黑龙江省望奎县一中2018_2019学年高二数学上学期第二次月考(10月)试题理(无解答)
黑龙江省望奎县一中2019届高三数学上学期第二次月考10月试题理无答案
望奎一中2018-2019学年度第一学期考试理科高三数学试题一、单选题 1.已知集合,集合,则 ( )A .B .C .D .2.若复数满足,则的共轭复数的虚部为( )A .B .C .D . 3.已知,则“”是“”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件4.若满足,约束条件,则的最大值为( )A .32B .C .D . 5.执行如图所示的程序框图,输出的值为( )A .B .C .D .6.已知向量,满足,,,则( )A .B .C .D .7.若的三个内角满足,则( )A . 一定是锐角三角形;B . 一定是直角三角形;C . 一定是钝角三角形;D . 可能是锐角三角形,也可能是钝角三角形. 8.某四面体的三视图如下图所示,该四面体的体积是( )A. 8 B. C. 10 D.9.定积分()A. B. C. D.10.,则的值为()A. B. C. D.11.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为()A. B. C. D.12.已知f(x)是定义在上的单调函数,且对任意的x∈都有,则方程的一个根所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)二、填空题13.已知,则函数的最小值为 ______.14.在三棱锥中,底面,且三棱锥的每个顶点都在球的表面上,则球的表面积为 _______15.四个小动物换座位,开始是鼠、猴、兔、猫分别坐在编号为1,2,3,4的4个位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2018次互换座位后,小兔的座位对应的编号为______________16.已知函数(其中,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②函数为偶函数;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是__________________.(写出所有正确判断的序号)三、解答题17.已知公差不为0的等差数列的首项,且成等比数列.(1)求数列的通项公式;(2)设,,求数列的前项和.18.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.参考数据:,其中19.如图,底面是边长为的正方形,⊥平面,∥,,与平面所成的角为.(1)求证:平面⊥平面;(2)求二面角的余弦值.20.已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.21.已知函数(1)若时,讨论的单调性;(2)若有两个极值点,求的取值范围.22.已知某圆的极坐标方程为:.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求的最大值和最小值.23.已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.。
望奎县二中2018-2019学年高二上学期第二次月考试卷数学
望奎县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .42. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 3. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)4. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .5. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或6. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.7. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q8. 设a=lge ,b=(lge )2,c=lg,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a9. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.10.函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .11.全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤012.已知,则f{f[f (﹣2)]}的值为( )A .0B .2C .4D .8二、填空题13.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .15.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .16.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .17.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .18.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.三、解答题19.已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.20.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD21.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.22.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围23.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.24.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)①求实数a的值;②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.望奎县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:∵(x ﹣2)3+2x+sin (x ﹣2)=2, ∴(x ﹣2)3+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,∵(y ﹣2)3+2y+sin (y ﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质.2. 【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C3. 【答案】B【解析】解:定义在(0,+∞)上的函数f (x )满足:<0.∵f (2)=4,则2f (2)=8, f (x )﹣>0化简得,当x <2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.4.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.5.【答案】D【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),又f(x+2)=f(x),∴f(x)是周期为2的函数,又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.6.【答案】B7.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.8.【答案】C【解析】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.9.【答案】A10.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.11.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.12.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.二、填空题13.【答案】0或1.【解析】解:由A∪B=A知B⊆A,∴t2﹣t+1=﹣3①t2﹣t+4=0,①无解或t2﹣t+1=0②,②无解或t2﹣t+1=1,t2﹣t=0,解得t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.14.【答案】25【解析】考点:分层抽样方法.15.【答案】A.【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.16.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.17.【答案】.【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.18.【答案】150【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m.在RT△MNA中,AM=100m,∠MAN=60°,由得MN=100×=150m.故答案为:150.三、解答题19.【答案】【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.20.【答案】C【解析】21.【答案】【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件BB的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共有6种.∴P(B)=.【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.22.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,课外阅读时间落在[2,4)的频率为P2=0.03,课外阅读时间落在[4,6)的频率为P3=0.05,课外阅读时间落在[6,8)的频率为P1=0.2,因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,故t0∈[6,8),所以P1+P2+P3+0.1×(t0﹣6)=0.2,解得t0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.23.【答案】【解析】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x1<x2则f(x1)﹣f(x2)=﹣=因为函数y=2x在R上是增函数且x1<x2∴f(x1)﹣f(x2)=>0即f(x1)>f(x2)∴f(x)在(﹣∞,+∞)上为减函数(III)f(x)在(﹣∞,+∞)上为减函数,又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.24.【答案】【解析】解:(1)因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,因为函数f(x)在[﹣1,3m]上不单调,所以3m>1,…(2分)得,…(3分)(2)①因为f(1)=g(1),所以﹣2+a=0,…(4分)所以实数a的值为2.…②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,t2=g(x)=log2x,t3=2x,所以当x∈(0,1)时,t1∈(0,1),…(7分)t2∈(﹣∞,0),…(9分)t3∈(1,2),…(11分)所以t2<t1<t3.…(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.。
2019黑龙江省望奎县一中高二数学上学期第二次月考(10月)试题理语文
2019—2019学年度第一学期第二次考试高二理科数学试题一、选择题(每小题5分,共12小题60分)1. 椭圆22145x y +=的离心率为 ( ) A.12 B. 322. 已知命题:p 若,x y >则x y -<-;命题:q 若,x y >则22x y >.在命题① p q ∧ ② p q ∨ ③ ()p q ⌝∨ ④ ()p q ∧⌝ 中真命题是 ( ) A. ①③ B. ①④ C. ②③ D. ②④3. 若点()1,1P 在圆()()224x a y a -++=的内部,则实数a 的取值范围是 ( )A. 1a =±B. 01a <<C. 1a <-或1a >D. 11a -<<4. 若点(),P x y 的坐标满足条件14x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则22x y +的最大值为 ( )B. 10C. 8D.5. 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰好为边长为2的 正方形的顶点,则椭圆E 的标准方程为 ( )A. 2212x +=B. 2212x y += C. 22142y x += D. 22142x y += 6. 下列命题中,正确命题的个数是 ( ) ①2230x x --<是命题;②“2x =”是“2440x x -+=”成立的充分不必要条件;③命题“三角形内角和为180︒”的否命题是 “三角形的内角和不是180︒”; ④命题“2,0x R x ∀∈≥”的否定是“2,0x R x ∀∈<”. A. 0 B. 1 C. 2 D. 37. 已知直线:20l ax y a +--=在x 轴和y 轴上的截距互为相反数,则a 的值是 ( ) A. 1 B. 1- C. 2-或1- D. 2-或18. 设:3p x a ->,()():1210q x x +-≥;若p ⌝是q 的充分不必要条件,则实数的取值 范围是 ( )A. 74,2⎛⎫- ⎪⎝⎭ B. 74,2⎡⎤-⎢⎥⎣⎦ C. ()7,4,2⎛⎫-∞-+∞ ⎪⎝⎭ D. (]7,4,2⎡⎫-∞-+∞⎪⎢⎣⎭9. 直线3y kx =+被圆()()22234x y -+-=截得的弦长为,则直线的斜率k 为( )B.± D. 10.已知椭圆22:12x C y +=的两焦点12,F F ,点()00,P x y 满足2200012x y <+<,则 12PF PF +的取值范围是 ( )A. (]0,2B. (]1,2C. 1,⎡⎣D. 2,⎡⎣11.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域20340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线20x y +-=上的投影构成的线段记为AB ,则AB= A. B. C. 4 D. 6 ( )12.已知椭圆22:194x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别 为,A B ,线段MN 的中点在C 上,则AN BN +的值为 ( ) A. 12 B. 8 C. 6 D. 4二、填空题(每小题5分,共4小题20分)13.已知直线1:60l x ay ++=和()2:2320l a x y a -++=,若1l ∥2l ,则a 的值是______. 14.命题:“,x R n N *∀∈∃∈,使得2n x ≥成立”的否定形式是_________.15.直线:4312l x y -=经过椭圆2222:1x y C a b+= ()0,0a b >>的一个焦点和一个顶点,则C 的离心率为 __________.16.已知O 为坐标原点,()0,3A ,平面上的动点N 满足12NO NA =,动点N 的轨迹为曲线C ,设圆M 的半径为1,圆心M 在直线240x y --=上,若圆M 与曲线C 有且只有一个公共点,则圆心M 横坐标的值为 ___________________. 三、解答题(共6小题70分)17.(本小题满分10分) 已知圆()22125x y -+=,直线50ax y -+=与圆交于不同的两 点,A B .()1求实数a 的取值范围;()2若弦AB 的垂直平分线过点()2,4P -,求实数a 的值.18.(本小题满分12分)求满足下列条件的椭圆2222:1x y C a b+= ()0a b >>的标准方程.()1离心率2e =,左顶点()2,0A -; ()2离心率35e =,过左焦点且垂直于长轴的弦长为325;()3过点M ⎛ ⎝⎭且到两焦点距离之和为. 19. (本小题满分12分)已知m R ∈,设[]22:1,1,24820p x x x m m ∀∈---+-≥成立;[]()212:1,2,log 11q x x mx ∃∈-+<-成立.如果“p q ∨”为真,“p q ∧”为假,求实 数m 的取值范围.20. (本小题满分12分)已知直线1x y +=与椭圆22221x y a b += ()0a b >>相交于两点,A B ,且线段AB 的中点在直线:20l x y -=上.()1求此椭圆的离心率;()2若椭圆的右焦点关于直线l 的对称点在圆224x y +=上,求此椭圆的方程.21. (本小题满分12分)如图,在四面体ABCD 中,已知60ABD CBD ∠=∠=︒,()1求证:AC BD ⊥;()2若平面ABD ⊥平面CBD ,且52BD =,求二面角C AD B --的余弦值.22. (本小题满分12分)已知椭圆22221x y a b+= ()0a b >>的左、右两个焦点12,F F ,离心率e =,短轴长为2. ()1求椭圆方程;()2如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于C 点,AO 的延长线与椭圆交于B 点,求ABC ∆面积的最大值.。
望奎县一中2018-2019学年上学期高三数学10月月考试题
望奎县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,2. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.3. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 4. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .30 5. 若集合,则= ( )ABC D6. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .24 7. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 28. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)9. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 10.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .411.抛物线x=﹣4y 2的准线方程为( ) A .y=1 B .y=C .x=1D .x=12.已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]二、填空题13.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .14.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .15.设函数()()()31321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .16.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .17.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题18.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.19.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.20.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无关,试求点M 的坐标.21.已知cos(+θ)=﹣,<θ<,求的值.22.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.23.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.24.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.望奎县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 2. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 3. 【答案】A 【解析】试题分析:由方程1x -=221x -=,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 4. 【答案】D 【解析】试题分析:分段间隔为50301500=,故选D. 考点:系统抽样 5. 【答案】B 【解析】6. 【答案】B 【解析】试题分析:由等差数列的性质可知,16a 84102=+=+a a a . 考点:等差数列的性质. 7. 【答案】A【解析】解:设x <0时,则﹣x >0,因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A .8. 【答案】C【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0, ∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2). 故选:C .【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.9. 【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.1 10.【答案】A【解析】解:设等差数列{a n }的公差为d , 由a 1+1,a 3+2,a 5+3构成等比数列,得:(a 3+2)2=(a 1+1)(a 5+3), 整理得:a 32+4a 3+4=a 1a 5+3a 1+a 5+3即(a 1+2d )2+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A .【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.11.【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .12.【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用.二、填空题13.【答案】5 【解析】试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值.14.【答案】 3 .【解析】解:∵抛物线y 2=4x=2px ,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4, ∴x=3, 故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.15.【答案】11[3)32⎡⎤+∞⎢⎥⎣⎦,,【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对()3x g x a =-于轴的交点个数进行分情况讨论,特别注意:1.在1x <时也轴有一个交点式,还需31a ≥且21a <;2. 当()130g a =-≤时,()g x 与轴无交点,但()h x 中3x a =和2x a =,两交点横坐标均满足1x ≥.16.【答案】 .【解析】解:∵F 是抛物线y 2=4x 的焦点,∴F (1,0),准线方程x=﹣1, 设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF 的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.17.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.三、解答题18.【答案】【解析】解:(1)∵函数f(x)=x2﹣mx在[1,+∞)上是单调函数∴x=≤1∴m≤2∴实数m的取值范围为(﹣∞,2];(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.19.【答案】【解析】(1)当111,12n a a =+=时,解得11a =.(1分)当2n ≥时,2n n S n a +=,① 11(1)2n n S n a --+-=,②①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分)即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.即12n n a +=故21n n a =-(*n N ∈).(5分)20.【答案】【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=,…1分c=e •a=×=,故b===,…4分所以,椭圆E 的方程为,即x 2+3y 2=5…6分(2)将y=k (x+1)代入方程E :x 2+3y 2=5,得(3k 2+1)x 2+6k 2x+3k 2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.21.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.22.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.23.【答案】【解析】(1)证明:∵AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴BC1∥AD1,又∵AD1⊂平面ACD1,BC1⊄平面ACD1,∴BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.24.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).。
望奎县第一中学2018-2019学年高二上学期第二次月考试卷数学
望奎县第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( ) A .平行 B .相交 C .异面 D .以上都有可能 2. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .33. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 4. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x = B . 21y x =-+C .||1y x =+D .2x y -=5. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°6. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A. =0.7x+0.35 B .=0.7x+1 C. =0.7x+2.05D . =0.7x+0.457. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .8. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.9. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 10.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,2611.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)12.∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>0二、填空题13.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是 .14.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .15.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 16.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= . 17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .18.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).三、解答题19.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=, 且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.20.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M . (1)求证:DC 是⊙O 的切线; (2)求证:AM •MB=DF •DA .21.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边72c =,且tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=a b +的值.22.已知函数f (x )=lnx ﹣ax ﹣b (a ,b ∈R )(Ⅰ)若函数f (x )在x=1处取得极值1,求a ,b 的值 (Ⅱ)讨论函数f (x )在区间(1,+∞)上的单调性(Ⅲ)对于函数f (x )图象上任意两点A (x 1,y 1),B (x 2,y 2)(x 1<x 2),不等式f ′(x 0)<k 恒成立,其中k 为直线AB 的斜率,x 0=λx 1+(1﹣λ)x 2,0<λ<1,求λ的取值范围.23.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.24.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式.望奎县第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:如图,在正方体ABCD ﹣A 1B 1C 1D 1中, AA 1∩平面ABCD=A ,BB 1∩平面ABCD=B ,AA 1∥BB 1; AA 1∩平面ABCD=A ,AB 1∩平面ABCD=A ,AA 1与AB 1相交; AA 1∩平面ABCD=A ,CD 1∩平面ABCD=C ,AA 1与CD 1异面.∴直线a ,b 都与平面α相交,则a ,b 的位置关系是相交、平行或异面. 故选:D .2. 【答案】D【解析】解:∵f (x )=,f (1)=f[f (7)]=f (5)=3.故选:D .3. 【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内, 由230y xx y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .4. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不25415432合题意;函数2xy-=为非奇非偶函数。
望奎县第一中学2018-2019学年上学期高三数学10月月考试题
望奎县第一中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<2. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于()A .4B .2C .D .23. 以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.4. 已知函数,函数满足以下三点条件:①定义域为;②对任意,有⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f )(x g R R x ∈;③当时,则函数在区间上零1()(2)2g x g x =+]1,1[-∈x ()g x )()(x g x f y -=]4,4[-点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.5. 在中,,等于( )ABC ∆60A =1b =sin sin sin a b cA B C++++A .B CD6. “”是“”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知向量,,若,则实数( )(,1)a t = (2,1)b t =+ ||||a b a b +=-t =A.B. C. D. 2-1-12【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.8. 设分别是中,所对边的边长,则直线与,,a b c ABC ∆,,A B C ∠∠∠sin 0A x ay c ++=A 的位置关系是( )sin sin 0bx B y C -+=A A .平行B . 重合C . 垂直D .相交但不垂直9. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .010.已知复数z 满足(3+4i )z=25,则=( )A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i11.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .412.设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A .(0,1)B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e )二、填空题13.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的()0,2()4,0()7,3(),m n m n +值是.14.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .15.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .16.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 . 三、解答题17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc .(Ⅰ)求A 的大小;(Ⅱ)如果cosB=,b=2,求a 的值.18.(本小题满分12分)已知圆与圆:关于直线对称,且点在圆上.M N 22235(35(r y x =++-x y =35,31(-D M (1)判断圆与圆的位置关系;M N (2)设为圆上任意一点,,,三点不共线,为的平分线,且交P M 35,1(-A )35,1(B B A P 、、PG APB ∠于. 求证:与的面积之比为定值.AB G PBG ∆APG ∆19.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y )(1)求f (1)的值,(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.20.(本题满分15分)已知函数,当时,恒成立.c bx ax x f ++=2)(1≤x 1)(≤x f (1)若,,求实数的取值范围;1=a c b =b (2)若,当时,求的最大值.a bx cx x g +-=2)(1≤x )(x g 【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.21.已知条件4:11p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数的取值范围.22.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB望奎县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.2. 【答案】A【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),∴AB 是正方体的体对角线,AB=,设正方体的棱长为x ,则,解得x=4.∴正方体的棱长为4,故选:A .【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题. 3. 【答案】D4. 【答案】D第Ⅱ卷(共100分)[.Com]5. 【答案】B 【解析】试题分析:由题意得,三角形的面积,所以,又,所011sin sin 6022S bc A bc ====4bc =1b =以,又由余弦定理,可得,所以4c =2222202cos 14214cos 6013a b c bc A =+-=+-⨯⨯=a =,故选B .sin sin sin sin a b c a A B C A ++===++考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题.sin sin sin sin a b c aA B C A++=++6. 【答案】B 【解析】解:,解得或x <0,∴“”是“”的必要不充分条件.故选:B . 7. 【答案】B 【解析】由知,,∴,解得,故选B.||||a b a b +=- a b ⊥ (2)110a b t t ⋅=++⨯=1t =-8. 【答案】C【解析】试题分析:由直线与,sin 0A x ay c ++=A sin sin 0bx B y C -+=A 则,所以两直线是垂直的,故选C. 1sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=考点:两条直线的位置关系.9. 【答案】【解析】选A.由=3+b i 得,2+a i1+i2+a i =(1+i )(3+b i )=3-b +(3+b )i ,∵a ,b ∈R ,∴,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A.{2=3-b a =3+b)10.【答案】B解析:∵(3+4i )z=25,z===3﹣4i .∴=3+4i .故选:B .11.【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知,设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c ,椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e2=时取等号.即取得最大值且为.故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.12.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.二、填空题13.【答案】34 5【解析】考点:点关于直线对称;直线的点斜式方程.14.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C是最大角根据余弦定理,得cosC==>0∵C∈(0,π),∴角C是锐角,由此可得A、B也是锐角,所以△ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.15.【答案】 [,1] .【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].16.【答案】 6 .【解析】解:∵=(2x﹣y,m),=(﹣1,1).若∥,∴2x﹣y+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,解得,代入2x﹣y+m=0得m=6.即m的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.三、解答题17.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.18.【答案】(1)圆与圆相离;(2)定值为2.【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,,然后根据圆心距与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP DM r =MN 的距离相等,所以两个三角形的面积比值,根据点P 在圆M 上,代入两点间距离公式求和PAPB S S APG PBG =∆∆PB ,最后得到其比值.PA 试题解析:(1) ∵圆的圆心关于直线的对称点为,N 35,35(-N x y =)35,35(-M ∴,916)34(||222=-==MD r ∴圆的方程为.M 916)35()35(22=-++y x ∵,∴圆与圆相离.3823210)310()310(||22=>=+=r MN M N考点:1.圆与圆的位置关系;2.点与圆的位置关系.119.【答案】【解析】解:(1)在f ()=f (x )﹣f (y )中,令x=y=1,则有f (1)=f (1)﹣f (1),∴f (1)=0;(2)∵f (6)=1,∴2=1+1=f (6)+f (6),∴不等式f (x+3)﹣f ()<2等价为不等式f (x+3)﹣f ()<f (6)+f (6),∴f (3x+9)﹣f (6)<f (6),即f ()<f (6),∵f (x )是(0,+∞)上的增函数,∴,解得﹣3<x <9,即不等式的解集为(﹣3,9).20.【答案】【解析】(1);(2).]0222[-2(1)由且,得,1=a c b =42()(222b b b x b bx x x f -++=++=当时,,得,…………3分1=x 11)1(≤++=b b f 01≤≤-b 故的对称轴,当时,,………… 5分 )(x f 21,0[2∈-=b x 1≤x 2min max ()(124()(1)11b b f xf b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩解得,综上,实数的取值范围为;…………7分222222+≤≤-b b ]0222[-,…………13分112≤+=且当,,时,若,则恒成立,2a =0b =1c =-1≤x 112)(2≤-=x x f 且当时,取到最大值.的最大值为2.…………15分0=x 2)(2+-=x x g 2)(x g21.【答案】.[]1,2-【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况p 31x -≤<p 列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a -- 由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦ 综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么p 条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题p p 或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.22.【答案】(1);(2)证明见解析.2212x y +=【解析】试题解析:(1),∴,∴,22PF QO = 212PF F F ⊥1c =,2222221121,1a b c b a b+==+=+∴,221,2b a ==即;2212x y +=(2)设方程为代入椭圆方程AB y kx b =+,,22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭22221,1122A B A B kb b x x x x k k --+==++A ,∴,11,A B MA MB A B y y k k x x --==()112A B A B A B A B MA MB A B A By x x y x x y y k k x x x x +-+--+=+==A ∴代入得:所以, 直线必过.11k b =+y kx b =+1y kx k =+-()1,1--考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.。
黑龙江省望奎县一中高二数学上学期第二次月考(10月)试题理
黑龙江省望奎县一中高二数学上学期第二次月考(10月)试题理高二文科数学试题一、选择题〔每题5分,共12小题60分〕1. 椭圆22145x y +=的离心率为 〔 〕 A.12 B. 322. 命题:p 假定,x y >那么x y -<-;命题:q 假定,x y >那么22x y >.在命题① p q ∧ ② p q ∨ ③ ()p q ⌝∨ ④ ()p q ∧⌝ 中真命题是 〔 〕 A. ①③ B. ①④ C. ②③ D. ②④3. 假定点()1,1P 在圆()()224x a y a -++=的外部,那么实数a 的取值范围是 〔 〕A. 1a =±B. 01a <<C. 1a <-或1a >D. 11a -<<4. 假定点(),P x y 的坐标满足条件14x y x x y ≥⎧⎪≥⎨⎪+≤⎩,那么22x y +的最大值为 〔 〕B. 10C. 8D.5. 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰恰为边长为2的 正方形的顶点,那么椭圆E 的规范方程为 〔 〕A. 2212x +=B. 2212x y += C. 22142y x += D. 22142x y += 6. 以下命题中,正确命题的个数是 〔 〕 ①2230x x --<是命题;②〝2x =〞是〝2440x x -+=〞成立的充沛不用要条件;③命题〝三角形内角和为180︒〞的否命题是 〝三角形的内角和不是180︒〞; ④命题〝2,0x R x ∀∈≥〞的否认是〝2,0x R x ∀∈<〞. A. 0 B. 1 C. 2 D. 37. 直线:20l ax y a +--=在x 轴和y 轴上的截距互为相反数,那么a 的值是 〔 〕 A. 1 B. 1- C. 2-或1- D. 2-或18. 设:3p x a ->,()():1210q x x +-≥;假定p ⌝是q 的充沛不用要条件,那么实数的取值范围是 〔 〕 A. 74,2⎛⎫- ⎪⎝⎭ B. 74,2⎡⎤-⎢⎥⎣⎦ C. ()7,4,2⎛⎫-∞-+∞ ⎪⎝⎭ D. (]7,4,2⎡⎫-∞-+∞⎪⎢⎣⎭9. 直线3y kx =+被圆()()22234x y -+-=截得的弦长为k 为〔 〕B.± D. 10.椭圆22:12x C y +=的两焦点12,F F ,点()00,P x y 满足2200012x y <+<,那么 12PF PF +的取值范围是 〔〕A. (]0,2B. (]1,2C. 1,⎡⎣D. 2,⎡⎣11.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域20340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线20x y +-=上的投影构成的线段记为AB ,那么AB= A. B. C. 4 D. 6 〔 〕12.椭圆22:194x y C +=,点M 与C 的焦点不重合,假定M 关于C 的焦点的对称点区分 为,A B ,线段MN 的中点在C 上,那么AN BN +的值为 〔 〕 A. 12 B. 8 C. 6 D. 4二、填空题〔每题5分,共4小题20分〕13.直线1:60l x ay ++=和()2:2320l a x y a -++=,假定1l ∥2l ,那么a 的值是______. 14.命题:〝,x R n N *∀∈∃∈,使得2n x ≥成立〞的否认方式是_________.15.直线:4312l x y -=经过椭圆2222:1x y C a b+= ()0,0a b >>的一个焦点和一个顶点,那么C 的离心率为 __________.16.O 为坐标原点,()0,3A ,平面上的动点N 满足12NO NA =,动点N 的轨迹为曲线C ,设圆M 的半径为1,圆心M 在直线240x y --=上,假定圆M 与曲线C 有且只要一个公共点,那么圆心M 横坐标的值为 ___________________. 三、解答题〔共6小题70分〕17.〔本小题总分值10分〕 圆()22125x y -+=,直线50ax y -+=与圆交于不同的两 点,A B .()1务实数a 的取值范围;()2假定弦AB 的垂直平分线过点()2,4P -,务实数a 的值.18.〔本小题总分值12分〕求满足以下条件的椭圆2222:1x y C a b+= ()0a b >>的规范方程.()1离心率2e =,左顶点()2,0A -; ()2离心率35e =,过左焦点且垂直于长轴的弦长为325;()3过点M ⎛⎝⎭且到两焦点距离之和为. 19. 〔本小题总分值12分〕m R ∈,设[]22:1,1,24820p x x x m m ∀∈---+-≥成立;[]()212:1,2,log 11q x x mx ∃∈-+<-成立.假设〝p q ∨〞为真,〝p q ∧〞为假,务实数m 的取值范围.20. 〔本小题总分值12分〕直线1x y +=与椭圆22221x y a b += ()0a b >>相交于两点,A B ,且线段AB 的中点在直线:20l x y -=上.()1求此椭圆的离心率;()2假定椭圆的右焦点关于直线l 的对称点在圆224x y +=上,求此椭圆的方程.21. 〔本小题总分值12分〕如图,在四面体ABCD 中,60ABD CBD ∠=∠=︒,()1求证:AC BD ⊥;()2假定平面ABD ⊥平面CBD ,且52BD =,求二面角C AD B --的余弦值.22. 〔本小题总分值12分〕椭圆22221x y a b+= ()0a b >>的左、右两个焦点12,F F ,离心率22e =,短轴长为2. ()1求椭圆方程;()2如图,点A 为椭圆上一动点〔非长轴端点〕,2AF 的延伸线与椭圆交于C 点,AO 的延长线与椭圆交于B 点,求ABC ∆面积的最大值.。
黑龙江省望奎县一中高二数学上学期第二次月考(10月)试题理(无答案)
高二理科数学试题21.椭圆—41的离心率为1A.-2q 中真命题是5.椭圆E的焦点在x轴上,正方形的顶点,则椭圆E6.下列命题中,正确命题的个数是④命题“ x R,x2 0 ”的否定是“x R,x20 ”A. 0B. 1C. 2D. 37.已知直线l :ax y 2 a0在x轴和A. 1 B.1 C.2或8.设p :x a3 ,q:x 1 2x 1范围是77A. 4 -B.4,-C.22y轴上的截距互为相反数,则a的值是()1 D.2 或10 ;若p是q的充分不必要条件,则实数的取值(),4 U £D. , 4 U £2 2、选择题(每小题5分,共12小题60分)2.已知命题y,则命题q :若x y,则x2 y2.A.①③B. ①④C. ②③D.②④3.若点1,1在圆4的内部,则实数a的取值范围是A. a 1B.C.D. 1 a 14.若点A. .10 x, y的坐标满足条件yB. 10C.,则42y的最大值为D.2 2A. I T y2 1B.2x 2 .y 12C.2x12D.B. 3.5 5在命题①中心在原点,的标准方程为其短轴上的两个顶点和两个焦点恰好为边长为①x2 2x 3 0是命题;②“ x 2 ”是“ x24x 4 0 ”成立的充分不必要条件;③命题“三角形内角和为180 ”的否命题是“三角形的内角和不是180ii.在平面上,过点P 作直线I 的垂线所得的垂足称为点 P 在直线x 2 0x y 0 中的点在直线x y 2 0上的投影构成的线段记为 AB ,贝U ABx 3 y 4 0A. 2罷 B3晅C.4D.6()12.已知椭圆C : 2x2y1, 点M 与C 的焦点不重合,若M关于C 的焦点的对称点分别94为 A, B ,线段 MN的中点在C 上,则 ANB N的值为 ()A. 12B.8 6 D .4、填空题(每小题 5分,共4小题20 分) 14. 命题:“ x R, n N ,使得n x 2成立”的否定形式是 _____________________ .2 215. 直线l :4x 3y 12经过椭圆C:务 % 1 a 0,b 0的一个焦点和一个顶点,a b则C 的离心率为 ___________ .116. 已知O 为坐标原点,A 0,3 ,平面上的动点N 满足NO -NA ,动点N 的轨迹为曲2线C ,设圆M 的半径为1,圆心M 在直线2x y 4 0上,若圆M 与曲线C 有且只有一个公共点,则圆心 M 横坐标的值为 ________________________ . 三、解答题(共6小题70分)9•直线y kx 3被圆 x 2 4截得的弦长为 2.3,则直线的斜率 k 为B. C. D.10.已知椭圆 2 c :X_ 21的两焦点F 「F 2,点P x 0,y 0满足02 Xo22y o 1,则PF ! PF 2的取值范围是 A. 0,2B.1,2C.1,^2D.2,2、迈I 上的投影,由区域13.已知直线|1 : x ay 60和 I 2: a 2 x 3y 2a 0,若l 1 // I 2,则a 的值是点A, B .1求实数a的取值范围;19.(本小题满分12分)已知m R,设p:x1,12 2,x 2x 4m 8m 2 0 成立;2 q: x 1,2 ,log 1x mx 12数m的取值范围.1成立.如果“P q ”为真,“p q ”为假,求实2 x20.(本小题满分12分)已知直线x y 1与椭圆 p22 1 a b 0相交于两点b2aA,B,且线段AB的中点在直线l : x 2y0上. 1求此椭圆的离心率;2若椭圆的右焦点关于直线l的对称点在圆2 x2y4上,求此椭圆的方程.17.(本小题满分10分)已知圆25,直线ax 0与圆交于不同的两2若弦AB的垂直平分线过点2,4求实数a的值.18.(本小题满分12分)求满足下列条件的椭圆2xcrab 0的标准方程.离心率e,左顶点A 2,0 ;离心率e过左焦点且垂直于长轴的弦长为32 5过点M 2、、2,且到两焦点距离之和为 4.3 .21.(本小题满分 12分)如图,在四面体ABCD 中,已知ABDCBD 60 ,AB BC2.1求证: AC BD ;52若平面 AB平面CBD ,且BD 一,求一面角CAD B 的余弦值.22 222.(本小题满分12分)已知椭圆 笃 y 2 1a b个焦点,1求椭圆方程;2如图,点A 为椭圆上一动点(非长轴端点),AF 2的延长线与椭圆交于 C 点,AO 的延 长线与椭圆交于B 点,求 ABC 面积的最大值.离心率e‘,短轴长为22.b 0的左、右两。
黑龙江省望奎县一中高三数学上学期第二次月考(10月)试题文(无答案)
-1 -、单选题 1.集合「二二“J—屁怎|亦匸电贝巾曲」( ) A. B •血二胃| C •处|:KW D .胡护仝空碍 已知复数- 1 ' - I ;. - _ .,其中玄口:.若卜是纯虚数,则① ( ) .•或-1rx-y+i<0 )x-2y<U 若满足网y 约束条件lx+2y-2<0 , 3A. B .门 C . H D .罔26.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体7.已知水平放置的二肿-用斜二测画法得到平面直观图沁:汨是边长为貝的正三角形,那么 来匿蕊的面积为( )A. B C . ■ D .&方程 三的解所在区间是( )A. B . C . ■ D .高三数学试题2. A. 3.已知平面向量 (k,3),b (1,4),若a b ,则实数k 为() A. 12 B 12 4. ,则:•: 1或X 1”的逆否命题为( ) A. 若 •,则 且x 1 若 •,则 且x 1 C.若―丄且X 1,则 若寻"或X 1,则 5. 则:r :-匕的最大值为( )是( )-2 -9.下列命题中的假命题是( ) x_ul>2 A.且a 1,都有 B. 直线心恒过定点C. ”.]:「、,函数“;厂::■、-」.:都不是偶函数D. 了."比使;i,''是幕函数,且在 上单调递减车=1110.若两个正实数斗y 满足」收+2y 的最小值为() A. B . C . D .11.将函数:的图象向右平移 —个单位后得到函数,则总:".;具有性质( 4 12 .设函数 是定义在(■黄,阴上的可导函数,其导函数为If 且有|;:阶沁曲.';泸寿,则不等 式二―;工八;I-兀W ;金〔:“川'的解集为( )A.B .〔―利空C . ■D .贋立切二、填空题13.记等差数列{%}的前。
望奎县高级中学2018-2019学年高二上学期第二次月考试卷数学
望奎县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 2.在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323π B .16π C.253π D .312π3. 设复数1i z =-(i 是虚数单位),则复数22z z+=( )A.1i -B.1i +C. 2i +D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 4. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .65.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P 的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.6.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°7.在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣D.﹣8.已知数列,则5是这个数列的()A.第12项B.第13项C.第14项D.第25项9.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a11.已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x2+y2=4内的面积为()A.B.C.πD.2π12.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π二、填空题13.设全集______.14.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.16.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .17.函数()x f x xe =在点()()1,1f 处的切线的斜率是 . 18.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .三、解答题19.如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M ,N 均在直线x=5上,圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A (29,0).(1)求圆弧C 2的方程;(2)曲线C 上是否存在点P ,满足?若存在,指出有几个这样的点;若不存在,请说明理由.20.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.21.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.22.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.23.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.24.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.望奎县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 2. 【答案】A 【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.3.【答案】A【解析】4.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.5.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.6.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.7.【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.8.【答案】B【解析】由题知,通项公式为,令得,故选B答案:B9.【答案】A【解析】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C11.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.12.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.二、填空题13.【答案】{7,9}【解析】∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}。
黑龙江省绥化市望奎第一中学2018-2019学年高二数学理月考试题含解析
黑龙江省绥化市望奎第一中学2018-2019学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列为等比数列,若是方程的两个根,则的值是()A.9 B. C.D.3参考答案:C2. 集合,集合,则集合B中的元素有()个A 36B 30 C15 D 18参考答案:C3. 用随机数表法从100名学生(男生25人)中抽出20名进行评教,则男生甲被抽出的机率是()A.B.C.D.参考答案:A【考点】简单随机抽样.【分析】由已知中,抽样的方法为随机数表法,则每个个体被抽中的概率是相等的,将整体容量100及样本容量20代入即可得到答案.【解答】解:由于共有100名学生,抽取20人,故每一名学生被抽中的概率P==,故选A.4. 在正三棱柱ABC﹣A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC的距离为( )A.B.C.D.参考答案:B【考点】棱柱、棱锥、棱台的体积;棱柱的结构特征.【专题】计算题.【分析】要求点A到平面A1BC的距离,可以求三棱锥底面A1BC上的高,由三棱锥的体积相等,容易求得高,即是点到平面的距离.【解答】解:设点A到平面A1BC的距离为h,则三棱锥的体积为即∴∴.故选:B.【点评】本题求点到平面的距离,可以转化为三棱锥底面上的高,用体积相等法,容易求得.“等积法”是常用的求点到平面的距离的方法.5. 某班一共有52名同学,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A.13B.19C.20D.51参考答案:C略6. 已知,,则的值为()A. 10B. 7C. 3D. 6参考答案:A由题意得。
故选A。
7. 已知满足且,则下列选项中不一定能成立的是A.B.C.D.参考答案:C8. 下列抛物线中,焦点到准线的距离最小的是( )A.B.C.D.参考答案:D9. 函数的单调增区间为()A. B. C. 和 D. 和参考答案:A10. 抛物线上的点到直线距离的最小值是A. B. C.D.参考答案:A抛物线上任意一点(,)到直线的距离。
望奎县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
望奎县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12D.20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.2.设集合A={ x|﹣3≤2x﹣1≤3},集合B为函数y=lg(x﹣1)的定义域,则A∩B=()A.(1,2) B.[1,2] C.[1,2)D.(1,2]3.已知直线l的参数方程为1cos3sinx ty tαα=+⎧⎪⎨=+⎪⎩(t为参数,α为直线l的倾斜角),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为4sin()3πρθ=+,直线l与圆C的两个交点为,A B,当||AB最小时,α的值为()A.4πα=B.3πα=C.34πα=D.23πα=4.四面体ABCD中,截面PQMN是正方形,则在下列结论中,下列说法错误的是()A.AC BD⊥B.AC BD=C.AC PQMN D.异面直线PM与BD所成的角为455.函数f(x)=1﹣xlnx的零点所在区间是()A.(0,)B.(,1) C.(1,2) D.(2,3)6. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f7. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4848. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( ) A .{x|x <1} B .{x|﹣1≤x ≤2} C .{x|﹣1≤x ≤1} D .{x|﹣1≤x <1}9. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)10.“x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <411.设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)12.若方程C :x 2+=1(a 是常数)则下列结论正确的是( )A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线二、填空题13.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .14.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .16.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .17.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 18.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .三、解答题19.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.20.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.21.某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.23.已知,其中e是自然常数,a∈R(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.24.已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).(1)求f(x)的解析式;(2)求f(x)的值域.望奎县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为1231231=⨯⨯,故选C. 2. 【答案】D【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2, ∴A=[﹣1,2],由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .3. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .4. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.6.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B7.【答案】C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.8.【答案】D【解析】解:A∩B={x|﹣1≤x≤2}∩{x|x<1}={x|﹣1≤x≤2,且x<1}={x|﹣1≤x<1}.故选D.【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.10.【答案】B【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集.写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,故选:B.11.【答案】A【解析】解:f(1)=3,当不等式f(x)>f(1)即:f(x)>3如果x<0 则x+6>3可得x>﹣3,可得﹣3<x<0.如果x≥0 有x2﹣4x+6>3可得x>3或0≤x<1综上不等式的解集:(﹣3,1)∪(3,+∞)故选A.12.【答案】B【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆∴∃a∈R+,使方程C不表示椭圆.故A项不正确;∵当a<0时,方程C:表示焦点在x轴上的双曲线∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确∵不论a取何值,方程C:中没有一次项∴∀a∈R,方程C不能表示抛物线,故D项不正确综上所述,可得B 为正确答案 故选:B二、填空题13.【答案】=1【解析】解:由题意得,圆心C (1,0),半径等于4,连接MA ,则|MA|=|MB|,∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1,∴b=,∴椭圆的方程为=1.故答案为:=1. 【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.14.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.15.【答案】 ①④ .【解析】解:由所给的正方体知, △PAC 在该正方体上下面上的射影是①, △PAC 在该正方体左右面上的射影是④, △PAC 在该正方体前后面上的射影是④ 故答案为:①④16.【答案】 .【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即y'=在x>0时有解,所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.17.【答案】[,1].【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].18.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.三、解答题19.【答案】【解析】20.【答案】【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,∴,下面用数学归纳法证明:0<b n<1.①由a1=∈(0,1),知0<b1<1,②假设0<b k<1,则,∵0<b k<1,∴,则0<b k+1<1.综上,当n∈N*时,b n∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.21.【答案】【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t≤24)(2)要想船舶安全,必须深度f(t)≥11.5,即∴,解得:12k+1≤t≤5+12k k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).【点评】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.22.【答案】【解析】解:(Ⅰ)设射线y=x(x≥0)的倾斜角为α,则tanα=,α∈(0,).∴tanθ=tan(α+)==,∴由解得,∴点A的坐标为(,).(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x=sin(2x+)由x∈[0,],可得2x+∈[,],∴sin(2x+)∈[﹣,1],∴函数f(x)的值域为[﹣,].【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.23.【答案】【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以f(x)min﹣g(x)max>,所以在(1)的条件下,f(x)>g(x)+.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..24.【答案】【解析】解:(1)当x∈[1,2]时f(x)的图象为线段,设f(x)=ax+b,又有f(1)=2,f(2)=3∵a+b=2,2a+b=3,解得a=1,b=1,f(x)=x+1,当x∈[2,4]时,f(x)的图象为二次函数的一部分,且顶点为(3,1),设f(x)=a(x﹣3)2+1,又f(2)=3,所以代入得a+1=3,a=2,f(x)=2(x﹣3)2+1.(2)当x∈[1,2],2≤f(x)≤3,当x∈[2,4],1≤f(x)≤3,所以1≤f(x)≤3.故f(x)的值域为[1,3].。
望奎县高中2018-2019学年高二上学期第二次月考试卷数学
望奎县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<2. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣iC .﹣1+iD .1﹣i3. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定4. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <05. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 6. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 7. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny8. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
望奎县第一中学校2018-2019学年高二上学期第二次月考试卷数学
望奎县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④2. 函数y=x 3﹣x 2﹣x 的单调递增区间为( )A.B.C.D.3. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[,86C .31[,)162D .3[,3)84. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A. B .18 C. D.5.已知向量=(2,1),=10,|+|=,则||=( )A. B. C .5 D .256. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( ) A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i7. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3 B.C .2D .68. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( )A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.9. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 10.函数y=(x 2﹣5x+6)的单调减区间为( )A.(,+∞) B .(3,+∞) C .(﹣∞,) D .(﹣∞,2)11.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个 12.过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A.﹣=1B.﹣=1 C.﹣=1 D.﹣=1二、填空题13.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .15.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 . 16.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
望奎县民族中学2018-2019学年高二上学期第二次月考试卷数学
望奎县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π 2. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个3. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( )A .a <0,△<0B .a <0,△≤0C .a >0,△≥0D .a >0,△>04. 直线的倾斜角是( )A .B .C .D .5. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A .k >7B .k >6C .k >5D .k >46. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.7.已知函数,,若,则()A1B2C3D-18.△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,则=()A.B.C.D.±9.已知集合A={y|y=x2+2x﹣3},,则有()A.A⊆B B.B⊆A C.A=B D.A∩B=φ10.某程序框图如图所示,则该程序运行后输出的S的值为()A.1 B.C.D.11.执行如图所示的程序框图,如果输入的t=10,则输出的i=()A .4B .5C .6D .712.如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°二、填空题13.设函数则______;若,,则的大小关系是______. 14.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .15.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .16.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 17.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 .18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .三、解答题19.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a ,其中b==,a=﹣b .20.已知,其中e是自然常数,a∈R(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.21.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.23X(I)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望Eξ.24.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.望奎县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:几何概型.2.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.3.【答案】A【解析】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,∴a<0,且△=b2﹣4ac<0,综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.故选A.4.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tan α=,∵0°<α<180°, ∴α=30° 故选A .【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.5. 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环 循环前 1 0第一圈 2 2 是 第二圈 3 7 是 第三圈 4 18 是 第四圈 5 41 是 第五圈 6 88 否 故退出循环的条件应为k >5? 故答案选C .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.7. 【答案】A【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=1 8. 【答案】D【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.9.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.10.【答案】C【解析】解:第一次循环第二次循环得到的结果第三次循环得到的结果第四次循环得到的结果…所以S是以4为周期的,而由框图知当k=2011时输出S∵2011=502×4+3所以输出的S是故选C11.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.12.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.二、填空题13.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。
望奎县实验中学2018-2019学年高二上学期第二次月考试卷数学
望奎县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数y=的图象大致为( )A .B .C .D .2. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④3. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.254. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B .5C .5D .55. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .6. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[,2)B .[,2]C .[,1)D .[,1]7. 函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)8.已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3 D.59.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是()A.α∥β,l⊂α,n⊂β⇒l∥n B.α∥β,l⊂α⇒l⊥βC.l⊥n,m⊥n⇒l∥m D.l⊥α,l∥β⇒α⊥β10.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法11.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.31212.设向量,满足:||=3,||=4,=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.6二、填空题13.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为.14.设函数f(x)=若f[f(a)],则a的取值范围是.15.已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),求向量在方向上的投影.16.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.17.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.18.对于|q|<1(q为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n(其中S n是数列{a n}的前n项的和)为它的各项的和,记为S,即S=S n=,则循环小数0.的分数形式是.三、解答题19.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.20.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.21.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.22.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.23.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)一个周期内的一系列对应值如表:(2)求函数g(x)=f(x)+sin2x的单调递增区间.24.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).望奎县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.2.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.3.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310. 4.【答案】B考点:双曲线的性质.5.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
望奎县第二中学校2018-2019学年高二上学期第二次月考试卷数学
望奎县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知集合P={x|x ≥0},Q={x|≥0},则P ∩Q=( ) A .(﹣∞,2) B .(﹣∞,﹣1) C .[0,+∞) D .(2,+∞)2. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形3. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .34. 如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±xB .y=±3xC .y=±xD .y=±x5. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B.C.D.6.幂函数y=f(x)的图象经过点(﹣2,﹣),则满足f(x)=27的x的值是()A.B.﹣C.3 D.﹣37.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知2a=3b=m,ab≠0且a,ab,b成等差数列,则m=()A.B.C.D.69.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)10.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π11.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,其中正确命题是()A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)12.已知函数(5)2()e22()2xf x xf x xf x x+>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f-=()A.2e B.e C.1 D.1 e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.二、填空题13.用“<”或“>”号填空:30.830.7.14.已知线性回归方程=9,则b=.15.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.16.已知函数f(x)=,若f(f(0))=4a,则实数a=.17.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是.18.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为cm3.三、解答题19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名5595%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌3.841 6.635附:K2=.20.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.21.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程.22.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.23.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.24.如图,已知椭圆C,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 的另外一个交点为A ,且线段AB 的中点E 在直线y=x 上. (1)求直线AB 的方程;(2)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,直线BM 交椭圆C 于另外一点Q . ①证明:OM •ON 为定值; ②证明:A 、Q 、N 三点共线.望奎县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由Q中的不等式变形得:(x+1)(x﹣2)≥0,且x﹣2≠0,解得:x≤﹣1或x>2,即Q=(﹣∞,﹣1]∪(2,+∞),∵P=[0,+∞),∴P∩Q=(2,+∞),故选:D.2.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.3.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.4.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x,即有渐近线方程为y=x.故选D.【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.5.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.6.【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.故选A.7.【答案】C【解析】解:z====+i,当1+m>0且1﹣m>0时,有解:﹣1<m<1;当1+m>0且1﹣m<0时,有解:m>1;当1+m<0且1﹣m>0时,有解:m<﹣1;当1+m<0且1﹣m<0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.8.【答案】C.【解析】解:∵2a=3b=m,∴a=log2m,b=log3m,∵a,ab,b成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.9.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x >2⇒x <﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2) 故选B10.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r ×2r +12πr 2)×2+5×2r ×2+5×2r +πr ×5=92+14π,即(8+π)r 2+(30+5π)r -(92+14π)=0, 即(r -2)[(8+π)r +46+7π]=0, ∴r =2,∴该几何体的体积为(4×4+12π×22)×5=80+10π.11.【答案】B【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确; ∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.12.【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B .二、填空题13.【答案】 >【解析】解:∵y=3x 是增函数,又0.8>0.7, ∴30.8>30.7. 故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.14.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4 故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.15.【答案】2n﹣1.【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,16.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.17.【答案】[,3].【解析】解:直线AP的斜率K==3,直线BP的斜率K′==由图象可知,则直线l的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.18.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.三、解答题19.【答案】100人中,“歌迷”有25人,从而完成2×2列联表如下:将2×2列联表中的数据代入公式计算,得:K2==≈3.030因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2.Ω由10个等可能的基本事件组成.…用A表示“任选2人中,至少有1个是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成.∴P(A)= (12)【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.20.【答案】【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件BB的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共有6种.∴P(B)=.【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.21.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.22.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 23.【答案】证明见解析. 【解析】考点:平面的基本性质与推论. 24.【答案】【解析】(1)解:设点E (t ,t ),∵B (0,﹣1),∴A (2t ,2t+1), ∵点A 在椭圆C 上,∴,整理得:6t 2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,①直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.②设直线MB的方程为:y=kx﹣1(其中k==),联立,整理得:(1+2k2)x2﹣4kx=0,∴x Q=,y Q=,∴k AN===1﹣,k AQ==1﹣,要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,将k=代入,即证:x M•x N=,由①的证明过程可知:|x M|•|x N|=,而x M与x N同号,∴x M•x N=,即A、Q、N三点共线.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.。
望奎县高中2018-2019学年上学期高三数学10月月考试题
望奎县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.=( )A .﹣iB .iC .1+iD .1﹣i2. 设曲线y=ax ﹣ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=( )A .0B .1C .2D .33. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等. 4. 若集合,则= ( )ABC D5. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③6. 由直线与曲线所围成的封闭图形的面积为( )A B1C D7. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.8. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .9. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >810.已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 11.已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定12.经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .14.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 16.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .三、解答题(本大共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019学年度第一学期第二次考试
高二理科数学试题
一、选择题(每小题5分,共12小题60分)
1. 椭圆22
145
x y +=的离心率为 ( ) A.
12 B. 32
2. 已知命题:p 若,x y >则x y -<-;命题:q 若,x y >则2
2
x y >.
在命题① p q ∧ ② p q ∨ ③ ()p q ⌝∨ ④ ()p q ∧⌝ 中真命题是 ( ) A. ①③ B. ①④ C. ②③ D. ②④
3. 若点()1,1P 在圆()()2
2
4x a y a -++=的内部,则实数a 的取值范围是 ( )
A. 1a =±
B. 01a <<
C. 1a <-或1a >
D. 11a -<<
4. 若点(),P x y 的坐标满足条件14x y x x y ≥⎧⎪≥⎨⎪+≤⎩
,则22
x y +的最大值为 ( )
B. 10
C. 8
D.
5. 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰好为边长为2的 正方形的顶点,则椭圆E 的标准方程为 ( )
A. 2212x +=
B. 22
12x y += C. 22142y x += D. 22142x y += 6. 下列命题中,正确命题的个数是 ( ) ①2230x x --<是命题;②“2x =”是“2440x x -+=”成立的充分不必要条件;③命题“三角形内角和为180︒”的否命题是 “三角形的内角和不是180︒”; ④命题“2
,0x R x ∀∈≥”的否定是“2
,0x R x ∀∈<”. A. 0 B. 1 C. 2 D. 3
7. 已知直线:20l ax y a +--=在x 轴和y 轴上的截距互为相反数,则a 的值是 ( ) A. 1 B. 1- C. 2-或1- D. 2-或1
8. 设:3p x a ->,()():1210q x x +-≥;若p ⌝是q 的充分不必要条件,则实数的取值
范围是 ( )
A. 74,
2⎛⎫- ⎪⎝⎭ B. 74,2⎡⎤-⎢⎥⎣⎦ C. ()7,4,2⎛⎫
-∞-+∞ ⎪⎝⎭
D. (]7,4,2⎡⎫
-∞-+∞⎪⎢⎣⎭
9. 直线3y kx =+被圆()()2
2
234x y -+-=截得的弦长为
,则直线的斜率k 为( )
B.
± D. 10.已知椭圆22
:12x C y +=的两焦点12,F F ,点()00,P x y 满足2200012
x y <+<,则 12PF PF +的取值范围是 (
)
A. (]0,2
B. (]
1,2
C. 1,⎡⎣
D. 2,⎡⎣
11.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域
20
340x x y x y -≤⎧⎪
+≥⎨⎪-+≥⎩
中的点在直线20x y +-
=上的投影构成的线段记为AB ,则AB =
A. B. C. 4 D. 6 ( )
12.已知椭圆22
:194
x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别 为,A B ,线段MN 的中点在C 上,则AN BN +的值为 ( ) A. 12 B. 8 C. 6 D. 4
二、填空题(每小题5分,共4小题20分)
13.已知直线1:60l x ay ++=和()2:2320l a x y a -++=,若1l ∥2l ,则a 的值是______. 14.命题:“,x R n N *
∀∈∃∈,使得2n x ≥成立”的否定形式是_________.
15.直线:4312l x y -=经过椭圆22
22:1x y C a b
+= ()0,0a b >>的一个焦点和一个顶点,
则
C 的离心率为 __________.
16.已知O 为坐标原点,()0,3A ,平面上的动点N 满足1
2
NO NA =
,动点N 的轨迹为曲线C ,设圆M 的半径为1,圆心M 在直线240x y --=上,若圆M 与曲线C 有且只有
一个公共点,则圆心M 横坐标的值为 ___________________. 三、解答题(共6小题70分)
17.(本小题满分10分) 已知圆()2
2125x y -+=,直线50ax y -+=与圆交于不同的两 点,A B .
()1求实数a 的取值范围;
()2若弦AB 的垂直平分线过点()2,4P -,求实数a 的值.
18.(本小题满分12分)求满足下列条件的椭圆22
22:1x y C a b
+= ()0a b >>的标准方程.
()1离心率e =
,左顶点()2,0A -; ()2离心率3
5e =,过左焦点且垂直于长轴的弦长为
325
;
()
3过点M ⎛ ⎝⎭
且到两焦点距离之和为
.
19. (本小题满分12分)已知m R ∈,设[]
22
:1,1,24820p x x x m m ∀∈---+-≥成立;
[]()212
:1,2,log 11q x x mx ∃∈-+<-成立.如果“p q ∨”为真,“p q ∧”为假,求实
数m 的取值范围.
20. (本小题满分12分)已知直线1x y +=与椭圆22
221x y a b += ()0a b >>相交于两点
,A B ,且线段AB 的中点在直线:20l x y -=上.
()1求此椭圆的离心率;
()2若椭圆的右焦点关于直线l 的对称点在圆2
2
4x y +=上,求此椭圆的方程.
21. (本小题满分12分)如图,在四面体ABCD 中,已知60ABD CBD ∠=∠=︒, 2AB BC ==.
()1求证:AC BD ⊥;
()2若平面ABD ⊥平面CBD ,且5
2BD =,求二面角C AD B --的余弦值.
22. (本小题满分12分)已知椭圆22
221x y a b
+= ()0a b >>的左、右两
个焦点12,F F ,
离心率2
e =
,短轴长为2. ()1求椭圆方程;
()2如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于C 点,AO 的延 长线与椭圆交于B 点,求ABC ∆面积的最大值.。