五数上--植树问题
五年级上册植树问题公式大全
五年级上册植树问题公式大全
1.植树结果公式:苗木数量=栽植面积ü地径ü安置密度
2.栽植面积公式:栽植面积=公顷÷ 10000
3.地径公式:地径=树高÷ 0.3
4.安置密度公式:安置密度=平方米÷ 树木之间的间距值
5.苗木单位公式:苗木单位 = 苗木数量÷ 安置密度
6.移植树木树龄公式:树龄=移植树木总数÷发芽率
7.发芽率公式:发芽率=播种种子数量÷发芽种子数量
8.安置树木生长率公式:生长率=树高÷树龄
9.死亡率公式:死亡率=死亡树木数量÷安置树木总数
10.植树时应注意农业技术公式:根据植物类型、植物生长习性、
土壤肥力水分情况等现场配置合理栽植位置,采用多种植物搭配种植,以满足植物生长的需求,选择适宜的肥料,将肥料深埋到深度合适的
地下,保持土壤湿润适当的PH值,使植物都能脱颖而出。
五年级数学上册第七单元植树问题
一、求棵数:1、有一条长800米的公路,在公路的一侧从头到尾每隔20米栽一棵杨树,需多少棵杨树苗?(两端都栽)2、在一条长2500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,共需电线多少根?(两端都不栽)3、在一条长50米的跑道两旁,从头到尾每隔5米插一面彩旗,一共插多少面彩旗?(两端都栽)4、公园大门前的公路长80 米,要在公路两边栽上白杨树,每两棵树相距8 米(两端也要种)。
园林工人共需要准备多少棵树?5、有一条公路长1000 米,在公路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵?6、两座楼房之间相距56 米,每隔4 米栽雪松一棵, 一行能栽多少棵?7、有一条长1250米的公路,在公路的一侧从头到尾每隔25米栽一棵杨树,园林部门需要运来多少棵杨树?8、一条走廊长24米,每隔3米放一盆花,走廊两端都要放。
一共要放多少盆花?9、社区要在300米的道路两侧安装路灯,每隔10米安装一盏(两端都安),一共需要多少盏路灯?10、学校要在60米跑道两侧插上红旗,每隔5米插一面(两端都插),一共需要准备多少面红旗?11、一条路长1000米,在这条路的一旁安路灯,村头村尾都不装,每隔20米安装一盏,一共需要多少盏路灯?12、沿着100米的小路的一边栽树,每隔5米栽一棵(一端栽一端不栽),应该栽多少棵?13、一条路长1000米,在路的一旁安装路灯,每隔20米安装一盏(一端安另一端不安),一共需要准备多少盏路灯?14、沿着60米的小路两边栽树,每隔10米栽一棵(一端栽一端不栽),应该栽多少棵?15、环卫工人要在3千米的公路两旁安放垃圾桶(一端安一端不安),每150米安放一个,一共需要多少个垃圾桶?17、.教室的走廊长18米,如果沿一侧每隔3米放一盆花(两端不放),需要多少盆花?18、学校开运动会,要在跑道的一边插上红旗.每5米插一面,50米的跑道要插多少面?(两端都要插)19、一座公路桥长1800米.在桥的一侧,从桥头到桥尾,每隔50米装一个路灯.一共要装多少个路灯?二、求间距:1、红领巾公园内一条林荫大道全长800米,在它的一侧从头到尾等距离地放着41个垃圾桶,每两个垃圾桶之间相距多少米?2、在一条绿荫大道的一侧从头到尾坚电线杆,共用电线杆86根,这条绿荫大道全长1700米。
五上数学植树问题(封闭图形)
1、48名学生在操场上做游戏。
大家围成一个正方形,每边人数相等。
四个顶点都有人,每边各有几名学生?(48+4)÷4=13(人)答:每边各有13名学生。
2、陈庄小学有一个长60米、宽40米的小操场,四个顶点都种有一棵树,长边上每隔10米种一棵,宽边上每隔8米种一棵。
操场四周一共种树多少棵?60÷10×2+40÷8)×2-4=18(棵)答:操场四周一共种树18棵。
3、在一个周长为1600米的水库四周,每隔8米种一棵杨树,后来又在两颗杨树中间等距离种了两颗柳树。
问水库四周一共种了多少棵树?1600÷8×2=400(棵)答:水库四周一共种了400棵树。
4、沿一个长50米、宽30米的长方形鱼塘每隔5米种一棵树,一共能种多少棵树?长方形周长:(50+30)×2=160(米)棵树:160÷5=32(棵)答:一共能种32棵树。
5、王大爷在正方形鱼池边上种树,每边等距种树10棵,(四个角都要种树),每辆棵之间相距4米。
鱼池的周长是多少米?(10×4-4)×4=144(棵)答:鱼池的周长是144米。
6、圆湖的周长1350米,在湖边相隔9米种柏树一棵,在两棵柏树之间种2棵桃树,两棵桃树之间的距离是多少米?9÷(2+1)=3(米)答:两棵桃树之间的距离是3米。
7、在一个湖的周围每隔4米种一棵柳树,一共种了180棵。
在相邻的两棵柳树间每隔2米种一棵柏树,一共种多少棵柏树?180×(4÷2-1)=180(棵)答:一共种180棵柏树。
8、沿着周长是240米的圆形花坛每隔6米栽一棵丁香树,再在每相邻的两株丁香树之间等距离地栽2株月季,一共能栽多少棵丁香树?一共能栽多少株月季?两棵相邻的丁香树之间的2株月季相距多少米?丁香花(封闭图形):周长÷间距=240÷6=40(株)月季花(在丁香花的每个间隔中):40×2=80(株)2 株月季花相距:6÷(2+1)=2(米)。
人教版五年级数学上册 植树问题 讲义
植树问题(一)例1、五年(1)班的同学在一条全长50米的小路的一边植树,每隔5m栽一棵(两端都植),一共要栽几棵树?例2、看下列例子,你能总结出植树问题的公式吗?(1)全长50米的小路,每隔5m栽一棵树(两端都植),一共要值_____棵树。
(2)全长50米的小路,每隔5m栽一棵树(只植一端),一共要值_____棵树。
(3)全长50米的小路,每隔5m栽一棵树(两端都不植),一共要值_____棵树。
总结:在一条线段上植树:(1)两端都植:棵数=全长÷间隔+1(2)只植一端:棵数=全长÷间隔(3)两端都不植:棵数=全长÷间隔-1例3、园丁沿一段长246米的公路一侧植树,一共种了36棵,两端要种。
则每两棵树之间的距离是________米。
例4、湖边种着一排柳树,每两棵树之间相距12米。
小华从第一棵跑到第300棵,一共跑了________米。
例5、学校有一条长60m的走道,计划在道路一旁栽树,每隔5m栽一棵。
如果两端都不栽,共需要________棵树。
以上例子都属于“单边植树”的情况,如果是双边植树,则要在单边植树对应的公式的基础上×2。
例6、学校有一条长80m的走道,计划在道路两旁栽树,每隔8m栽一棵。
如果两端都不栽,共需要________棵树。
植树问题可不止用在“植树”上,在其它方面也会用到哦。
例7、24数到31,有______个整数。
例8、24与31之间,有______个整数。
例9、将一根木棒锯成4段需要6分钟,则将这根木棒锯成6段需要()分钟.例10、小红家在12楼,她从1楼走到5楼,用了200秒。
如果用同样的速度,小红走到自己家所在楼层还要()秒。
例11、把一根长为1.5米的棒子用锯截成0.3米的小段,每切一刀需要4分钟,那么截完整根棒子需要()分钟。
例12、在路边安装电线杆,每两根电线杆之间相距10米,从第一根到最后一根电线杆一共长100米,一共安装了( )根。
小学五年级植树问题
五年级上册数学植树问题1、 只载一端(封闭线路植树问题)如图: 间隔数=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长2、 两端都载:如图: 间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长3、 两端都不载如图:间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长基础知识为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
非封闭线的两端都有“点”时,“点数”=“段数”+1。
例题一 一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?举一反三1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
这列车队共排列了多长?题型二非封闭线只有一端有“点”时,“点数”=“段数”。
例题肖林家门口到公路边有一条小路,长40米。
肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?题型三非封闭线的两端都没有“点”时,“点数”=“段数”-1。
例题两座楼之间相距20米,每隔4米种一棵树,一共能种几棵树?举一反三1、同学们沿着一段公路的一侧栽树,每隔5米栽一棵树,从公路的一端到另一端共栽了155 棵树(两端都不栽),这段公路有多长?封闭线上,“点数”=“段数”。
五年级上册数学广角-植树问题
首尾封闭曲线上栽树
棵树=间隔数
做一做
1、在一条全长2km的街道两旁 装路灯(两端也要安装),每隔 50m安一盏。一共要安装多少盏 路灯?
做一做
2、小明家门前有一条35m的小 路,绿化队要在路旁栽一排树。 每隔5m栽一棵树(一端栽,一端头长10m,要把它平 均分成5段。每锯下一段需要8分 钟,锯完一共要花多少分钟?
变式练习
4、小张要到金鹰大厦的18层去 上班,一日因停电,他步行上楼。 他从一层到6层用了100秒,如果 用同样的速度,走到18层,还需 要多少秒?
做一做
3、圆形滑冰场的一周全长是 150m。如果沿着这一圈每隔 15m安装一盏灯,一共需要装 几盏灯?
变式练习
1、园林工人沿一条笔直的公路 一侧植树,每隔6m种一棵,一共 种了36棵。从第一棵到最后一棵 的距离有多远?
变式练习
2、广场上的大钟5时敲了5下,8 秒钟敲完。12时敲响12下,敲完 需要多长时间?
五年级上册数学植树问题
5、在一条50米长的马路的一边种树,每隔5米种1棵树。如果两端都不种树,一共需要种多少棵树?
植树的间隔是50÷5=10(个),
由于两端都不种树,所以植树的棵数为10-1=9(棵)
列式计算为,50÷5-1=9(棵)
6、一根木头长12m,要把它平均锯成5段,每锯下一段要5分钟,锯完一共要花多少分钟?
(5-1)×5=20(分)
7、学校实验楼与教学楼之间的小路全长80m,学校计划在小路两边每隔4m栽一棵剑兰(两端不栽),一共要栽多少棵?
(80÷4-1)×2=38(棵)
8、一根绳子剪了6次,每段都是3米,这根绳子原来有多少米长?
这根绳子原来有:3×(6+1)=21(米)
9、大象馆和狮子馆之间有一条笔直的小路.在两馆之间的小路两旁,每隔4米栽一棵海棠树(两端都不栽),一共能栽48棵,那么大象馆和狮子馆之间相距多少米?
1、如图,要在公园与动物园之间的马路两旁植树(两端都不栽),每两棵树之间相距5m,一共要植多少棵树?
马路一旁有间隔:400÷5=80(个),
因为马路两端都不植树,棵数=间隔数-1,
所以一旁植树:80-1=79(棵),
则马路两旁一共植树:79பைடு நூலகம்2=158(棵)
2、某小区要在25号楼和28号楼之间每隔4米栽一棵桂花树(两端都不栽),一共栽了12棵,25号楼和28号楼相距多远?
48÷2=24(棵)
24+1=25(个)
25×4=100(米)
4×(12+1)=52(米)
3、一条笔直的公路一旁原有电线杆46根,它们的间隔是12m,现在要改为只架设25根电线杆(两端的杆子不动),间隔应改为多少米?
12×(46-1)÷(25-2+1)=22.5(m)
五年级数学上册-第七章 数学广角--植树问题(知识梳理 同步测试)版(含解析)
2020-2021学年五年级数学上册暑假预习与检测衔接讲义第七章数学广角--植树问题【知识点归纳】1、方法:化大为小或化繁为简,画图,列表,再总结应用2、植树问题:(1)、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1(类似问题有:竖电线杆,两端插旗......)(2)、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1(类似问题有:锯木头,剪铁丝......)(3)、一端栽一端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数;间隔数=棵数(类似问题有:敲钟听声,上楼时间.....)3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数4、方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4;单边边长=(最外层数目+4)÷4整个方阵的总数目是:边长×边长5、封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数。
6、过桥问题:总长=车身长+车间距×车间隔数+桥(路长)速度=总长÷时间7、出租车计费(信件邮资、洗照片)等问题。
计算时分成两部分。
(1)标准部分。
已经知道总价的,不再计算,不知道总价需计算。
(2)超出部分。
超出数量×超出单价。
最后相加。
【例题精讲】【例1】有一个长120m,宽60m的游状池,先要在离池边4m外围(也是一个长方形)圈上每4m种一棵树,需要()棵树苗.A.45B.46C.90D.98【分析】先把长加上8m,宽加上8m,求出植树长方形的长和宽;再根据长方形的周长公式:C=(a+b)×2,求出它的周长,再除以它的间隔距离4即可.【解答】解:120+4×2=128(m)60+4×2=68(m)(128+68)×2÷4=196×2÷4=98(棵)答:一共需要98棵.故选:D.【点评】围成封闭图形植树时,封闭图形的周长除以间隔距离就是植树棵数,还要注意本题中植树长方形的长和宽要加上两个4m.【例2】把一根长4米的圆木平均锯成3段,每段长米.如果每锯一次要30秒,那么锯完共要60秒.【分析】把一根长4米的圆木平均锯成3段,用木头的总长度除以平均分成的段数,即可求出每段的长度;锯成3段需要锯2次,用锯一次的时间乘2,就是锯完需要的总时间.【解答】解:4÷3=(米)30×(3﹣1)=30×2=60(秒)答:每段长米.如果每锯一次要30秒,那么锯完共要60秒.故答案为:,60.【点评】本题考查了除法平均分的意义,以及锯木头的问题:锯的次数=锯成的段数﹣1.【例3】叔叔把一根木头锯成三段要6分钟,那么将同样的木头锯成9段需要18分钟.×(判断对错)【分析】一根木头锯成3段,锯了:3﹣1=2次,共用了6分钟,那么锯一次用:6÷2=3(分钟);锯成9段,锯了:9﹣1=8次,要用:3×8=24(分钟);据此解答.【解答】解:3﹣1=2(次)9﹣1=8(次)6÷2×8=3×8=24(分钟)即锯成9段需要24分钟,所以原题说法错误.故答案为:×.【点评】本题考查了植树问题,知识点是:锯的次数=段数﹣1;知识链接(沿直线上栽):栽树的棵数=间隔数﹣1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端).【例4】一堆砂石有吨,一辆货车运了12次才运完.平均每次运多少吨?【分析】由题意,用总质量除以运的次数即得平均每次运多少吨.【解答】解:÷12=(吨)答:平均每次运吨.【点评】此题考查了小数除法的意义及运用.【例5】在720米长的公路两旁从头到尾栽树,每相邻两棵树之间距离是6米,这条公路上一共要栽多少棵树?【分析】这是一个植树问题,要从两方面考虑:一是两端都要植,棵数=间隔数+1,二是两旁都要植,总棵数=一旁的棵数×2;间隔数是:720÷6=120(个),每侧有树:120+1=121(棵),两旁共有121×2=242(棵);据此解答.【解答】解:720÷6=120(个)120+1=121(棵)121×2=242(棵)答:这条公路上一共要栽242棵树.【点评】本题要考虑实际情况,属于在直线上两端都要栽的植树问题,知识点是:栽树的棵数=间隔数+1;知识链接(沿直线上栽):栽树的棵数=间隔数﹣1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端).【同步检测】一.选择题(共10小题)1.绕一个周长为30m的圆形花坛,每隔2m放一盆花,一共要放()盆花.A.14B.15C.162.一根钢筋,每4分米锯成一段,锯了4次,正好锯完.这根钢筋的长是()A.16分米B.20分米C.20厘米3.同学们在学校走廊的一旁摆了17盆鲜花,每两盆花之间的间隔为5米,摆完后觉得不好看,于是两盆花之间的间隔改为2米,还需要增加鲜花()盆.A.24B.23C.404.张叔叔要对一段公路进行维修,将4个圆锥形路障排成一排,每个圆锥底面直径是20cm,每两个路障间的距离是1m,从第一个路障到第四个共排了()A.83cm B.C.5.教学楼每一层有24个台阶,老师从一楼上楼去某教室,共走了72个台阶.老师是去第()层的教室.A.2B.3C.46.在一条长为50米的小路一侧安装路灯,每隔10米安装一盏,至少要安装()盏.A.4B.5C.67.体育小组10名男生排成一队跑步,每两人间的距离为2m,他们的队伍长()m.A.20B.18C.168.奥康步行街长300m,在街的一边每隔20m挂一个红灯笼(两端都挂),一共挂了()个红灯笼.A.15B.16C.179.将1m长的铁丝截成1dm长的小段,要截()次.A.8B.9C.10D.1110.小学生广播操队列中,其中一列纵队26m,相邻两个学生之间的距离是2m.这列纵队一共有()个学生.A.12B.13C.14二.填空题(共8小题)11.一根长10m的木头,锯成每段长2m的短木头,要锯次.12.马路一边栽了18棵银杏树,如果每两棵银杏树中间栽一棵桂花树,一共要栽棵桂花树.13.有一块三角形地,在它的边上栽树.如果三边长分别为120m、150m、80m,三个顶点处都要栽,三条边上每隔10m栽一棵树,那么共栽树棵.14.把一根圆木锯成5段,每锯一次要用时3分钟,锯完这根圆木共需要分钟.15.李叔在一正方形鱼池边上植树,每边等距离植树8棵(四个角都植有树),每两棵树之间相距米,鱼池的周长是米;某仓库堆放了一批圆木,共10层,第一层3根,每往下一层多一根.这堆圆木一共有根.16.为了庆祝国庆节,要在一条384米长的道路两侧摆放鲜花(两端都摆),每隔12米摆一盆,需要准备盆鲜花.17.世纪公园一条甬道长200米.在甬道的两旁等距离栽种月季(两端都栽),共栽种82棵,每两棵月季相距米.18.李强把7个贝壳放在地上摆成一行,每两个之间的距离是5cm,则第1个到第7个贝壳的距离是cm.三.判断题(共5小题)19.一根木料,8分米锯一段,6次正好锯完.这根木料长56分米.(判断对错)20.●和▲一个隔一个排成一行,如果●有16个,▲最多有16个.(判断对错)21.12名学生排成一排,每相邻两人间隔1米,这排队伍长12米.(判断对错)22.在一条马路的一侧栽了100棵树,每2棵树相距2米,则这条马路长200米..(判断对错)23.有一根钢管长24米,锯成3米的小段,需要锯8次..(判断对错)四.应用题(共8小题)24.在一段公路的一边种树,每隔3米种一棵(两端都种),一共种了233棵.这段公路长多少米?25.在科学课上,同学们做一个水温随时间变化的实验.每个小组倒一杯开水,每隔2分钟测量1次温度并做记录,如果第1次测量是10:40,那么第6次测量是什么时候?26.12路公交车每天最早一班5:30开出,然后每隔10分钟发出一班,最后一班晚上7:30开出.12路公交车每天共发车多少个班次?27.苹苹家在七楼,她从一楼走到二楼一共用了9秒,如果每层楼的阶梯数都一样,那么照这样的速度,她1分钟内能从一楼走到家吗?28.为了庆祝麦斯小学的运动会圆满结束,运动会结束后举行了花车表演.参加表演的一列彩车车队共30辆,每辆车长4米,前后两辆车相隔5米,这列彩车车队一共排列了多长?29.18路公共汽车行驶路线全长18km,相邻两站之间的路程都是.一共设有多少个车站?30.王叔叔要把一根长10米的钢管锯成2米长的小段,每锯一小段要用22秒,全部锯完需要用多少秒?31.依依用彩纸制作了一条花边,一共排列了9朵花.每朵花的宽是,每两朵花之间的距离是.你能算出这条花边一共长多少厘米吗?参考答案与试题解析一.选择题(共10小题)1.【分析】围成圆圈摆放花盆,花盆数=间隔数,由此求出30m里有几个2m的间隔,就有几盆花.【解答】解:30÷2=15(盆)答:一共要放15盆花.故选:B.【点评】此题属于围成圆圈植树问题,植树棵数=间隔数.2.【分析】锯了4次,可以锯成4+1=5段,每段长4分米,再乘4即可解答.【解答】解:(4+1)×4=5×4=20(分米)答:这根钢筋长20分米.故选:B.【点评】抓住锯木头问题中:锯成的段数=锯的次数+1,即可解答.3.【分析】17盆鲜花,间隔数是17﹣1=16,然后再乘5求出总长度,再除以2求出间隔数,然后加上1求出现在的盆数,再与17作差即可.【解答】解:5×(17﹣1)÷2+1=80÷2+1=41(盆)41﹣17=24(盆)答:还需要增加鲜花24盆.故选:A.【点评】如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.4.【分析】从第一个路障到第4个路障,一共有3个间距;那么第一个路障到第四个路障的长度=圆锥路障底面直径×圆锥形路障的个数+间距×3,依此代入数据计算即可求解.【解答】解:20厘米=米×4+1×(4﹣1)=×4+1×3=+3答:第一个路障到第四个共排了米.故选:C.【点评】本题可以看成两端都栽的植树问题:间隔数=植树棵数﹣1,由此求解.5.【分析】把楼层与楼层之间的24个台阶看做1个间隔;先求得一共走过了几个间隔:72÷24=3,一楼没有台阶,所以老师走到了1+3=4层.【解答】解:72÷24+1=3+1=4(层)答:老师是去第4层的教室.故选:C.【点评】因为1楼没有台阶,所以楼层数=1+间隔数.6.【分析】先求出50米小路一侧的路灯盏数;路灯盏数=间隔数+1,由此只要求的间隔数即可解答.【解答】解:50÷10+1=5+1=6(盏)答:至少要安装6盏.故选:C.【点评】如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.7.【分析】10名男生排成一队,那么就有10﹣1=9个间隔,再乘间距,由此即可解决问题.【解答】解:10﹣1=9(个)9×2=18(米)答:他们的队伍长18m.故选:B.【点评】此题可以按照植树问题中的两端都栽的情况:间隔数=植树棵树﹣1.8.【分析】先求出300里面有几个20,即求出间隔数,再用间隔数加1求出一侧挂灯笼的个数.【解答】解:300÷20+1=15+1=16(个)答:一共挂了16个红灯笼;【点评】本题问题原型是考查植树问题,植树问题中,两端都要栽的情况:植树棵数=间隔数+1.9.【分析】根据除法的意义,用这根铁丝的长度除以每段的长度就是平均分成的段数,段数减1就是截的次数.【解答】解:1米=10分米10÷1=10(段)10﹣1=9(次)答:要截9次.故选:B.【点评】如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数﹣1.10.【分析】根据题意,26米长的队伍,相邻两个学生之间的距离是2米,有26÷2=13个间隔,再加上1人,就是这路纵队的人数.【解答】解:26÷2+1=13+1=14(人)答:这列纵队一共有14个学生.故选:C.【点评】本题关键是求出这路纵队的间隔数.二.填空题(共8小题)11.【分析】用10除以2求出锯的段数,然后再减去1就是锯的次数,解答即可.【解答】解:10÷2=5(段)5﹣1=4(次)答:要锯4次.故答案为:4.【点评】锯木头问题中,抓住锯的次数=锯出的段数﹣1,由此即可解答.12.【分析】根据题意知道在马路一边栽了18棵银杏树,所以有18﹣1个间隔,而每两棵银杏树中间栽一棵桂花树,即每个间隔中间栽一棵桂花树,由此得出答案.【解答】解:18﹣1=17(棵)答:一共要栽17棵桂花树.故答案为:17.【点评】关键是知道在每两棵银杏树中间栽树,也就是在间隔处栽树,再根据间隔数=树的棵数﹣1即可得出答案.13.【分析】因为三角形是一个封闭的图形,在三边上栽树,每隔10米栽一棵树,植树棵数=间隔数,所以要载(120+150+80)÷10棵树.【解答】解:(120+150+80)÷10=350÷10=35(棵)答:共栽树35棵.故答案为:35.【点评】此题属于围成圆圈植树问题,植树棵数=间隔数.14.【分析】首先求得一根圆木锯成5段需要的次数:5﹣1=4次,再利用锯一次需要的时间乘次数,进一步求出总共所需时间即可.【解答】解:3×(5﹣1)=3×4=12(分钟)答:锯完这根圆木共需要12分钟.故答案为:12.【点评】此题的关键是明确锯成的段数与次数之间的关系:锯成的次数=锯的段数﹣1,依此结合其它条件解决问题.15.【分析】(1)根据植树问题公式,先计算李叔植树的棵数:8×4﹣4=28(棵),然后根据植树棵数=间隔数,计算鱼池的周长:×28=98(米);(2)根据题意,把第一层的根数看作梯形的上底,最下层的根数看作梯形的下底,层数看作梯形的高,由梯形的面积公式:S=(a+b)×h÷2,把数代入可以求出结果.【解答】解:(1)8×4﹣4=32﹣4=28(棵)28×=98(米)答:鱼池的周长是98米.(2)10+3﹣1=12(根)(12+3)×10÷2=150÷2=75(根)答:这堆圆木一共有75根.故答案为:98;75.【点评】本题主要考查植树问题,关键分清植树棵数与间隔数的关系.16.【分析】根据“间隔数=总距离÷间距”可以求出花盆的间隔数,列式为:384÷12=32(个),由于两端都放,盆数=间隔数+1,所以,一侧共放花盆32+1=33(盆),然后再乘2就是两侧的总盆数;据此解答.【解答】解:384÷12+1=32+1=33(盆)33×2=66(盆)答:需要准备66盆鲜花.故答案为:66.【点评】本题考查了植树问题,知识点是:植树的棵数=间隔数+1(两端都栽),间隔数=总距离÷间距.17.【分析】先算出一旁的棵数:82÷2=41,两端都要栽,所以一共有41﹣1=40个间隔,把200米平均分成40份,用除法即可求出每相邻两棵之间相距多少米.【解答】解:200÷(82÷2﹣1)=200÷40=5(米);答:每两棵月季相距5米.故答案为:5.【点评】本题考查了植树问题,知识点是:植树的棵数=间隔数+1(两端都栽);知识链接(沿直线上栽):栽树的棵数=间隔数﹣1(两端都不栽),植树的棵数=间隔数(只栽一端).18.【分析】因为7个贝壳放在地上摆成一行,中间有7﹣1=6个间隔,每两个之间的距离是5米,用5×6即得第1个到第7个的距离是多少米,据此解答即可.【解答】解:7﹣1=6(个)5×6=30(米)答:第1个到第7个的距离是30米.故答案为:30.【点评】解决本题的关键是明确站成一行间隔比总数少1.三.判断题(共5小题)19.【分析】锯了6次,可以锯成6+1=7段,每段长8分米,再用每段的长度乘7即可求出这根木料的总长度,再与56分米比较即可判断.【解答】解:8×(6+1)=8×7=56(分米)这根木料长56分米,原题说法正确.故答案为:√.【点评】抓住锯木头问题中:锯成的段数=锯的次数+1,即可解答.20.【分析】有两种排法:第一种:先排圆,再排三角形,●▲●▲●▲…,一个圆一个三角形间隔排列,如果圆的后面没有三角形,则有16﹣1个三角形,如果圆后面有三角形,则有16个三角形;第二种排法:先排三角形再排圆,▲●▲●▲…,一个三角形,一个圆间隔排列,如果圆的后面没有三角形,则有16个三角形,如果圆后面有三角形,则有16+1个三角形;据此得解.【解答】解:●和▲一个隔一个排成一行,如果●有16个,▲最多有16+1=17(个)原题说法错误.故答案为:×.【点评】据题干分析,得出这组图形的排列规律是解决此类问题的关键.21.【分析】12名学生排成一排,那么就有12﹣1=11个间隔.每相邻两人间隔1米,这排队伍长11×1米,由此判断.【解答】解:(12﹣1)×1=11×1=11(米)这排队伍长11米,不是12米,原题说法错误.故答案为:×.【点评】本题考查了两端都栽的植树问题:间隔数=植树棵数﹣1.22.【分析】因为间隔数=树的棵数﹣1,所以先求出马路边树的间隔数,再乘2即可求出马路的长,据此即可判断.【解答】解:(100﹣1)×2=99×2=198(米)答:马路的长是198米.故答案为:×.【点评】本题主要考查了间隔数=树的棵数﹣1,再根据基本的数量关系解决问题.23.【分析】有一根钢管长24米,锯成3米的小段,则锯了24÷3=8段,则锯了8﹣1=7次,据此判断即可.【解答】解:24÷3=8(段),则锯了8﹣1=7次,故答案为:×.【点评】在此类有关锯木的题目中,锯的次数=锯的段数﹣1.四.应用题(共8小题)24.【分析】根据题干先求出间隔数,一共有233﹣1=232个,再乘3即可求出路的全长.【解答】解:(233﹣1)×3=232×3=696(米)答:这段公路全长696米.【点评】此题考查了植树问题中两端都要栽的情况:植树棵数=间隔数+1.25.【分析】由题意可知,此题属于两端都栽的植树问题,从第1次测量到第6次测量共有6﹣1=5个时间间隔,每个间隔是2分钟,2×5=10,从10:40开始经过10分钟就是第6次测量的时间.【解答】解:6﹣1=5(个)2×5=10(分钟)10时40分+10分=10时50分答:第6次测量的时间是10:50.【点评】本题考查了植树问题,知识点是:时间间隔数=测量次数﹣1;知识链接(沿直线上栽):栽树的棵数=间隔数﹣1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端).26.【分析】从5:30开出到晚上7:30开出共经过了14小时,那间隔数是14×60÷10=84个,加上开始的一班车,共有84+1=85个班次,据此解答即可.【解答】解:晚上7:30就是19时30分19时30分﹣5时30分=14小时14×60÷10+1=84+1=85(个)答:12路公交车每天共发车85个班次.【点评】本题属于植树问题,在线段上的植树问题可以分为以下三种情形.1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数.3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数﹣1.27.【分析】根据题意,把楼层与楼层之间的台阶看做1个间隔;先求得一共走过了几个间隔:苹苹从一楼走到二楼,需要上2﹣1=1(个)间隔;从一楼到七楼,需要走7﹣1=6(个)间隔,所以需要时间:9÷1×6=54(秒),与1分钟进行比较即可.【解答】解:9÷(2﹣1)×(7﹣1)=9÷1×6=54(秒)54秒<1分钟答:她1分钟内能从一楼走到家.【点评】本题注意考查植树问题,关键注意间隔数与楼层数的关系.28.【分析】30辆汽车组成一个车队,间隔数为:30﹣1=29个,车之间的空长为:5×29=145米,30辆车身的长为:4×30=120米,然后把车之间的空长加30辆车身的总长就是这个车队的全长,列式为:145+120=265米,据此解答.【解答】解:5×(30﹣1)+4×30,=145+120,=265(米)答:这个车队全长265米.【点评】这道题考查了植树问题的灵活应用,本题的难点是先求出30辆汽车组成的这个车队的空长多少米,然后加上车身的总长即可;知识点是:间隔数=辆数﹣1,距离=间距×间隔数.29.【分析】根据题意可知,本题属于植树问题,根据公式:如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.所以先计算18千米有多少米的间隔:18÷=12(个),所以一共设有12+1=13(个)车站.【解答】解:18÷+1=12+1=13(个)答:一共设有13个车站.【点评】本题主要考查植树问题,关键分清间隔数与车站个数的关系.30.【分析】根据题干,把10米长的钢管,锯成每2米长一小段,可以锯成10÷2=5段,锯成5段,需要锯5﹣1=4次,再用锯一次的时间22秒乘4次,即可求出全部锯完需要用多少秒.【解答】解:10÷2=5(段)(5﹣1)×22=4×22=88(秒)答:全部锯完需要用88秒.【点评】本题考查了植树问题,知识点是:锯的次数=段数﹣1.31.【分析】9朵花它们之间就有9﹣1=8个空隙,用乘法求出花的总长度和空隙的总长度再加在一起即可.【解答】解:9×+(9﹣1)×=9×+8×=+=(厘米)答:这条花边一共长厘米.【点评】本题需要注意两朵花之间的空隙数比花的数量少1.。
五年级数学上册必考植树问题,解题公式及例题汇总
五年级数学上册《植树问题》公式+应用题解析1、只栽一端(封闭线路植树问题)如图:或间隔数=棵树间隔长×间隔数=全长全长÷间隔长=间隔数全长÷间隔数=间隔长2、两端都栽:如图:间隔数+1=棵树间隔长×间隔数=全长全长÷间隔长=间隔数全长÷间隔数=间隔长全长÷间隔长+1=棵数全长÷(棵树-1)=间隔长3、两端都不栽如图:间隔数-1=棵树间隔长×间隔数=全长全长÷间隔长=间隔数全长÷间隔数=间隔长全长÷间隔长-1=棵数全长÷(棵树+1)=间隔长1、学校要在五边形的水池边摆上花盆,使每边都有9盆花,五个角都摆,需要几盆花?解:(9﹣1)×5=8×5=40(盆)答:需要40盆花。
2、政府要在一条长480米的道路间种树,每隔3米种一棵(两端都种树),一共能种多少棵树?解:480÷3+1=160+1=161(棵)答:一共能种161棵树。
3、滨海公园内一条林荫大道全长600米,在它的一侧从头到尾每隔50米放一个垃圾桶,一共需要多少个垃圾桶?600÷50+1=12+1=13(个)答:一共需要13个垃圾桶。
4、有一段路长720米,在路的一边每间隔3米种1棵树。
问这样可以种多少棵树?解:根据棵数=全长÷间隔+1的关系,可得:720÷3+1=240+1=241(棵)答:可以种241棵树。
5、在某城市一条柏油马路上,从始发站到终点站共有14个车站,每两个车站间的平均距离是1200米。
这条马路有多长?解:根据全长=间隔×(棵数-1)的关系,可得:1200×(14-1)=1200×13=15600(米)答:这条马路长15600米。
6、要在612米长的水渠的一岸植树154棵。
每相邻两棵树间的距离是多少米?解:根据“间隔=全长÷(棵数-1)”的关系,可得:612÷(154-1)=612÷153=4(米)答:每相邻两棵树间的距离是4米。
第3课时 植树问题(3)五上数学人教版大单元教学课件
环节四
通过这节课的学习, 你有什么收获?
环节二
3 张伯伯准备在圆形池塘周围 栽树。池塘的周长是120m, 如果每隔10m栽一棵,一共 要栽多少棵树?
从题这目个中问你题知与道前了面什学么习?的要有解什决 的问么题不是同什?么?
3 张伯伯准备在圆形池塘周围 栽树。池塘的周长是120m, 如果每隔10m栽一棵,一共 要栽多少棵树?
自学提示: 前面我们都是通过画图来解决问题的,这道题你们能用 同样的方法解决吗?试一试。
3 张伯伯准备在圆形池塘周围 栽树。池塘的周长是120m, 如果每隔10m栽一棵,一共 要栽多少棵树?
画图分析:
假设周长是40m, 能栽4棵树。
如果把圆拉直成线段,你能发现什么?
我发现间隔数与 棵数相等。
相当于在直线上一 端栽,一端不栽。
3 张伯伯准备在圆形池塘周围 栽树。池塘的周长是120m, 如果每隔10m栽一棵,一共 要栽多少棵树?
棵数=间隔数 120÷10=12(棵)
答:一共要栽12棵树。
环节三
基础 性作业
1.圆形滑冰场的周长是150m。如果沿着冰场一周每隔 15m安装一盏灯,一共需要安装几盏灯?(教材P106 做一做)
150÷15=10(盏) 答:一共需要安装10盏灯。
2. 一条项链长60cm,每隔5cm有一颗水晶。这条项链上 共有多少颗水晶?(教材P108 练习二十四T11)
60÷5=12(颗) 答:这条项链上共有12颗水晶。
发展 性作业
3. 小区花园是一个长60m、宽40m的长方形。现在要在花 园四周栽树,四个角上都要栽,每相邻两棵间隔5m。 一共要栽多少棵树?(教材P108 练习二十四T12)
五年级上册数学植树问题公式题目
植树问题是一个非常常见的数学问题,主要涉及到的是一些基本的数学公式和计算。
下面我将给你提供一些关于植树问题的公式及相关题目,希望能对你的学习有所帮助。
一、植树问题的公式1.植树公式假设有N棵树,每两棵树之间的距离为d,那么全程共需要走的距离可以用以下公式表示:总距离=第一棵树到第二棵树的距离+第二棵树到第三棵树的距离+...+第N-1棵树到第N棵树的距离=(N-1)d2.植树面积公式假设每棵树的种植面积为A,那么N棵树的总占地面积可以用以下公式表示:总面积=N×A3.植树树籽数量公式假设每棵树需要k颗树籽,那么N棵树需要的总树籽数量可以用以下公式表示:总树籽数量=N×k二、植树问题的题目1.题目一小明计划在周围的街道上种树,他计划按照每棵树之间相隔5米的距离种树,并且共计种植100棵树。
请帮助小明计算,他一共需要走多少米。
解答:根据植树公式,总距离=(N-1)d=(100-1)×5=495米。
所以小明一共需要走495米。
2.题目二小学计划在学校内的空地上种植树木,每棵树木平均占地面积为2平方米。
如果他们计划种植50棵树,那么这些树共需要占地多大面积?解答:根据植树面积公式,总面积=N×A=50×2=100平方米。
所以这些树共需要占地100平方米。
3.题目三城市计划在一条街道上种植树木,假设每棵树需要10颗树籽。
他们计划在该街道上种植120棵树,那么他们一共需要多少树籽?解答:根据植树树籽数量公式,总树籽数量=N×k=120×10=1200颗。
所以他们一共需要1200颗树籽。
以上就是关于五年级上册数学植树问题的公式及相关题目。
希望这些内容能帮助你更好地理解和应用植树问题。
如果有需要,还请继续向我提问。
五年级数学上册第七单元《植树问题》重难点
第七单元《植树问题》重难点
知识点一:植树问题
1、方法:化大为小或化繁为简,画图,列表再总结应用。
2、(1)两端要栽
棵数=总长÷间距+1;
总长=(棵数-1)×间距
间隔数=总长÷间距(类似题:竖电杆、两端插旗)
(2)两端不栽
棵数=总长÷间距-1;
总长=(棵数+1)×间距
间隔数=总长÷间距(类似题:锯木头、剪铁丝)
(3)一端栽一端不栽
棵数=总长÷间距;
总长=间距×棵数
间隔数=总长÷间距(类似题:敲钟听声、上楼时间)3、封闭的图形植树(例如围成一个圆形、椭圆形)
棵数=总长÷间距总长=间距×棵数
棵数=间隔数
第七单元《植树问题》重难点
知识点二:公式拓展
1、锯木问题
段数=次数+1;次数=段数-1;
总时间=每次时间×次数
2、方阵问题
最外层的数目是:单边数目×4-4或(单边数-1)×4,单边边长=(最外层数目+4)÷4
整个方阵的总数目是:边长×边长
3、过桥问题
总长=车身长+车间距×车间隔数+桥(路长)
速度=总长÷时间过桥时间=(车长+桥长)÷车速4、出租车计费(信件邮资、洗照片)等问题
计算时分成两部分:
(1)标准部分。
已经知道总价的,不再计算不知道总价需计算。
(2)超出部分。
超出数量×超出单价。
最后相加。
(完整版)小学五年级植树问题
五年级上册数学植树问题1、 只载一端(封闭线路植树问题)如图: 间隔数=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长2、 两端都载:如图: 间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长3、 两端都不载如图:间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长基础知识为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
非封闭线的两端都有“点”时,“点数”=“段数”+1。
例题一 一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?举一反三1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?或2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
这列车队共排列了多长?题型二非封闭线只有一端有“点”时,“点数”=“段数”。
例题肖林家门口到公路边有一条小路,长40米。
肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?题型三非封闭线的两端都没有“点”时,“点数”=“段数”-1。
例题两座楼之间相距20米,每隔4米种一棵树,一共能种几棵树?举一反三1、同学们沿着一段公路的一侧栽树,每隔5米栽一棵树,从公路的一端到另一端共栽了155 棵树(两端都不栽),这段公路有多长?封闭线上,“点数”=“段数”。
五年级上册数学植树问题100道株距×行距
五年级上册数学植树问题100道株距×行距
1.两座楼之间相距48米,每隔6米栽一棵雪松,两座楼房之间一共能栽多少棵?
2.一条330米长的直道两旁,每隔3米插一面彩旗,如果只插一端,一共需要多少面彩旗?
3.庆元旦,学校在操场的一边摆了76盆鲜花,每两盆之间的距离是4米.如果不动两端的鲜花,现在要再多摆25盆,每两盆鲜花之间的距离应缩小多少米?
4.一条林荫道长18米,在路的一旁从一端到另一端每隔2米放一盆花,一共安放多少盆花?
5.小芳走楼梯,从一楼到二楼用了9秒,若每层楼之间楼梯数相同,她用同样的速度上到七楼,需要多长时间?
6.小明从1楼走到3楼要18秒.那么小明从1楼走到6楼,要走多少秒?那么,
54秒小明从1楼能走到几楼?
7.在路的一侧从头至尾栽树,每隔9米栽一棵,共裁了100棵,这条路有多长?
8.10路公共汽车行驶路线全长16千米,相邻两站距离是800米.一共有多少个车站?
9.体育课上,四(1)班36个同学围成一个圆圈做游戏.每相邻两个同学之间的距离都是2米,这个圆圈的周长是多少米?
10.同学们做操,某竖行从第一人到最后一人的距离是24米,每两个之间
相距2米,这一行有多少人?。
五年级上册数学--《植树问题》教案人教版
在学生小组讨论环节,我发现很多学生能够提出自己的观点,并进行热烈的讨论。但在分享成果时,部分学生表达不够清晰,可能是因为他们对问题的理解还不够深入。在今后的教学中,我要加强对学生表达能力的培养,鼓励他们大胆地说出自己的想法,并学会倾听和总结他人的观点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《植树问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算树木数量的情况?”比如,我们在公园、学校或街道两旁看到的树木。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索植树问题的奥秘。
-能够将植树问题与实际生活相结合,解决实际问题。
举例说明:
-重点1:讲解间隔植树原理时,通过图示和实例使学生明白,在一条线路上植树,如果两端都要植树,植树棵数等于间隔数加1;如果只在一端植树,植树棵数等于间隔数。
-重点2:强调在封闭图形周围植树时,植树棵数等于周长除以间隔长度。
2.教学难点
-理解间隔数与植树棵数的关系,特别是在不同情境下的应用。
4.本章内容涉及以下例题和练习题:
-例1:在一条直线路上植树,每隔5米种一棵,从一端到另一端共种了10棵,这条路有多长?
-例2:在封闭的花园周围植树,每隔2米种一棵,共种了40棵,这个花园的周长是多少?
-练习题1:在一条200米长的道路两旁植树,每隔10米种一棵,一共需要多少棵树?
-练习题2:在一个正方形广场周围植树,每隔1米种一棵,共种了60棵,这个广场的边长是多少?
五年级上册植树问题应用题
五年级上册植树问题应用题
植树问题是一个常见的数学问题,涉及到间隔、数量和总长度等概念。
以下是几个适合五年级上册水平的植树问题应用题:
1. 直线植树问题:
一条直路上有10个村庄,每两个相邻的村庄之间都要植一棵树。
问:一共需要植多少棵树?
2. 封闭图形植树问题:
一个正方形的花坛,每边有5棵树,每个角上都有一棵树。
问:这个花坛一共有多少棵树?
3. 间隔距离问题:
学校计划在一条长200米的走廊上种树,每隔5米种一棵。
走廊两端都要种树。
问:一共要种多少棵树?
4. 环形植树问题:
一个圆形花坛的周长是120米,计划在花坛的周围每隔3米植一棵树。
问:一共要植多少棵树?
5. 楼梯植树问题:
一段楼梯有10级台阶,从下往上走,每级台阶的左侧都要放一盆花。
问:一共需要多少盆花?
解答这类问题时,学生需要理解植树问题的基本规律,比如直线上的植树是“树的数量 = 村庄数量 - 1”,封闭图形上的植树则是“树的数量 = 边数× 每边的树数量 - 角上的树数量”等。
同时,学生还需要根据题目的具体条件,如是否两端都要种树、是否是封闭
图形等,来灵活应用这些规律。
五年级数学上册植树问题
五年级数学上册植树问题植树问题是五年级上册数学学习内容中的一部分。
在这个问题中,学生们将学习如何计算植树的数量和规律,以及如何应用这些数学概念解决实际问题。
【引言】植树是保护环境、美化家园的重要活动。
同学们,你们可曾想过如何计算植树的数量和规律呢?让我们一起来学习五年级上册数学中关于植树问题的知识吧!【植树问题的规律】在学习植树问题之前,我们先来了解一下植树问题的规律。
通常,植树问题可以分为两种情况,即“等差数列”和“等比数列”。
一、等差数列当植树问题中每次植树数量之间的差值保持一致时,我们可以利用等差数列的概念来解决问题。
例如,小明连续三天每天植树的数量分别为4棵、6棵和8棵。
根据等差数列的规律,我们可以得到每天植树数量的差值为2棵。
如果我们需要计算连续五天的植树数量,可以通过等差数列的公式进行计算:首项加末项乘以项数除以2,即(4 + 8) × 5 ÷ 2 = 30棵。
二、等比数列当植树问题中每次植树数量之间的比值保持一致时,我们可以利用等比数列的概念来解决问题。
举个例子,小红连续三天植树,每天的植树数量分别为2棵、4棵和8棵。
观察可知,每天植树数量之间的比值都是2:1。
如果我们需要计算连续五天的植树数量,可以通过等比数列的公式进行计算:首项乘以公比的(n-1)次幂,即2 × 2^(5-1) = 2 × 16 = 32棵。
【应用举例】学习了植树问题的规律后,我们来看一些具体的应用举例。
案例一:小明从开学第一天起每天都植树,第一天植树1棵,第二天植树2棵,第三天植树3棵,以此类推。
请问,他开学的第30天植树的总数是多少?根据题目中给出的信息,我们可以知道这是一个等差数列的问题。
首项为1,末项为30,公差为1。
利用等差数列的公式:首项加末项乘以项数除以2,我们可以计算出小明开学的第30天植树的总数为(1 + 30) × 30 ÷ 2 = 465棵。
五年级上数学广角—植树问题1
五年级上数学广角—植树问题1在我们的日常生活中,植树是一项充满意义的活动。
而在数学的世界里,“植树问题”则是一个有趣且实用的数学模型。
今天,就让我们一起来深入探索五年级上册数学广角中的“植树问题”。
首先,我们来思考一个简单的场景:在一条笔直的道路上植树。
假设这条路长 100 米,每隔 5 米种一棵树(两端都种),那么一共需要种多少棵树呢?要解决这个问题,我们可以通过画图来帮助理解。
先画出 100 米的道路,然后每隔 5 米标记一个点,表示种树的位置。
通过画图,我们可以清晰地看到,100 米被分成了 100 ÷ 5 = 20 段,但是因为两端都种树,所以树的数量比段数多 1,即需要种 20 + 1 = 21 棵树。
这就是“植树问题”中最基本的一种情况:两端都种。
其数量关系是:棵数=间隔数+ 1。
那如果道路的两端都不种树呢?比如还是 100 米的道路,每隔 5 米种一棵树,两端都不种。
同样,我们先算出间隔数为100 ÷5 =20 段,因为两端都不种,所以树的数量比段数少 1,即需要种 20 1 = 19 棵树。
这种情况的数量关系是:棵数=间隔数 1。
还有一种情况是,道路只有一端种树。
例如 100 米的道路,每隔 5米种一棵树,只有一端种。
此时,树的数量就等于间隔数,即 100 ÷ 5= 20 棵。
数量关系为:棵数=间隔数。
为了更好地理解这些数量关系,我们可以通过一些实际的例子来巩固。
假设在一个圆形的花园周围种树。
因为圆形是一个封闭图形,起点和终点重合,所以它的数量关系和只有一端种树是一样的,即棵数=间隔数。
如果花园的周长是 60 米,每隔 6 米种一棵树,那么一共需要种 60÷ 6 = 10 棵树。
再比如,在一条走廊上挂灯笼,走廊长 30 米,每隔 3 米挂一个灯笼。
如果两端都挂,那么灯笼的数量为 30 ÷ 3 + 1 = 11 个。
如果两端都不挂,灯笼的数量为 30 ÷ 3 1 = 9 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棵数=间隔数+1
三、探索实践,建立模型
棵数=间隔数+1
你能用发现的规律解决开头的问题吗?
100÷5+1=21(棵)
间隔数 +1= 棵数
答:一共要栽21棵树。
四、利用新知,解决问题
哪些地方需要特别注意?
2 km=2000 m
(2000÷50+1)×2=82(盏)
答:一共要安装82盏路灯。
四、利用新知,解决问题
说说你对这个题目的理解。 要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。
棵数=间隔数+1
间隔数=棵数-1
25-1=24(棵) 答:一共要栽24棵银杏树。
五、逆向思考,拓展新知
跟例题相比,有什么不同?
例题是知道了路长求栽树的棵数, 这题是知道了栽树的棵数求路长。
(36-1)×6=210(m)
间隔数 ×间隔长度=路长 答:从第1棵到最后一棵的距离是210 m。
二、经历过程,感受方法
三、索实践,建立模型
小组合作:
组长合理分工,组员每人选取一个总长,求出间隔数和棵树, 并说说你发现了什么?
总长(m) 间隔距离(m) 间隔数(个) 棵数(棵)
5
10 20 5
1 2 4
2 3 5
25
30 60
5
6 12
6
7 13
你发现了什么规律?
猜谜语:
两棵小树十个叉,
不长叶子不开花,
能写会算还会画, 天天干活不说话。
(谜底:手)
3个手指间有几 4 5 个手指间有 6 几个间隔? 个间隔呢?
5个手指间有 3 4 2个间隔。 3 4
人民大会堂前有 人民大会堂前有几根柱子? 12根柱子。 12根柱子间有 根柱子间有几个间隔? 11个间隔。
1 2 3 4 5 6 7 8 9 1011 1 2 3 4 5 6 7 8 9 1011 12
六、回顾思考,全课总结
通过这节课的学习,你有什么收获? 解决两端都要栽的植树问题的数学模型: 棵数=间隔数+1 当遇到较为复杂的数学问题时,可以先从 简单的事例中发现规律,然后应用找到的 规律来解决原来的问题。
请各位老师多多指导,谢谢!
数学广角——植树问题
植树问题 例1(两头种)
学习目标:
1.经历将实际问题抽象出植树问题模型的过 程,掌握植树棵树与间隔数之间的关系。 2.会应用植树问题的模型解决一些相关的实 际问题,培养学生的应用意识和解决实际问题 的能力。 3.感悟构建数学模型是解决实际问题的重要 方法之一。
一、情境出示,设疑激趣