北京市海淀区高一数学模块5水平监测试题

合集下载

2023-2024学年北京市海淀区高一上册期末数学学情检测模拟试卷合集2套(含答案)

2023-2024学年北京市海淀区高一上册期末数学学情检测模拟试卷合集2套(含答案)

2023-2024学年北京市海淀区高一上册期末数学质量检测模拟试题一、单选题1.已知集合{}|03A x x =<<,集合{}2B x x =≥.则集合A B = ()A .{}|2x x <B .{}2|0x x <≤C .{}|2x x ≤<3D .{}|2x x ≥【正确答案】C【分析】已知集合A 、集合B ,由集合的基本运算,直接求解A B ⋂.【详解】集合{}|03A x x =<<,集合{}2B x x =≥,则集合{}|23A B x x =≤< .故选:C2.命题:1,(1)0p x x x ∀>->,则p ⌝是()A .1,(1)0x x x ∀>-≤B .()1,10x x x ∀≤->C .()000110x x x ∃≤->,D .0001,(1)0x x x ∃>-≤【正确答案】D【分析】根据全称命题的否定是存在命题,即可得到答案.【详解】命题:1,(1)0p x x x ∀>->,则p ⌝.0001,(1)0x x x ∃>-≤故选:D3.下列函数中,既是奇函数又在()0,∞+上是增函数的是()A .()f x x x=B .()1f x x x =+C .()ln f x x=D .()2x f x =【正确答案】A【分析】分别判断每个函数的奇偶性和单调性是否符合题意.【详解】对A ,函数()f x x x =,定义域为R ,()()f x x x x x f x -=--=-=-,函数为奇函数,当()0,x ∞∈+时,()2f x x =,在()0,∞+上单调递增,A 选项正确;对B ,函数()1f x x x =+,1111424422f f ⎛⎫⎛⎫=+>=+ ⎪ ⎪⎝⎭⎝⎭,不满足在()0,∞+上是增函数,B 选项错误;对C ,函数()ln f x x =,定义域为()0,∞+,不是奇函数,C 选项错误;对D ,函数()2x f x =,定义域为R ,值域为()0,∞+,函数图象在x 轴上方,不关于原点对称,不是奇函数,D 选项错误.故选:A4.已知实数,,a b c 满足0a b c <<<,则下列式子中正确的是()A .b a c b->-B .2a bc <C .22b a --<D .||||a b c b <【正确答案】C【分析】ABD 错误的选项可以取特殊值进行判断,C 选项可以利用指数函数的性质判断.【详解】对于A 选项,例如1,1,20a b c =-==,则2,19b a c b -=-=,不满足b a c b ->-,A 选项错误;对于B 选项,例如5,1,2a b c =-==,225a =,2bc =,不满足2a bc <,B 选项错误;对于C 选项,由0a b c <<<可知,b a -<-,结合指数函数2x y =在R 上递增可知,22b a --<,C 选项正确;对于D 选项,例如5,1,2a b c =-==,||5a b =,||2c b =,不满足||||a b c b <,D 选项错误.故选:C5.已知0.20.233,log 3,log 2a b c ===,则()A .a b c>>B .a c b>>C .c a b >>D .c b a >>【正确答案】B 【分析】根据指数函数、对数函数的单调性判断各数的范围,可比较大小.【详解】根据指数函数、对数函数性质可得,0.20331a =>=,0.20.2log 3log 10b =<=,3log 2c =,由3330log 1log 2log 31=<<=,则01c <<,所以a c b >>,故选∶B .6.若角α的终边与单位圆交于点01,3x ⎛⎫ ⎪⎝⎭,则下列三角函数值恒为正的是()A .cos tan ααB .sin cos ααC .sin tan ααD .tan α【正确答案】A 【分析】由三角函数定义结合同角三角函数关系得到正弦和余弦值,从而判断出正确答案.【详解】由题意得:1sin 3α=,0cos 3x α===±,A 选项,sin 1cos tan cos sin 0cos 3αααααα=⋅==>,B 选项,01sin cos 3x αα=可能正,可能负,不确定;C 选项,20sin 1sin tan cos 9x αααα==可能正,可能负,不确定;D选项,sin tan cos 4ααα==±,错误.故选:A7.函数()ln 3f x x x =-在下列区间内一定存在零点的是()A .()1,2B .()2,3C .()3,4D .()4,5【正确答案】B【分析】构建新函数()3ln g x x x=-,根据单调性结合零点存在性定理分析判断.【详解】令()ln 30f x x x =-=,则3ln 0x x -=,构建()3ln g x x x =-,则()g x 在()0,∞+上单调递增,∵()()32ln 20,3ln 3102g f =-<=->,∴()g x 在()0,∞+内有且仅有一个零点,且零点所在的区间是()2,3,故函数()ln 3f x x x =-一定存在零点的区间是()2,3.故选:B.8.已知函数()f x 定义域为D ,那么“函数()f x 图象关于y 轴对称”是“1x D ∀∈,都存在2x D ∈,使得12()()f x f x =成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据函数性质分别验证充分性与必要性是否成立,即可得答案.【详解】解:函数()f x 定义域为D ,若函数()f x 图象关于y 轴对称,则x D ∀∈,则x D -∈,且()()=f x f x -,所以1x D ∀∈,都存在21x x D =-∈,使得满足11()()f x f x =-,即12()()f x f x =成立,故充分性成立;若函数()1f x x =-,其定义域为R ,满足1x ∀∈R ,都存在212R x x =-∈,使得221111()12111()f x x x x x f x =-=--=-=-=成立,但是函数()f x 的图象不关于y 轴对称,故必要性不成立;故“函数()f x 图象关于y 轴对称”是“1x D ∀∈,都存在2x D ∈,使得12()()f x f x =成立”的充分不必要条件.故选:A.9.中医药在疫情防控中消毒防疫作用发挥有力,如果学校的教室内每立方米空气中的含药量y (单位:毫克)随时间x (单位:h )的变化情况如图所示.在药物释放过程中,y 与x 成正比;药物释放完毕后,y 与x 的函数关系式为19x a y -⎛⎫= ⎪⎝⎭(a 为常数),据测定,当空气中每立方米的含药量降低到13毫克以下,学生方可进教室,根据图中提供的信息,从药物释放开始到学生能进入教室,至少需要经过()A .0.4hB .0.5hC .0.7hD .1h【正确答案】C【分析】根据函数图象经过点()0.2,1,求出a 的值,然后利用指数函数的单调性解不等式即得.【详解】由题意知,点()0.2,1在函数19x a y -⎛⎫= ⎪⎝⎭的图象上,所以0.2119a -⎛⎫= ⎪⎝⎭,解得0.2a =,所以0.219x y -⎛⎫= ⎪⎝⎭,由0.21193x -⎛⎫< ⎪⎝⎭,可得20.41133x -⎛⎫< ⎪⎝⎭,所以20.41x ->,解得0.7x >,所以从药物释放开始,到学生回到教室至少需要经过的0.7小时.故选:C.10.已知三角形ABC 是边长为2的等边三角形.如图,将三角形ABC 的顶点A 与原点重合.AB 在x 轴上,然后将三角形沿着x 轴顺时针滚动,每当顶点A 再次回落到x 轴上时,将相邻两个A 之间的距离称为“一个周期”,给出以下四个结论:①一个周期是6;②完成一个周期,顶点A 的轨迹是一个半圆;③完成一个周期,顶点A 的轨迹长度是8π3;④完成一个周期,顶点A 的轨迹与x 轴围成的面积是8π3.其中说法正确的是()A .①②B .①③④C .②③④D .①③【正确答案】D 【分析】依题意将ABC 沿着x 轴顺时针滚动,完成一个周期,得出点A 轨迹,由题目中“一个周期”的定义、轨迹形状、弧长公式、扇形面积公式进行计算即可.【详解】如上图,ABC 沿着x 轴顺时针滚动完成一个周期的过程如下:第一步,ABC 绕点B 顺时针旋转至线段BC 落到x 轴上11B C 位置,得到111A B C △,此时顶点A 的轨迹是以B 为圆心,AB 为半径的一段圆弧,即顶点A 由原点O 沿 1AA 运动至1A 位置;第二步,111A B C △绕点1C 顺时针旋转至线段11C A 落到x 轴上22C A 位置,得到222A B C △,此时顶点A 的轨迹是以1C 为圆心,11C A 为半径的一段圆弧,即顶点A 由1A 沿 12A A 运动至2A 位置,落到x 轴,完成一个周期.对于①,∵11222AB B C C A ===,∴一个周期26AA =,故①正确;对于②,如图所示,完成一个周期,顶点A 的轨迹是 1AA 和12A A 组成的曲线,不是半圆,故②错误;对于③,由已知,111111π3A B C A C B ∠=∠=,∴11122π3A BA A C A ∠=∠=,∴ 1AA 的弧长114π3l A BA BC =∠⋅=, 12A A 的弧长2112114π3l A C A C A =∠⋅=,∴完成一个周期,顶点A 的轨迹长度为4π4π8π333+=,故③正确;对于④,如图,完成一个周期,顶点A 的轨迹与x 轴围成的图形为扇形1BAA ,扇形112C A A 与111A B C △的面积和,∵11122π3A BA A C A ∠=∠=,∴1112212π4π2233BAA C A A S S ==⨯⨯=扇形扇形,∵等边ABC 边长为2,∴111A B C S =∴完成一个周期,顶点A 的轨迹与x 轴围成的面积是4π4π8π333++=+,故④错误.∴正确的说法为:①③.故选:D.方法点睛:分步解决点A 轨迹,第一步是ABC 绕点B 滚动得到111A B C △,第二步是111A B C △绕点1C 滚动得到222A B C △,再将两步得到的点A 轨迹合并,即可依次判断各个说法是否正确.二、填空题11.4sin 3π=______.【正确答案】【分析】根据诱导公式,以及特殊角的正弦值,可得结果.【详解】4sinsin sin 333ππππ⎛⎫=+=-= ⎪⎝⎭故本题主要考查诱导公式,属基础题.12.函数()f x =___________.【正确答案】1,e ∞⎡⎫+⎪⎢⎣⎭【分析】根据二次根式以及对数函数的性质,求出函数有意义所需的条件.【详解】函数()f x =01ln 0x x >⎧⎨+≥⎩,解得1e x ≥,即函数定义域为1,e ∞⎡⎫+⎪⎢⎣⎭.故1,e ∞⎡⎫+⎪⎢⎣⎭13.函数()21f x x x =-+在区间[0,3]上的值域是___________.【正确答案】3,74⎡⎤⎢⎥⎣⎦【分析】对二次函数配方,结合单调性得函数的值域.【详解】2213()1()24f x x x x =-+=-+,所以()f x 在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,32⎛⎤ ⎥⎝⎦上单调递增,13(24f =,(0)1f =,(3)7f =,所以()f x 值域为3,74⎡⎤⎢⎥⎣⎦.故答案为.3,74⎡⎤⎢⎥⎣⎦14.已知函数()()2log 1f x x =+,若()f x x >,则x 的范围是___________.【正确答案】()0,1【分析】作出两个函数的图像,利用数形结合解不等式.【详解】作出函数()2log 1y x =+和函数y x =的图像,如图所示,两个函数的图像相交于点()0,0和()1,1,当且仅当()0,1x ∈时,()2log 1y x =+的图像在y x =的图像的上方,即不等式()>f x x 的解集为()0,1.故()0,115.在平面直角坐标系xOy 中,设角α的始边与x 轴的非负半轴重合,角α终边与单位圆相交于点03,5P y ⎛⎫ ⎪⎝⎭,将角α终边顺时针旋转π后与角β终边重合,那么cos β=___________.【正确答案】35-##-0.6【分析】先根据三角函数的定义算出cos α,然后根据,αβ的关系结合诱导公式计算cos β.【详解】根据三角函数的定义,3cos 5α=,由题意,πβα=-,于是()3cos cos πcos 5βαα=-=-=-.故35-16.已知某产品总成本C (单位:元)与年产量Q (单位:件)之间的关系为24016000C Q =+.设年产量为Q 时的平均成本为f (Q )(单位:元/件),那么f (Q )的最小值是___________.【正确答案】1600【分析】由题意得到年产量为Q 时的平均成本为()1600040C f Q Q Q Q==+,再利用基本不等式求解.【详解】解:因为某产品总成本C (单位:元)与年产量Q (单位:件)之间的关系为24016000C Q =+.所以年产量为Q 时的平均成本为()16000401600C f Q Q Q Q ==+≥,当且仅当1600040Q Q=,即20Q =时,()f Q 取得最小值,最小值为1600,故1600三、双空题17.已知函数()21,16,3x x a f x x x x a ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,a 为常数.(1)当3a =时,如果方程()0f x k -=有两个不同的解,那么k 的取值范围是___________;(2)若()f x 有最大值,则a 的取值范围是___________.【正确答案】()1,7-[]0,3【分析】(1)通过讨论21x y =-和163y x x ⎛⎫=-- ⎪⎝⎭的单调性得出函数()f x 在3a =时的单调性,将方程()0f x k -=有两个不同的解转化为函数()f x 与直线y k =有两个不同的交点的问题,即可得出k 的取值范围.(2)根据(1)中得出的21x y =-和163y x x ⎛⎫=-- ⎪⎝⎭的单调性,分类讨论a 不同情况时()f x 图象的情况,即可得出a 的取值范围.【详解】解(1)由题意,在21x y =-中,函数单调递增,且1y >-,在163y x x ⎛⎫=-- ⎪⎝⎭中,2163y x x =-+,对称轴()16832213b x a =-=-=⨯-,∴函数在83x =处取最大值,为28168643339y ⎛⎫=-+⨯= ⎪⎝⎭,函数在8,3⎛⎫-∞ ⎪⎝⎭上单调递增,在8,3⎛⎫+∞ ⎪⎝⎭上单调递减,在()21,16,3x x a f x x x x a ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,a 为常数中,当3a =时,()21,316,33x x f x x x x ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,函数在(),3∞-上单调递增,在[)3,+∞上单调递减,当3x <时,3()21(3)217x f x f =-<=-=,∵()211x f x =->-,∴当3x <时,()17f x -<<,当3x ≥时,()()221616333733f x x x f =-+≤=-+⨯=,∴函数在3x =处取最大值7,∵方程()0f x k -=有两个不同的解,即()f x k =有两个不同的解,∴函数()f x 与直线y k =有两个不同的交点,∴17k -<<,∴k 的取值范围为()1,7-,(2)由题意及(1)得,在21x y =-中,函数单调递增,且1y >-,在163y x x ⎛⎫=-- ⎪⎝⎭中,对称轴83x =,在83x =处取最大值649,且在8,3⎛⎫-∞ ⎪⎝⎭上单调递增,在8,3⎛⎫+∞ ⎪⎝⎭上单调递减,函数()21,16,3x x a f x x x x a ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,a 为常数∵()f x 有最大值,∴21x y =-在x a =的值要不大于16()3y x x =--在x a =的值,当a<0时,21x y =-图象在163y x x ⎛⎫=-- ⎪⎝⎭上方,显然21x y =-在x a =的值要大于163y x x ⎛⎫=-- ⎪⎝⎭在x a =的值,不符题意,舍去当0a ≥时,由(1)知,当03a ≤≤时21x y =-在x a =的值不大于163y x x ⎛⎫=-- ⎪⎝⎭在x a =的值,综上,03a ≤≤.故()1,7-;[]0,3.思路点睛:本题考查根据方程根的个数求解参数范围的问题,解决此类问题的基本思路是将问题转化为两函数的图象交点个数问题,进而作出函数图象,采用数形结合的方式来进行分析求解.四、解答题18.已知3cos 5α=-,π,π2α⎛⎫∈ ⎪⎝⎭(1)求sin α,tan α;(2)求()()cos 3ππsin tan π2ααα+⎛⎫+- ⎪⎝⎭的值.【正确答案】(1)4sin 5α=,4tan 3α=-.(2)34-【分析】(1)由同角三角函数的平方关系和商数关系进行运算即可;(2)结合第(1)问结果,由诱导公式进行运算即可.【详解】(1)222316sin 1cos 1525αα⎛⎫=-=--= ⎪⎝⎭,∵π,π2α⎛⎫∈ ⎪⎝⎭,∴sin 0α>,∴4sin 5α=,∴sin tan s 43co ααα==-.(2)原式()()()()cos 3πcos cos πsin cos tan sin tan πcos 2cos απααααααααα++-===⋅-⎛⎫⎛⎫+-⋅- ⎪ ⎪⎝⎭⎝⎭cos 3sin 4αα==-.19.已知函数()()221R f x x mx m m =+-+∈(1)若函数()f x 在区间()1,3-上单调,求实数m 的取值范围;(2)解不等式()21f x x <+.【正确答案】(1)(][),62,∞-∞-⋃+(2)当2m =-时,不等式()21f x x <+的解集为∅,当2m >-时,不等式()21f x x <+的解集为(),2m -,当2m <-时,不等式()21f x x <+的解集为()2,m -,【分析】(1)根据二次函数的性质确定参数m 的取值区间;(2)由题化简不等式()21f x x <+,求出对应方程的根,讨论两根的大小关系得出不等式()21f x x <+的解集.【详解】(1)函数()221f x x mx m =+-+的对称轴2m x =-,函数()f x 在区间()1,3-上单调依题意得12m -≤-或32m -≥,解得2m ≥或6m ≤-,所以实数m 的取值范围为(][),62,∞-∞-⋃+.(2)由()21f x x <+,即22121x mx m x +-+<+,即()2220x m x m +--<,令()()()222020x m x m x x m +--=⇒-+=得方程的两根分别为2,m -,当2m =-,即2m =-时,不等式()21f x x <+的解集为∅,当2m >-,即2m >-时,不等式()21f x x <+的解集为(),2m -,当2m <-,即2m <-时,不等式()21f x x <+的解集为()2,m -,综上,当2m =-时,不等式()21f x x <+的解集为∅,当2m >-时,不等式()21f x x <+的解集为(),2m -,当2m <-时,不等式()21f x x <+的解集为()2,m -,20.给定函数22()11x f x x =-+.(1)求函数()f x 的零点;(2)证明:函数()f x 在区间(0,)+∞上单调递增;(3)若当,()0x ∈+∞时,函数()f x 的图象总在函数()3g x ax =-图象的上方,求实数a 的取值范围【正确答案】(1)1x =,12x =-;(2)见解析;(3)(,2]-∞.【分析】(1)令()0f x =求解即可;(2)根据函数单调性的定义证明即可;(3)由题意可得221x a x x <++在,()0x ∈+∞上恒成立,令22(),01x h x x x x=+>+,利用函数的单调性的定义可得()h x 在(0,)+∞上单调递减,且有()2h x >,即可得a 的取值范围.【详解】(1)解:因为22()11x f x x =-+,所以1x ≠-,令22()101x f x x =-=+,则有221x x =+,即2210x x --=,解得1x =或12x =-;(2)证明:任取1212,(0,),x x x x ∈+∞<,则222212122112121212121212222(1)2(1)2()()()()11(1)(1)(1)(1)x x x x x x x x x x x x f x f x x x x x x x +-+-++-=-==++++++,因为120x x <<,所以121212122()()0(1)(1)x x x x x x x x -++<++,即1212()()0()()f x f x f x f x -<⇔<,所以函数()f x 在区间(0,)+∞上单调递增;(3)解:由题意可得22131x ax x ->-+在,()0x ∈+∞上恒成立,即221x a x x<++在,()0x ∈+∞上恒成立,令22222()22,011(1)x h x x x x x x x x =+=-+=+>+++,因为0x >,22022(1)x x +>+=+,当x 趋于+∞时,2(1)x x +趋于0,22(1)x x ++趋于2,所以()()2,(0)h x x ∈+∞>,,所以由221x a x x<++在,()0x ∈+∞上恒成立可得2a ≤,故a 的取值范围为(,2]-∞.21.如图,四边形OABC 是高为2的等腰梯形.//,4,2OA BC OA CB ==(1)求两条腰OC ,AB 所在直线方程;(2)记等腰梯形OABC 位于直线(04)x m m =<≤左侧的图形的面积为()f m .①当12m =时,求图形面积()f m 的值;②试求函数()y f m =的解析式,并画出函数()y f m =的图象.【正确答案】(1)腰OC所在直线方程为y =,腰AB所在直线方程为y =+;(2)①()f m =,②()22,0134m f m m m <≤⎪=-<≤-+<≤⎪⎩,图象见解析.【分析】(1)由已知,解三角形求点,,,O A B C 的坐标,利用待定系数法求其方程;(2)①解三角形结合三角形面积公式求01m <≤时()f m 的解析式,由此求12m =时,()f m 的值;②分别在条件01m <≤,13m <≤,34m <≤下求()f m ,由此可得函数()y f m =的解析式,作出函数()y f m =的图象.【详解】(1)过点C 作CE OA ⊥,垂足为E ,过点B 作BF OA ⊥,垂足为F ,又//OA BC ,2BC =,所以四边形BCEF 为矩形,且2EF =,因为四边形OABC 为等腰梯形,4,2OA OC AB ===,所以1OE AF ==,CE BF =所以()((()0,0,,3,,4,0O C B A ,设直线OC 的方程为y kx =1k =⨯,所以k =所以腰OC所在直线方程为y =,设直线AB 的方程为y sx t =+,则304s t s t =+=+⎪⎩,所以s t ⎧=⎪⎨=⎪⎩,所以腰AB所在直线方程为y =+,(2)①当01m <≤时,设直线x m =与直线,OA OC 的交点分别为,M N ,则//MN CE ,所以~OMN OEC ,所以MN OM CE OE=,又,1OM m CE OE ===,所以MN =,所以()212OMN f m S m ==⨯=故当12m =时,()f m =,②由①知,当01m <≤时,()2f m =,当13m <≤时,设直线x m =与直线,OA OC 的交点分别为,G H ,则//GH CE ,由已知四边形CEGH 为矩形,所以()(1OCE CEGH f m S S m m =++- ,当34m <≤时,设直线x m =与直线,OA OC 的交点分别为,K L ,则//KL BF ,所以~AKL AFB ,所以KL AK FB AF=,又4,1AK m BF AF =-==,所以)4MN m =-,所以()(()()22414422OABC AKL f m S S m m +=-=---=+- ,所以()22,01,134m f m m m <≤⎪=<≤-+<≤⎪⎩,作函数()y f m =的图象可得22.设A 是正整数集的非空子集,称集合{|||,B u v u v A =-∈,且}u v ≠为集合A 的生成集.(1)当{}1,3,6A =时,写出集合A 的生成集B ;(2)若A 是由5个正整数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正整数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【正确答案】(1){}2,3,5B =;(2)4;(3)不存在,理由见解析.【分析】(1)利用集合的生成集定义直接求解;(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)假设存在集合{},,,A a b c d =,可得d a c a b a ->->-,d a d b d c ->->-,c a c b ->-,16d a -=,然后结合条件说明即得.【详解】(1)因为{}1,3,6A =,所以132,165,363-=-=-=,所以{}2,3,5B =;(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为21314151a a a a a a a a <<<----,所以B 中元素个数大于等于4个,又{}1,2,3,4,5A =,则{}1,2,3,4B =,此时B 中元素个数等于4个,所以生成集B 中元素个数的最小值为4;(3)不存在,理由如下:假设存在4个正整数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集B 由,,,,,b a c a d a c b d b d c ------组成,又,,d a c a b a d a d b d c c a c b ->->-->->-->-,所以16d a -=,若2b a -=,又16d a -=,则14d b B -=∉,故2b a -≠,若2d c -=,又16d a -=,则14c a B -=∉,故2d c -≠,所以2c b -=,又16d a -=,则18d b c a -+-=,而{},3,5,6,10d b c a --∈,所以18d b c a -+-=不成立,所以假设不成立,故不存在4个正整数构成的集合A ,使其生成集{}2,3,5,6,10,16B =.方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.2023-2024学年北京市海淀区高一上册期末数学质量检测模拟试题一、单选题1.已知集合{}260A x x x =+-<,{}13B x x =-<<,则A B ⋃=()A .()3,3-B .()2,3-C .()1,5-D .()5,3-【正确答案】A 【分析】求出集合A ,根据并集的运算即可求出结果.【详解】解260x x +-<可得,32x -<<,所以{}|32A x x =-<<,所以{}{}{}|3213|33A B x x x x x x ⋃=-<<⋃-<<=-<<.故选:A.2.已知命题2:5,210p x x x ∃>-+>,则p ⌝为()A .25,210x x x ∀≤-+≤B .25,210x x x ∀>-+≤C .25,210x x x ∃>-+≤D .25,210x x x ∃≤-+>【正确答案】B【分析】根据全称命题的否定为特称命题,否量词,否结论即可得解.【详解】命题2:5,210p x x x ∃>-+>的否定p ⌝为:25,210x x x ∀>-+≤,故选:B.3.下列函数中,既是偶函数又在()0+∞,上是增函数的是()A .()lg f x x=B .()0.3x f x =C .()3f x x =D .()21f x x =【正确答案】A 【分析】根据单调性排除BD ,根据奇偶性排除C ,A 满足单调性和奇偶性,得到答案.【详解】对选项A :()()lg f x x f x -==,函数为偶函数,当0x >时,()lg f x x =为增函数,正确;对选项B :()0.3x f x =在()0+∞,上为减函数,错误;对选项C :()()3f x x f x -=-=-,函数为奇函数,错误;对选项D :()21f x x =在()0+∞,上为减函数,错误;故选:A4.不等式2311x x +≥-的解集为()A .312x x x ⎧⎫<≥⎨⎬⎩⎭或B .{}4x x ≥C .{}4x x ≤-D .{14}x x x >≤-或【正确答案】D【分析】将原不等式转化为一元二次不等式求解.【详解】2311x x +≥-,即23410,011x x x x ++-≥≥--,等价于()()41010x x x ⎧+-≥⎨-≠⎩,解得1x >或4x ≤-;故选:D.5.已知函数()21log f x x x =-在下列区间中,包含()f x 零点的区间是()A .()01,B .()12,C .()23,D .()34,【正确答案】B【分析】确定函数单调递增,计算()10f <,()20f >,得到答案.【详解】()21log f x x x =-在()0,∞+上单调递增,()110f =-<,()1121022f =-=>,故函数的零点在区间()12,上.故选:B6.已知a =0.63,b =30.6,c =log 30.6,则()A .a <b <cB .b <a <cC .c <a <bD .c <b <a 【正确答案】C【分析】利用对数函数和指数函数的性质求解即可.【详解】因为0<0.63<0.60=1,则0<a <1,而b =30.6>30=1,c =log 30.6<log 31=0,所以c <a <b .故选:C7.已知实数,a b ,若a b <,则下列结论正确的是()A .11a b>B .22a b <C .1122ab⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭D .()ln 0b a ->【正确答案】C【分析】对ABD 选项采用取特殊值验证即可,对于C ,首先构造指数函数,利用单调性即可.【详解】因为a b <,则对于A ,取1a =-,1b =,则11a b <,A 错误;对于B ,取1a =-,1b =,此时22a b =,故B 错误;对于C ,构造指数函数1()2xf x ⎛⎫= ⎪⎝⎭,则()f x 单调递减,因为a b <,所以有()()f a f b >,即1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确;对于D ,取13a =、12b =,则()111ln ln ln 0236b a ⎛⎫-=-=< ⎪⎝⎭,故D 错误.故选:C8.某市6月前10天的空气质量指数为35,54,80,86,72,85,58,125,111,53,则这组数据的第75百分位数是()A .84.5B .85C .85.5D .86【正确答案】D【分析】按照求解百分位数的流程,先计算出100.757.5⨯=,然后由小到大排序,选取第8个数作为第75百分位数.【详解】100.757.5⨯=,故从小到大排列后:35,53,54,58,72,80,85,86,111,125取第8个数作为第75百分位数,第8个数是86故选:D9.学校开展学生对食堂满意度的调查活动,已知该校高一年级有学生550人,高二年级有学生500人,高三年级有学生450人.现从全校学生中用分层抽样的方法抽取60人进行调查,则抽取的高二年级学生人数为()A .18B .20C .22D .30【正确答案】B【分析】求出高一年级学生、高二年级学生、高三年级学生人数比,再列式计算作答.【详解】依题意,该校高一年级学生、高二年级学生、高三年级学生人数比为:550:500:45011:10:9=,所以抽取的高二年级学生人数为10602011109⨯=++.故选:B10.物理学规定音量大小的单位是分贝(dB),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:010Ilg Iη=(其中0I 是人耳能听到声音的最低声波强度),一般声音在30分贝左右时不会影响正常的生活和休息,超过50分贝就会影响睡眠和休息;70分贝以上会造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期生活在90分贝以上的噪声环境,就会得“噪音病”,汽车的噪声可以达到100分贝,为了降低噪声对周围环境的影响,某高速公路上安装了隔音围挡护栏板,可以把噪声从75分贝降低到50分贝,则50dB 声音的声波强度是75dB 声音的声波强度的()A .5210-倍B .3210-倍C .2310-倍D .2510-倍【正确答案】A首先根据题意得到10010I I η=,再代入公式计算即可.【详解】因为010IlgI η=,所以10010I I η=.所以50510027510010=1010I I -倍.故选:A二、填空题11.函数()()lg 32f x x =-的定义域为_____.【正确答案】[)2,+∞【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【详解】由题意,可知20320x x -≥⎧⎨->⎩,解得2x ≥,所以函数的定义域为[)2,+∞.故[)2,+∞.12.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的的频率分布直方图,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数为:_____.【正确答案】140【分析】求出这200名学生中每周的自习时间不少于22.5小时的频率,即可求得答案.【详解】由频率分布直方图得:这200名学生中每周的自习时间不少于22.5小时的频率为:(0.020.10) 2.50.71+⨯-=,这200名学生中每周的自习时间不少于22.5小时的人数为:2000.7140⨯=,故140.13.若“11x -<<”是“0x a -≤”的充分不必要条件,则实数a 的取值范围是________.【正确答案】[)1,+∞【分析】结合充分不必要条件即可求出结果.【详解】因为0x a -≤,即x a ≤,由于“11x -<<”是“0x a -≤”的充分不必要条件,则11x x a -<<⇒≤,但11x -<<不能推出x a ≤,所以1a ≥,故答案为.[)1,+∞三、双空题14.函数22(0,1)x y a a a +=->≠恒过的定点坐标为___________,值域为_____________.【正确答案】()2,1--()2,-+∞【分析】根据010a a =≠(),求出对应的,x y 的值得到定点坐标,再由指数函数值域得所求值域.【详解】令20x +=,解得:2x =-,此时121y =-=-,故函数22(0,1)x y a a a +=->≠恒过定点()2,1--.指数函数(0,1)x y a a a =>≠的值域为()0,∞+,函数22(0,1)x y a a a +=->≠的图像,可将指数函数(0,1)x y a a a =>≠的图像向左平移两个单位,再向下平移两个单位,所以函数22(0,1)x y a a a +=->≠的值域为()2,-+∞.故()2,1--;()2,-+∞.15.已知函数1,02()ln ,2x f x x x x ⎧<≤⎪=⎨⎪>⎩,则函数()f x 最小值为_______________;如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是__________________.【正确答案】12##0.5()ln 2,+∞【分析】空1利用函数单调性求函数()f x 最小值,空2作函数()f x 与y k =的图像,从而利用数形结合求解.【详解】1()f x x =在区间(]0,2上单调递减,当02x <≤时,1()2f x ≥;()ln f x x =在区间()2,+∞上单调递增,当2x >时,()ln 2f x >,1ln 22≤,∴函数()f x 最小值为12.作出函数1,02()ln ,2x f x x x x ⎧<≤⎪=⎨⎪>⎩与y k =的图像如下,∴结合图像可知,方程()f x k =有两个不同的实根,那么实数k 的取值范围()ln 2,+∞四、解答题16.计算下列各式的值:(1)()212342716e 1+-+-;(2)2lg8lg 2lg 25log 8-+-.【正确答案】(1)13(2)1-【分析】(1)由指数幂的运算性质求解即可;(2)由对数的运算性质求解即可【详解】(1)()212342716e 1+-+-()()2134343521=+-+952113=+-+=;(2)2lg8lg 2lg 25log 8-+-3lg 2lg 22lg 53=-+-()2lg 2lg53=+-231=-=-17.已知甲乙两人的投篮命中率分别为0.80.7,,如果这两人每人投篮一次,求:(1)两人都命中的概率;(2)两人中恰有一人命中的概率.【正确答案】(1)0.56;(2)0.38.【分析】(1)利用相互独立事件概率计算公式,求得两人都命中的概率.(2)利用互斥事件概率公式和相互独立事件概率计算公式,求得恰有一人命中的概率.【详解】记事件A ,B 分别为“甲投篮命中",“乙投篮命中”,则()0.8,()0.7P A P B ==.(1)“两人都命中”为事件AB ,由于A ,B 相互独立,所以()()()0.80.70.56P AB P A P B ==⨯=,即两人都命中的概率为0.56.(2)由于AB AB +互斥且A ,B 相互独立,所以恰有1人命中的概率为()P AB AB +0.8(10.7)(10.8)0.70.38=⨯-+-⨯=.即恰有一人命中的概率为0.38.关键点睛:本小题主要考查相互独立事件概率计算,考查互斥事件概率公式,关键在于准确地理解题意和运用公式求解.18.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表:锻炼时长(小时)56789男生人数(人)12434女生人数(人)38621(Ⅰ)试根据上述数据,求这个班级女生在该周的平均锻炼时长;(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)【正确答案】(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s >(Ⅰ)由表中数据计算平均数即可;(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可;(Ⅲ)根据数据的离散程度结合方差的性质得出2212s s >【详解】(Ⅰ)这个班级女生在该周的平均锻炼时长为53687682911306.53862120⨯+⨯+⨯+⨯+⨯==++++小时(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有3人,记为,,a b c ,女生有2人,记为,A B 从中任选2人的所有情况为{,},{,},{,},{,}a b a c a A a B ,{,},{,},{,}b c b A b B ,{,},{,},{,}c A c B A B ,共10种,其中选到男生和女生各1人的共有6种故选到男生和女生各1人的概率63105P ==(Ⅲ)2212s s >关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.19.已知函数()212xf x a =++是定义在R 上的奇函数.(1)求f (x )的解析式及值域:(2)判断f (x )在R 上的单调性,并用单调性定义.....予以证明.(3)若()3f m -不大于f (1),直接写出实数m 的取值范围.【正确答案】(1)()2112xf x =-+,()1,1-(2)单调递减,证明见解析(3)(][),44,-∞-⋃+∞【分析】(1)根据定义在R 上的奇函数()00f =列方程,解方程得到1a =-,即可得到解析式,然后根据20x >和反比例函数的单调性求值域即可;(2)根据单调性的定义证明即可;(3)根据单调性解不等式即可.【详解】(1)因为()f x 为R 上的奇函数,所以()020012f a =+=+,解得1a =-,所以()2112xf x =-+,因为121x +>,所以20212x<<+,211112-<-<+x ,所以()f x 的值域为()1,1-.(2)()f x 在R 上单调递减,设12x x >,则()()()()()21121212222221112121212x x x x x x f x f x --=--+=++++,因为12x x >,所以21220x x -<,()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上单调递减.(3)(][),44,m ∈-∞-+∞ .20.为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备,使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池板面积x (单位:平方米)之间的函数关系为()4,0105,10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩(m 为常数).已知太阳能电池板面积为5平方米时,每年消耗的电费为12万元,安装这种供电设备的工本费为0.5x (单位:万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和.(1)求常数m 的值;(2)写出()F x 的解析式;(3)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【正确答案】(1)80(2)()7.5160,0108000.5,10x x F x x x x-+≤≤⎧⎪=⎨+>⎪⎩(3)40;40【分析】(1)根据题意可知5x =时,()12C x =,代入即可求得m 的值;(2)根据题意可知()()100.5F x C x x =+,由此化简可得;(3)分段讨论()F x 的最小值,从而得到()F x 的最小值及x 的值.【详解】(1)依题意得,当5x =时,()12C x =,因为()4,0105,10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,所以当010x ≤≤时,()45m x C x -=,所以45125m -⨯=,解得80m =,故m 的值为80.(2)依题意可知()()100.5F x C x x =+,又由(1)得,()804,010580,10xx C x x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,所以()8047.5160,010100.5,0105800800.5,10100.5,10x x x x x F x x x x x x x -⎧-+≤≤⨯+≤≤⎧⎪⎪⎪==⎨⎨+>⎪⎪⨯+>⎩⎪⎩.(3)当010x ≤≤时,()7.5160F x x =-+,显然()F x 在[]0,10上单调递减,所以()()min 1085F x F ==;当10x >时,()8000.540F x x x =+≥=,当且仅当8000.5x x=,即40x =时,等号成立,故()min 40F x =;综上:()min 40F x =,此时40x =,所以当x 为40平方米时,()F x 取得最小值,最小值是40万元.。

北京市海淀区2019-2020学年高一年级第一学期期末调研数学试题和答案(原版)

北京市海淀区2019-2020学年高一年级第一学期期末调研数学试题和答案(原版)

北京市海淀区2019-2020学年高一年级第一学期期末调研数 学2020.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{|12},{0,1,2}A x x B =−<<= ,则AB = ( )A. {0}B. {01},C. {012},,D. {1,012}−,, (2)不等式|1|2x −≤的解集是 ( )A. {|3}x x ≤B. {|13}x x ≤≤C.{|13}x x −≤≤D. {|33}x x −≤≤ (3)下列函数中,既是偶函数,又在(0,)+∞上是增函数的是( )A. 1y x=B.2x y =C.y =D.ln y x = (4)某赛季甲、乙两名篮球运动员各参加了13场比赛,得分情况用茎叶图表示如下:根据上图对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 ( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均值大于乙运动员得分的平均值 D .甲运动员的成绩比乙运动员的成绩稳定 (5)已知,a b ∈R ,则“a b >”是“1ab>”的 ( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(6)已知函数22,2,()3, 2.x f x x x x ⎧≥⎪=⎨⎪−<⎩若关于x 的函数()y f x k =−有且只有三个不同的零点,则实数k 的取值范围是 ( ) A.(3,1)− B. (0,1) C. (]3,0− D. (0,)+∞(7)“函数()f x 在区间[1,2]上不是..增函数”的一个充要条件是 ( ) A. 存在(1,2)a ∈满足()(1)f a f ≤ B. 存在(1,2)a ∈满足()(2)f a f ≥ C. 存在,[1,2]a b ∈且a b <满足()()f a f b = D. 存在,[1,2]a b ∈且a b <满足()()f a f b ≥ (8)区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务服务、供应链、版权和专利、能源、物联网等. 在区块链技术中,若密码的长度设定为256比特,则密码一共有2562种可能,因此,为了破解密码,最坏情况需要进行2562次哈希运算. 现在有一台机器,每秒能进行112.510⨯次哈希运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为 (参考数据lg 20.3010,lg30.477≈≈) ( )A. 734.510⨯秒B. 654.510⨯秒C. 74.510⨯秒D. 28秒二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)函数()(0x f x a a =>且1)a ≠的图象经过点(1,2)−,则a 的值为__________.(10)已知()lg f x x =,则()f x 的定义域为__________,不等式(1)0f x −<的解集为 . (11)已知(1,0)OA =,(1,2)AB =,(1,1)AC =−,则点B 的坐标为_________,CB 的坐标为_________. (12)函数2()2x f x x=−的零点个数为_______,不等式()0f x >的解集为_____________. (13)某大学在其百年校庆上,对参加校庆的校友做了一项问卷调查,发现在20世纪最后5年间毕业的校友,他们2018年的平均年收入约为35万元. 由此_____(填“能够”或“不能”)推断该大学20世纪最后5年间的毕业生,2018年的平均年收入约为35万元,理由是_________________________ _______________________________________________________.(14)对于正整数k ,设函数()[][]k f x kx k x =−,其中[]a 表示不超过a 的最大整数.①则22()3f =_______;②设函数24()()()g x f x f x =+,则在函数()g x 的值域中所含元素的个数是____________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)某校2019级高一年级共有学生195人,其中男生105人,女生90人. 基于目前高考制度的改革,为了预估学生“分科选考制”中的学科选择情况,该校对2019级高一年级全体学生进行了问卷调查. 现采用按性别分层抽样的方法,从中抽取13份问卷.已知问卷中某个必答题的选项分别为“同意”和“不同意”,下面表格记录了抽取的这13份问卷中此题的答题情况.(Ⅰ)写出a ,b 的值;(Ⅱ)根据上表的数据估计2019级高一年级学生该题选择“同意”的人数;(Ⅲ)从被抽取的男生问卷中随机选取2份问卷,对相应的学生进行访谈,求至少有一人选择“同意”的概率.(16)(本小题共11分)已知函数2()23f x ax ax =−−.(Ⅰ)若1a =,求不等式()0f x ≥的解集;(Ⅱ)已知0a >,且()0f x ≥在[3,)+∞上恒成立,求a 的取值范围;(Ⅲ)若关于x 的方程()0f x =有两个不相等的正.实数根12,x x ,求2212x x +的取值范围.(17)(本小题共12分)如图,在射线,,OA OB OC 中,相邻两条射线所成的角都是120,且线段OA OB OC ==. 设OP xOA yOB =+.(Ⅰ)当2,1x y ==时,在图1中作出点P 的位置(保留作图的痕迹);(Ⅱ)请用,x y 写出“点P 在射线OC 上”的一个充要条件:_________________________________;(Ⅲ)设满足“24x y +=且0xy ≥”的点P 所构成的图形为G ,①图形G 是_________;A. 线段B. 射线C. 直线D. 圆 ②在图2中作出图形G .(18)(本小题共10分)已知函数()f x 的图象在定义域(0,)+∞上连续不断.若存在常数0T >,使得对于任意的0x >,()()f Tx f x T =+恒成立,称函数()f x 满足性质()P T .(Ⅰ)若()f x 满足性质(2)P ,且(1)0f =,求1(4)()4f f +的值;(Ⅱ)若 1.2()log f x x =,试说明至少存在两个不等的正数12,T T ,同时使得函数()f x 满足性质1()P T 和2()P T . (参考数据:41.2 2.0736=)(Ⅲ)若函数()f x 满足性质()P T ,求证:函数()f x 存在零点.1图2图附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)在工程实践和科学研究中经常需要对采样所得的数据点进行函数拟合.定义数据点集为平面点集{(,)|1,2,,}i i i S P x y i N ==(N ∈N +),寻找函数y =()f x 去拟合数据点集S ,就是寻找合适的函数,使其图象尽可能地反映数据点集中元素位置的分布趋势. (Ⅰ)下列说法正确的是_________.(写出所有正确说法对应的序号) A. 对于任意的数据点集S ,一定存在某个函数,其图象可以经过每一个数据点 B. 存在数据点集S ,不存在函数使其图象经过每一个数据点C. 对于任意的数据点集S ,一定存在某个函数,使得这些数据点均位于其图象的一侧D. 拟合函数的图象所经过的数据点集S 中元素个数越多,拟合的效果越好(Ⅱ)衡量拟合函数是否恰当有很多判断指标,其中有一个指标叫做“偏置度δ”,用以衡量数据点集在拟合函数图象周围的分布情况. 如图所示,对于数据点集{}123,,P P P ,在如下的两种“偏置度δ”的定义中,使得函数1()f x 的偏置度大于函数2()f x 的偏置度的序号为 ________;① 1112221=(,())(,())(,())(,())niiin n n i x y f x x yf x x y f x x y f x δ=−=−+−++−∑;②1112221=|(,())||(,())||(,())||(,())|ni i i n n n i x y f x x y f x x y f x x y f x δ=−=−+−++−∑.(其中|(,)|x y 代表向量w (,)x y =的模长) (Ⅲ)对于数据点集()()()(){}0,0,1,1,1,1,2,2S =−,用形如()f x ax b =+的函数去拟合.当拟合函数()f x ax b =+满足(Ⅱ)中你所选择的“偏置度δ”达到最小时,该拟合函数的图象必过点_______.(填点的坐标)北京市海淀区2109-2020学年高一年级期末统一练习数 学参考答案及评分标准 2020.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分. (9) (10) ; (11); (12)1 ;(,0)(1,)−∞+∞(13)不能;参加校庆的校友年收入不能代表全体毕业生的年收入 (14) 1;4注:两空的题,每空2分;三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15) (Ⅰ) 由题意可得 ; ..........2分; ..........4分(Ⅱ) 估计2019级高一年级学生该题选择“同意”的人数为 ; ..........7分(Ⅲ) 如果访谈学生中选择“同意”则记为1,如果选择“不同意”则记为0,列举如下:..........9分共有76=42⨯种等可能的结果,其中至少有一人选择“同意”的有42636−=种,..........10分记“访谈学生中至少有一人选择‘同意’”为事件,则366()427P A == ..........11分(16) (Ⅰ) 当1a =时,由2()230f x x x =−−≥解得{|31}x x x ≥或≤-. .........3分(Ⅱ) 当0a >时,二次函数2()23f x ax ax =−−开口向上,对称轴为1x =,所以()f x 在[3,)+∞上单调递增, ...........5分 要使()0f x ≥在[3,)+∞上恒成立,只需(3)9630f a a =−−≥, ...........6分 所以a 的取值范围是{|1}a a ≥ ...........7分 (Ⅲ) 因为()0f x =有两个不相等的正.实数根12,x x , 所以21212041202030a a a x x x x a ≠⎧⎪∆=+>⎪⎪⎨+=>⎪⎪=−>⎪⎩, ..........8分解得3a <−,所以a 的取值范围是{|3}a a <−. ..........9分 因为2221212126()24x x x x x x a+=+−=+, ..........10分 所以,2212x x +的取值范围是(2,4). ..........11分(17) (Ⅰ)图中点P 即为所求. ...........4分(Ⅱ) x y =且0,0x y ≤≤ ; ...........7分 说明:如果丢掉了“0,0x y ≤≤”,(Ⅱ)给2分(Ⅲ) ① A ; ,..........10分 ②图中线段DE 即为所求. ...........12分(18) (Ⅰ) 因为满足性质,所以对于任意的,(2)()2f x f x =+恒成立. 又因为(1)0f =,所以,(2)(1)22f f =+=, ...........1分(4)(2)24f f =+=, ...........2分由1(1)()22f f =+可得1()(1)222f f =−=−,由11()()+224f f =可得11()()2442f f =−=−, .........3分所以,1(4)()04f f +=. ............4分(Ⅱ)若正数T 满足 1.2 1.2log ()log Tx x T =+,等价于 1.2log T T =(或者1.2T T =), 记 1.2()log g x x x =−,(或者设() 1.2(0,)x g x x x =−∈+∞,) .........5分显然(1)0g >, 1.2 1.2 1.2(2)2log 2log 1.44log 20g =−=−<,因为41.22>,所以161.216>, 1.216log 16>,即(16)0g >. ...........6分 因为()g x 的图像连续不断,所以存在12(1,2),(2,16)T T ∈∈,使得12()()0g T g T ==,因此,至少存在两个不等的正数12,T T ,使得函数同时满足性质1()P T 和2()P T . ............7分(Ⅲ) ① 若(1)0f =,则1即为的零点; ...........8分 ② 若(1)0f M =<,则()(1)f T f T =+,2()()(1)2f T f T T f T =+=+,,可得1()()(1)k k f T f T T f kT k −+=+=+∈N ,其中. 取[]1M Mk T T−=+>−即可使得()0k f T M kT =+>. 所以,存在零点. ...........9分③ 若(1)0f M =>,则由1(1)()f f T T =+,可得1()(1)f f T T=−,由211()()f f T T T =+,可得211()()(1)2f f T f T T T=−=−,,由111()()k k f f T TT −=+,可得111()()(1)k k f f T f kT k T T +−=−=−∈N ,其中. 取[]1M M k T T =+>即可使得1()0k f M kT T=−<. 所以,存在零点. 综上,存在零点. ...........10分附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)【答案】(Ⅰ) B、C ...........2分(Ⅱ) ①...........4分(Ⅲ)1(,1)2...........5分注:对于其它正确解法,相应给分.。

北京市海淀区2023-2024学年高一上学期期末考试 数学 Word版含答案

北京市海淀区2023-2024学年高一上学期期末考试 数学 Word版含答案

海淀区高一年级练习数 学考生须知:1.本试卷共6页,共三道大题,26道小题,满分150分,考试时间120分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在答题卡上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项1.已知全集{}2,1,0,1,2U =--,集合{}2,1,0A =--,则U A = ( )A .{}1,2,3B .{}1,2C .()0,2D .()1,22.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( )A .150人B .200人C .250人D .300人3.命题“,20x x ∃∈+≤R ”的否定是( )A .,20x x ∃∈+>RB .,20x x ∃∈+<RC .,20x x ∀∈+>RD .,20x x ∀∈+<R 4.方程组202x y x x +=⎧⎨+=⎩解集是( )A .()(){}1,1,1,1--B .()(){}1,1,2,2-C .()(){}1,1,2,2--D .()(){}2,2,2,2-- 5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[]10,20,并分成[)[)[)[)[]10,12,12,14,14,16,16,18,18,20五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A .56B .80C .144D .1846.若实数a ,b 满足a b >,则下列不等式成立的是( )A .a b >B .a c b c +>+C .22a b >D .22ac bc >7.函数()22x f x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,28.在同一个坐标系中,函数()()()log ,,x a a f x x g x a h x x -===的部分图象可能是( )A .B .C .D .9.下列函数中,既是奇函数,又在()0,+∞上单调递减的是( )A .()f x x =B .()f x x x =-C .()11f x x 2=+ D .()3f x x = 10.已知0.1232,log 3,log 2a b c ===,则实数a ,b ,c 的大小关系是( )A .c a b >>B .c b a >>C .a c b >>D .a b c >>11.已知函数()1212x f x a =-+,则“1a =”是()f x 为奇函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.已知函数()()2log 12f x x x =++-,则不等式()0f x <的解集为A .(),1-∞B .()1,1-C .()0,1D .()1,+∞13.科赫(Koch )曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N 个与它的上一级图形相似,且相似比为r 的部分组成.若1D r N=,则称D 为该图形的分形维数.那么科赫曲线的分形气维数是( )A .2log 3B .3log 2C .1D .32log 2 14.已知函数()2,,x a x a f x x x a +≤⎧=⎨>⎩,若存在非零实数0x ,使得()()00f x f x -=-成立,则实数a 的取值范围是( )A .(],0-∞B .1,4⎛-∞⎤ ⎥⎝⎦ C .[]4,0 D .12,4⎡-⎤⎢⎥⎣⎦ 二、填空题:共6小题,每小题5分,共30分15.函数()()lg 1f x x =-的定义域是__________.16.已知幂函数()f x 经过点()2,8,则函数()f x =___________.17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如下图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则a b -=___________.若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为12,s s ,则1s ____2s (用“<,>或=”连接).18.已知函数()4f x x a x=+-没有零点,则a 的一个取值为_______;a 的取值范围是___________.19.已知函数()22,0,0x x x f x x ⎧≥⎪=⎨-<⎪⎩,则()f x 的单调递增区间为________;满足()4410f x <⨯的整数解的个数为____________(参考数据:lg 20.30≈)20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock 竞争函数”进行近似估计,其解析式为()()[],0,1,01aa a x S x x a x x =∈>+-(其中参数a 表示市场外部性强度,a 越大表示外部性越强).给出下列四个结论:①()S x 过定点11,22⎛⎫ ⎪⎝⎭; ②()S x 在[]0,1上单调递增;③()S x 关于12x =对称; ④取定x ,外部性强度a 越大,()S x 越小.其中所有正确结论的序号是______________.三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(本小题12分)化简求值:(I )()10.530.204640.13π927-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭ (II )5log 333325log 2log 59-+ 22.(本小题12分)已知一元二次方程22320x x +-=的两个实数根为12,x x求值:(I )2212x x +;(II )1211x x + 23.(本小题9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A :革命遗址及革命纪念建筑物”、“B :石窟寺”、“C :古建筑及历史纪念建筑物”、“D :石刻及其他”、“E :古遗址”、“F :古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(I )某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C :古建筑及历史纪念建筑物”的概率;(II )小王同学随机选择北京市“第一批文保单位”中的“A :革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(III )现在拟从北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为1P ,抽不到海淀区的概率记为2P ,试判断1P 和2P 的大小(直接写出结论).24.(本小题9分)已知集合{}25320,22|A x x x B x x ⎧⎫=--<=-≥⎨⎬⎩⎭(I )求,R A B A B ;(II )记关于x 的不等式()222440x m x m m -+++≤的解集为M ,若B M R =,求实数m 的取值范围.25.(本小题11分)已知函数()()()ln 1ln 1f x x k x =-++,请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题:条件①:()()0f x f x +-=条件②:()()0f x f x --=注:如果选择条件①和条件②分别解答,按第一个解答记分.(I )求实数k 的值;(II )设函数()()()11k F x x x =-+,判断函数()F x 在区间上()0,1的单调性,并给出证明;(III )设函数()()2k g x f x x k =++,指出函数()g x 在区间()1,0-上的零点的个数,并说明理由.26.(本小题11分)已知函数()()(),,f x g x h x 的定义域均为R ,给出下面两个定义:①若存在唯一的x ∈R ,使得()()()()f g x h f x =,则称()g x 与()h x 关于()f x 唯一交换;②若对任意的x ∈R ,均有()()()()f g x h f x =,则称()g x 与()h x 关于()f x 任意交换.(I )请判断函数()1g x x =+与()1h x x =-关于()2f x x =是唯一交换还是任意交换,并说明理由;(II )设()()()22()20,1f x a x a g x x bx =+≠=+-,若存在函数()h x ,使得()g x 与()h x 关于()f x 任意交换,求b 的值;(III )在(II )的条件下,若()g x 与()f x 关于()11x x e x e ω-=+唯一交换,求a 的值.。

2023_2024学年北京市海淀区高一上册期中数学模拟测试卷(附答案)

2023_2024学年北京市海淀区高一上册期中数学模拟测试卷(附答案)

1 / 15给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;3 / 15(2)当车流密度为多大时,车流量可以达到最大?并求出最大值.(车流量指:x ()()f x x v x =⋅单位时间内通过桥上某观测点的车辆数,单位:辆/时).20.已知二次函数.()()22,R f x x bx c b c =++∈(1)若函数的零点是和1,求实数b ,c 的值;()f x 1-(2)已知,设、关于x 的方程的两根,且,求实数223c b b =++1x 2x ()0f x =()()12118x x ++=b 的值;(3)若满足,且关于x 的方程的两个实数根分别在区间,()f x ()10f =()0f x x b ++=()3,2--内,求实数b 的取值范围.()0,121.对于区间[a,b](a<b),若函数同时满足:①在[a,b]上是单调函数,②函数()y f x =()f x 在[a,b]的值域是[a,b],则称区间[a,b]为函数的“保值”区间()y f x =()f x (1)求函数的所有“保值”区间2y x =(2)函数是否存在“保值”区间?若存在,求的取值范围,若不存在,说明()2y x m m 0=+≠m 理由1 / 153 / 1510.C【分析】根据图象可知盈利额与观影人数y 分析即可得出答案.【详解】由图象(1)可设盈利额与观影人数y 显然,,为票价.0k >0b <k 当时,,则为固定成本.0k =y b =b -5 / 157 / 159 / 15若,此时函数区间,此时的取值范围是11 / 15。

北京市海淀区高一数学必修五水平监测试题(第二学期期中考试)

北京市海淀区高一数学必修五水平监测试题(第二学期期中考试)

海淀区高一数学水平监测试题2008、04、23卷一一. 选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在等差数列3, 7, 11 …中,第5项为( C )A. 15B.18C.19D.23 2. 数列}{n a 中, 如果n a =3n (n =1, 2, 3, …) ,那么这个数列是( C ) A. 公差为2的等差数列 B. 公差为3的等差数列 C. 首项为3的等比数列 D. 首项为1的等比数列3.等差数列}{n a 中, 384362=+=+a a a a ,, 那么它的公差是( B ) A. 4 B.5 C.6 D.74. △ABC 中, ∠A ,∠B ,∠C 所对的边分别为a , b , c .若3,4a b ==,∠C= 60, 则c .的值等于( C )A. 5B. 13C.13D.37 5. 数列}{n a 满足111,21n n a a a +==+(N n +∈), 那么4a 的值为( C ) A. 4 B. 8 C. 15 D. 31 6. △ABC 中, 如果cos A cos B cosCa b c==, 那么△ABC 是( B ) A. 直角三角形 B. 等边三角形 C. 等腰直角三角形 D. 钝角三角形 7. 如果00>>>t b a ,, 设tb ta Nb a M ++==,, 那么( A ) A. N M > B. N M <C. N M =D. M 与N 的大小关系随t 的变化而变化 8. 如果}{n a 为递增数列,则}{n a 的通项公式可以为( D ) A. 32+-=n a n B. 132+-=n n a n C. n n a 21=D. 21log n a n =+9. 如果0<<b a , 那么( C )A. 0>-b aB. bc ac <C.ba 11> D. 22b a < 10.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)的过程. 令a=2, b=4,若(0,1)c ∈,则输出区间的形式为( B )A.MB. NC.PD.∅二. 填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 11.已知x 是4和16的等差中项,则x =___10___ 12.一元二次不等式26x x <+的解集为__(2,3)-___ 13. 函数()(1),(0,1)f x x x x =-∈的最大值为___14______14. 在数列{}n a 中,其前n 项和32n n S k =⋅+,若数列{}n a 是等比数列,则常数k 的值为 -3 三.解答题.2)(,)x +∞)(,2ba-+∞15.三角形ABC 中,3,7==AB BC ,且53sin sin =B C . (Ⅰ)求AC ; (Ⅱ)求A ∠.解:(Ⅰ)由正弦定理得:sin 3535sin sin sin 53AC AB AB C AC B C AC B ⨯=⇒==⇒== --------------------------6分 (Ⅱ)由余弦定理得:222925491cos 22352AB AC BC A AB AC +-+-∠===-⋅⨯⨯,所以120A ∠=︒。

北京五中2024届高一数学第二学期期末学业水平测试模拟试题含解析

北京五中2024届高一数学第二学期期末学业水平测试模拟试题含解析

北京五中2024届高一数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若23x =,则x =( ) A .2log 2B .lg 2lg3-C .lg 2lg 3D .lg3lg22.已知数列{}n a 满足*11()1,2,nn n n a a a n N S +=⋅=∈是数列{}n a 的前n 项和,则( ) A .201920192a =B .101020192a =C .1010201923S =-D .1011201923S =-3.若函数()sin(2)(0)f x x ϕϕπ=+<<的图象上所有的点向右平移6π个单位长度后得到的函数图象关于,04π⎛⎫⎪⎝⎭对称,则ϕ的值为 A .πB .34π C .56π D .23π 4.已知(3,0)AB =,那么AB 等于( ) A .2B .3C .4D .55.ABC ∆中,2,3,60,b c A ===︒则a =AB C .D .36.某学校为了解1000名新生的身体素质,将这些学生编号1,2,……,1000,从这些新生中用系统抽样方法等距抽取50名学生进行体质测验.若66号学生被抽到,则下面4名学生中被抽到的是( ) A .16B .226C .616D .8567.若数列cos 35n a n ππ⎛⎫=+⎪⎝⎭,若*k N ∈,则在下列数列中,可取遍数列{}n a 前6项值的数列为( ) A .{}21k a +B .{}31k a +C .{}41k a +D .{}51k a +8.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( ) A .24cmB .26cmC .28cmD .216cm9.如图,1111ABCD A B C D -为正方体,下面结论错误的是( )A .//BD 平面11CB D B .1AC BD ⊥ C .1AC ⊥平面11CB DD .异面直线AD 与1CB 所成的角为60︒ 10.已知310sina =a 为第二象限角,则()2tan a π+=( ) A .34-B .35C .35D .34二、填空题:本大题共6小题,每小题5分,共30分。

2024届北京海淀中关村中学数学高一下期末质量检测试题含解析

2024届北京海淀中关村中学数学高一下期末质量检测试题含解析

2024届北京海淀中关村中学数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各角中,与126°角终边相同的角是( ) A .126-B .486C .244-D .5742.设,,a b c ∈R ,且a b c >>,则下列各不等式中恒成立的是( ) A .ac bc >B .b c >C .22a b >D .a c b c +>+3.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的( )A .7B .12C .17D .344.设等差数列{}n a 的前n 项和为n S ,若11m a =,21121m S -=,则m 的值为( ) A .3B .4C .5D .65.已知圆锥的母线长为8,底面圆周长为6π,则它的体积是( ) A . 955πB . 55C . 355D . 355π6.阅读如图所示的程序框图,当输入5n =时,输出的S =( )A .6B .4615C .7D .47157.观察下列几何体各自的三视图,其中有且仅有两个视图完全相同的是( )①正方体 ②圆锥 ③正三棱柱 ④正四棱锥 A .①②B .②④C .①③D .①④8.已知函数1()sin 123f x x π⎛⎫=-+⎪⎝⎭,那么下列式子:①(2)(2)f x f x ππ+=-;②10()3f x f x π⎛⎫-=⎪⎝⎭;③(2)(2)f x f x ππ+=-;④2()3f x f x π⎛⎫-=- ⎪⎝⎭;其中恒成立的是( ) A .①②B .②③C .①②④D .②③④9.ABC ∆中,3,,4sin sin 3a Ab Bc C π===,则cos C ( )A .32B .3C .3或32D .010.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 二、填空题:本大题共6小题,每小题5分,共30分。

2023-2024学年北京市海淀区高一下学期阶段性诊断考试质量检测数学试题(含解析)

2023-2024学年北京市海淀区高一下学期阶段性诊断考试质量检测数学试题(含解析)

2023-2024学年北京市海淀区高一下册阶段性诊断考试数学试题一、单选题1.sin 210= A.2B.2-C .12D .12-【正确答案】D【详解】试题分析:()1sin 210sin 18030sin 302=+=-=-诱导公式2.如图,在平行四边形ABCD 中,AC AB -=()A .CB B .ADC .BD D .CD【正确答案】B【分析】根据向量运算得AC AB AD -=.【详解】由图知AC AB BC AD -==,故选:B.3.在ABC中,AB =45A =o ,75C =,则BC =()A.3BC .2D.3【正确答案】A【分析】直接根据正弦定理求出BC .【详解】在ABC ∆中,A ︒=45,∴75C ︒=.由正弦定理得BC ABsinA sinC=,∴ABsinA BC sinC ==3.故选A .解三角形时注意三角形中的隐含条件,如三角形的内角和定理,三角形中的边角关系等,解题时要灵活应用.同时解三角形时还要根据所给出的边角的条件,选择运用正弦定理还是余弦定理求解.4.把函数sin y x =的图像上所有的点向左平行移动3π个单位长度,再把所得图像上所有点的横坐标缩短到原来的12(纵坐标不变),得到的图像所表示的函数是A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+ ⎪⎝⎭C .sin 23y x π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=+ ⎪⎝⎭【正确答案】C【分析】根据左右平移和周期变换原则变换即可得到结果.【详解】sin y x =向左平移3π个单位得:sin 3y x π⎛⎫=+ ⎪⎝⎭将sin 3y x π⎛⎫=+ ⎪⎝⎭横坐标缩短为原来的12得:sin 23y x π⎛⎫=+ ⎪⎝⎭本题正确选项:C本题考查三角函数的左右平移变换和周期变换的问题,属于基础题.5.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为()A .1B CD .2【正确答案】B【详解】构造函数,根据辅助角公式,对函数的解析式进行化简,再根据正弦函数求出其最值,即可得到答案.则可知()sin cos sin 4F x x x x π⎛⎫=-- ⎪⎝⎭,F (x故|MN|,故选B6.若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为A .30︒B .60︒C .120︒D .150︒【正确答案】C【详解】试题分析:根据题意,由于||1,||2a b →→==,且2·0()·0·0a b c c a c a a b a a b a +=⊥⇔=⇔+=⇔+=,结合向量的数量积公式可知··cos b a b a θ= ,解得其向量,b a →→的夹角为1200,故选C.向量的数量积点评:主要是考查了向量的数量积的垂直的充要条件的运用,属于基础题.7.函数()()2sin f x x ωϕ=+0ω>2πϕ<的部分图象如图所示,则()f π=()A .B .C D 【正确答案】A由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==.又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+= ⎪⎝⎭πϕ,则5262k ϕπ=π+π+,Z k ∈,则23k πϕπ=-,Z k ∈,22ππϕ-<< ,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=- ⎪⎝⎭,()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭.故选:A.方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=;(3)取特殊点代入函数可求得ϕ的值.8.在平面直角坐标系xOy 中,角α以Ox 为始边,终边位于第一象限,且与单位圆O 交于点P ,PM x ⊥轴,垂足为M .若OMP 的面积为625,则sin2α=()A .625B .1225C .1825D .2425【正确答案】D【分析】由三角函数的定义结合三角形面积列出方程,再由倍角公式求出答案.【详解】由三角函数的定义可知:cos ,sin OM PM αα==,故511cos s 62in 22OM PM αα⋅==,故51sin 2462α=,解得.sin2α=2425故选:D9.在ABC 中,“对于任意1t ≠,BA tBC AC ->”是“ABC 为直角三角形”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】A【分析】设BD tBC = ,根据平面向量的运算可得DA AC > ,从而可得π2C =;若ABC 为直角三角形,不一定有π2C =,根据充分条件与必要条件的定义判断即可.【详解】设BD tBC =,则BA tBC BA BD DA --== ,所以BA tBC AC ->即为DA AC > ,所以AC 是边BC 上的高,即CA CB ⊥,即π2C =,故ABC 为直角三角形.若ABC 为直角三角形,不一定有π2C =,故不一定有BA tBC AC -> .所以“对于任意1t ≠,BA tBC AC -> ”是“ABC 为直角三角形”的充分而不必要条件.故选:A.10.已知向量,,a b c 满足()()1,,,04a b a b c a c b π===-⋅-=,则c r 的最大值是()A 1-BCD 1【正确答案】C【分析】把,a b 平移到共起点以b 的起点为原点,b 所在的直线为x 轴,b的方向为x 轴的正方向,求出,a b 的坐标,则根据()()0c a c b -⋅-= 得c的终点得轨迹,根据c r 的意义求解最大值.【详解】把,a b 平移到共起点,以b 的起点为原点,b 所在的直线为x 轴,b的方向为x 轴的正方向,见下图,设,,OB b OA a OC c ===,则,c a AC c b BC-=-= 又()()0c a c b AC BC -⋅-=∴⊥则点C 的轨迹为以AB 为直径的圆,又因为2,1,,,4a b a b π=== 所以()()1,01,1B A 故以AB 为直径的圆为()2211124x y ⎛⎫-+-= ⎪⎝⎭,所以c r 的最大值就是以AB 为直径的圆上的点到原点距离的最大值,所以最大值为2211511222+⎛⎫++= ⎪⎝⎭故选:C 二、填空题11.已知4sin 5α=,2απ<<π,则cos 4πα⎛⎫-= ⎪⎝⎭__________.【正确答案】2101210【分析】利用三角函数的基本关系式中的平方关系及角的范围求得3cos 5α=-,再利用余弦的和差公式展开即可求解.【详解】因为4sin 5α=,2απ<<π,所以23cos 1sin 5αα=--=-,故32422cos cos cos sin sin 444525210πππααα⎛⎫⎛⎫-=+=-⨯+= ⎪ ⎪⎝⎭⎝⎭.故答案为.21012.在ABC ∆中,已知sin :sin :sin 5:7:8A B C =,则角B =_______.【正确答案】3π【详解】试题分析:根据三角形的正弦定理sin :sin :sin 5:7:8A B C =,则可知ABC ∆的三个角所对应的三个边的比::5:7:8a b c =,根据三角形的余弦定理,则有222cos 2a c b B ac+-=12=,故3B π=.1.正弦定理;2.余弦定理.三、双空题13.已知函数()3sin cos f x x x =-,则π3f ⎛⎫= ⎪⎝⎭______;若将()f x 的图象向左平行移动π6个单位长度得到()g x 的图象,则()g x 的一个对称中心为______.【正确答案】1()0,0(答案不唯一)【分析】化简()2sin 6f x x π⎛⎫=- ⎪⎝⎭,代入即可求出π3f ⎛⎫⎪⎝⎭;由三角函数的平移变换求出()g x ,再由三角函数的性质求出()g x 的对称中心,即可得出答案.【详解】()3sin cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,所以π2sin 1336f ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,将()f x 的图象向左平行移动π6个单位长度得到()g x 的图象,则()2sin 2sin 66g x x x ππ⎛⎫=+-= ⎪⎝⎭,所以()g x 的对称中心为(),0k π.故()g x 的一个对称中心为()0,0.故1;()0,0(答案不唯一).四、填空题14.在菱形ABCD 中,若BD 3=CB DB ⋅的值为______.【正确答案】32【分析】根据菱形的对角线互相垂直且平分,则cos BC CBD BO ∠=,结合平面向量的数量积公式计算即可.【详解】菱形ABCD 中,BD 3=AC BD ⊥可得cos BC CBD BO ∠=则33 322CB DB BC BD BC BD cos CBD BO BD ⋅=⋅=⨯⨯∠=⨯== ,故答案为32.本题考查了平面向量的数量积计算问题,由菱形的性质得到cos BC CBD BO ∠= 是解题的关键,属于基础题.15.已知()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,则ω=______.【正确答案】143【分析】由题意可得函数的图象关于直线4x π=对称,再根据()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,可得()32432k k πππωπ+=+∈Z ,由此求得ω的值.【详解】依题意,当6324x πππ+==时,y 有最小值,即sin 143ππω⎛⎫+=- ⎪⎝⎭,则()32432k k πππωπ+=+∈Z ,所以()1483k k ω=+∈Z .因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,所以342T πππω-≤=,即12ω≤,令0k =,得143ω=.故143五、解答题16.如图,在ABC 中,11,32AM AB BN BC == .设,AB a AC b ==.(1)用,a b 表示,BC MN;(2)若P 为ABC 内部一点,且51124AP a b =+.求证:,,M P N 三点共线.【正确答案】(1)BC b a =- ,1126b MN a=+(2)证明见解析【分析】(1)由图中线段的位置及数量关系,用,AC AB 表示出,BC MN,即可得结果;(2)用,a b 表示AM AN +,得到AM AP AN λμ=+ ,根据向量共线的结论1λμ+=即证结论.【详解】(1)由题图,BC AC AB b a =-=-,121211()232326BN BM BC AB b a a b a MN =-=+=-+=+ .(2)由1111151()3323262AM AN AB AC CN AB AC BC a b b a a b +=++=+-=+--=+,又51124AP a b =+,所以1122AM AP AN =+ ,故,,M P N 三点共线.17.已知函数()222sin cos sin 222x x f x x x ⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【正确答案】(1)π(2)最大值为2,最小值为【分析】(1)根据三角恒等变换可得π()2sin(2)3f x x =-,结合公式2T ωπ=计算即可求解;(2)根据题意可得ππ2π2[,]333x -∈-,结合正弦函数的单调性,进而得出函数()f x 的最值.【详解】(1)()222sin cos sin 222x x f x x x ⎛⎫=- ⎪⎝⎭2sin cos 2x x x =,1πsin 222sin 222sin(2)23x x x x x ⎛⎫=-=-=- ⎪ ⎪⎝⎭则2ππT ω==,所以函数()f x 的最小正周期为π;(2)因为π[0,]2x ∈,所以ππ2π2[,]333x -∈-,而函数sin y x =在ππ(,)32-上单调递增,在π2π(,)23上单调递减,当ππ232x -=,即5π12x =时,函数()f x 取得最大值为2;当233x -=-ππ,即0x =时,(0)f =,当π2π233x -=,即π2x =时,()2f π=,所以当0x =时函数()f x取得最小值为故函数()f x 取得最大值为2,函数()f x取得最小值为18.在ABCsin cos C c A =,2c =.(1)求A ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上高线的长.条件①:2sin C a=;条件②:1b =条件③.a =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个要求的条件分别解答,按第一个解答计分.【正确答案】(1)π6;(2)选②,2.【分析】(1sin sin cos A C C A =,从而tan A =(2)选①:由正弦定理得2πsin sin 6aC=,求得1sin C a =,从而确定三角形不存在;选②:由余弦定理求得a =再利用等面积法可求解;选③:由正弦定理可求得sin C =进而求得π4C =或3π4,不满足题意.【详解】(1sin cos C c A =,sin sin cos A C C A =,又sin 0C ≠cos A A =,即tan 3A =,因为(0,π)A ∈,所以π6A =.(2)若选条件①:2sin C a=,由正弦定理知22πsin sin 6aa C ==,可得1sin C a =,故满足所选条件的三角形不存在,不满足题意;若选条件②:1b =由余弦定理可得,22222cos (1a b c bc A =+-=222(122+-⨯=,即a =.设BC 边上的高为h ,由等面积法可知11csin 22ABC S b A ah == ,即12(12⨯+⨯=,解得h =故BC边上高线的长为2.若选条件③:a =sin sin a c A C=2sin 2C =,所以sin 2C =,可得π4C =或3π4,有两解,不符合题意.综上,应该选②,BC边上高线的长为2.19.设有限集合{}1,2,3,,E N = ,对于集合{}123,,,,,m A E A x x x x ⊆= ,给出两个性质:①对于集合A 中任意一个元素k x ,当1k x ≠时,在集合A 中存在元素()i j x x i j ≤,,使得k i j x x x =+,则称A 为E 的封闭子集;②对于集合A 中任意两个元素(),i j x x i j ≠,都有i j x x A +∉,则称A 为E 的开放子集.(1)若20N =,集合{}{}*1,2,4,6,8,1031,6,A B xx k k k ===+≤∈N ,∣,判断集合A B ,为E 的封闭子集还是开放子集;(直接写出结论)(2)若1001100,,N A A =∈∈,且集合A 为E 的封闭子集,求m 的最小值;(3)若*N ∈N ,且N 为奇数,集合A 为E 的开放子集,求m 的最大值.【正确答案】(1)A 为E 的封闭子集,B 为E 的开放子集(2)9(3)12N +【分析】对于(1),利用封闭子集,开放子集定义可得答案;对于(2),{}2311100,,,,,m A x x x -= ,设2311100m x x x -<<<<< .因集合A 中任意一个元素k x ,当1k x ≠时,在集合A 中存在元素()i j x x i j ≤,,使得k i j x x x =+,则1112n n n x x x --+≤≤,其中2,N n m n *≤≤∈.据此可得7764100x ≤≤<,得7m >,后排除m =8,再说明m =9符合题意即可;对于(3),因*N ∈N ,且N 为奇数,当1N =时,得1m =;当3N ≥,将{}1,2,3,,E N = 里面的奇数组成集合A ,说明集合A 为E 开放子集,且12N m +=为最大值即可.【详解】(1)对于A ,因2114226248261028,,,,=+=+=+=+=+,且A E ⊆,则A 为E 的封闭子集;对于B ,由题可得{}4,7,10,13,16,19B =,注意到其中任意两个元素相加之和都不在B 中,任意元素也不是其他两个元素之和,且B E ⊆,故B 为E 的开放子集;(2)由题:{}2311100,,,,,m A x x x -= ,设2311100m x x x -<<<<< .因集合A 中任意一个元素k x ,当1k x ≠时,在集合A 中存在元素()i j x x i j ≤,,使得k i j x x x =+,则1112n n n x x x --+≤≤,其中2,,,N n n m n x *⎡⎤∈∈⎣⎦.得22x =,34538164, 4, 5x x x ≤≤≤≤≤≤,6632x ≤≤,7764x ≤≤.因7764100x ≤≤<,则7m >.若8m =,则8100x =,则在A 中存在元素()i j x x i j ≤,,使它们的和为100.又2311100m x x x -<<<<< ,则当i j <时,6796100i j x x x x ≤+≤<+,得877250x x x =⇒=,则在A 中存在元素()i j x x i j ≤,,使它们的和为50.又当i j <时,654850i j x x x x ≤≤<++,得766225x x x =⇒=,则在A 中存在元素()i j x x i j ≤,,使它们的和为25.注意到25奇数,且452425i j x x x x ≤≤<++,故不存在元素()i j x x i j ≤,,使6i j x x x =+,这与集合A 为E 的封闭子集矛盾,故8m ≠.当9m =,取{}124816326496100,,,,,,,,A =,易得其符合E 的封闭子集的定义,故m 的最小值为9;(3)因*N ∈N ,且N 为奇数,当1N =时,得1m =;当3N ≥,将{}1,2,3,,E N = 里面的奇数组成集合A ,则{}1357,,,,A N = ,因A 中每个元素都是奇数,而任意两个奇数之和为偶数,且A E ⊆,则A 为E 开放子集,此时集合A 元素个数为12N +.下面说明12N +为m 最大值.1N =时,显然成立;当3N ≥,若12N m +>,则A 中至少有一个属于{}1,2,3,,E N = 的偶数,设为t a ,则21t a N ≤≤-,得1t a +为属于集合{}1357,,,,,t N a 中的奇数,这与E 开放子集的定义矛盾,故12N m +≤.综上:m 的最大值为12N +.关键点点睛:本题考查集合新定义,难度较大.(1)问主要考查对于定义的理解;(2)问从定义出发,得到7764100x ≤≤<,得7m >,继而结合定义分析出8m ≠;(3)问,由任意两个奇数之和为偶数可构造出集合A.。

2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一上学期期末考试数学试题一、单选题:本题共14小题,每小题5分,共70分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知全集,集合,则()A. B. C. D.2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查.已知在初中学生中随机抽取了100人,则在高中学生中抽取了()A.150人B.200人C.250人D.300人3.命题“”的否定是()A. B.C. D.4.方程组的解集是()A. B.C. D.5.某部门调查了200名学生每周的课外活动时间单位:,制成了如图所示的频率分布直方图,其中课外活动时间的范围是,并分成五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h的人数是()A.56B.80C.144D.1846.若实数a,b满足,则下列不等式成立的是()A. B. C. D.7.函数的零点所在的区间为()A. B. C. D.8.在同一个坐标系中,函数的部分图象可能是()A. B.C. D.9.下列函数中,既是奇函数,又在上单调递减的是()A. B. C. D.10.已知,则实数a,b,c的大小关系是()A. B. C. D.11.已知函数,则“”是“为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数,则不等式的解集为()A. B. C. D.13.科赫曲线是几何中最简单的分形.科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若,则称D为该图形的分形维数.那么科赫曲线的分形维数是()A. B. C.1 D.14.已知函数,若存在非零实数,使得成立,则实数a的取值范围是()A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。

高一数学必修5水平测试卷

高一数学必修5水平测试卷

必修5水平测试卷(试卷总分150分、考试时间120分钟)一、选择题(每小题5分共50分)(A)若a ,b ,c 是等差数列,则log 2a ,log 2b ,log 2c 是等比数列 (B)若a ,b ,c 是等比数列,则log 2a ,log 2b ,log 2c 是等差数列(C)若a ,b ,c 是等差数列,则2a ,2b ,2c是等比数列(D)若a ,b ,c 是等比数列,则2a ,2b ,2c是等差数列(A)1 (B)2 (C)3 (D)43、已知数列{a n }是公比q ≠1的等比数列,则在 “(1){a n a n +1}, (2){a n +1-a n }, (3){a n 3},(4){na n }”这四个数列中,成等比数列的个数是 (A)1 (B)2 (C)3 (D)4 4、下列结论正确的是(A)当2lg 1lg ,10≥+≠>x x x x 时且 (B)21,0≥+>xx x 时当(C)21,2的最小值为时当x x x +≥ (D)无最大值时当xx x 1,20-≤< 5、若a,b,c 成等比数列,m 是a,b 的等差中项,n 是b,c 的等差中项,则=+ncm a(A)4 (B)3 (C)2 (D)16、 设x,y ∈ R +,且xy-(x+y)=1,则(A) x+y ≥22+2 (B) xy ≤2+1 (C) x+y ≤(2+1)2 (D)xy ≥22+27.若不等式ax 2+bx +2>0的解集是{x | -< x <},则a + b 的值为(A) -10 (B) -14 (C) 10 (D) 148、等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n-1,则 a 12+a 22+a 32+…+a n 2等于(A)2)12(-n(B))12(31-n (C)14-n(D) )14(31-n9、某人朝正东方向走x 千米后,向右转o 150并走3千米,结果他离出发点恰好3千米,那么x 的值为 (A) 3 (B) 32 (C) 3或32(D) 310、某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省? (A) A 用3张,B 用6张 (B)A 用4张,B 用5张 (C)A 用2张,B 用6张 (D)A 用3张,B 用5张 二、填空题(每小题4分共16分)11、已知等比数列{a n }中,a 1+a 2=9,a 1a 2a 3=27,则{a n }的前n 项和 S n = ___________213112、已知⎩⎨⎧<-≥=01;01)(x x x f ,,,则不等式()5)2(2≤+⋅++x f x x 的解集是__________13、在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是 14、如图,它满足①第n 行首尾两数均为n ,②表中的递推关系类似杨辉三角,则第n 行)2(≥n 第2个数是 . 。

北京市海淀区达标名校2020年高考五月调研数学试卷含解析

北京市海淀区达标名校2020年高考五月调研数学试卷含解析

北京市海淀区达标名校2020年高考五月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .c b a >>D .c a b >>2.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知直线y=k(x+1)(k>0)与抛物线C 2:4y x =相交于A ,B 两点,F 为C 的焦点,若|FA|=2|FB|,则|FA| =( ) A .1B .2C .3D .44.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞5.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( ) A .18种B .20种C .22种D .24种6.若数列{}n a 为等差数列,且满足5383a a a ++=,n S 为数列{}n a 的前n 项和,则11S =( ) A .27B .33C .39D .447.在三棱锥D ABC -中,1AB BC CD DA ====,且,,,AB BC CD DA M N ⊥⊥分别是棱BC ,CD 的中点,下面四个结论: ①AC BD ⊥; ②//MN 平面ABD ;③三棱锥A CMN -的体积的最大值为; ④AD 与BC 一定不垂直.其中所有正确命题的序号是( ) A .①②③B .②③④C .①④D .①②④8.已知符号函数sgnx 100010x x x ⎧⎪==⎨⎪-⎩,>,,<f (x )是定义在R 上的减函数,g (x )=f (x )﹣f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=﹣sgnxC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=﹣sgn[f (x )]9.已知双曲线的两条渐近线与抛物线22,(0)y px p =>的准线分别交于点、,O 为坐标原点.若双曲线的离心率为2,三角形AOB 3,则p=( ). A .1B .32C .2D .310.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅的最大值为( ) A .714-B .24-C .514-D .30-11.已知函数3sin ()(1)()x xx xf x x m x e e -+=+-++为奇函数,则m =( )A .12B .1C .2D .312.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC ∆的面为S ,且()2243S a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( ) A .1B 2C 62- D 62+二、填空题:本题共4小题,每小题5分,共20分。

北京市海淀区高中课改水平监测高一数学试卷参考答案

北京市海淀区高中课改水平监测高一数学试卷参考答案

北京市海淀区高中课改水平监测高一数学试卷参考答案卷一一、选择题二、填空题 11.34π; 12. 2 ; 13. 4 ; 14. 8,()2sin()44f x x ππ=+; 三、解答题15.解:(Ⅰ)∵(31,42)(2,2)AB =--=, ………………………………1分 (51,02)(4,2),AC =--=- …………………………….…..2分∴ 22AB === ………………………………4分24AC === ……………………………….6分(Ⅱ) 易知 4.AB AC ⋅= ………………………………..8分 10cos ,cos 10AB AC AB AC BAC AB AC⋅<>=∠==……………………… .12分 16.解:1sin3,且为第三象限角.cos α∴=-……………………………3分(Ⅰ)sin 22sin cos ααα==……………………………7分(Ⅱ)原式=tan .4α=……………………………12分17.解:()sin cos 2f x x x x =1sin 222x x =+ ……………………………1分 sin(2)3x π=+……………………………2分(Ⅰ)∴T .π= …………………………… 4分 (Ⅱ)当22,()32x k k Z πππ+=+∈时,即,()12x x x k k Z ππ⎧⎫∈=+∈⎨⎬⎩⎭时, ……………………………6分 ∴max () 1.f x = ……………………………7分(Ⅲ)当3222,()232k x k k Z πππππ+≤+≤+∈时,函数单调递减. 即 7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦为此函数的单调递减区间. ….……………….…10分 卷二一、填空题1.tan75°> sin75°> cos75°; 2.323.cos x ; 4.[12,)+∞; 二、解答题5. 解:(Ⅰ) cos 2α=725 ……………………………3分 (Ⅱ) βsin =2425…………………………… 6分注:注意公式变换正确建议可给出相应分数,但是sin(αβ+)=35说理不清扣1分.6. (Ⅰ)证明:令0x y ==,得 (0)2(0)(1)f f f =,所以(0)0f =或1(1)2f =. ……1分令0,1x y ==,得22(1)[(0)][(1)]f f f =+. 若1(1)2f =,则1(0)2f =±. 令12x y ==,得21(1)2[()]2f f =.即1()2f =12±, 因为()f x 在[0,1]上单调递增,所以(0)f <1()(1)2f f <,矛盾!因此(0)0f =,2(1)[(1)]f f =,(1)1f =. ……………………….3分 (Ⅱ) ()f x 是奇函数 ……………………….…………………….4分令y x =-,得f f x f x f x f x =++--(0)()(1)(1)().…………① 令1y =,得(1)()(0)(1)(1)(1)f x f x f f x f f x +=+-=-.…② 即对于任意的x R ∈,恒有(1)(1)f x f x -=--, 代入①式得对于任意的x R ∈,恒有()()f x f x -=-,所以()f x 为奇函数. ……………6分(Ⅲ)由(Ⅱ)可得()(2)(2)(4)(4)f x f x f x f x f x =-=--=--=-, 即:函数()f x 的最小正周期为4.令13x y ==,212()2()()333f f f =,因为2()(0)0,3f f >=,所以11()32f =. 由②得:51()32f =.根据函数在[-2,2]的图象以及函数的周期性, 观察得 ,若1(21)2f x -≥, 则k x k k Z +≤-≤+∈154214,33, 所以k x k k Z +≤≤+∈2422,33,2422,33x xk x k k Z ⎧⎫∈+≤≤+∈⎨⎬⎩⎭…………………8分注:若有其他解法,请按相应步骤酌情给分.。

北师大版数学高一-北师大版必修5 必修5 学业水平达标检测

北师大版数学高一-北师大版必修5 必修5 学业水平达标检测
解析:由题意,得 ,解得m=-1.
答案:-1
16.在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a,b,c分别是角A,B,C所对的边,则 的最大值为________.
解析:因为sinAsinCcosB+sinBsinCcosA=sinC(sinAcosB+cosAsinB)=sinCsin(A+B)=sin2C,所以sinAsinBcosC=sin2C,由正弦定理可得abcosC=c2,由余弦定理可得ab· =c2,从而3c2=a2+b2≥2ab,即 ≤ .
C.1 D.
解析:∵ 是3a与3b的等比中项,
∴( )2=3a·3b.
即3=3a+b,∴a+b=1.
此时 + = + =2+ ≥2+2=4(当且仅当a=b= 取等号),故选B.
答案:B
11.已知钝角三角形ABC的最长边为2,其余两边长为a,b,则集合P={(x,y)|x=a,y=b}所表示的平面图形的面积是()
20.(本小题满分12分)已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
解析:(1)g(x)=2x2-4x-16<0,
∴(2x+4)(x-4)<0,∴-2<x<4,
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的表达式;
(2)若f(x)的最大值为正数,求a的取值范围.
解析:(1)∵f(x)+2x>0的解集为(1,3),
∴f(x)+2x=a(x-1)(x-3),且a<0.
∴f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.①

北京市海淀区中关村中学分校2022年数学高一上期末学业质量监测试题含解析

北京市海淀区中关村中学分校2022年数学高一上期末学业质量监测试题含解析
17.已知函数 是定义在R上的奇函数
(1)用定义法证明 为增函数;
(2)对任意 ,都有 恒成立,求实数k的取值范围
18.已知函数 ( 且 )为奇函数.
(1)求n的值;
(2)若 ,判断函数 在区间 上的单调性并用定义证明;
(3)在(2)的条件下证明:当 时, .
19.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.
D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数
6.函数 单调递增区间为
A. B.
C D.
7.已知函数 ,则下列区间中含有 的零点的是()
A. B. ()
A.1B.-1
C. D.
9.若圆 上至少有三个不同的点到直线 的距离为 ,则 的取值范围是()
【详解】解:容易知道,这两个函数都有最大值、最小值.
(1)使函数 , 取得最大值的x的集合,就是使函数 , 取得最大值的x的集合 ;
使函数 , 取得最小值的x的集合,就是使函数 , 取得最小值的x的集合 .
函数 , 的最大值是 ;最小值是 .
(2)令 ,使函数 , 取得最大值的x的集合,就是使 , 取得最小值的z的集合 .
17、(1)证明见解析
(2)
【解析】(1)根据函数单调性 定义及指数函数的单调性与值域即可证明;
(2)由已知条件,利用函数 的奇偶性和单调性,可得 对 恒成立,然后分离参数,利用基本不等式求出最值即可得答案.
【小问1详解】
证明:设 ,则 ,
由 ,可得 ,即 ,又 , ,
所以 ,即 ,则 在 上为增函数;
故答案 : .
【点睛】本题考查平面向量数量积 计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.

2022-2023学年北京市海淀区高一下学期中考试数学试题【含答案】

2022-2023学年北京市海淀区高一下学期中考试数学试题【含答案】

2022-2023学年北京市海淀区高一下学期中考试数学试题一、单选题1.在平面直角坐标系中,点位于第( )象限.sin100,cos 0()20P ︒︒A .一B .二C .三D .四【答案】D【分析】由钝角的正弦值大于0,再由诱导公式得,即可得到答案.0cos 200<【详解】,()sin1000,cos 200cos 18020cos 200︒︒︒︒︒>=+=-< ∴点位于第四象限.()sin100,cos 200P ︒︒故选:D .【点睛】本题考查三角函数值的符号、诱导公式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.2.在中,“是“”的( )ABC sin A =4A π=A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】根据正弦函数的性质和充分和必要条件的概念即可判断.【详解】在中,或,ABC sin A =4A π=34π∴在中,“是“”的必要不充分条件,ABC sin A =4A π=故选:B .3.下列函数中最小正周期为,且为偶函数的是( )πA .B .πcos 2()2y x =+sin y x=C .D .tan y x =cos3y x=【答案】B【分析】化简并判断的奇偶性,判断A ;利用图像可判断B ;根据函数奇偶性判断πcos 2(2y x =+C ;根据函数的最小正周期可判断D.【详解】对于A ,为奇函数,不符合题意;πcos(2sin 22y x x=+=-对于B ,作出的图象如图:sin y x=可知函数最小正周期为,且为偶函数,符合题意;sin y x=π对于C ,为奇函数,不符合题意;tan y x =对于D ,的最小正周期为,不符合题意,cos3y x =2π3故选:B4.一个扇形的圆心角为150°,面积为,则该扇形半径为( )53πA .4B .1CD .2【答案】D【分析】利用扇形的面积公式:,即可求解.212S R α=⋅【详解】圆心角为,设扇形的半径为,51506πα==R ,2215152326S R R ππα=⋅⇒=⨯解得.2R =故选:D【点睛】本题考查了扇形的面积公式,需熟记公式,属于基础题.5.已知,则的值为( )1tan 3α=-2cos sin cos ααα-+A .B .C .D .3-34-43-34【答案】A【解析】利用同角三角函数的基本关系求解即可.【详解】由,1tan 3α=-得.2cos 2232sin cos 1tan 3αααα---===-++故选:A.【点睛】本题主要考查了同角三角函数的基本关系.属于容易题.6.将函数的图象向右平移个单位长度得到图象,则函数的解析式是( )()sin 2f x x =6π()g x A .B .()sin 23g x x π⎛⎫=+ ⎪⎝⎭()sin 26g x x π⎛⎫=+ ⎪⎝⎭C .D .()sin 23g x x π⎛⎫=- ⎪⎝⎭()sin 26g x x π⎛⎫=- ⎪⎝⎭【答案】C【分析】由题意利用三角函数的图象变换原则,即可得出结论.【详解】由题意,将函数的图象向右平移个单位长度,()sin 2f x x =6π可得.()sin 2()sin(263g x x x ππ=-=-故选C .【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.7.已知向量,,,则向量与的夹角为()2a = 1b =2a b -= a b A .B .C .D .30︒60︒120︒150︒【答案】C 【分析】将平方,求得,再根据向量的夹角公式即可求得答案.2a b -=a b ⋅【详解】由题意向量,,,2a = 1b = 2a b -=则,即,2212a b -= 224412a b a b +-⋅= 所以,44412,1a b a b +-⋅=∴⋅=-故,而,1cos ,2||||a b a b a b ⋅〈〉==-⋅0,180a b ≤≤故,,120a b 〈〉=故选:C8.如图所示,一个大风车的半径为,每旋转一周,最低点离地面,若风车翼片从最8m 12min 2m 低点按逆时针方向开始旋转,则该翼片的端点离地面的距离与时间之间的函数关系P ()h m ()min t 是A .B .8cos106h t π=+8cos 103h t π=-+C .D .8sin106h t π=-+8cos106h t π=-+【答案】D【分析】由题意得出的最大值和最小值,以及最小正周期,可求出、、的值,再将点h T A B ω代入函数解析式求出的值,由此可得出与之间的函数关系式.()0,2ϕh t 【详解】由题意可得,,,,,max 18h =min2h =12T =max min 82h h A -∴==max min 102h hB +==,,当时,,得,26T ππω==8sin 106t h πϕ⎛⎫=++ ⎪⎝⎭0=t 8sin 102ϕ+=sin 1ϕ=-,可取,所以,故选D.sin 1ϕ=-2πϕ=-8sin 108cos 10626h t t πππ⎛⎫=-+=-+ ⎪⎝⎭【点睛】本题考查函数的解析式,基本步骤如下:()()()sin 0,0f x A x b A ωϕω=++>>(1)求、:,;A b ()()max min2f x f x A -=()()max min2f x f x b +=(2)求:根据题中信息得出最小正周期,可得出;ωT 2T πω=(3)求初相:将对称中心点、最高点或最低点代入函数解析式可求出的值.ϕϕ9.在中,,,为线段的三等分点,则ABC AB AC AB AC+=- 4, 2AB AC ==, E F BC =( )AE AF ⋅A .B .1094C .D .409569【答案】C【分析】根据题意得出⊥,建立平面直角坐标系,表示出、,求出数量积的AB AC AE AF AE AF ⋅值.【详解】中,||=||,ABC AB AC +AB AC -∴22,2AB + AB ⋅22AC AC AB +=- AB ⋅2AC AC + ∴0,AB ⋅AC =∴⊥,AB AC 建立如图所示的平面直角坐标系,由E ,F 为BC 边的三等分点,则A (0,0),B (0,4),C (2,0),E (,),F (,),23834343∴(,),(,),AE =2383AF = 4343∴+.AE2433AF ⋅=⨯ 3398440⨯=故选:C 10.已知动点,,O 为坐标原点,则当时,下列说法正确()111,cos P x x ()222,cos P x x 1211x x -≤≤≤的是( )A .有最小值1B .有最小值,且最小值小于11OP1OPC .恒成立D .存在,使得120OP OP ⋅≥ 1x 2x 122OP OP ⋅≥ 【答案】A【分析】根据题意,由平面向量的数量积运算,结合三角函数的性质,代入计算即可得到结果.【详解】由题意知,当时,1211x x -≤≤≤()22222111111cos 1sin OP f x x x x x ==+=+- ,()()11111sin sin x x x x =++-因为函数为偶函数,所以只考虑的情形即可,()1f x 101x ≤≤又因为,所以,11sin 0x x ≥≥()()()111111sin sin 1f x x x x x =++-≥即有最小值1,所以A 正确,B 错误;1OP 又因为,121212cos cos OP OP x x x x ⋅=+当时,,所以C 错误;12ππ,22x x =-=2212ππππcos cos 04224OP OP ⎛⎫⋅=-+-=-< ⎪⎝⎭ 又因为,,但与不可能同时为,121x x ≤12cos cos 1x x ≤2x 2cos x 1而,所以,所以D 错误;1211x x -≤≤≤121212cos cos 2OP OP x x x x ⋅=+<故选:A二、填空题11.______.sin 20cos10cos160sin10︒︒-︒︒=【答案】/0.512【分析】用诱导公式变形后由两角和的正弦公式计算.【详解】,1sin 20cos10cos160sin10sin 20cos10cos 20sin10sin(2010)sin 302︒︒-︒︒=︒︒+︒︒=︒+︒=︒=故答案为:.1212.已知角的终边与单位圆交于点,则________.α3,5P y ⎛⎫- ⎪⎝⎭sin tan αα⋅【答案】1615-【分析】根据题意,由条件可得,再由三角函数的定义即可得到结果.21625y =【详解】由题意可得,,则,22315y ⎛⎫-+= ⎪⎝⎭21625y =由三角函数的定义可得.216sin tan 331555y y y αα⋅=⋅==-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭故答案为:1615-13.若实数,满足方程组,则的一个值是________.αβ1cos cos sin sin αβαβ+=⎧⎨=⎩β【答案】(答案不唯一)π3【分析】结合题意利用同角三角函数的平方关系可求得,即可求得答案.1cos 2β=【详解】由可得,1cos cos sin sin αβαβ+=⎧⎨=⎩cos cos 1sin sin αβαβ=-⎧⎨=⎩故,即得,2222sin cos sin (cos 1)1ααββ+=+-=1cos 2β=故的一个值可以取,βπ3故答案为:(答案不唯一)π314.已知,,,则________304παβ∈,(,)3sin()5αβ+=-12sin()413πβ-=cos()4πα-=【答案】3365【分析】由诱导公式将化为,再由,根据两角差的cos 4πα⎛⎫- ⎪⎝⎭sin 4πα⎛⎫+ ⎪⎝⎭()44ππααββ⎛⎫+=+-- ⎪⎝⎭正弦公式,即可求出结果.【详解】因为,所以,,304παβ⎛⎫∈ ⎪⎝⎭,,302παβ⎛⎫+∈ ⎪⎝⎭,442πππβ⎛⎫-∈- ⎪⎝⎭,又,,所以,,()3sin 5αβ+=-12sin 413πβ⎛⎫-= ⎪⎝⎭32,παβπ⎛⎫+∈ ⎪⎝⎭042ππβ⎛⎫-∈ ⎪⎝⎭,所以,,所以()4cos 5αβ+=-5cos 413πβ⎛⎫-= ⎪⎝⎭()()()3541cos sin sin cos cos sin 4444451351sin πππππαααββαββαββ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=+=+--=+--+-=-⨯--⨯⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为3365【点睛】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.三、双空题15.已知函数,任取,定义集合:()πsin2xf x =t ∈R ,点,满足(){t A y y f x ==()(),P t f t ()(),Q x f x PQ ≤设,分别表示集合中元素的最大值和最小值,记, 则tM tm t A ()t th t M m =-(1)函数的最大值是______;()h t (2)函数的单调递增区间为______.()h t 【答案】2()21,2k k k Z-∈,【解析】作出函数的图象,分当点P 在A 点时,当点P 在曲线上从A 接近B 时,当点P 在()f x B 点时,当点P 在曲线上从B 接近C 时,当点P 在C 点时,当点P 在曲线上从C 接近D 时,当点P 在D 点时,当点P 在曲线上从D 接近E 时,分析的值和变化,从而得出的,t tM m ()t th t M m =-值和变化,可得答案.【详解】函数,函数的最小正周期为T=4,点P (),Q (),如图()πsin 2f x x ⎛⎫= ⎪⎝⎭π,sin 2t t ⎛⎫⎪⎝⎭π,sin 2x x ⎛⎫ ⎪⎝⎭所示:当点P 在A 点时,点Q 在曲线OAB 上,,;1,0t t M m ==()1t t h t M m =-=当点P 在曲线上从A 接近B 时,减小,所以逐渐增大;1,t t M m =()t th t M m =-当点P 在B 点时,,,1,1t t M m ==-()2t t h t M m =-=当点P 在曲线上从B 接近C 时,减小,所以逐渐减小;1,t t m M =-()t th t M m =-当点P 在C 点时,,;0,1t t M m ==-()1t t h t M m =-=当点P 在曲线上从C 接近D 时,增大,所以逐渐增大;1,t tm M =-()t th t M m =-当点P 在D 点时,,;1,1t t M m ==-()2t t h t M m =-=当点P 在曲线上从D 接近E 时,增大,逐渐减小,1,t t M m =()t t h t M m =-依次类推,得函数的最大值是,的单调递增区间为,()h t 2()h t ()21,2k k k Z -∈,故答案为:2;.()21,2k k k Z -∈,【点睛】本题考查正弦函数的周期性,最值,单调性,关键在于理解题目所给的条件,属于较难题.四、解答题16.已知函数.2()cos sin 1f x x x =+-(1)当时,求函数的值;π6x =()y f x =(2)求不等式的解集.()0f x ≥【答案】(1)14(2)[2π,2ππ],Zk k k +∈【分析】(1)利用同角三角函数关系式化简可得,代入求值可得答案;211()(sin 24f x x =--+(2)利用(1)中结论,由不等式可得,结合正弦函数性质即可求得答案.()0f x ≥0sin 1x ≤≤【详解】(1)由题意可得22()cos sin 1sin sin f x x x x x=+-=-+,211(sin )24x =--+故当时,;π6x =24π6111()(sin )24f x =--+=(2)由可得,()0f x ≥211111(sin )0,sin 24222x x --+≥∴-≤-≤即,故,0sin 1x ≤≤2π2ππ,Z k x k k ≤≤+∈故不等式的解集为.()0f x ≥[2π,2ππ],Z k k k +∈17.在平面直角坐标系中,已知三点为坐标原点,()()()1,0,,2,2,,,A B t C t t O-∈R (1)若是为直角的直角三角形,求的值;ABC B ∠t (2)若四边形是平行四边形,求的最小值.ABCD OD【答案】(1)1t =【分析】(1)利用向量垂直解得即可;0AB BC ⋅=(2)由题意得,求得的坐标,利用模长公式即可得出结论.AD BC =D ()1,2D t t --【详解】(1)由题意得,()()()1,2,3,1,2,2AB t AC BC t t =+==--若,则,即,90B Ð=°0AB BC ⋅= ()()()12220t t t +-+-=解得或,2t =1t =当,则,不合题意;2t =0BC =当,则,符合题意;1t =()1,1BC =-综上所述:.1t =(2)设点的坐标为,可得,D (),x y ()1,AD x y =+若四边形是平行四边形,则,ABCD ()2,2AD BC t t ==--所以,则,即,122x ty t +=-⎧⎨=-⎩12x t y t =-⎧⎨=-⎩()1,2D t t --可得,()1,2OD t t =--则OD ===所以当时,取得最小值.32t=OD 18.已知函数,.π()sin 14f x x x ⎛⎫=⋅-+ ⎪⎝⎭x ∈R (1)请化简为正弦型函数,并求函数的单调递增区间;()f x (2)求函数在区间上的最值,及取得最值时x 的值.()f x ππ,44⎡⎤-⎢⎥⎣⎦(3)若,都有恒成立,求实数m 的取值范围.12ππ,,44x x ⎡⎤∀∈-⎢⎥⎣⎦12()()f f x x m -≤【答案】(1);π())4f x x =-π3π[π,π+],Z88k k k -∈(2)最大值为1,此时;最小值为,此时;π4x =π8x =-(3)[1)+∞【分析】(1)根据三角函数的二倍角公式结合辅助角公式化简可得,结合正弦π()4f x x =-函数的单调性即可求得答案;(2)根据时,确定的范围,结合正弦函数的性质即可求得答案;ππ,44x ⎡⎤∈-⎢⎣⎦π24x -(3)由,都有恒成立,可得,结合(2)12ππ,,44x x ⎡⎤∀∈-⎢⎥⎣⎦12()()f f x x m -≤max min ()()f m x f x -≤的结论,即可求得答案.【详解】(1)因为π()sin 1cos )]14f x x x x x x ⎛⎫=⋅-+=-+ ⎪⎝⎭22sin cos 2cos 1sin 2cos 2x x x x x=-+=-,π)4x =-令,则,πππ2π22π+,Z 242k x k k -≤-≤∈π3πππ+,Z 88k x k k -≤≤∈故函数的单调递增区间为.()f x π3π[π,π+],Z 88k k k -∈(2)当时,,ππ,44x ⎡⎤∈-⎢⎥⎣⎦4π3ππ2,44x ⎡⎤-∈-⎢⎥⎣⎦由于在单调递减,在单调递增,sin y x =,23ππ4⎡⎤--⎢⎥⎣⎦ππ,24⎡⎤-⎢⎥⎣⎦当,即时,,取得最小值ππ242x -=-π8x =-πsin(2)14x -=-()f x 当时,;4π234πx -=-()1f x =-当,即时,取得最大值;ππ244x -=π4x =()f x 1(3)若,都有恒成立,12ππ,,44x x ⎡⎤∀∈-⎢⎥⎣⎦12()()f f x x m -≤即,max min ()()f m x f x -≤由(2)可知max min ()1,()f x f x ==故,即实数m 的取值范围为.1m ≥+[1)+∞19.对于定义域R 上的函数,如果存在非零常数T ,对任意,都有成立,()f x x ∈R ()()f x T Tf x +=则称为“T 函数”.()f x(1)设函数,判断是否为“T 函数”,说明理由;()f x x =()f x (2)若函数(且)的图象与函数的图象有公共点,证明:为“T 函数”;()xg x a =0a >1a ≠y x =()g x (3)若函数为“T 函数”,求实数m 的取值范围.()cos h x mx =【答案】(1)不是“T 函数”,理由见解析;()f x x =(2)证明见解析(3)|π,Z}{m m k k =∈【分析】(1)根据“T 函数”的定义判断是否满足该定义,即可得结论;()f x x =(2)只需证明满足“T 函数”定义,即可得结论;()g x (3)根据函数为“T 函数”,可得恒成立,即可推得()cos h x mx =cos )c (os mx mT T mx +=,即可求得答案.cos ,sin 0mT T mT ==【详解】(1)若函数是“T 函数”,则对于,恒有,()f x x =x ∈R ()()f x T Tf x +=即恒成立,故恒成立,x T Tx +=()1T x T -=由于,上式不可能恒成立,x ∈R 故不是“T 函数”;()f x x =(2)证明:函数(且)的图象与函数的图象有公共点,显然,()xg x a =0a >1a ≠y x =0x ≠即存在非零常数T ,使得,T a T =所以恒成立,()f x T +=()x T T x x a a a Ta Tf x +===故为“T 函数”.()x g x a =(3)若函数是“T 函数”,则,()cos h x mx =()()f x T Tf x +=即恒成立,())cos cos (m x T T mx +=故恒成立,cos )c (os mx mT T mx +=即恒成立,cos cos sin sin cos mx mT mx mT T mx -=即有,cos ,sin 0mT T mT ==故,1,π,Z T m k k =±=∈即实数m 的取值范围是.|π,Z}{m m k k =∈【点睛】关键点睛:本题是给出函数的新定义,由此去判断求解问题,解答本题的关键就是要理解函数的新定义,明确其含义,依此去判断解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区高一数学模块5水平监测试题2008、04、23卷一一. 选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在等差数列3, 7, 11 …中,第5项为( C )A. 15B.18C.19D.23 2. 数列}{n a 中, 如果n a =3n (n =1, 2, 3, …) ,那么这个数列是( C ) A. 公差为2的等差数列 B. 公差为3的等差数列 C. 首项为3的等比数列 D. 首项为1的等比数列3.等差数列}{n a 中, 384362=+=+a a a a ,, 那么它的公差是( B ) A. 4 B.5 C.6 D.74. △ABC 中, ∠A ,∠B ,∠C 所对的边分别为a , b , c .若3,4a b ==,∠C= 60, 则c .的值等于( C )A. 5B. 13C.13D.37 5. 数列}{n a 满足111,21n n a a a +==+(N n +∈), 那么4a 的值为( C ) A. 4 B. 8 C. 15 D. 31 6. △ABC 中, 如果cos A cos B cosCa b c==, 那么△ABC 是( B ) A. 直角三角形 B. 等边三角形 C. 等腰直角三角形 D. 钝角三角形 7. 如果00>>>t b a ,, 设tb t a N b a M ++==,, 那么( A ) A. N M > B. N M <C. N M =D. M 与N 的大小关系随t 的变化而变化 8. 如果}{n a 为递增数列,则}{n a 的通项公式可以为( D ) A. 32+-=n a n B. 132+-=n n a n C. n n a 21=D. 21log n a n =+9. 如果0<<b a , 那么( C )A. 0>-b aB. bc ac <C.ba 11> D. 22b a < 10.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)的过程.令a=2, b=4,若(0,1)c ∈,则输出区间的形式为( B )A.MB. NC.PD.∅二. 填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 11.已知x 是4和16的等差中项,则x =___10___ 12.一元二次不等式26x x <+的解集为__(2,3)-___ 13. 函数()(1),(0,1)f x x x x =-∈的最大值为___14______14. 在数列{}n a 中,其前n 项和32n n S k =⋅+,若数列{}n a 是等比数列,则常数k 的值为 -3 三.解答题.15.三角形ABC 中,3,7==AB BC ,且53sin sin =B C . (Ⅰ)求AC ; (Ⅱ)求A ∠.解:(Ⅰ)由正弦定理得:sin 3535sin sin sin 53AC AB AB C AC B C AC B ⨯=⇒==⇒== --------------------------6分 (Ⅱ)由余弦定理得:222925491cos 22352AB AC BC A AB AC +-+-∠===-⋅⨯⨯,所以120A ∠=︒。

---------------12分 16.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元。

设池底长方形长为x 米. (Ⅰ)求底面积,并用含x 的表达式表示池壁面积; (Ⅱ)怎样设计水池能使总造价最低?最低造价是多少? 解:(Ⅰ)设水池的底面积为1S ,池壁面积为2S ,则有1480016003S ==(平方米), 可知,池底长方形宽为1600x米,则216001600666()S x x x x=+⨯=+--------------------------5分 (Ⅱ)设总造价为y ,则1600150********()24000057600297600y x x=⨯+⨯+≥+= 当且仅当xx 1600=,即40=x 时取等号, 所以40=x 时,总造价最低为297600元.答:40=x 时,总造价最低为297600元. --------------------------12分17.已知等差数列}{n a 的前n 项的和记为n S .如果41284-=-=a a ,. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)求S n 的最小值及其相应的n 的值;(Ⅲ)从数列}{n a 中依次取出112482,,,,...,,...n a a a a a -,构成一个新的数列}{n b ,求}{n b 的前n 项和.解:(Ⅰ)设公差为d ,由题意,可得418112312474a a d a a d =-+=-⎧⎧⇔⎨⎨=-+=-⎩⎩,解得1218d a =⎧⎨=-⎩,所以220n a n =--------------------------3分 (Ⅱ)由数列}{n a 的通项公式可知,当9n ≤时,0n a <,当10n =时,0n a =,当11n ≥时,0n a >。

所以当n =9或n =10时,n S 取得最小值为91090S S ==-。

-------------------------6分 (Ⅲ)记数列}{n b 的前n 项和为n T ,由题意可知11218(21)2220n n n n b a --==-+-⨯=- 所以123n n T b b b b =++++123(220)(220)(220)(220)n =-+-+-++-123(2222)20nn =++++- 1222012n n +-=-- 12202n n +=-- -------------------------10分卷二一、填空题1.在四个正数2,a ,b ,9中,若前三个数成等差数列,后三个数成等比数列,则a =____4_,b =___6___。

2.在△ABC 中, ∠A ,∠B ,∠C 所对的边分别为a , b , c ,若::3:5:6a b c =, 则C B A sin sin sin 2-=_16__.3.如果0,0,2x y x y xy >>++=,则x y +的最小值为2 。

4.如果有穷数列123,,,,m a a a a (2m k =,*k ∈N )满足条件1211,,,m m m a a a a a a -=-=-=- 即1(1,2,,)i m i a a i m -+=-= ,我们称其为“反对称数列”。

(1)请在下列横线上填入适当的数,使这6个数构成“反对称数列”:-8, -4 ,-2, 2 , 4 , 8 ;(2)设{}n c 是项数为30的“反对称数列”,其中16171830,,,,c c c c 构成首项为-1,公比为2的等比数列. 设T n 是数列{}n nc 的前n 项和,则15T = 16217-二、解答题5.如图,在一建筑物底部B 处和顶部A 处分别测得山顶C 处的仰角为60︒和45︒(AB 连线垂直于水平线),已知建筑物高AB =20米,求山高DC解:如图,在ABC ∆中,由正弦定理可得sin sin BC ABBAC ACB =∠∠即 20sin135sin(6045)BC =︒︒-︒所以20sin1351)sin(6045)BC ︒===︒-︒在Rt BCD ∆中,sin6010(3CD BC =︒=所以山高为)31030(+米法2利用AE=DE 列方程。

D BACE6.已知n S 为数列{}n a 的前n 项和,且2232n n S a n n =+--(n =1,2,3…).令2n n b a n =-(n =1,2,3…).(Ⅰ)求证: 数列{}n b 为等比数列; (Ⅱ)令11n n c b =+,记2n 11223341222n n n T c c c c c c c c -+=+++⋅⋅⋅+,比较n T 与16的大小。

(Ⅰ)解: 2232n n S a n n =+--,()()21121312n n S a n n ++∴=++-+-.()11222,212(2)n n n n a a n a n a n ++∴=-+∴-+=-.∴2n n b a n =-是以2为公比的等比数列 3分 (Ⅱ)111124,4a S a a ==-∴=,∴121422a -⨯=-=.22,22n n n n a n a n ∴-=∴=+. 4分22n n n b a n =-=11n n c b =+=121n + 2n 11223341222n n n T c c c c c c c c -+=+++⋅⋅⋅+=1121+×2121+ + 2×2121+× 3121+ +…+12n -×121n +×1121n ++= 12×(1121+-2121+) +12×(2121+-3121+) +…+12×(121n +-1121n ++) = 12×(1121+-1121n ++)= 16-2122n ++16n T ∴<8分。

相关文档
最新文档