《平方差公式》微课教学设计
平方差公式-优秀教案
平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。
2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。
3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。
二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。
(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。
(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。
2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。
(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。
三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。
【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。
同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。
平方差公式微课堂教学设计
平方差公式微课堂教学设计第一篇:平方差公式微课堂教学设计初一数学下册第六章第6节《平方差公式》微课堂教学设计一、目标设计1.知识与技能:理解并掌握公式的结构特征,会用平方差公式进行运算。
2.过程与方法:通过创设问题情境,让学生在数学活动中建立平方差公式模型,感受数学公式的意义和作用。
培养学生的数学建模能力与抽象思维能力,感悟换元的思想方法,在运用公式解决实际问题的过程中培养学生的化归思想,逆向思维。
3.情感与态度:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验。
二、过程设计(一)创设情境王敏捷同学去商店买了单价是9.8元/千克的糖果10.2千克,售货员刚拿起计算器,王敏捷就说出应付99.96元,结果与售货员计算出的结果相吻合。
售货员很惊讶地说:“你好象是个神童,怎么算得这么快?”王敏捷同学说:“过奖了,我利用了在数学上刚学过的一个公式。
”你知道王敏捷同学用的是一个什么样的公式吗?怎么计算的吗? 【设计意图】从生活问题入手,激发学生学习的兴趣。
【处理策略】学生以小组交流自己的想法。
(二)温故知新看谁算得快(1)(y+3)(y-5)(2)(x+3)(x-3)(3)(1+2a)(1-2a)(4)(x+4y)(x-4y)思考:在上述计算中你发现了第(2)(3)(4)什么规律?你有何猜想?【设计意图】从学生熟知的多项式乘法着手,鼓励学生积极探索,大胆猜想,为学生搭建数学再创造活动的平台.为学生舒展灵性创设空间.【处理策略】学生独立完成并思考是否任意两个数的和乘以这这两个数的差等于这两个数的平方差.(三)探索发现1.你的猜想是否具有一般性?你能举例证明你们的猜想吗?2.(1)代数证明(多项式乘法法则)2222(a+b)(a-b)=a-ab+ba+b即(a+b)(a-b)=a-b抽象得出公式并给公式取名.(你的公式你作主)抓住特点命名为平方差公式用文字语言叙述平方差公式.两数和与这两数差的积等于这两数的平方差注意:乘式必须具备公式左边的结构特点,“两数和乘两数差”【设计意图】让学生积极参与数学再创造活动,化特殊为一般,培养数学建模思想,化归思想.【处理策略】小组交流,举例证明公式.并根据自己的理解给公式命名(2)图形证明用图中阴影部分面积的不同求法解释平方差公式.多媒体展示:图形割补得到矩形.22上图(1)、(2)说明了平方差公式的几何解释,即(a+b)(a-b)=a-b 小结平方差公式的特点【设计意图】让学生体验成功的快乐,自己是数学的主人。
《平方差公式》的优秀教学设计
《平方差公式》的优秀教学设计一、教学内容本节课的教学内容选自人教版小学数学五年级上册第五章《因数与积》中的平方差公式。
平方差公式是指两个数的平方差可以表示为它们的和与差的乘积的二倍,即a^2 b^2 = (a + b)(a b)。
二、教学目标1. 学生能够理解平方差公式的意义,并能够运用平方差公式进行计算。
2. 学生能够通过平方差公式,解决实际问题,提高解决问题的能力。
3. 学生能够培养合作交流的能力,提高学习的兴趣。
三、教学难点与重点1. 教学难点:平方差公式的推导过程和运用。
2. 教学重点:平方差公式的记忆和运用。
四、教具与学具准备1. 教具:黑板、粉笔、课件。
2. 学具:笔记本、练习本、铅笔。
五、教学过程1. 实践情景引入:让学生拿出自己的身高和座位距离,计算自己的座位面积。
2. 例题讲解:教师通过讲解一个简单的平方差问题,引导学生发现平方差公式的规律。
3. 随堂练习:学生独立完成一些平方差公式的练习题,巩固所学知识。
4. 小组合作:学生分组讨论,探索平方差公式的推导过程,并互相交流心得。
六、板书设计平方差公式:a^2 b^2 = (a + b)(a b)七、作业设计1. 题目:计算下列各题的平方差。
1) 9^2 4^22) 8^2 5^23) 7^2 3^22. 答案:1) 81 16 = 652) 64 25 = 393) 49 9 = 40八、课后反思及拓展延伸1. 课后反思:教师应反思本节课的教学效果,看学生是否掌握了平方差公式,是否能够运用到实际问题中。
2. 拓展延伸:教师可以引导学生进一步研究平方差公式的应用,如解决更复杂的实际问题,或者探索其他数学公式。
重点和难点解析:一、教学内容重点关注细节1. 平方差公式的推导过程:教师需要引导学生通过具体的例子,逐步推导出平方差公式,让学生理解并掌握公式的来源。
2. 平方差公式的运用:教师需要给出一些实际问题,让学生运用平方差公式进行计算,巩固所学知识。
《平方差公式》教学设计教学设计
《平方差公式》教学设计教学设计平方差公式教学设计一、教学目标1. 理解平方差公式的定义和含义;2. 掌握平方差公式的应用方法;3. 发展学生的逻辑思维和推理能力。
二、教学内容1. 平方差公式的概念和定义;2. 平方差公式的推导过程;3. 平方差公式的应用。
三、教学过程导入:1. 通过问答的方式引入平方差公式的概念,如:你们知道平方差公式是什么吗?它有什么作用?2. 引导学生回顾平方差公式之前所学过的知识,如平方根等。
知识讲解:1. 讲解平方差公式的定义和含义,如:平方差公式是指两个数的平方差等于这两个数的和与差的乘积。
用数学符号表示为:(a+b)(a-b)=a^2-b^2。
2. 讲解平方差公式的推导过程,通过具体的例子展示如何由(a+b)(a-b)=a^2-b^2推导出这一公式。
实例演示:1. 通过给出一些具体的数值例子,让学生进行演算,进一步加深对平方差公式的理解。
2. 提供一些实际问题,引导学生运用平方差公式解决实际问题。
练习巩固:1. 在教师的指导下,学生进行平方差公式的相关练习,如计算等。
2. 留出时间让学生进行自主练习,提高他们的巩固能力。
拓展应用:1. 鼓励学生思考更多的数学问题和应用,提高他们的数学思维能力。
2. 提供一些深入的扩展问题,让学生进行探索和研究。
四、教学评价1. 结合教学过程中的课堂练习和自主练习,收集学生的练习作业,进行评价和反馈。
2. 参考学生对平方差公式的掌握情况,对教学过程进行评估,并对下一步的教学进行调整。
五、教学资源1. 平方差公式的定义和推导过程的讲解材料;2. 平方差公式的练习题和答案;3. 相关的课件和教学工具。
六、教学反思本次教学设计主要围绕平方差公式展开,通过引导学生认识和理解平方差公式的概念和定义,提供具体的推导过程,并通过实例演示和练习巩固,达到对平方差公式的掌握和灵活运用。
同时,通过拓展应用和思考更多的数学问题,培养学生的数学思维和解决问题的能力。
平方差公式教案(共5篇)
平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。
2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。
3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。
学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。
2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。
平方差公式教学设计(优秀10篇)
平方差公式教学设计(优秀10篇)平方差公式说课课件篇一平方差公式教学反思本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。
在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。
然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。
不足之处:教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。
有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。
小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。
教学语言还太随意,数学的语言应该严谨。
在语调上应该有所变化。
平方差公式篇二2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+壹五)(2x3-壹五);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)一场雪Unit2Look at me第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章・多项式的乘法・单项式与多项式相乘・单项式的乘法・幂的乘方与积的乘方(二)・幂的乘方与积的乘方・同底数幂的乘法(二)・同底数幂的乘法・一元一次不等式组和它的解法平方差公式教学课件篇三平方差公式教学课件教学目的:1、使学生会推导平方差公式,并掌握公式特征。
平方差公式教学设计(精选10篇)
平方差公式教学设计平方差公式教学设计(精选10篇)作为一名辛苦耕耘的教育工作者,往往需要进行教学设计编写工作,借助教学设计可使学生在单位时间内能够学到更多的知识。
写教学设计需要注意哪些格式呢?以下是小编收集整理的平方差公式教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
平方差公式教学设计篇1一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法。
因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一。
二、学情分析1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感。
经过一个学期的培养,学生已经具备了小组合作、交流的能力。
学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能。
通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯。
2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性。
三、教学目标1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用。
2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力。
平方差公式优秀教案(多场景)
平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。
2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。
二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。
2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。
3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。
三、教学重点与难点1.教学重点:平方差公式的推导和应用。
2.教学难点:平方差公式的理解和灵活运用。
四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。
2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。
3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。
4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。
5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。
6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。
7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。
8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。
五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。
2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。
3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。
平方差公式教案
二、自主探究
1.计算下列各式:
(1)(a+1)(a-1) =a2-a+a-12=a2-1
(2)(a+2)(a-2) =a+-2a+2a-22=a-4
(3)(a+3)(a-3) =a2-3a+3a-32=a2-9
2.观察以上算式及其运算结果,你发现了什么规律?你能计算(a+b)(a-b)吗?
【归纳结论】两数和与两数差的积,等于它们的平方差
平方差公式:(a+b)(a-b)=a2-b2
3.如图,将边长为 a 的大正方形剪去一个边长为 b 的小正方形,并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成如图(b),你能用这两个图来解释平方差公式吗?
①请表示图1中阴影部分的面积.
②将阴影部分拼成一个长方形(如图2),这个长方形的长和宽分别是多少?你能表示出它的面积吗?
【归纳结论】(a+b)(a-b)=a2-b2
4.判别平方差公式的基本特征。
平方差公式教案教学设计(优秀7篇)
平方差公式教案教学设计(优秀7篇)《平方差公式》教学反思篇一教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1、(1)用较简单的代数式表示下图纸片的面积。
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:沿hd、gd裁开均可,但一定要让学生在裁开之前知道hd=bc=gd=fe=a-b,这样裁开后才能重新拼成一个矩形。
希望推出公式:a2-b2=(a+b)(a-b)2、(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异。
说明:平方差公式的数学表达式在使用上有三个优点:(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。
因而也就“欠”明确(如结果不知是谁与谁的平方差)。
故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。
3、判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)平方差公式的教学设计篇二学习目标:1、能推导平方差公式,并会用几何图形解释公式;2、能用平方差公式进行熟练地计算;3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律。
平方差公式教案
平方差公式教案教案标题:平方差公式教案一、教学目标:1. 理解平方差公式的定义和意义。
2. 能够灵活运用平方差公式求解简单的数学问题。
3. 培养学生的逻辑思维和推理能力。
二、教学重难点:1. 平方差公式的理解和运用。
2. 针对不同难度的问题选择合适的解题方法。
三、教学准备:1. 教师准备:教案、黑板、白板笔。
2. 学生准备:纸和铅笔。
四、教学过程:步骤一:引入教师通过简单的例子引入平方差公式的概念,如:计算(7+3)²和(7-3)²的值,并帮助学生发现其中的规律。
步骤二:介绍平方差公式1. 教师向学生介绍平方差公式的定义和意义:“平方差公式是指一个二次式乘积的展开式,其中含有两个数的平方和两倍乘积的差。
”2. 教师在黑板上展示平方差公式的一般形式:(a + b)² = a² + 2ab + b² 和 (a - b)² = a² - 2ab + b²。
3. 通过实际例子帮助学生理解平方差公式的应用,如:计算(5 +2)²和(5 - 2)²的值。
步骤三:解题方法与例题1. 教师向学生介绍两种常用的解题方法:a. 直接利用平方差公式展开计算。
b. 先计算平方和,在减去两倍乘积。
2. 通过具体的例题,引导学生贯通两种解题方法的思路,并帮助学生掌握正确的运算步骤。
例题1:计算(9 + 4)²的值。
解法1:直接利用平方差公式展开计算。
(9 + 4)² = 9² + 2 * 9 * 4 + 4² = 81 + 72 + 16 = 169。
解法2:先计算平方和,再减去两倍乘积。
(9 + 4)² = (9² + 4²) - 2 * 9 * 4 = 81 + 16 - 72 = 169。
例题2:计算(7 - 2)²的值。
解法1:直接利用平方差公式展开计算。
平方差公式教案优秀
平方差公式教案优秀平方差公式教案优秀1教学目标1、使学生理解和掌握平方差公式,并会用公式进行计算;2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点重点:平方差公式的应用。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计一、师生共同研究平方差公式我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。
教师根据学生的回答,引导学生进一步思考:两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。
这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。
而它们的积等于乘式中这两个数的平方差)继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的'多项式相乘时就可以直接运用公式进行计算。
以后经常遇到(a+b)(a—b)这种乘法,所以把(a+b)(a—b)=a2—b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
二、运用举例变式练习例1计算(1+2x)(1—2x)。
解:(1+2x)(1—2x)=12—(2x)2=1—4x2。
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3—b2)。
解:(b2+2a3)(2a3—b2)=(2a3+b2)(2a3—b2)=(2a3)2—(b2)2=4a6—b4。
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习运用平方差公式计算:(l)(x+a)(x—a);(2)(m+n)(m—n);(3)(a+3b)(a—3b);(4)(1—5y)(l+5y)。
《平方差公式》教学教案
《平方差公式》教学教案第一章:导入1.1 教学目标:让学生理解平方差公式的概念和意义。
引导学生通过实际例子发现平方差公式的规律。
1.2 教学内容:平方差公式的定义和表达式。
平方差公式的推导过程。
1.3 教学步骤:1.3.1 引入平方差的概念,让学生回顾平方的定义和性质。
1.3.2 通过实际例子,引导学生发现平方差的现象,并总结规律。
1.3.3 给出平方差公式的表达式,解释其含义和适用范围。
1.4 教学评估:提问学生对平方差公式的理解和应用。
让学生完成一些相关的练习题,检验其对平方差公式的掌握程度。
第二章:平方差公式的推导2.1 教学目标:让学生理解平方差公式的推导过程。
培养学生通过逻辑推理和数学思维解决问题的能力。
2.2 教学内容:平方差公式的推导方法。
平方差公式的证明过程。
2.3 教学步骤:2.3.1 引导学生回顾平方的定义和性质,复习平方差的概念。
2.3.2 引导学生通过实际例子和数学推理,推导出平方差公式。
2.3.3 给出平方差公式的证明过程,解释其逻辑和数学依据。
2.4 教学评估:提问学生对平方差公式的推导过程和证明的理解。
让学生完成一些相关的练习题,检验其对平方差公式的推导和证明的掌握程度。
第三章:平方差公式的应用3.1 教学目标:让学生掌握平方差公式的应用方法。
培养学生运用平方差公式解决实际问题的能力。
3.2 教学内容:平方差公式的应用场景和例题。
平方差公式的变形和扩展。
3.3 教学步骤:3.3.1 引导学生理解平方差公式的应用场景,例如解决几何问题、物理问题等。
3.3.2 给出一些例题,引导学生运用平方差公式进行计算和解决问题。
3.3.3 引导学生对平方差公式进行变形和扩展,探讨其适用范围和限制条件。
3.4 教学评估:提问学生对平方差公式的应用场景和例题的理解。
让学生完成一些相关的练习题,检验其对平方差公式的应用和解决问题的掌握程度。
第四章:练习与巩固4.1 教学目标:让学生通过练习题巩固对平方差公式的理解和应用。
《平方差公式》教学设计(优秀7篇)
《平方差公式》教学设计(优秀7篇)平方差公式教学反思篇一平方差公式与完全平方公式是初中数学代数学知识方面应用最广泛的公式,也是学生代数运算的基础公式,在今后的数学学习过程中,更能体现其重要性,所以这两个公式的教学要求很高,需要每一名学生都必须熟练掌握这两个公式,并因此可以灵活运用公式进行因式分解和分解因式,解决很多代数问题。
如同勾股定理在全世界数学基础教学中地位显著,全世界各地数学教科书都要求学生掌握一样,平方差公式与完全平方公式也是全世界以致全国各地教科书都必讲必学的内容之一,作为整式的乘法公式,人教版教科书把平方差公式与完全平方公式安排在整式的乘法这一章的第二节,在第一节内容上先让学生掌握整式乘法的各项法则,当学生熟练掌握多项式与多项式的乘法后,再由此让学生来学生我们的乘法公式,本节内容分两部分,先介绍平方差公式,再介绍完全平方公式。
在学生熟练掌握多项式与多项式的乘法后,开始介绍平方差公式,教科书上是由找规律开始,让学生利用多项式乘法法则计算,从而发现平方差公式,由找规律得出公式的猜想,再介绍平方差公式的几何面积验证方法,来验证公式猜想的正确性,从而由代数探究及几何论证来得出平方差公式,得出公式后再来实际应用。
我一直严格要求自己,认真备教材,当然也认真备学生,使课堂教学符合学生的实际需要。
学生基础较差,教学内容要求生动、易学易懂,让学生能在活动教学中进行简单探究从而掌握好基础知识。
,我认真准备,仔细研读教材,精心制作出课件和教案,按教科书的教学顺序和过程,既安排学生计算上的运算探究猜想,又安排几何实践剪纸法,利用面积来验证公式。
我从实际问题出发,给出动手操作的实际几何问题引出本课,得出平方差公式的猜想,让学生动手实践,数形结合得出平方差公式,在利用多项式的乘法法则计算验证,最后辨析、应用,让学生熟悉平方差公式,最后应用提高,给出实际生活中的一个问题,利用平方差公式计算较大的数字,让学生明白学习,平方差公式不但可以在实际生活中运用,而且还可以简便计算,激发学生对平方差公式学习的兴趣,从而很好地掌握好平方差公式。
平方差公式教学设计(精选)
过程与方法目标
通过观察、比较、归纳等方法, 探究平方差公式的规律和特点。
采用讲解、示范、练习等方式, 帮助学生掌握平方差公式的应用
方法。
引导学生积极参与数学活动,提 高数学思维和解决问题的能力。
情感态度与价值观目标
培养学生学习数学的兴趣和自 信心,感受数学的美妙和魅力。
鼓励学生勇于探索和创新,培 养创新意识和实践能力。
改进措施和建议
针对学生基础薄弱的问题,可以在课前进行预习指导,提供相关学习资 料,帮助学生巩固基础知识。
增加练习题难度,设计更具挑战性的问题,引导学生进行深入思考和探 究。
加强课堂互动,鼓励学生积极提问和发表观点,促进师生之间的交流与 合作。同时,可以采用小组讨论、竞赛等形式激发学生的学习兴趣和积 极性。
组织学生进行合作交流,分享彼此 的学习成果和解题经验,促进学生 的共同进步。
反思总结
引导学生对所学内容进行反思总结, 加深对平方差公式的理解和记忆, 提高学生的元认知能力。
05 教学过程
导入环节
情境导入
通过实际生活中的例子,如计算面积差或长度差,引出平方差 的概念。
复习导入
回顾之前学过的完全平方公式和多项式乘法,为学习平方差公 式做铺垫。
(m+n)(m-n)
(x+3)(x-3)
必做题
• 利用平方差公式,计算下列各题
必做题
103×97 50.1×49.9
198^2 - 102^2
选做题
01
已知 a+b=5,ab=6,求 a^2 b^2 的值。
02
已知 x^2 - y^2 = 20,x+y=5, 求 x-y 的值。
探究题
探究平方差公式在因式分解中的应用,如
平方差公式的教学设计及分析
平方差公式的教学设计及分析教学目标:1.了解平方差公式及其应用场景;2.熟练掌握平方差公式的计算方法;3.能够通过平方差公式解决实际问题;4.培养学生的逻辑思维和问题分析能力。
教学内容:1.平方差公式的基本概念和定义;2.平方差公式的证明过程;3.平方差公式的应用案例。
教学过程:第一步:导入新知识(10分钟)教师通过提问的方式,激发学生的学习兴趣。
比如:“有一组数,它们的平方相减的结果是多少?”提供一组数:3,5,7,9,让学生小组合作计算并给出答案。
然后让学生讨论并找出规律。
最后教师引出平方差公式的定义。
第二步:平方差公式的证明(20分钟)教师通过多种方法对平方差公式进行证明,可以通过几何方法、代数方法或者直接展开式的比较等多种方式进行证明。
这个环节可以以小组合作的方式进行,引导学生自主发现、探索并总结出平方差公式的证明过程。
通过自主发现,学生对公式的理解更加深入。
第三步:平方差公式的应用(30分钟)教师提供一些实际问题,让学生运用平方差公式进行解答。
比如:“一些矩形的长和宽之差是5cm,而长和宽之和是13cm,求该矩形的长和宽。
”这个问题的解答可以通过设置方程并运用平方差公式来解决。
可以让学生自行思考和解答,然后再进行讲解和总结。
通过实际问题的应用,学生能够更好地理解公式的真正用途。
第四步:归纳总结(10分钟)第五步:拓展练习(10分钟)教师出示一些拓展练习题,要求学生独立完成并及时检查。
这些练习题的目的是巩固和加深学生对平方差公式的理解和运用。
教学分析:这份教学设计通过问题导入的方式引入平方差公式的概念,激发学生的学习兴趣。
接下来,通过多种方法的证明,培养学生的逻辑思维和问题分析能力。
然后通过实际问题的应用,让学生将公式从抽象的数学概念转化为实际解决问题的工具。
最后,通过总结和拓展练习,巩固和加深学生对平方差公式的理解和运用。
这个教学过程既符合学生的认知规律,又能够培养学生的思维能力和解决问题的能力。
“平方差公式”教学设计与反思
“平方差公式”教学设计与反思教学目标:1.通过教学使学生掌握平方差公式的概念和相关知识;2.能够灵活运用平方差公式求解一元二次方程、因式分解等相关问题;3.培养学生的逻辑思维和解决问题的能力。
教学重点:平方差公式的运用。
教学难点:如何将平方差公式灵活运用于解决一元二次方程、因式分解等相关问题。
教学准备:1.教师准备多个具体的实例问题,以便学生理解和掌握平方差公式的运用;2.准备黑板、彩色粉笔等教具。
教学过程:第一步:引入新知识(5分钟)教师在黑板上写出两个完全平方数的差,并请一个学生读出来。
然后,教师引导学生思考这两个数能否约分。
学生猜测不行。
教师再请一个学生尝试用一种方法约分或提取公因式。
引导学生发现这两个数确实不能约分或提取公因式。
最后,教师总结出这种差的两个数没有公因式的特点,然后提出平方差的概念。
引导学生积极思考平方差的特点。
第二步:讲解平方差公式(10分钟)教师在黑板上写出平方差公式a^2-b^2=(a+b)(a-b),并解释每个符号和字母的意义。
然后,分析平方差公式的推导过程,注意推导过程中的实例和规律。
第三步:练习与探究(20分钟)教师布置一些与平方差公式相关的练习题,让学生进行解答,并鼓励学生思考和探究。
教师可以根据学生的思考和讨论情况,适时给出提示或展开讲解。
例如,学生可以通过平方差公式求解一元二次方程、解决因式分解等相关问题。
第四步:展示和讨论(10分钟)学生将自己的解答和思考结果展示给全班,并进行讨论和分享。
教师根据学生的展示情况,总结出平方差公式的运用方法和技巧,鼓励学生灵活运用平方差公式。
第五步:巩固与拓展(15分钟)教师提供一些扩展练习题,让学生进一步巩固和拓展平方差公式的运用。
例如,通过一些应用题让学生掌握平方差公式在几何图形中的应用。
第六步:反思与总结(5分钟)教师对本节课的教学进行反思和总结,可请学生回答以下问题:1.本节课你学到了什么?2.有哪些地方你觉得困难?3.这节课还有哪些需要改进的地方?教学反思:通过本节课的教学,我发现学生对平方差公式的概念有了初步的理解,并能够初步灵活运用。
教师如何教授平方差公式的教案
教师如何教授平方差公式的教案一、教学目标1.知识目标:使学生掌握平方差公式的概念、公式及其应用。
2.能力目标:让学生能够熟练地运用平方差公式解决实际问题。
3.情感目标:让学生了解平方差公式的应用及其实用性,激发学生的学习兴趣和科学探究的热情。
二、教学重点与难点1.教学重点:让学生掌握平方差公式的概念、公式及其应用。
2.教学难点:让学生能够熟练地运用平方差公式解决实际问题。
三、教学策略本次教学使用的策略主要包括课堂讲解、案例分析、组织练习和小组合作等形式。
四、教学过程1.引入教师以生动活泼的语言介绍平方差公式的背景和实际应用场景,激发学生的学习兴趣和好奇心。
2.概念讲解教师对平方差公式的概念进行详细讲解,并在课堂上提供相关的案例,从理论和实践两个方面让学生了解平方差公式的基本概念和原理。
3.公式推导为了更好地掌握平方差公式的应用,教师通过演示推导的方法分析平方差公式,让学生能够理解公式的本质和重要性,同时讲解相关的数学公式及其衍生公式。
4.案例分析为了加强学生的应用能力,教师给出几个实际问题,让学生通过平方差公式解决问题,学以致用、能够掌握平方差公式的实际应用。
5.组织练习教师在课堂上组织学生进行练习,加强学生的运用能力和熟练度,通过实际操作促进学生的思维能力和创造性思维。
6.小组合作教师组织学生分组,让每个小组自行思考和解决一个数学问题,通过小组合作促进学生彼此交流、思路拓展和创造性思维的提升。
7.总结在课堂上,教师对本节课的内容和关键点进行总结,强调平方差公式的重要性和应用场景,同时鼓励学生在学习中多思考、多提问、多交流和多创新。
五、教学评价1.从知识掌握的程度来考察学生是否掌握平方差公式的概念、公式及其应用。
2.从应用能力的发挥来考察学生是否能够熟练地运用平方差公式解决实际问题。
3.从情感的反映角度来考察学生对平方差公式的认知和认可程度,以及愉悦感、成就感和探究兴趣是否得到促进。
六、教学延伸为了让学生更好地掌握平方差公式的应用,教师可以让学生自己选取一些数据进行计算,使用平方差公式进行解决,并在班级上进行展示,促进学生思维的交流,拓展学生的思维空间,为学生的未来科学研究打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“微课”教学设计
课题:平方差公式
(北师大版七年级下第一章)
录制工具和方法:Camtasia Studio 8
教学目的:
1、经历探索平方差公式的过程,增强了数和符号的意识,经历了探索和发现规
律的感受,进一步发展了学生的符号感和推理能力;
2、在推导平方差公式过程中,体会数与符号间的内在联系,形成对数学公式的
认识,并能运用公式进行简单的计算;
3、在探索过程中,领会解决问题的思路和方法,了解平方差公式的几何背景。
逐步对数形结合的思想形成一定的认识
教学重点难点:
重点:1、弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点;
2、会用平方差公式进行运算。
难点:会用平方差公式进行运算。
教学过程:
一、探索新知
某同学去商店买了单价是9.8元/千克的糖果10.2千克,售货员刚拿起计算器,他就说出应付99.96元,结果与售货员计算出的结果相吻合。
售货员很惊讶地说:“你好象是个神童,怎么算得这么快?”王敏捷同学说:“过奖了,我利用了在数学上刚学过的一个公式。
”
你知道他是怎么计算的吗?
二、拼图游戏
1、边长为45的正方形去掉一个小正方形(边长为15)后剩下的面积=452-152=2025-225=1800
2、用割补的方法得右边长方形,其面积=(45+15)(45-15)=60×30=1800
由此得:(45+15)(45-15)= 452-152
结论:(45+15)(45-15)= 452-152
文字语言:两数的和乘以这两数的差等于这两数的平方差
3、如果将上面图形中的边长分别换成a 和b 其面积会怎样?
让学生得出:()()=-+b a b a -
4、分析公式的结构及特征。
三、平方差公式
数学表达式:(a+b)(a-b)= a 2-b 2
文字语言:两数和与这两数差的积,等于它们的平方差。
公式变形:
1、(a-b) (a+b)= a 2-b 2
2、(b+a) (-b+a)=a 2-b 2
四、概念挖掘
1、结构特点:乘式必须具备公式左边的结构特点,即形如“两数和*这两数差” 左边是两个二项式相乘,并且有一项完全相同;另一项互为相反数; 右边是乘式中两项的平方差,即( 相同项 )2 - (相反项 )2
1、符号特点:
左右两边都有求差运算(分清谁是被减数,是公式的关键)
字母的代表性:a 、b 可以是数,还可以是单项式或多项式。
五、用平方差公式计算
例1:用平方差公式计算(x+2y)(x-2y)
解:原式=x 2-(2y)2=x 2 - 4y 2
注意: 1、先把要计算的式子与公式对照;
2、弄清哪个是a 哪个是 b 计算的关键.
例2 运用平方差公式计算:
(1) (3x +2 )( 3x -2 ) ;
(2) (b+2a )(2a -b ); (3) (-x +2y)(-x -2y).
解:(1)(3x +2)(3x -2) =(3x)2-22 = 9x 2-4;
(2)(b+2a )(2a -b ) =(2a+b )(2a -b )
=(2a)2-b 2 = 4a 2-b 2
(3) (-x +2y)(-x -2y) = (-x)2-(2y)2= x 2-4y 2
六、课堂小结 ( a + b )( a – b ) = ( a )2 - ( b )2
相反项为b 合理加括号
相同项为a 适当交换位置
相同项为a
( a + b )( a – b ) =( a )2 -( b )2相反项为b。