高中数学第二章第一课时数列的概念与通项公式学案含解析新人教A版必修523

合集下载

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。

2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

二、教学重点:研究等差数列的概念以及通项公式的推导。

教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。

四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。

由复习引入,通过数学知识的内部提出问题。

知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。

人教A版高中数学必修5《二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列》优质课教案_0

人教A版高中数学必修5《二章 数列  2.1 数列的概念与简单表示法  阅读与思考 斐波那契数列》优质课教案_0

随风潜人夜,润物细无声《神奇的斐波那契数列》教学设计《普通高中数学课程标准(实验)》在前言中指出:数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。

数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。

数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。

数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。

在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。

数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

《普通高中数学课程标准(实验)》将“体现数学的文化价值”作为课程的基本理念之一并在教学建议中明确指出:“数学是人类文化的重要组成部分,是人类社会进步的产物,也是推动社会发展的动力.教学中应引导学生初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值、开阔视野。

长期以来,在高考这根指挥棒下,学习逐渐服从于知识,服从于做题,服从于高考。

在数学教学上,老师教的许多内容既枯燥又抽象.大多数教师以做题为主要教学方法,以解题为主要目的,不关注数学问题的文化性; 学生在单一的数字、定义、定理、公理、公式的围攻下,对单纯的数学问题感到枯燥,厌倦,对数学的兴趣逐渐淡薄,认为数学毫无用处,数学问题被当成了获取分数的工具.因此如何将数学文化的内容有机地结合到日常的教学中,使学生在潜移默化中体会到数学的文化价值?这需要我们每位教师认真思考这个问题一、教材分析:本节课选自人教版《数学5》(必修)第二章《数列》第2.1节后的《阅读与思考》部分。

人教版必修5第二章数列第一节 数列的概念及通项公式

人教版必修5第二章数列第一节 数列的概念及通项公式

S
n
f (n), Sn
f (an ), an
f
(Sn )
注意: n 1 是一定要单独计算;有时求出的结果可以合并,有时只能分开。
【例】①已知数列{an}的前 n 项的和 Sn 2n2 3n ,则其通项公式 an =_______________
②数列{an}的前 n 项的和满足 Sn 4an 1,则其通项公式 an =______________
的最小值为________
6、已知数列{an}的首项 a1 2, 且 (n 1)an nan1 ,则 an ________
7、数列{an}满足 a1 2, an 4an1 3(n 2) ,则此数列的通项公式 an ________
8、已知数列{an}满足 a1
1,
an1
an an
2
, bn1
(n
)( 1 an
1), b1
(1)求证:数列{ 1 1} 是等比数列。 an
(2)若数列{bn} 是递增数列,求实数 的取值范围。
9.已知数列{an}的前 n 项和 Sn=2n-3,则数列{an}的通项公式是________.
10、已知数列{an}的前 n 项和 Sn=n2+2n+1,则 an=________;
【例】①已知 a1 2, an1 an 2n ,则 an =______________ ②数列{an}中, a1 1, an an1 3n1(n 2) ,求 an 。
第1页共6页
20 :叠乘法(又称累乘法)适用 an1 an f (n) ,类似等比数列。
【例】已知数列 {an } 中,
4、特殊数列求通项公式(学完等比与等差后掌握)
(1)观察法 【例】求 1 , 4 , 9 , 16 的通项公式 2 5 10 17

高中数学第二章等比数列第1课时等比数列的概念与通项公式达标检测含解析新人教A版必修5

高中数学第二章等比数列第1课时等比数列的概念与通项公式达标检测含解析新人教A版必修5

新人教A 版高中数学必修5:等比数列的概念与通项公式A 级 基础巩固一、选择题1.下列数列为等比数列的是( ) A .0,0,0,0,… B .22,42,62,82,…C .q -1,(q -1)2,(q -1)3,(q -1)4,… D .1a ,1a 2,1a 3,1a4,…解析:A 选项中,由于等比数列中的各项都不为0,所以该数列不是等比数列;B 选项中,4222≠6242,所以该数列不是等比数列;C 选项中,当q =1时,数列为0,0,0,…,不是等比数列;D 选项中的数列是首项为1a ,公比为1a的等比数列,故选D.答案:D2.(多选)已知等比数列{a n }中,满足a 1=1,公比q =-2,则( ) A .数列{2a n +a n +1}是等比数列 B .数列{a n +1-a n }是等比数列 C .数列{a n a n +1}是等比数列 D .数列{log 2|a n |}是递减数列解析:因为{a n }是等比数列,所以a n +1=-2a n ,2a n +a n +1=0,故A 项错.a n =a 1·q n -1=(-1)n -1·2n -1,a n +1=(-1)n ·2n ,于是a n +1-a n =(-1)n·2n-(-1)n -1·2n -1=3(-2)n -1,故{a n +1-a n }是等比数列,故B 项正确.a n a n +1=(-1)n -1·2n -1·(-1)n ·2n =(-2)2n -1,故C 项正确.log 2|a n |=log 22n -1=n -1,是递增数列,故D 项错.答案:BC3.已知等比数列{a n }的前三项依次为a -1,a +1,a +4, 则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫32n -1C .4×⎝ ⎛⎭⎪⎫23nD .4×⎝ ⎛⎭⎪⎫23n -1解析:由题意得(a +1)2=(a -1)(a +4),解得a =5, 故a 1=4,a 2=6,所以q =32,a n =4×⎝ ⎛⎭⎪⎫32n -1.答案:B4.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D.1解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1, 所以2a 1+a 22a 3+a 4=4a 116a 1=14.答案:A5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:因为log 3a n +1=log 3a n +1,所以a n +1=3a n , 又a n ≠0.所以数列{a n }是以3为公比的等比数列. 所以a 2+a 4+a 6=a 2(1+q 2+q 4)=9.所以a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3·(1+q 2+q 4)=35. 所以log 1335=-5.答案:A 二、填空题6.等比数列{a n }中,a 4=2,a 5=4,则数列{lg a n }的通项公式为____________.解析:因为a 5=a 4q ,所以q =2,所以a 1=a 4q 3=14,所以a n =14·2n -1=2n -3,所以lg a n =(n -3)lg 2.答案:lg a n =(n -3)lg 27.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析:因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),所以a 6=a 2q 4=1×22=4.答案:48.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值为________.解析:因为-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,因为-1,b 1,b 2,b 3,-4成等比数列, 所以b 22=(-1)×(-4)=4, 所以b 2=±2.若设公比为q ,则b 2=(-1)q 2, 所以b 2<0,所以b 2=-2, 所以a 2-a 1b 2=-1-2=12. 答案:12三、解答题9.在等比数列{a n }中. (1)已知a 1=3,q =-2,求a 6; (2)已知a 3=20,a 6=160,求a n . 解:(1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96.(2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1qn -1=5×2n -1.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827.(1)求证:{a n }是等比数列,并求出其通项. (2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.(1)证明:因为2a n =3a n +1, 所以a n +1a n =23. 又因为数列{a n }的各项均为负数, 所以a 1≠0,所以数列{a n }是以23为公比的等比数列.所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1.所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1,又因为a 2·a 5=23a 1·1681a 1=827,所以a 21=94.又因为a 1<0,所以a 1=-32.所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *).(2)解:令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681,则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项.B 级 能力提升1.(多选)已知数列{a n }是公比为q (q ≠1)的等比数列,则以下一定是等比数列的是( )A .{2a n }B .{a 2n } C .{a n +1·a n }D .{a n +1+a n }解析:因为数列{a n }是公比为q (q ≠1)的等比数列,则a n +1a n=q , 对于A 项,2a n +12a n=2a n +1-a n ,因为a n +1-a n 不是常数,故A 项错误.对于B 项,a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,因为q 2为常数,故B 项正确.对于C 项,a n +2·a n +1a n +1·a n =a n +2a n +1·a n +1a n=q 2,因为q 2为常数,故C 项正确.对于D 项,若a n +1+a n =0,即q =-1时,该数列不是等比数列,故D 项错误. 答案:BC2.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)= 10a n +1,则公比q =________.解析:因为等比数列{a n }为递增数列,且a 1=-2<0, 所以0<q <1,又因为3(a n +a n +2)=10a n +1,两边同除a n , 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13.而0<q <1,所以q =13.答案:133.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最大值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n,αβ=1an.代入题设条件6(α+β)-2αβ=3, 得6a n +1a n -2a n=3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0, 所以a n ≠23,即a n -23≠0.所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列.(3)解:当a 1=76时,a 1-23=12,所以数列⎩⎨⎧⎭⎬⎫a n -23是以首项为12,公比为12的等比数列.所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,…,即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,….由函数y =⎝ ⎛⎭⎪⎫12x在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

3.在等差数列{an}中,若 a1·a3=8,a2=3,则公差 d=( )
A.1 B.-1 C.±1 D.±2 a1(a1+2d)=8,
解析:由已知得 a1+d=3,
解得 d=±1. 答案:C
第九页,共32页。
4. lg( 3 + 2 ) 与 lg( 3 - 2 ) 的 等 差 中 项 是 ______________.
第十六页,共32页。
[变式训练] (1)已知数列 3,9,15,…,3(2n-1),…, 那么 81 是它的第________项( )
A.12 B.13 C.14 D.15 (2)已知等差数列{an}中,a15=33,a61=217,试判断 153 是不是这个数列的项,如果是,是第几项? 解析:(1)an=3(2n-1)=6n-3,由 6n-3=81,得 n =14.
第十七页,共32页。
(2)设首项为 a1,公差为 d,则 an=a1+(n-1)d, a1+(15-1)d=33,
由已知 a1+(61-1)d=217,
a1=-23, 解得
d=4. 所以 an=-23+(n-1)×4=4n-27,
第十八页,共32页。
令 an=153,即 4n-27=153,解得 n=45∈N*, 所以 153 是所给数列的第 45 项. 答案:(1)C (2)45
答案:(1)× (2)√ (3)√ (4)√
第七页,共32页。
2.已知等差数列{an}中,首项 a1=4,公差 d=-2,
则通项公式 an 等于( )
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:因为 a1=4,d=-2,所以 an=4+(n-1)×(-
2)=6-2n.

高中数学 第二章 数列 数列求通项、求和 求数列通项公式累乘和累加法学案(无答案)新人教A版必修5

高中数学 第二章 数列 数列求通项、求和 求数列通项公式累乘和累加法学案(无答案)新人教A版必修5

专题:求数列的通项公式——累加法和累乘法学习目标1. 掌握并能熟练应用数列通项公式的常用方法:累加法和累乘法;2. 通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法;3. 感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点,体会数学累加思想和累乘思想。

________________________________________________________________________________ 自学探究:回顾等差、等比数列的通项公式推导过程,完成下列任务。

例:已知数},{n a 其中,,111n a a a n n +==+①求它的通项n a 。

变题1:把①式改为;11+=+n n a a变题2:把①式改为;21n n n a a +=+小结1:通过求解上述几个题,你得到什么结论?变题3:把①式改为;11n n a nna +=+变题4:把①式改为;21n n a a =+小结2:通过求解上述2个题,你得到什么结论?挑战高考题:1.(2015.某某.17)已知数列{}n a 满足n nn a a a 2,211==+,)*∈N n (。

(1)求n a2.(2008.某某.5)在数列{}n a 中,)11ln(,211na a a n n ++==+,则=n a ( ). A.n ln 2+ B.n ln 1-n 2)(+ C.n n ln 2+ D.n n ln 1++你能否自己设计利用累加法或累乘法求解数列通项公式的题?通过本节课的学习你收获了什么?。

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。

人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。

旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。

二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。

对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。

第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。

2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。

3、学生应注意知识点的归纳和总结,形成自己的知识体系。

4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。

四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。

学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。

外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5
等差数列的观点及通项公式教材剖析
本节课主要研究等差数列的观点、通项公式及其应用,是本章的要点内容之一。

而所处章节《数列》又是高中数学的重要内容,而且在实质生活中有着宽泛的应用,它起着承上启下的
作用。

一方面 , 数列与前方学习的函数等知识有亲密的联系 ; 另一方面 , 学习数列又为进一步学习数列的极限等内容作好了准备。

同时也是培育学生数学能力的优秀题材。

学习数列要常常察看、剖析、概括、猜想,还要综合运用前方的知识解决数列中的一些问题。

等差数列是学生研究特别数列的开始,它对后续内容的学习,不论在知识上,仍是在方法上都拥有踊跃的意义。

课后反省
1.从生活中的数列模型导入,有助于发挥学生学习的主动性,加强学生学习数列的兴趣.在研
究的过程中,学生经过剖析、察看,概括出等差数列定义,而后由定义导出通项公式,加强了由
详细到抽象,由特别到一般的思想过程,有助于提升学生剖析问题和解决问题的能力.
2.环环相扣、简短了然、要点突出,指引剖析仔细、到位、适量.如:判断某数列能否成等
差数列,这是促使观点理解的好素材;别的,用方程的思想指导等差数列基本量的运算等等.学生在经历过程中,加深了对观点的理解和稳固.。

高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5

高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5
6.等差数列通项公式的变形应用 已知等差数列{an}中的任意两项 an,am(n,m∈N*,m≠n),

an am
a1 (n 1)d, a1 (m 1)d

an-am=(n-m)d⇒
d an am , nm an am (n
m)d.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
2.对等差数列定义的理解 (1)“从第2项起”是因为首项没有“前一项”. (2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不 一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中 强调“同一个常数”,注意不要漏掉这一条件. (3)求公差d时,可以用d=an-an-1来求,也可以用d=an+1-an来求.注意公差是每 一项与其前一项的差,且用an-an-1求公差时,要求n≥2,n∈N*.
解析:由等差数列的定义知强调两个方面:①从第2项起; ②差为同一个常数,故选D.
2.等差数列{an}中,a4+a8=10,a10=6,则公差 d 等于( A )
(A) 1 4
(B) 1 2
(C)2
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
2d a14d 105, a1 3d a1 5d
99,
解得
ad1
39, 2,
所以
a20=a1+19d=1.
答案:1
课堂探究
题型一 等差数列的通项公式
【例1】 已知{an}为等差数列,a15=8,a60=20,求a75.

2022年高中数学第二章数列1-1数列的概念与简单表示法练习含解析新人教A版必修

2022年高中数学第二章数列1-1数列的概念与简单表示法练习含解析新人教A版必修

课时训练5 数列的概念与简单表示法一、数列的概念及分类1.下列叙述正确的是( )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n}C.数列0,1,0,1,…是常数列D.数列{n n+1}是递增数列答案:D解析:数列中的项是有序的,故A错;B中通项为{n-1};C中数列为摆动数列,故选D.2.数列5,4,3,m,…是递减数列,则m的取值范围是( )A.(-∞,3)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案:A解析:依据递减数列的定义,只要后面的项比它的前一项小即可,所以m的取值范围是(-∞,3).3.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.sinπ7,sin2π7,sin3π7,…C.-1,-12,-14,-18,…D.1,√2,√3,…,√21答案:C4.下面的数列中,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3,4,5,6,7,…;(2)10,8,6,4,…;(3)1,0,1,0,1,0,…;(4)a,a,a,a,….解:(1)递增数列,因为从第2项起,每一项都大于它的前一项;(2)递减数列,因为从第2项起,每一项都小于它的前一项;(3)摆动数列,因为从第2项起,数列中有些项大于它的前一项,有些项小于它的前一项;(4)常数列.二、数列的通项公式及应用5.(2015河南南阳高二期中,1)已知数列√5,√11,√17,√23,√29,…,则5√5是它的第( )项.A.19B.20C.21D.22答案:C解析:数列√5,√11,√17,√23,√29,…中的各项可变形为√5,√5+6,√5+2×6,√5+3×6,√5+4×6,…,∴通项公式为a n=√5+6(n-1)=√6n-1,令√6n-1 =5√5,得n=21.故选C.6.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( )A.27B.28C.29D.30答案:B解析:由已知从第二项起,每一项与前一项的差是这一项的项数,即a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,以此规律得a6-a5=6,∴a7-a6=7.∴a7=7+a6=7+6+a5=13+15=28.7.数列{a n}的通项公式a n=则√10-3是此数列的第 项.√n+√n+1答案:9√n+1−√n,解析:a n=√n+√n+1令n=9,则a 9=√10−√9=√10-3.∴√10-3是数列中第9项.8.已知数列的通项公式为a n =2n 2-n.(1)求这个数列的第8项,第10项;(2)试问:45是否是{a n }中的项?3是否是{a n }中的项?解:(1)∵a n =2n 2-n ,∴当n=8时,a 8=2×82-8=120;当n=10时,a 10=2×102-10=190.(2)a n =2n 2-n ,令a n =45,则有2n 2-n-45=0,解得n=5或n=-92(舍去),∴45是该数列的第5项.令a n =3,则有2n 2-n-3=0.该方程不存在正整数解,故3不是该数列中的项.9.写出数列的一个通项公式,使它的前几项分别是下列各数.(1)a ,b ,a ,b ,…;(2)22-12,32-13,42-14,52-15,…;(3)-11×2,12×3,-13×4,14×5,…;(4)12,2,92,8,252,….解:(1)数列的奇数项为a ,偶数项为b ,因此通项公式可用分段形式来表示,记为a n ={a ,n ,为奇数b ,n ,为偶数也可记为a n =a +b 2+(-1)n+1·a -b 2.(2)这个数列的前4项分别为22-12,32-13,42-14,52-15,其分母都是序号n加上1,分子都是分母的平方减去1,故a n=(n+1)2-1n+1.(3)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,故a n=(-1)nn(n+1).(4)该数列的项中有的是分数,有的是整数,将各项都统一成分数为12,42,92,162,252,…,观察可知各项分母都是2,分子都是序号的平方,所以a n=n 22.(建议用时:30分钟) 1.数列√2,√5,2√2,√11,…,则2√5是该数列的( )A.第6项B.第7项C.第10项D.第11项答案:B解析:由a n=√3n-1=2√5,解得n=7.2.数列0,13,12,35,23,…的通项公式为( )A.a n=n-2n B.a n=n-1nC.a n=n-1n+1D.a n=n-2n+2答案:C解析:原数列可变形为02,13,24,35,46,…,∴a n =n -1n +1.3.已知数列的通项公式a n ={3n +1,n ,为奇数2n -2,n ,为偶数则a 2a 3等于( )A.70B.28C.20D.8答案:C解析:由a n ={3n +1,n ,为奇数2n -2,n ,为偶数得a 2a 3=2×10=20.∴选C.4.已知数列{a n }满足:a 1>0,a n +1a n =12,则数列{a n }是( )A.递增数列B.递减数列C.摆动数列D.不确定答案:B解析:由已知数列各项为正,且从第二项起每一项是前一项的12,则数列{a n }是递减数列.5.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( )A.2B.6C.7D.8答案:C解析:数字为1的有1个,数字为2的有2个,数字为3的有3个,∴按照此规律.当数字为6时,共有1+2+3+4+5+6=21项,当数字为7时,共有1+2+3+4+5+6+7=28项.∴第25项为7.6.已知数列{a n },a n =a n +m (a<0,n ∈N *),满足a 1=2,a 2=4,则a 3= .答案:2解析:∵{2=a +m ,4=a 2+m ,∴{a =-1,m =3,∴a n =(-1)n +3,∴a 3=(-1)3+3=2.7.下列叙述中正确的为 .①数列a n=2是常数列;②数列{(-1)n·1n}是摆动数列;③数列{n2n+1}是递增数列;④若数列{a n}是递增数列,则数列{a n a n+1}也是递增数列.答案:①②③解析:①中每一项均为2,是常数列.②中项的符号由(-1)n调整,是摆动数列.③n2n+1可变形为12+1n,为递增数列.④中若a n=n-3,则a n a n+1=(n-3)(n-2)=n2-5n+6,不是递增数列.8.黑白两种颜色的正六边形地面砖按下图的规律拼成若干个图案,则第n个图案中有白色地面砖 块.答案:4n+2解析:第1个图案有白色地面砖6块,第2个图案有10块,第3个图案有14块,可以看出每个图案较前一个图案多4块白色的地面砖.∴第n个图案有6+4(n-1)=(4n+2)(块).9.根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…;(2)1,3,6,10,15,…;(3)7,77,777,….分析:(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母依次相差3,因而有a n=43n+2.(2)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×2 2,2×32,3×42,4×52,5×62,…,因而有a n=n(n+1)2.(3)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n=79(10n-1).解:(1)a n=43n+2;(2)a n=n(n+1)2;(3)a n=79(10n-1).10.已知数列{a n}的通项公式a n=n+6n.(1)求a10.(2)5350是否是这个数列中的项?(3)这个数列中有多少整数项?(4)是否有等于序号的项?若有,求出该项;若没有,说明理由.解:(1)a10=10+610= 8 5.(2)令n+6n =5350,得n=100,故5350是这个数列的第100项.(3)∵a n=1+6n,∴当n=1,2,3,6时,a n为整数,故这个数列中有4项是整数项.(4)令n+6n=n得n2-n-6=0,解得n=3或n=-2(舍去),故该数列中有等于序号的项,即a3=3.。

人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公

人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公

1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
(2)由(1)
1 Sn
2n ,
Sn
1 2n
,nN
(又回到了类型一)
①当
n
1 时,
a1
S1
1 2
②当 n 2 时, an Sn Sn1
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2n 2n 2
1 2n2 2n
n2 n (n 1)2 (n 1) 2n 对于 bn 2n ,当 n 1 时, b1 2
所以: bn 2n, n N
又 bn 2n1 an , 则2n1 an 2n
所以: an
n 2n2
,n N
处理方法
换元转换为类型一
3. 已知数列{an}中, a1 3a2 (2n 1)an n(n 1)(n 2) ,求 an
(1)求 an :与类型一的处理方法一样,消去 Sn ,
得到 an 与 an1 的递推关系,再求 an
(2)求 Sn :消去 an ,得到 Sn 与 Sn1 的递推关系,
进而求出 Sn
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2 0即 1 1 2

高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5

高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5

学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n,且a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2B .3C .-2D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30°B.60°C.90°D.120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92B .47C .46D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4B .3C .2D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52B .62C .-62D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52B .51C .50D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26B .29C .39D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15B .22C .7D .29 答案 A解析 设{a n }的首项为a 1,公差为d , 根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b ,∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12B.13C.14D.16 答案 A 解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A. 二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +26a n -4-2a n +2=a n +24a n -8=a n -2+44a n -2=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。

高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教

高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教

第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。

高中数学第2章数列2.2等差数列第1课时等差数列的概念与通项公式aa高二数学

高中数学第2章数列2.2等差数列第1课时等差数列的概念与通项公式aa高二数学

12/12/2021
第九页,共四十页。
2.已知等差数列{an}的通项公式an=3-2n,则它的公差为_-_2_____. [解析] d=an-an-1=3-2n-3+2(n-1)=-2. 3.方程(fāngchéng)x2-6x+1=0的两根的等差中项3 等于_____.
[解析] 设方程 x2-6x+1=0 的两根为 x1,x2,则 x1+x2=6. 所以其等差中项为x1+2 x2=3.
12/12/2021
第二十五页,共四十页。
[解析] (1)①an+1-an=3(n+1)+2-(3n+2)=3(常数),n 为任意正整数,所 以此数列为等差数列.
②因为 an+1-an=(n+1)2+(n+1)-(n2+n)=2n+2(不是常数),所以此数列 不是等差数列.
(2)∵1a,1b,1c成等差数列,∴2b=1a+1c, 则 b(a+c)=2ac,∴ac=ba2+c. ∴b+a c+a+c b=b+cc+aca+ba=ba+ca+c a2+c2=2a12cb+aa+2+cc2=2ab+c, 12/12/20即21 b+a c,c+b a,a+c b也成等差数列.
第三页,共四十页。
12/12/2021
自主预习(yùxí)学案
第四页,共四十页。
汉朝的天文著作《周髀算经》中有记载,大意如下:在平地 上立八尺高的土圭,日中测影,在二十四节气中,冬至影长 1 丈 3 尺 5 寸,以后每一节气影长递减 9 寸 916分;夏至影最短,仅长 1 尺 6 寸,以后每一节气影长递增 9 寸 916分.如果把这些影长记 录下来,会构成一个什么样的数列呢?
12,则它的周长是___1_2__2__.
12/12/2021
第十九页,共四十页。

高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5

高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5

2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列

人教a版必修5学案:2.1数列的概念与简单表示法(含答案)

人教a版必修5学案:2.1数列的概念与简单表示法(含答案)

第二章 数 列§2.1 数列的概念与简单表示法材拓展1.从函数的观点看数列一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.例如,类比单调函数的定义得出单调数列的判断方法.即:数列{a n }单调递增⇔a n +1>a n 对任意n (n ∈N *)都成立;数列{a n }单调递减⇔a n +1<a n 对任意n (n ∈N *)都成立.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线.例如:已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( ) A .a 1,a 30 B .a 1,a 9C .a 10,a 9D .a 10,a 30解析 ∵a n =n -99+(99-98)n -99=99-98n -99+1 ∴点(n ,a n )在函数y =99-98x -99+1的图象上. 在直角坐标系中作出函数y =99-98x -99+1的图象.由图象易知当x ∈(0,99)时,函数单调递减.∴a 9<a 8<a 7<…<a 1<1,当x ∈(99,+∞)时,函数单调递减.∴a 10>a 11>…>a 30>1.所以,数列{a n }的前30项中最大的项是a 10,最小的项是a 9.答案 C2.了解一点周期数列的知识类比周期函数的概念可以得出周期数列的定义:对于数列{a n },若存在一个大于1的自然数T (T 为常数),使a n +T =a n ,对一切n ∈N *恒成立,则称数列{a n }为周期数列,T 就是它的一个周期.易知,若T 是{a n }的一个周期,则kT (k ∈N *)也是它的周期,周期最小的那个值叫最小正周期.例如:已知数列{a n }中,a 1=a (a 为正常数),a n +1=-1a n +1(n =1,2,3,…),则下列能使a n =a 的n 的数值是( )A .15B .16C .17D .18解析 a 1=a ,a 2=-1a +1, a 3=-1a 2+1=-1-1a +1+1=-a -1a , a 4=-1a 3+1=-1-a -1a+1=a , a 5=-1a 4+1=-1a +1,……. ∴a 4=a 1,a 5=a 2,…依次类推可得:a n +3=a n ,∴{a n }为周期数列,周期为3.∵a 1=a ,∴a 3k +1=a 1=a .答案 B3.数列的前n 项和S n 与a n 的关系对所有数列都有:S n =a 1+a 2+…+a n -1+a n ,S n -1=a 1+a 2+…+a n -1 (n ≥2).因此,当n ≥2时,有:a n =S n -S n -1.当n =1时,有:a 1=S 1.所以a n 与S n 的关系为:a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2.注意这一关系适用于所有数列. 例如:已知数列{a n }的前n 项和S n =(n -1)·2n +1,则a n =________.解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=[(n -1)·2n +1]-[(n -2)·2n -1+1]=(n -1)·2n -(n -2)·2n -1=n ·2n -1.所以通项公式可以统一为a n =n ·2n -1.答案 n ·2n -14.由简单的递推公式求通项公式(1)形如a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求和,采用累加法求a n .即:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+…+f (n -1) =a 1+∑n -1i =1f (i ) (2)形如a n +1=f (n )·a n ,且f (1)·f (2)…f (n )可化简,采用累乘法求a n .即a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=a 1·f (1)·f (2)·…·f (n -1)=a 1·Πn -1i =1f (i ) (注:∑为连加求和符号,Π为连乘求积符号)(3)形如a n +1=Aa n +B (AB ≠0且A ≠1).设a n +1-x =A (a n -x ),则:a n +1=Aa n +(1-A )x由(1-A )x =B ,∴x =B 1-A∴a n +1-B 1-A=A ⎝⎛⎭⎫a n -B 1-A ∴a n -B 1-A=A ⎝⎛⎭⎫a n -1-B 1-A =A 2⎝⎛⎭⎫a n -2-B 1-A =…=A n -1⎝⎛⎭⎫a 1-B 1-A ∴a n =B 1-A+A n -1⎝⎛⎭⎫a 1-B 1-A =(1-A n -1)·B 1-A+A n -1a 1.法突破一、观察法写数列的通项公式方法链接:根据数列前几项,要写出它的一个通项公式,其关键在于观察、分析数列的前几项的特征、特点,找到数列的一个构成规律.根据此规律便可写出一个相应的通项公式.注意以下几点:(1)为了突出显现数列的构成规律,可把序号1,2,3,…标在相应项上,这样便于突出第n 项a n 与项数n 的关系,即a n 如何用n 表示.(2)由于给出的数列的前几项是一些特殊值,必然进行了化简,因此我们要观察出它的构成规律,就必须要对它进行还原工作.如数列的前几项中均用分数表示,但其中有几项分子或分母相同,不妨把这几项的分子或分母都统一起来试一试.(3)当一个数列出现“+”、“-”相间时,应先把符号分离出来,即用(-1)n 或(-1)n -1表示,然后再考虑各项绝对值的规律.(4)熟记一些基本数列的前几项以及它们的变化规律(如增减速度),有利于我们写出它的通项公式.例1 根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…; (2)12,2,92,8,252,…; (3)1,3,6,10,15,…; (4)7,77,777,…;(5)0,3,8,15,24,…; (6)1,13,17,113,121,…. 解 (1)注意前四项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母相差3,因而有a n =43n +2. (2)把分母统一为2,则有:12,42,92,162,252,…,因而有a n =n 22. (3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2. (4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,….因而有a n =79(10n -1). (5)观察数列递增速度较快,有点像成平方地递增,不妨用平方数列对照看一看,即1,22,32,42,52,…,则有a n =n 2-1.(6)显然各项的分子均为1,其关键在于分母,而分母的规律不是很明显,注意到分母组成的数列1,3,7,13,21,…,递增速度也有点像平方数列,不妨从每一项对应减去平方数列的项组成数列0,1,2,3,4,…,其规律也就明显了.故a n =1n 2-n +1. 二、数列的单调性及最值方法链接:数列是一种特殊的函数,因此可用函数的单调性的研究方法来研究数列的单调性.例2 在数列{a n }中,a n =(n +1)⎝⎛⎭⎫1011n (n ∈N *). 试问数列{a n }的最大项是第几项?解 方法一 ∵a n =(n +1)⎝⎛⎭⎫1011n (n ∈N *), ∴a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ·(9-n )11.当n ≤8时,a n <a n +1,{a n }递增,即a 1<a 2<…<a 8<a 9.当n =9时,a 9=a 10.当n ≥10时,a n >a n +1,{a n }递减,即a 10>a 11>a 12>….又a 9=a 10=1010119. ∴数列{a n }的最大项是第9项和第10项.方法二 令a n a n -1≥1 (n ≥2), 即(n +1)⎝⎛⎭⎫1011n n ⎝⎛⎭⎫1011n -1≥1. 整理得n +1n ≥1110.解得n ≤10. 令a n a n +1≥1, 即(n +1)⎝⎛⎭⎫1011n (n +2)⎝⎛⎭⎫1011n +1≥1. 整理得n +1n +2≥1011,解得n ≥9. 所以从第1项到第9项递增,从第10项起递减.因此数列{a n }先递增,后递减.∴a 1<a 2<…<a 9,a 10>a 11>a 12>…,且a 9=a 10=1010119. ∴数列{a n }中的最大项是第9项和第10项.三、数列的周期性及运用方法链接:通俗地讲,数列中的项按一定规律重复出现,这样的数列就应考虑是否具有周期性,其周期性往往隐藏于数列的递推公式中,解周期数列问题的关键在于利用递推公式算出前若干项或由递推公式发现规律,得出周期而获解.例3 已知数列{a n },a 1=1,a 2=3,a n =a n -1-a n -2 (n ≥3),那么a 2 010与S 2 009依次是( )A .1,3B .3,1C .-2,2D .2,-2解析 ∵a n =a n -1-a n -2,∴a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2.由a n +1=-a n -2,∴a n +3=-a n .∴a n +6=-a n +3=-(-a n )=a n .∴{a n }为周期数列,且周期T =6.∴a 2 010=a 6=-a 3=a 1-a 2=-2.∴a 1+a 2+a 3+a 4+a 5+a 6=(a 1+a 4)+(a 2+a 5)+(a 3+a 6)=0+0+0=0,且2 010是6的倍数,∴S 2 010=0.∴S 2 009=S 2 010-a 2 010=0-a 2 010=0-(-2)=2.答案 C四、已知前n 项和S n ,求通项a n方法链接:已知数列{a n }的前n 项和S n ,求a n ,先由n =1时,a 1=S 1,求出a 1,再由a n =S n -S n -1 (n ≥2)求出a n ,最后验证a 1与a n 能否统一,若能统一要统一成一个代数式,否则分段表示.例4 已知下列各数列{a n }的前n 项和S n 的公式,求{a n }的通项公式.(1)S n =(-1)n +1 n ;(2)S n =3n -2.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n ·(-n )-(-1)n ·(n -1)=(-1)n ·(-2n +1).由于a 1也适合此等式,因此a n =(-1)n ·(-2n +1) (n ∈N *).(2)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2·3n -1.所以a n =⎩⎪⎨⎪⎧1 (n =1),2·3n -1 (n ≥2). 五、由递推公式求通项a n方法链接:由递推公式求通项公式主要观察递推公式的特征,合理选择方法.需要理解一点,对a n -a n -1=n (n ≥2)不仅仅是一个式子而是对任意的n ≥2恒成立的无数个式子,正是因为这一点,在已知递推公式求通项公式的题目中如何将无数个式子转化为a n ,就是解题的关键所在.另外递推公式具有递推性,故由a 1再加上递推公式可以递推到a n .例5 由下列数列{a n }的递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2). 解 (1)由题意得,当n ≥2时,a n -a n -1=n ,a n -1-a n -2=n -1,…,a 3-a 2=3,a 2-a 1=2.将上述各式累加得,a n -a 1=n +(n -1)+…+3+2,即a n =n +(n -1)+…+3+2+1=n (n +1)2, 由于a 1也适合此等式.故a n =n (n +1)2. (2)由题意得,当n ≥2时,a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 3a 2=23,a 2a 1=12, 将上述各式累乘得,a n a 1=1n ,即a n =1n. 由于a 1也适合此等式,故a n =1n. 六、数列在日常生活中的初步应用方法链接:数列知识在日常生活中有着广泛的应用.构建递推关系是其中重要的方法之一,利用递推方法解决实际问题常分为三个环节:(1)求初始值;(2)建立递推关系;(3)利用递推关系分析解决问题.其中构建递推关系是关键.例6 某商店的橱窗里按照下图的方式摆着第二十九届北京奥运会吉祥物“福娃迎迎”,如图(1)、(2)、(3)、(4)分别有1个、5个、13个、25个.如果按照同样的方式接着摆下去,记第n 个图需用f (n )个“福娃迎迎”,那么f (n +1)-f (n )=________;f (6)=________.解析 ∵f (1)=1,f (2)=5,f (3)=13,f (4)=25,…,∴f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…∴f (n +1)-f (n )=4n .∴f (6)=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+[f (4)-f (3)]+[f (5)-f (4)]+[f (6)-f (5)]=1+4+8+12+16+20=61.答案 4n 61区突破1.对数列的概念理解不准而致错例1 已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.[错解] 因为a n =n 2+λn 是关于n 的二次函数,且n ≥1,所以-λ2≤1,解得λ≥-2. [点拨] 数列是以正整数N *(或它的有限子集{1,2,…,n })为定义域的函数,因此它的图象只是一些孤立的点.[正解1] 因为a n =n 2+λn ,其图象的对称轴为n =-λ2,由数列{a n }是单调递增数列有-λ2≤1,得λ≥-2;如图所示,当2-⎝⎛⎭⎫-λ2>-λ2-1,即λ>-3时,数列{a n }也是单调递增的. 故λ的取值范围为{λ|λ≥-2}∪{λ|λ>-3}={λ|λ>-3}.即λ>-3为所求的范围.[正解2] 因为数列{a n }是单调递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0.所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ>-3即为所求的范围.2.对公式使用条件考虑不周而致错例2 已知数列{a n }的前n 项和为S n =3n +2n +1,求a n .[错解] a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.[点拨] 公式a n =⎩⎪⎨⎪⎧ a 1 (n =1)S n -S n -1 (n ≥2)是分段的,因为n =1时,S n -1无意义.在上述解答中,应加上限制条件n ≥2,然后验证n =1时的值是否适合n ≥2时的表达式.[正解] a 1=S 1=6;n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6 (n =1)2·3n -1+2 (n ≥2).题多解 例 设{a n }是首项为1的正项数列且(n +1)a 2n +1-na 2n +a n +1·a n =0 (n ∈N *),求a n . 分析 先求出相邻两项a n +1与a n 的关系,再选择适当的方法求a n .解 方法一 (累乘法)由(n +1)a 2n +1-na 2n +a n +1a n =0.得(a n +1+a n )(na n +1-na n +a n +1)=0.由于a n +1+a n >0,∴(n +1)a n +1-na n =0.∴a n +1a n =n n +1. ∴a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=1×12×23×34×…×n -1n =1n. 方法二 (换元法)由已知得(n +1)a n +1-na n =0,设b n =na n ,则b n +1-b n =0.∴{b n }是常数列.∴b n =b 1=1×a 1=1,即na n =1.∴a n =1n.题赏析1.(2009·北京)已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=______,a 2 014=______.解析 a 2 009=a 4×503-3=1,a 2 014=a 1 007=a 252×4-1=0.答案 1 0赏析 题目小而灵活,考查了充分利用所给条件灵活处理问题的能力.2.(2009·湖北八市调研)由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .65解析 ∵b n =ab n -1,∴b 2=ab 1=a 2=3,b 3=ab 2=a 3=5,b 4=ab 3=a 5=9,b 5=ab 4=a 9=17,b 6=ab 5=a 17=33.答案 C 赏析 题目新颖别致,考查了对新情境题目的审题能力.。

新人教A版必修5高中数学数列概念学案

新人教A版必修5高中数学数列概念学案
1
5.数列的分类: 1)根据数列项数的多少分 数列和 2)根据数列中项的大小变化情况分为 数列. 【达标训练 巩固提升】
数列; 数列,
数列,
数列和
例 1 写出下面数列的一个通项公式,使它的前 4 项分别是下列各数: 1 1 1 ⑴ 1,- , ,- ; ⑵ 1, 0, 1, 0. 2 3 4 变式:写出下面数列的一个通项公式,使它的前 4 项分别是下列各数: 1 4 9 16 ⑴ , , , ; ⑵ 1, -1, 1, -1; 2 5 10 17 例 2 已知数列 2,
n ( n 1) 2
} 的第 4 项是
. .
5. 写出数列
1 1 1 1 , , , 的一个通项公式 2 1 2 2 23 2 4
【知识梳理 归纳总结】 数列概念及通向公式的应用。 【预习指导 新课链接】 等差数列 P36-P39
2
3
1 1 1 1 1, 2 , 3 , 4 , 5 ,….
1,0.1,0.01,0.001,0.0001,…. 1,1.4,1.41,1.414,…. -1,1,-1,1,-1,1,…. 2,2,2,2,2,….
② ③ ④ ⑤ ⑥
观察这些例子,看它们有何共同特点? 上述例子的共同特点是:⑴________________;⑵________________. 【问题展示 合 作探究】 探究任务:数列的概念 ⒈ 数列的定义: 的一列数叫做数列. ⒉ 数列的项:数列中的 都叫做这个数列的项. 反思: ⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列? ⑵ 同一个数在数列中可以重复 出现吗? 3. 数列的一般形式: a1 , a2 , a3 ,
高中数学 数列概念学案 新人教 A 版必修 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 数列的概念与简单表示法第一课时 数列的概念与通项公式数列的概念[提出问题]观察下列示例,回答后面问题(1)正整数1,2,3,4,5,6的倒数依次是1,12,13,14,15,16.(2)-2的1次幂、2次幂、3次幂、4次幂依次是-2,4,-8,16.(3)人们在1740年发现了一颗彗星,并推算出这颗彗星每隔83年出现一次,那么从发现那次算起,这颗彗星出现的年份依次为:1740,1823,1906,1989,2072,….(4)“一尺之棰,日取其半,万世不竭”的意思为:一尺长的木棒,每日取其一半,永远也取不完.如果将“一尺之棰”视为1份,那么每日剩下的部分依次为:12,14,18,116,132,….问题:观察上面4个例子,它们都涉及了一些数,这些数的呈现有什么特点? 提示:按照一定的顺序排列. [导入新知] 数列的概念(1)定义:按照一定顺序排列的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.a 1称为数列{a n }的第1项(或称为首项),a 2称为第2项,…,a n 称为第n 项.(3)数列的表示:数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为{a n }. [化解疑难]1.数列的定义中要把握两个关键词:“一定顺序”与“一列数”.也就是说构成数列的元素是“数”,并且这些数是按照“一定顺序”排列着的,即确定的数在确定的位置.2.项a n 与序号n 是不同的,数列的项是这个数列中的一个确定的数,而序号是指项在数列中的位次.3.{a n }与a n 是不同概念:{a n }表示数列a 1,a 2,a 3,…,a n ,…;而a n 表示数列{a n }中的第n 项.数列的分类[提出问题]问题:观察“知识点一”中的4个例子中对应的数列,它们的项数分别是多少?这些数列中从第2项起每一项与它前一项的大小关系又是怎样的?提示:数列(1)中有6项,数列(2)中有4项,数列(3)(4)中有无穷多项;数列(1)中每一项都小于它的前一项,数列(2)中的项大小不确定,数列(3)中每一项都大于它的前一项,数列(4)中每一项都小于它的前一项.[导入新知]数列的分类分类标准名称含义按项的个数有穷数列项数有限的数列无穷数列项数无限的数列按项的变化趋势递增数列从第2项起,每一项都大于它的前一项的数列递减数列从第2项起,每一项都小于它的前一项的数列常数列各项相等的数列摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列在写数列时,对于有穷数列,要把末项写出.例如,数列1,2,3,4,…,100.表示有穷数列.但是如果把数列写成1,2,3,4,…,100,…就表示无穷数列.数列的通项公式[提出问题]问题:仍然观察“知识点一”中的4个例子,你能否发现这些数列中,每一项与这一项的项数之间存在着某种关系?这种关系是否可以表示为一个公式?提示:每一项与这一项的项数间存在一定的关系,有些可用公式表示,有些不能用公式表示.[导入新知]数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么就把这个公式叫做这个数列的通项公式.[化解疑难]1.数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,3,…,n}为定义域的函数解析式.2.同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.数列的概念及分类[例1] (1)0,0,0,0,0,0;(2)0,-1,2,-3,4,-5,…; (3)0,12,23,…,n -1n ,…;(4)1,0.2,0.22,0.23,…; (5)0,-1,0,…,cos n2π,….其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________.(填序号)[解析] (1)是常数列且是有穷数列; (2)是无穷摆动数列; (3)是无穷递增数列⎝⎛⎭⎪⎫因为n -1n =1-1n ; (4)是无穷递减数列; (5)是无穷摆动数列.[答案] (1) (2)(3)(4)(5) (3) (4) (1) (2)(5) [类题通法]判断给出的数列是有穷数列还是无穷数列,只需观察数列是有限项还是无限项.若数列含有限项,则是有穷数列,否则为无穷数列.而判断数列的单调性,则需要从第2项起,观察每一项与它的前一项的大小关系,若满足a n <a n +1,则是递增数列;若满足a n >a n +1,则是递减数列;若满足a n =a n +1,则是常数列;若a n 与a n +1的大小不确定时,则是摆动数列.[活学活用] 给出下列数列:(1)2009~2016年某市普通高中生人数(单位:万人)构成数列82,93,105,119,129,130,132,135.(2)无穷多个3构成数列3,3,3,3,….(3)-2的1次幂,2次幂,3次幂,4次幂,5次幂……构成数列-2,4,-8,16,-32,…. (4)2精确到1,0.1,0.01,0.001,…的不足近似值与过剩近似值分别构成数列1,1.4,1.41,1.414,…; 2,1.5,1.42,1.415,….分别指出其中哪些是有穷数列、无穷数列、递增数列、递减数列、常数列、摆动数列. 解:有穷数列:82,93,105,119,129,130,132,135. 无穷数列:3,3,3,3,…; -2,4,-8,16,-32,…; 1,1.4,1.41,1.414,…; 2,1.5,1.42,1.415,….递增数列:82,93,105,119,129,130,132,135; 1,1.4,1.41,1.414,….递减数列:2,1.5,1.42,1.415,…. 常数列:3,3,3,3,…. 摆动数列有:-2,4,-8,16,-32,….由数列的前几项求通项公式[例2] (1)12,2,92,8,252,…; (2)9,99,999,9 999,…; (3)112,245,3910,41617,…;(4)-11×2,12×3,-13×4,14×5,….[解] (1)数列的项,有的是分数,有的是整数,可将各项都统一成分数再观察:12,42,92,162,252,…,所以它的一个通项公式为a n =n 22(n ∈N *). (2)各项加1后,变为10,100,1 000,10 000,…,此数列的通项公式为10n,可得原数列的通项公式为a n =10n-1.(3)因为112=1+1212+1,245=2+2222+1,3910=3+3232+1,41617=4+4242+1,…,所以该数列的一个通项公式为a n =n +n 2n 2+1.(4)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是a n =(-1)n1nn +1.[类题通法]此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.这些方法的具体对象为:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同.对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系.[活学活用]写出下列数列的一个通项公式: (1)0,3,8,15,24,…; (2)1,-3,5,-7,9,…; (3)0,22-25,32-310,42-417,…;(4)1,11,111,1 111,….解:(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…,所以它的一个通项公式是a n =n 2-1.(2)数列各项的绝对值为1,3,5,7,9,…,是连续的正奇数,并且数列的奇数项为正,偶数项为负,所以它的一个通项公式为a n =(-1)n +1(2n -1).(3)因为5=22+1,10=32+1,17=42+1,所以数列的一个通项公式为a n =n 2-n n 2+1(n ∈N *).(4)原数列的各项可变为19×9,19×99,19×999,19×9 999,…,易知数列9,99,999,9999,…的一个通项公式为a n =10n-1.所以原数列的一个通项公式为a n =19(10n -1).通项公式的简单应用[例3] 已知数列{a n }的通项公式是a n =n 2+1.(1)写出该数列的第4项和第7项;(2)试判断910和110是否是该数列中的项,若是,求出它是第几项;若不是,说明理由.[解] (1)由通项公式a n =n 2n 2+1可得a 4=4242+1=1617,a 7=7272+1=4950.(2)令n 2n 2+1=910,得n 2=9, 所以n =3(n =-3舍去),故910是该数列中的项,并且是第3项; 令n 2n 2+1=110,得n 2=19, 所以n =±13,由于±13都不是正整数,因此110不是数列中的项.[类题通法]1.数列的通项公式给出了第n 项a n 与它的位置序号n 之间的关系,只要用序号代替公式中的n ,就可以求出数列的相应项.2.判断某数值是否为该数列的项,需先假定它是数列中的项,列方程求解.若方程的解为正整数,则该数值是数列的项;若方程无解或解不是正整数,则该数值不是此数列的项.[活学活用]已知数列{a n }的通项公式为a n =q n,且a 4-a 2=72. (1)求实数q 的值;(2)判断-81是否为此数列中的项. 解:(1)由题意知q 4-q 2=72⇒q 2=9 或q 2=-8(舍去), ∴q =±3.(2)当q =3时,a n =3n,显然-81不是此数列中的项; 当q =-3时,a n =(-3)n, 令(-3)n=-81=-34,也无解. ∴-81不是此数列中的项.2.牢记数列中n ∈N *[典例] 已知数列{a n }的通项公式为a n =n 2-5n +4,求n 为何值时,a n 有最小值?并求出最小值.[解] ∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,∴可知对称轴为n =52=2.5.又n ∈N *,故n =2或3时,a n 有最小值, 其最小值为a 2=a 3=22-5×2+4=-2. [易错防范]1.忽视了借助二次函数求最值,而认为当n =1时取得最小值. 2.由a n =⎝ ⎛⎭⎪⎫n -522-94知n =52时取最小值,忽视n ∈N *.3.在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.[成功破障]求数列{-2n 2+9n +3}中的最大项.解:已知-2n 2+9n +3=-2⎝ ⎛⎭⎪⎫n -942+1058,由于n 为正整数,故当n =2时,取得最大值为13,所以数列{-2n 2+9n +3}中的最大项为第2项,值为13.[随堂即时演练]1.将正整数的前5个数排列如下:①1,2,3,4,5;②5,4,3,2,1;③2,1,5,3,4;④4,1,5,3,2.那么可以称为数列的有( ) A .① B .①② C .①②③D .①②③④解析:选D 数列是按“一定顺序”排列的一列数.因此选D.注意此题易错选B. 2.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的( )A .第100项B .第12项C .第10项D .第8项解析:选C ∵a n =n -2n 2,令n -2n 2=0.08, 解得n =10或n =52(舍去).3.若数列{a n }的通项公式是a n =3-2n,则a 2n =________,a 2a 3=________. 解析:根据通项公式我们可以求出这个数列的任意一项.∵a n =3-2n,∴a 2n =3-22n=3-4n,a 2a 3=3-223-23=15.答案:3-4n154.若数列{a n }的通项满足a n n=n -2,那么15是这个数列的第________项. 解析:由a n n=n -2可知,a n =n 2-2n , 令n 2-2n =15,得n =5(n =-3舍去). 答案:55.已知a n =2n3n +2.(1)求a 3;(2)若a n =813,求n .解:(1)将n =3代入a n =2n3n +2, 得a 3=2×33×3+2=611.(2)将a n =813代入a n =2n3n +2,得813=2n3n +2,解得n =8. [课时达标检测]一、选择题1.下面有四个结论: ①数列的通项公式是唯一的;②数列可以看做是一个定义在正整数集或其子集上的函数; ③数列若用图象表示,它是一群孤立的点; ④每个数列都有通项公式. 其中叙述正确的有( ) A .①② B .②③ C .③④D .①④解析:选B 数列的通项公式不唯一,有的数列没有通项公式,所以①④不正确.2.数列的通项公式为a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,则a 2·a 3等于( )A .70B .28C .20D .8解析:选C 由a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,得a 2=2,a 3=10,所以a 2·a 3=20.3.数列-1,3,-7,15,…的一个通项公式可以是( ) A .a n =(-1)n·(2n-1) B .a n =(-1)n ·(2n -1) C .a n =(-1)n +1·(2n-1) D .a n =(-1)n +1·(2n -1)解析:选A 数列各项正、负交替,故可用(-1)n来调节,又1=21-1,3=22-1,7=23-1,15=24-1,…,所以通项公式为a n =(-1)n ·(2n-1).4.已知数列{a n }的通项公式是a n =n -1n +1,那么这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列解析:选A a n =n -1n +1=1-2n +1,∴n 越大,2n +1越小,则a n 越大,故该数列是递增数列.5.下列命题: ①已知数列{a n },a n =1nn +2(n ∈N *),那么1120是这个数列的第10项,且最大项为第1项;②数列2,5,22,11,…的一个通项公式是a n =3n -1; ③已知数列{a n },a n =kn -5,且a 8=11,则a 17=29; ④已知a n +1=a n +3,则数列{a n }是递增数列. 其中正确命题的个数为( ) A .4 B .3 C .2D .1解析:选A 对于①,令a n =1n n +2=1120⇒n =10,易知最大项为第1项.①正确.对于②,数列2,5,22,11,…变为2,5,8,11,…⇒3×1-1,3×2-1,3×3-1,3×4-1,…⇒a n =3n -1.②正确.对于③,a n =kn -5,且a 8=11⇒k =2⇒a n =2n -5⇒a 17=29. ③正确.对于④,由a n +1-a n =3>0,易知④正确. 二、填空题6.已知数列{a n }的通项公式为a n =2n 2+n ,那么110是它的第________项. 解析:令2n 2+n =110,解得n =4(n =-5舍去),所以110是第4项. 答案:47.已知数列{a n }的前4项为11,102,1 003,10 004,…,则它的一个通项公式为________. 解析:由于11=10+1,102=102+2,1 003=103+3,10 004=104+4,…,所以该数列的一个通项公式是a n =10n+n .答案:a n =10n+n8.已知数列{a n }的通项公式是a n =n 2-8n +12,那么该数列中为负数的项一共有________项.解析:令a n =n 2-8n +12<0, 解得2<n <6, 又因为n ∈N *,所以n =3,4,5,一共有3项. 答案:3 三、解答题9.求下列数列的一个可能的通项公式: (1)1,-1,1,-1,…; (2)1,10,2,11,3,12,…;(3)1+12,1-324,1+526,1-728,….解:(1)a n =(-1)n +1或a n =⎩⎪⎨⎪⎧1,n 为奇数,-1,n 为偶数.(2)a n=⎩⎪⎨⎪⎧n +12,n 为奇数,n2+9,n 为偶数或a n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n +192+-1n×172. (3)a n =1+(-1)n +12n -122n.10.数列{a n }中,已知a n =n 2+n -13(n ∈N *).(1)写出a 10,a n +1,a 2n ; (2)7923是不是该数列中的项?若是,是第几项. 解:(1)a 10=102+10-13=1093, a n +1=n +12+n +1-13=n 2+3n +13, a n 2=n 22+n 2-13=n 4+n 2-13. (2)假设7923是该数列的第n 项,则7923=n 2+n -13, ∴n 2+n -240=0.解之,得n =15或n =-16(舍去).故7923是该数列的第15项.11.在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数.(1)求数列{a n }的通项公式;(2)求a 2 015;(3)2 016是否为数列{a n }中的项?解:(1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧ k +b =2,17k +b =66,解得k =4,b =-2.∴a n =4n -2.(2)a 2 015=4×2 015-2=8 058.(3)令2 016=4n -2,解得n =504.5∉N *, ∴2 016不是数列{a n }中的项.12.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3+a 5;(2)探究256225是否为此数列中的项; (3)试比较a n 与a n +1(n ≥2)的大小.解:∵a 1·a 2·a 3·…·a n =n 2(n ∈N *),①∴当n ≥2时,a 1·a 2·a 3·…·a n -1=(n -1)2.② 由①②,得a n =n 2n -12(n ≥2).(1)∵a n =n 2n -12(n ≥2),∴a 3+a 5=94+2516=6116. (2)∵256225=162152=a 16,∴256225是数列中的第16项. (3)n ≥2时,a n -a n +1=n 2n -12-n +12n 2=n 4-n 2-12n -12n 2=2n 2-1n 2n -12>0,∴a n >a n +1.。

相关文档
最新文档