C、0°<α<90°,90°<β<150°D、0°<α≤60°,90°<β<180°
15、△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,则∠A的度数为( )
10、(2006•威海)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少经过_________次操作.
A、30°B、45°C、60°D、以上都有可能
填空题
1、三角形具有稳定性,所以要使六边形木架不变形,至少要钉上_________根木条.
2、已知点G是△ABC的重心,AD是中线,AG=6,那么DG=_________.
3、观察下面两图形的形成过程,若AD=3,DB=4,则△ADE和△BDF面积的和为_________.

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定
A
B
C
画图方法视频(点击文字
播放)
画图思路
N
A
B
C
M
C′
(1)先画∠M C′ N=90°
画图思路
N
A
B
C
M
B′
C′
(2)在射线C′M上截取B′C′=BC
画图思路
N
A
A′
B
C
M B′
C′
(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′
画图思路
N
A
A′
B
C
M B′
C′
(4)连接A′B′
思考:通过上面的探究,你能得出什么结论?
(2)当P运动到与C点重合时,AP=AC. 在Rt△ABC与Rt△QPA中, ∵PQ=AB,AP=AC, ∴Rt△QAP≌Rt△BCA(HL), ∴AP=AC=10cm, ∴当AP=5cm或10cm时,△ABC才能和△APQ全等.
【方法总结】判定三角形全等的关键是找对应边和对应角,由于本 题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏 解.
B
A
C
如图,Rt△ABC中,∠C =90°,直角边是_____、_____,A斜C边是
__B__C__.
AB
前面学过的四种判定三角形全等的方法,对直角三角形是否适用?
口答:
A
A′
1.两个直角三角形中,斜边和一个锐 角对应相等,这两个直角三角形全等 吗?为什么?
B
C B′
C′
2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′个直角三角形是否全等,不全等的画“×”,

三角形的证明

三角形的证明

注意证明步骤:在证明过程中要注意证 明的步骤确保每一步都有依据。
检查证明结果:在完成证明后要检查证明结 果是否符合题目要求是否有遗漏或错误。
数学思想:逻辑推理、归纳 总结、分类讨论等
证明方法:直接证明、反证 法、归纳法等
解题步骤:审题、分析、解 答、反思等
明确题目要求:理解题目中给出的条件 和要求明确需要证明的结论。
寻找已知条件:在题目中寻找已知条件 如三角形的边长、角度等。
运用定理和公式:根据已知条件和题目 要求运用相关的定理和公式进行证明。
三角形内角和为180度 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边 三角形任意两边之积大于第三边之积
外角定义:三角形中不在同一条边 上的两个内角的公共部分称为外角
外角与内角的关系:三角形的外角 等于与它不相邻的两个内角的和
添加标题
添加标题
外角性质:三角形的外角和等于 360度
添加标题
应用不同:全等三角形常用于解决 几何问题相似三角形常用于解决比 例问题。
面积公式:S = (1/2) * * b * sin(C) 其中和b是三角形的两条边C是这两条边所夹的角 适用范围:适用于任意三角形 计算方法:先确定三角形的边和角然后代入公式计算
海伦公式: S=sqrt[s(s-)(sb)(s-c)]其中s是 三角形的半周长、 b、c是三角形的 三条边长
添加标题
外角与内角的互补性:三角形的外 角与相邻的内角互补
边边边定理:三条边分别相等的两个三 角形全等
边角边定理:两边及其夹角相等的两个 三角形全等
角边角定理:两角及其夹边相等的两个 三角形全等
角角边定理:两角及其非夹边相等的两 个三角形全等
边边角定理:两边及其夹角相等的两个 三角形全等

北师大版八年级下学期数学第一章三角形的证明同步练习题

北师大版八年级下学期数学第一章三角形的证明同步练习题

新北师大版八年级下学期《第一章三角形的证明》同步测试题一、选择题1、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设【】A、a不垂直于cB、a,b都不垂直于cC、a⊥bD、a与b相交2、有下列四个命题:①等腰三角形两腰上的中线相等,②等腰三角形两腰上的高相等,③等腰三角形两底角的平分线相等,④等腰三角形底边上的中点到两腰的距离相等. 正确的命题的个数有【】 A、1个B、2个C、3个D、4个3、如图,△A BC中,∠B=∠BAD,∠ADC=∠C,BD=5,DC=m,则AC是【】A、4B、m-5C、5D、m+54、下列图形中,两个三角形一定全等的是【】A、含80°角的两个锐角三角形 B、边长为20cm的两个等边三角形 C、腰长对应相等的两个等腰三角形 D、有一个钝角对应相等的两个等腰三角形5、在证明“在△ABC中至多有一个直角或钝角”时,第一步应假设【】A、三角形中至少有一个直角或钝角B、三角形中至少有两个直角或钝角C、三角形中没有直角或钝角D、三角形中三个角都是直角或钝角6、下列命题中正确的个数是【】①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高重合;④只有两条边相等的等腰三角形是轴对称图形,对称轴有1条.A、1个B、2个 C、3个 D、4个7、等腰三角形的一个外角是120°,一边长为acm,那么它的周长是【】A、3acmB、2acmC、acmD、无法确定8、如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,则下列结论正确的是:(1)△AOD≌△BOC;(2)△APC≌△BPD;(3)点P在∠AOB的平分线上【】A、只有(1) B、只有(2)C、只有(1)(2)D、(1)(2)(3)9、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是【】A、平行线之间的距离处处相等 B、到角的两边距离相等的点在角的平分线上 C、角的平分线上的点到角的两边的距离相等 D、到线段的两个端点距离相等的点在线段的垂直平分线上10、△ABC中,若,则此三角形为【】三角形. A、等腰B、直角C、等腰直角 D、等边11、如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为【】 A、B、1 C、2 D、不确定12、已知等边三角形的面积是,则它的高是【】A、cmB、cmC、cmD、cm13、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①BE+CF=BC;②;③=AD·EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是【】A、1个B、2个C、3个D、4个14、如图所示,AD平分∠BAC,AD=BD,AC=AB,则【】A、AC⊥CDB、AC=2CDC、AC=BDD、BD=2CD15、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,,则y关于x的函数图象大致为【】A、B、C、D、二、填空题16、等边三角形的每个内角都等于______________________.17、如图,已知∠A=∠D=90°,若要依据“HL”证明△ABC≌△DCB,应添加条件_________ ___________ _____;若要依据“AAS”证明△ABC≌△DCB,应添加的条件是_________________________________.18、等腰三角形是轴对称图形,它的对称轴是__________________.19、如图,在△ABC中,AB=AC,∠B=40°,则∠A=____________.20、如图,在△ABC中,AB=AC,D、E、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD.若∠A=40°,则∠EDF=______°.21、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于_______________度.22、△ABC中,AB=AC,若BC=CD=DE=EF=FA,则∠A=______°.23、如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,∠ADC=146°,则∠BCE=___________°.三、解答题24、(1)小丽同学说“每一个定理不一定都有逆定理,因为逆命题不一定正确.”你认为她的说法正确吗?如果不正确,应如何改正?25、写出命题“平行于同一条直线的两条直线互相平行”的逆命题,并判定这对互逆命题的真假.26、如下图所示,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延长线于点E,试说明△ACE是等边三角形.27、如图,△ABC中,∠A=60°,高BD、CE交于M,MD=5,ME=7. 求BD、CE的长.28、如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC交AC于D.求证:AD+BD=BC.四、证明题29、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.30、如图所示,AB=AC,DB=DC,AD的延长线交BC于点E.求证:BE=EC.31、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,____________________________________.求证:______________________________________________________.证明:32、如图所示,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB于E,DF⊥AC于F.求证:∠B=∠C.33、如图,△ABC中,从点C向∠BAC的平分线引垂线,垂足为点E,设AE交BC于点D,且AB=AD.求证:.五、应用题34、如图是某市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“公共汽车”停靠点,“公共汽车甲”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“公共汽车乙”从B站出发,沿F、H、E、D、C、G的顺序到达G站.如果甲、乙分别从A、B 站同时出发,在各站耽误的时间忽略不计,两车的速度一样,试问哪一辆汽车先到达指定站?为什么?35、有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D C B B D A D B C B C C A B题号16 17 18 19 20 21 22 23答案60AB=DC或AC=DB;∠ABC=∠DCB或∠ACB=∠DBC顶角平分线所在直线100°7070或2020 5624)、解:她的说法正确,理由如下:命题有真假命题之分,而定理是经过证明后得出的正确的命题,命题正确时逆命题不一定正确,即定理的逆命题不一定是真命题,所以虽然每个命题都有逆命题,但每个定理不一定存在逆定理,只有当原定理的逆命题是真命题时,原定理的逆命题才能称为逆定理.25)、【解答】1、逆命题:“如果两条直线互相平行,那么这两条直线都与第三条直线平行”,该命题是假命题;而原命题是真命题.26)、【解答】1、因为CD平分∠ACB,∠ACB=120°,所以∠ACE=180°-∠ACB=60°,且.因为AE∥DC,所以∠ACD=∠CAE,∠BCD=∠E.所以∠CAE=∠E=∠ACE=60°.所以△ACE是等边三角形.27)、【解答】解:∵BD⊥AC,∴∠ADB=90°.又∵∠A=60°,∴∠ABD=90°-60°=30°,同理可得∠ACE=30°,在Rt△BEM中,∠EBM=30°,∠BEM=90°,∴BM=2ME.∵ME=7,∴BM=14.同理由MD=5,得CM=2MD=10,∴BD=BM+MD=19,CE=CM+EM=10+7=17. CE取点F,使DE=DF.∵AB=AC,∠A=100°,∴∠ABC=∠C==40°.∵BD平分∠ABC,∴∠ABD=∠DBE=20°.∵在△ABD和△EBD中,AB=EB,∠ABD=∠DBE,BD=BD,∴△ABD≌△EBD,∴∠BED=∠A=100°,∴∠DEF=180°-100°=80°.∵DE=DF,∴∠DFE=∠DEF=80°,∴∠BDF=180°-80°-20°=80°,∴BD=BF,∠DFC=180°-80°=100°,∴∠FDC=180°-100°-40°=40°,∴DF=FC,∴DF=FC=DE=AD,∴BC=BF+FC=BD+AD.29)、【解答】1、证明:假设在一个三角形中,这两个不等的角所对的边相等,根据等边对等角,它们所对的两个角也相等,这与已知条件相矛盾,说明假设不成立,所以在一个三角形中,如果两个角不等,那么它们所对的边也不等.30)、【解答】1、证明:因为AB=AC,BD=DC,AD=AD,所以∠BAE=∠CAE.又因为AB=AC,所以BE=EC.31)、【解答】解:在△ABC中,∠B=∠C,求证:AB=AC.证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.32)、【解答】1、∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∠DEB=∠DFC=90°,∴(Rt)△DEB≌(Rt)△DFC(HL).∴∠B=∠C.33)、【解答】1、分别延长AB,CE交于点F.∵AE平分∠FAC,∴∠FAE=∠CAE.∵∠FAE=∠CAE,∠AEF=∠AEC=90°,AE=AE,∴△AEF≌△AEC(AS A),∴AF=AC,EF=EC.又过点E作EG∥AF,交BC于点G,∴,∠ABD=∠DGE.∵AB=AD,∠ABD=∠ADB=∠GDE=∠DGE,∴DE=EG,∴AE=AD+DE=AB+EG====. 所以△ABC与△ECD均为等边三角形,且∠ACE=60°.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE,所以△ACD≌△BCE(SAS).所以AD=BE,∠1=∠2.在△BCF和△ACG中,∠1=∠2,BC=AC,∠BCF=∠ACG=60°,所以△BCF≌△ACG(ASA).所以CF=CG.又因为DE+EC=ED+CD,所以AD+DE+EC+CF=BE+ED+CD+CG.即甲、乙两车同时到达指定站.35)、【解答】1、解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有AB=10.扩充部分为Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB =6.得△ABD的周长为32m.②如图2,当AB=BD=10时,可求CD=4.由勾股定理,得.得△ABD的周长为m.如图③,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理,得.得△ABD 的周长为m.====Word行业资料分享--可编辑版本--双击可删====。

北师大版八年级数学下册《直角三角形》三角形的证明PPT课件(第1课时)

北师大版八年级数学下册《直角三角形》三角形的证明PPT课件(第1课时)
∴ 2 = ’’2
∴ = ’’
∴∆ ≅ ∆’’’()
∴∠ = ∠’ = 90°(全等三角形的对应角相等).
∴∆ 是直角三角形.
实践探究,交流新知
议一议:观察上面第一个定理和第二个定理,它们的条件和结论之间有怎样
的关系?
第三个和第四个定理呢?与同伴交流.
再观察下面三组命题:
已知:如图,在∆中, + = .
求证:∆是直角三角形.
证明:如图,作∆’’’,使∠’ = 90°,’’ = ,’’ =
,则’’2 + ’’2 = ’’2 .
∵2 + 2 = 2 ,’’ = ,’’ =
(2)在一个三角形中,当两边的平方和等于第三边的平方时,它是直角三角形吗

勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
已知在△ABC中,∠ACB=90°,Leabharlann BAC,∠ABC,∠ACB的对边长
分别为 ,, .求证:2 + 2 = 2 .
解:整个图形可以看作是边长为 的正方形,它的面积为 2 .
北师大版 八年级下册
第一章 三角形的证明
直角三角形(第1课时

前 言
学习目标
1.会证明直角三角形的性质定理和判定定理,并能应用性质进行计算和证明.
2.能写出一个命题的逆命题,并会判断其真假,会识别两个互逆命题.
3.通过勾股定理及其逆定理的证明,体会同一个定理可以从不同角度,用不同方法加以证
明,激发学生的探索热情,并在小组合作中体会交流与合作的重要性.
命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题.
(2)互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一

证明三角形的方法

证明三角形的方法

证明三角形的方法证明三角形的方法有很多,以下将介绍其中几种常见的证明三角形的方法。

方法一:正弦定理三角形的正弦定理是指,在任意一个三角形ABC中,有以下等式成立:a/sinA = b/sinB = c/sinC其中a、b、c分别是三角形ABC的边长,A、B、C分别是三角形ABC的内角。

通过正弦定理,我们可以通过已知的两个角和一个边长,求得另外两个边长,或者通过已知的两个边长和一个角,求得另外一个边长。

这样,我们就可以确定了三角形ABC的三个边长。

方法二:余弦定理三角形的余弦定理是指,在任意一个三角形ABC中,有以下等式成立:c²= a²+ b²- 2abcosC其中a、b、c分别是三角形ABC的边长,C是三角形ABC的对应内角。

通过余弦定理,我们可以通过已知的两个边长和一个内角,求得另外一个边长,或者通过已知的三个边长,求得一个内角。

这样,我们就可以确定了三角形ABC的三个边长或三个内角。

方法三:勾股定理三角形的勾股定理是指,如果一个三角形的两个边长和斜边的关系满足a²+ b²= c²,则这个三角形是一个直角三角形。

勾股定理是三角形中最常用的定理之一,通过勾股定理,我们可以判断一个三角形是否为直角三角形。

方法四:相似三角形的性质如果两个三角形的对应角度相等,则这两个三角形是相似的。

相似三角形的性质可以帮助我们求解未知的三角形边长或者角度。

如果两个三角形相似,那么它们的对应边长之间存在着等比关系。

通过相似三角形的性质,我们可以利用已知的三角形边长和角度来求解未知的三角形边长或者角度。

方法五:共线性质三角形的三个顶点可以看作是三个向量,在平面直角坐标系下,可以使用向量的共线性质来证明三角形。

如果三个顶点的向量满足向量共线的性质,则可以证明这三个点是一个三角形。

共线性质可以通过向量的线性组合来表示,如果一个向量可以表示为另外两个向量的线性组合,则这三个向量是共线的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角形的证明
一、本章内容的定位
本章是“平行线的证明”的继续。

从“平行线的证明”开始,教科书从几条基本事实出发展开了对平行线等图形性质的严格证明。

本章将类比“平行线的证明”,对等腰三角形和直角三角形的性质进行探索与证明。

等腰三角形、直角三角形是最基本也是最重要的几何图形。

以它们为载体,借助全等等一些基本事实,能够培养学生推理能力,特别是逻辑推理能力。

也是后继学习“平行四边形”等几何图形的基础。

本章还出现了学生没有探索过的命题,对于这些命题,通过采用不同的处理方式:(1)直接通过证明得到部分命题;(2)另一部分命题,则尽可能创设一些问题情境,为学生提供自主探索发现的空间,然后再进行证明,从而将证明作为探索活动的自然延续和必要发展,使学生经历“探索—发现—猜想—证明”的过程,体会合情推理与演绎推理在获得结论时各自发挥的作用。

如对于直角三角形全等的判定条件及其证明没有分成两段而是在本章一起完成的。

这样安排对学生整体理解数学结论从发现到证明的全过程有好处,增强学生的实践能力和创新意识。

此外,教科书还注意渗透归纳、类比、转化等数学思想方法。

这一章虽然以逻辑证明为主,但在素材和背景的选取上仍尽可能与实际联系,尽可能给学生留有观察、探索与发现的机会,增强论证的趣味性,从而激发学生对数学证明的兴趣和掌握综合法的信心,同时也使学生体会到逻辑证明在实际中的意义和作用。

主要包括:
1.等腰三角形的性质和判定定理;
2.直角三角形的性质定理和判定定理;
3.线段的垂直平分线性质和判定定理;
4.角平分线性质定理和判定定理。

二、教学任务分析
1、本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,将利用前一课时所证明的等腰三角形的性质定理,进一步研究等腰三角形的一些特殊性质,探索等边三角形的性质。

2、主要任务是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明。

这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一。

3、本节学生将探究等边三角形判定定理和含30°角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索。

但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会。

4、本节是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。

在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。

5、在上一节中学生已经掌握了线段垂直平分线的性质和判定定理,本节课
的主要任务是性质和判定的应用。

学生已探索过角平分线的性质,而此处在学生回忆的基础上,尝试着证明它,并构造其命题,进一步讨论三角形三个内角平分线的性质.教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.
三、单元目标
1.知识与技能
(1)证明等腰三角形、等边三角形、直角三角形、线段垂直平分线、角平分线的性质和判定定理。

(2)证明判定三角形全等的“角角边”定理;探索并掌握判定直角三角形全等的“斜边、直角边”定理。

(3)已知底边及底边上的高线,能用尺规作出等腰三角形;已知一直角边和斜边,能用尺规作出直角三角形;能用尺规果一点作已知直线的垂线。

2.过程与方法
(1) 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能
力.体验解决问题的方法,发展实践能力和创新意识。

(2)结合具体例子了解原命题及逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。

3.情感态度与价值观
(1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力;
(2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

(3)学会与他人合作,并能与他人交流思维的过程和结果。

(4) 经历探索,猜想,证明使学生掌握研究解决问题的方法。

四、单元重点
(1)在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明
(2)证明等腰三角形、等边三角形、直角三角形、线段垂直平分线、角平分线的性质和判定定理。

证明判定三角形全等的“角角边”定理;探索并掌握判定直角三角形全等的“斜边、直角边”定理。

(3)已知底边及底边上的高线,能用尺规作出等腰三角形;已知一直角边和斜边,能用尺规作出直角三角形;能用尺规果一点作已知直线的垂线。

五、单元难点
(1)明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达(2)用综合法证明有关三角形和等腰三角形的一些结论
(3)含30°角的直角三角形性质定理的探索与证明,引导学生全面、周到地思考问题.勾股定理及其逆定理的证明方法,能够证明直角三角形全等的“HL”的判定定理。

(4)能够证明与线段垂直平分线相关的结论。

(5)证明三线共点,正确地表述角平分线性质定理的逆命题及其证明。

六、本章教学建议
1.使学生经历探索、猜想、证明的过程,进一步体会证明的必要性。


前所述,本章既涉及一些以前曾经探索过的命题,又涉及一些新的结论,因此在教学中,应把证明作为探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、实验的结果,运用归纳、类比的方法首先得出猜想,然后再进行证明,这样做有利于学生全面的理解证明。

在具体教学时,一方面,教师可引导学生回忆探索的过程及其得出的结论,并强调证明的必要性;另一方面,学生经过探索还会得到以往没有探索过的新的结论,然后再去证明。

教师应充分利用这样的机会,启发引导学生体会探索结论和证明结论的相互关系,即合情推理与演绎推理的相互依赖和相互补充的辩证关系。

2.注重对证明思路的启发,关注学生的独立思考。

在掌握了基本的证明步骤和要求的基础上,发现结论、探索证明的思路与方法是学习本章内容的重点和难点。

教学时应注意多让学生观察、操作,尽可能独立的获取结论,在证明思路和方法上引导学生大胆尝试,教师在教学时应引导学生着重分析证明的思路和方法,注意学生的个体差异,帮助学生分析辅助线的添加、辅助图形的构造。

在这个过程中,以前探索结论时所使用的方法对证明思路往往具有重要的启迪作用,教师应注意引导、启发。

同时,很多结论的证明方法是不惟一的,辅助线的添加方法也是多种多样的,对于证明思路和方法,教师要注意给学生留出充分思考的时间和空间,同时还要对学习证明有困难的学生给予帮助和指导,并引导学生在与他人的交流中比较证明方法的异同,提高逻辑思维水平。

例如,在证明“等腰三角形的两底角相等”时,可以有不同的做辅助线的方法,从而导致不同的证明方法。

教师应鼓励学生通过交流探索发现这几种不同的证明方法。

3.要求学生掌握证明的基本要求和方法。

推理证明是本章学习的重点,因此教学中要注意培养学生掌握推理证明的基本要求。

如明确条件和结论,能够用数学的符号语言正确表达;明确每一步推理的依据并能准确的表达推理的过程。

通过一定数量的推理证明训练,逐步使学生掌握证明的方法和思路。

例如在应用“斜边、直角边”定理证明时,教师可以先引导学生分析使用这种判定方法需要具备的条件:在两个直角三角形中,斜边分别相等,一条直角边分别相等,只有同时具备这三个条件才能用“斜边、直角边”定理判定两个直角三角形全等,再结合具体问题情境,将上述条件转化为数学符号语言。

对于反证法,教学中可通过生活实例和简单的实例使学生体会其思想,不必对反证法的证明格式和证明难度提出过高要求。

4.注意数学思想方法在教学中的渗透以及对学生学习方法的启发。

七、单元课时安排
课题课时
1.1等腰三角形4课时
1.2 直角三角形2课时
1.3 线段的垂直平分线2课时
1.4 角平分线2课时
回顾与思考2课时。

相关文档
最新文档