北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)

合集下载

北京市朝阳区高三数学第一次综合练习(一模)试题 理(含解析)-人教版高三全册数学试题

北京市朝阳区高三数学第一次综合练习(一模)试题 理(含解析)-人教版高三全册数学试题

北京市朝阳区高三年级第一次综合练习 数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i + 答案:D解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i -==++-。

2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .M N U =D .()U M N ⊆答案:D解析:∵函数 y =ln(x -1)的定义域M ={}|1x x >,N ={}|01x x <<,又U =R ∴{}|1U C N x x =≥≤或x 0,∴MN =∅,故 A ,C 错误,D 显然正确。

3. >e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A解析>0a b >≥,又xy e =是增函数,所以,a b e e >,由a b e e >知a b >,但,a b 取负值时,,a b 无意义, 故选A 。

4. 执行如图所示的程序框图,输出的S 值为 A .42B .19C .8D .3答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4; S =2×8+1=19,i =3+1=42,i ≥4; 所以,S =19,选B 。

朝阳区高三一模有答案(数学理)

朝阳区高三一模有答案(数学理)

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2012.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 复数10i12i=- A. 42i -+ B. 42i - C. 24i - D. 24i +2. 已知平面向量,a b 满足()=3a a +b ⋅,且2,1ab ,则向量a 与b 的夹角为A.6π B. 3π C. 32π D. 65π 3.已知数列{}n a 的前n 项和为n S ,且21()n n S a n N *=-∈,则5a =A. 16-B. 16C. 31D. 324. 已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试, 直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )A. 16B. 24C. 32D. 486.已知函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.若直线y x a =+与函数()y f x =的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是 A.0 B. 0或12-C. 14-或12-D. 0或14- 7. 某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的取值范围是A. 2B. 6.5C. 8.8D. 108.已知点集{}22(,)48160A x y x y x y =+--+≤,{}(,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N .若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是A. 1B. 2C.D. 4第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上.9. 已知双曲线的方程为2213x y -=,则此双曲线的离心率为 ,其焦点到渐近线的距离为 .10. 已知某几何体的三视图如图所示,则该几何体的体积为 .(第10题图) (第11题图)11. 执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是 .12.在极坐标系中,曲线ρθ=和cos 1ρθ=相交于点,A B ,则线段AB 的中点E 到极点的距离是 .13.已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪<<⎩若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是 .14.已知△ABC 中, 90,3,4C AC BC ∠=︒==.一个圆心为M ,半径为14的圆在△ABC正视图 侧视图内,沿着△ABC 的边滚动一周回到原位. 在滚动过程中,圆M 至少与△ABC 的一边相切,则点M 到△ABC 顶点的最短距离是 ,点M 的运动轨迹的周长是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.把答案答在答题卡上. 15. (本小题满分13分) 已知函数π()cos()4f x x =-.(Ⅰ)若()10f α=,求sin 2α的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16. (本小题满分13分)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.绩进行分析,求其中成绩为优秀的学生人数; (Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参 加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.17. (本小题满分14分)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB ,==1EB EF ,=BC ,且M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ; (Ⅱ)求二面角D-AF-B 的大小; (Ⅲ)在线段EB 上是否存在一点P, 使得CP 与AF 所成的角为30︒? 若存在,求出BP 的长度;若不 存在,请说明理由.18. (本小题满分13分)设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;CA FEBMD(Ⅱ)求函数)(x f 单调区间. 19. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1(F ,2F .点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点N 的坐标为(3,2),点P 的坐标为(,)(3)m n m ≠.过点M 任作直线l 与椭圆 C 相交于A ,B 两点,设直线AN ,NP ,BN 的斜率分别为1k ,2k ,3k ,若 1322k k k +=,试求,m n 满足的关系式.20.(本小题满分13分)已知各项均为非负整数的数列001:,,,n A a a a ()n *∈N ,满足00a =,1n a a n ++=.若存在最小的正整数k ,使得(1)k a k k =≥,则可定义变换T ,变换T 将数列0A 变为数列00111():1,1,,1,0,,,k k n T A a a a a a -++++.设1()i i A T A +=,0,1,2i =.(Ⅰ)若数列0:0,1,1,3,0,0A ,试写出数列5A ;若数列4:4,0,0,0,0A ,试写出数列0A ; (Ⅱ)证明存在唯一的数列0A ,经过有限次T 变换,可将数列0A 变为数列,0,0,,0n n 个;(Ⅲ)若数列0A ,经过有限次T 变换,可变为数列,0,0,,0n n 个.设1m m m n S a a a +=+++,1,2,,m n =,求证[](1)1mm m S a S m m =-++,其中[]1m S m +表示不超过1m Sm +的最大整数. 北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2012.3一、选择题:三、解答题:(15)(本小题满分13分) 解:(Ⅰ)因为π()cos()410f αα=-=, 所以(cos sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=.……………6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+ =(cos sin )(cos sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . ……………10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……………13分 (16)(本小题满分13分)解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分(17)(本小题满分14分) 证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形,所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,故EM//平面ADF . …………… 4分 解法二:因为EB ⊥平面ABD ,AB BD ⊥,故以B 为原点,建立如图所示的空间直角坐标系-B xyz . ……………1分 由已知可得 (0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M (Ⅰ)3=(,0,-3)(3,-2,0)2EM ,AD=, 设平面ADF 的一个法向量是()x,y,z n =. 由0,0,AD AF n n ⎧⋅=⎪⎨⋅=⎪⎩得32x -y =0,=0.⎧⎪⎨⎪⎩令y=3,则n =. 又因为3(=3+0-3=02EM n ⋅=⋅,所以EM n ⊥,又EM ⊄平面ADF ,所以//EM 平面ADF . ……………4分 (Ⅱ)由(Ⅰ)可知平面ADF 的一个法向量是n =. 因为EB ⊥平面ABD ,所以EB BD ⊥.又因为AB BD ⊥,所以BD ⊥平面EBAF . 故(3,0,0)BD =是平面EBAF 的一个法向量. 所以1cos <=2BD BD,BD n n n⋅>=⋅,又二面角D-AF -B 为锐角, 故二面角D-AF -B 的大小为60︒. ……………10分NCA F EBMD(Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30︒. 不妨设(0,0,t)P(0t ≤≤,则=(3,-2,-),=PC AF t .所以2cos <2PC AF PC,AF PC AF ⋅>==⋅,=, 化简得35-=, 解得0t =<. 所以在线段EB 上不存在点P ,使得CP 与AF 所成的角为30︒.…………14分 (18)(本小题满分13分)解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0fx '>得1x a <,或1x a+>;由()0f x '<x <<.所以函数()f x单调递增区间是(-∞和)+∞,单调递减区间. ……………9分②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>得11x a a +<<; 由()0f x '<得1x a <,或1x a->.所以当10a -<<时,函数()f x单调递减区间是1(,a +-∞和1()a +∞,单调递增区间. ……………12分④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞. …………13分(19)(本小题满分14分) 解:(Ⅰ)依题意,c =1b =,所以a == 故椭圆C 的方程为2213x y +=. ……………4分 (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设(1,3A ,(1,)3B -,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ………7分 ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+. ………9分又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k kk k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+………12分 所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=.………13分 综上所述,,m n 的关系式为10m n --=. ………14分 (20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . ………4分(Ⅱ)先证存在性,若数列001:,,,n A a a a 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+---.易知1T -和T 是互逆变换. ………5分 对于数列,0,0,,0n 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n 1T -−−→1,1,0,,0n -1T -−−→2,0,2,0,,0n -1T -−−→3,1,2,0,,0n -1T -−−→1T-−−→01,,,n a a a ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a 作有限次变换T ,即可还原为数列,0,0,,0n ,因此存在数列0A 满足条件.下用数学归纳法证唯一性:当1,2n =是显然的,假设唯一性对1n -成立,考虑n 的情形. 假设存在两个数列01,,,n a a a 及01,,,n b b b 均可经过有限次T 变换,变为,0,,0n ,这里000a b ==,1212n n a a a b b b n +++=+++=若0n a n <<,则由变换T 的定义,不能变为,0,,0n ;若n a n =,则120n a a a ====,经过一次T 变换,有0,0,,0,n T−−→1,1,,1,0由于3n ≥,可知1,1,,1,0(至少3个1)不可能变为,0,,0n .所以0n a =,同理0n b =令01,,,n a a a T−−→121,,,,na a a ''',01,,,n b b b T−−→121,,,,nb b b ''',则0n n a b ''==,所以1211n a a a n -'''+++=-,1211nb b b n -'''+++=-. 因为110,,,n a a -''T−−−−→有限次-1,0,,0n ,110,,,n b b -''T−−−−→有限次-1,0,,0n ,故由归纳假设,有i i a b ''=,1,2,,1i n =-.再由T 与1T -互逆,有01,,,n a a a T−−→111,,,,0n a a -'',01,,,n b b b T−−→111,,,,0nb b -'',所以i i a b =,1,2,,i n =,从而唯一性得证. ………9分(Ⅲ)显然i a i ≤(1,2,,)i n =,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a 通过变换,不能变为0.由变换T 的定义可知数列0A 每经过一次变换,k S 的值或者不变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n 时,有0m S =,1,2,,m n =,所以m m S mt =(m t 为整数),于是1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤, 所以m a 为m S 除以1m +后所得的余数,即[](1)1m m m S a S m m =-++.………13分。

北京朝阳高三一模数学(理)试题及答案

北京朝阳高三一模数学(理)试题及答案

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2015.4(考试时间 120 分钟 满分 150 分)本试卷分为选择题(共 40分)和非选择题(共 110 分)两部分第一部分(选择题 共 40 分)一、选择题 :本大题共 8小题,每小题 5 分,共 40分.在每小题给出的四个选项中,选出符合题目要求的一项 .1. 已知集合A 1,2,m,B 1,m.若B A ,则 mA. 0B. 2C. 0 或 2D. 1 或 222.已知点A (1,y 0 ) (y 0 0)为抛物线y 2px p 0上一点 .若点 A 到该抛物线焦点的距离为3 ,则 y5.某商场每天上午 10点开门,晚上 19点停止进入. 在如图所示的框图中, t表示整点时刻, a(t )表示时间段 [t 1,t) 内进入商场人次, SB. 2C. 2 2D. 43.在 ABC 中,若π6A , cosB 6 , BC 6 ,则 ACA. 4 2B.4C.2 3D. 4 3 3a 2”的表示某天某整点时刻前进入商场人次总和,为了统计某天进入商场的总人次数,则判断框内可以填A.t 17?B.t 19?C .t 18?D.t 18?6.设x1,x2,x3均为实数,且31x1log2(x1 1)13x2log3 x231x3log2 x3则A.x1x3x2 B. x3 x2 x1 C. x3 x1 x2 D. x2 x1 x37.在平面直角坐标系中, O为坐标原点,已知两点A(1,0),B (1,1),且BOP 90 .设OP OA kOB (k R ),则OP1A . 2B.2 2 C. 2D.2第二部分(非选择题 共 110 分)二、填空题:本大题共 6 小题,每小题 5 分,共 30分.把答案填在答题卡上 .1 2i9.i 为虚数单位,计算 1 i _______________ .10. _________________________________________________________________ 设 S n 为等差数列 a n 的前 n 项和 .若 a 3 a 8 3 , S 3 1,则通项公式 a n = __________________________________ .11. 在极坐标中,设0,02π,曲线2与曲线 sin 2交点的极坐标为 _________________ .12. 已知有身穿两种不同队服的球迷各有三人,现将这六人排成一排照相,要求身穿同一种 队服的球迷均不能相邻,则不同的排法种数为 . (用数字作答)2x y 0, 2x y 0,13. 设 z 3x y,实数 x , y满足 0 y t,其中 t 0.若 z 的最大值为 5,则实数 t 的 值为 ,此时 z 的最小值为 _______ .14.将体积为 1 的四面体第一次挖去以各棱中点为顶点的构成的多面体, 第二次再将剩余的每个四面体均挖去以各棱中点为顶点的构成的多面体,如此下去,共进行了 n (n N ) 次.则第一次挖去的几何体的体积是 _________________ ;这 n 次共挖去的所有几何体的体积和是8. 设集合 M=(x 0,y 0) x 02 y 0220,x 0 Z ,y 0 Z,则 M 中元素的个数为A. 61B. 65C. 69D.84三、解答题:本大题共 6小题,共 80 分.解答应写出文字说明,演算步骤或证明过程15.(本小题满分 13 分)已知函数f(x) cos x 3sin xcosx , x R .Ⅰ)求 f (x) 的最小正周期和单调递减区间;Ⅱ)设 x m (m R )是函数 y f ( x)图象的对称轴,求 sin4m 的值.16.(本小题满分 13 分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损, 其中,频率分布直方图的分组区间分别为 50,60, 60,70, 70,80, 80,90, [90,100] .Ⅰ)求全班人数及分数在 [80,100] 之间的频率;Ⅱ)现从分数在 [80,100] 之间的试卷中任取 3 份分析学生失分情况,设抽取的试卷分数在[90,100] 的份数为 X ,求 X 的分布列和数学期望.据此解答如下问题.17.(本小题满分 14 分)如图,正方形 ADEF 与梯形 ABCD 所在平面互相垂直, 已知 AB // CD, AD CD ,1AB AD CD2.(Ⅰ)求证 : BF // 平面 CDE ;Ⅱ)求平面 BDF 与平面 CDE所成锐二面角的余弦值( Ⅲ ) 线 段 EC 上 是 否 存 在 点 M ,EM若存在,求出 EC 的值;若不存在,说明理由18.(本小题满分 13 分)2xf (x ) alnx (a 1)x已知函数 2, a R.(Ⅰ) 当 a 1时,求函数 f (x ) 的最小值; (Ⅱ) 当 a 1时,讨论函数 f (x ) 的零点个数 .19.(本小题满分 14 分)22已知椭圆 C: x2y21(a b 0)的一个焦点为 F (2,0) ,离心率为 6.过焦点 Fa 2 b23的直线 l 与椭圆 C 交于 A,B 两点,线段 AB 中点为 D , O 为坐标原点,过 O ,D 的直线 交椭圆于 M,N 两点.(Ⅰ)求椭圆 C 的方程;(Ⅱ)求四边形 AMBN 面积的最大值.使 得 平 面 BDM 平 面 B D F ?20.(本小题满分13 分)若数列{ a n }中不超过f (m)的项数恰为b m(m N*) ,则称数列{b m}是数列{a n}的生成数列,称相应的函数f (m)是{a n} 生成{ b m}的控制函数.设f(m) m2.(Ⅰ)若数列{ a n }单调递增,且所有项都是自然数,b1 1,求a1;(Ⅱ)若数列{a n} 单调递增,且所有项都是自然数,a1 b1,求a1;(Ⅲ)若a n 2n(n 1,2,3 ) ,是否存在{b m}生成{a n}的控制函数 g(n) pn2qn r (其中常数p,q,r Z )?使得数列{a n}也是数列{b m} 的生成数列?若存在,求出g(n);若不存在,说明理由.解:(Ⅰ)由已知,函数 f (x ) cos 2x 3sin xcosx112(1cos2x) + 3sin2x2sin(2 x π)函数 f (x ) 的最小正周期为 T π.ππ 3 π π 2π当2kπ 2x2kπ时( k Z ),即 kπ+x kπ+ 时,函数 f (x) 为减函数 .即 2 6 26 3函数 f (x )的单调减区间为 kπ+ 6,kπ+ 23,.9 分Ⅱ) 由 x m 是函数 y f (x ) 图象的对称轴, 则2mπ=kππ( k Z ),即 m1k,6 2 2 63k Z .则4m 2k 3.则sin 4m 23.13 分16. (本小题满分 13 分)解 :( Ⅰ ) 由 茎 叶 图 可 知 , 分 布 在 [50,60) 之 间 的 频 数 为 4 ,由直方图,频率为 0.0125 10 0.125 ,4 所以全班人数为 32 人.0.125所以分数在 [80,100]之间的人数为 32- (4+ 8+ 10) = 10人.北京市朝阳区高三年级第一次综合练习数学答案(理工类)2015. 4、选择题(满分 40 分)、填空题(满分 30 分) 3 2三、解答题 (满分 80 分)15.(本小题满分 13 分)分数在[80,100] 之间的频率为10 0.3125 ⋯⋯⋯⋯⋯⋯⋯.4 分32Ⅱ)由(Ⅰ)知,分数在[80,100] 之间的有10份,分数在[90,100] 之间的人数有0.0125创10 32=4 份,由题意,X 的取值可为0,1,2,3 .P(X 0) C63C10 1,,6P(X 1)12C4C6C130C42C163P(X 2)C130 10,C43P(X 3) 3C103017.(本小题满分 14 分)解:(Ⅰ)因为 AB // CD,AB 平面 CDE , CD 平面 CDE ,所以 AB // 平面 CDE ,同理, AF // 平面 CDE ,X 0 1 2 3P1 1 3 162 10 30 所以随机变量 X 的分布列为1 1 31 6 随机变量 X 的数学期望为 EX 011123316. ⋯⋯⋯⋯⋯⋯⋯ .13 分6 2 10 30 5 .4 分又 AB AF A, 所以平面 ABF // 平面 CDE ,(Ⅱ)因为平面 ADEF ^ 平面 ABCD ,平面 ADEF I 平面 ABCD = AD ,C D^ AD , CD ì平面 ABCD ,所以 CD ^ 平面 ADEF .又 DE ì平面 ADEF ,故 CD ^ ED . 而四边形 ADEF 为正方形,所以 AD ^ DE 又 AD ^ CD ,以 D 为原点, DA , DC , DE 所在直线分别为 x 轴, y 轴, z 轴,建立空间直角坐标 系 Dxyz.设 AD 1,则 D(0,0,0), B(1,1,0),F(1,0,1),C(0,2,0), E(0,0,1) ,取平面 CDE 的一个法向量 DA (1,0,0) , 设平面 BDF 的一个法向量 n (x,y,z), 则 n DB,即 x y 0,令 x 1 ,则 y z 1, 所以 n (1, 1, 1).n DFx z设平面 BDF 与平面 CDE 所成锐二面角的大小为 ,13 则 cos |cos DA, n | 333所以平面 BDF 与平面 CDE 所成锐二面角的余弦值是 3.3 (Ⅲ)若M 与C 重合,则平面 BDM (C)的一个法向量 m 0 = (0,0,1) ,由(Ⅱ)知平面 BDF.9 分精品文档 你我共享2向量 m (x 0,y 0,z 0) ,m DB 0 ,即 x 0 y 0 0 2 y 0 (1 )z 0 0所以m (1, 1, ) ,1的一个法向量 n = (1,- 1,- 1),则 m 0 ?n= 1? 0 ,则此时平面 BDF 与平面 BDM 不垂直 .若 M 与C 不重合,如图设E EMC(0?1),则 M(0,2 ,1 ) ,设平面 BDM 的一个法若平面 BDF 平面 BDM 等价于 m n 0 , 所以, EC 上存在点 M 使平面 BDF 平面 即 1 11EM BDM ,且 EC0, 所以 10,1 .2.14 分18. (本小题满分 13 分) 解:(Ⅰ)函数 f(x) 的定义域为 x x 0 2 当 a 1 时, f (x) ln x x. 2 2 f (x) 1 x x 2 1 (x 1)(x 1) xx 由 (x 1)(x 1)0 (x> 0)解得 x 1;由 (x 1)(x 1)0 (x> xx 所以 f (x) 在区间 (0,1)单调递减 , 在区间 (1, )单调递增 . 0) 解得 0 x 1.所以 x 1时,函数 f ( x)取得最小值 f(1) 1. 2 .5 分Ⅱ) f (x) (x 1)(x a), x 0. x 1)当 a 0 时, x (0,1) 时, f (x) 0 , f(x) 为减函数 ; x (1, ) 时, f (x) 0, f(x) 为增函数 . 所以 f (x) 在 x 1 时取得最小值 f (1) a 12 2xⅰ)当 a 0时, f (x) x ,由于 x 0,令 f(x)= 0,2x= 2 ,则 f (x) 在(0, ) 上有一个零点; 1ⅱ)当 a 1 时,即 f (1) 0时, f (x) 有一个零点;则m DM 0x 0 1 ,则 y 0 1,z 0 2,1精品文档 你我共享1(ⅲ)当 a 1 时,即 f (1) 0时, f (x) 无零点 .21(ⅳ)当 a 0时,即 f (1) 0时,2由于 x 0 (从右侧趋近 0)时, f(x) ; x 时, f (x) 所以 f (x) 有两个零点 .(2) 当 0 a 1 时,x (0,a) 时, f (x) 0, f ( x)为增函数 ; x ( a,1)时, f (x) 0, f (x)为减函数; x (1, ) 时, f (x) 0, f(x) 为增函数 .所以 f (x) 在 x a 处取极大值, f (x) 在 x 1处取极小值 .1 2 1 2 f(a) aln a a (a 1)a alna a a. 22当0 a 1时, f(a) 0,即在 x (0,1)时, f(x) 0.而 f(x) 在 x (1, ) 时为增函数,且 x 时, f (x) , 所以此时 f (x) 有一个零点 .2(3) 当a 1时, f(x) (x 1)0在 0, 上恒成立,所以 f (x)为增函数 . x且 x 0 (从右侧趋近 0)时, f (x) ; x 时, f (x) . 所以 f (x) 有一个零点 .11综上所述, 0 a 1或 a时 f ( x)有一个零点; a时, f (x)无零点;22f(x) 有两个零点 .1a0 2 .13 分19.(本小题满分 14 分)解:(Ⅰ)由题意可得2 a 2c 2, c6a 3, b2c2解得 a6, b 2 ,22故椭圆的方程为 x y1.62.4 分精品文档 你我共享2N( x 3, y 3),点 M,N 到直线 l 的距离分别为 d 1,d 2,则四边形 AMBN 面积为2y21, 2 2 2 22得 (1 3k 7)x 2 12k 2x 12k 2 6 0 , y k(x 2),2则12k 2 ,则x 1 x 2 2,1 21 3k 2所以 |AB| (1 k 2 )[(x 1 x 2)2 4x 1x 2]2 6(1 k 2) 1 3k 24k 4) 2 ,1 3k2 2所以 AB 中点 D( 6k2 , 2k2). 1 3k 2 1 3k 2当 k1 0时,直线 OD 方程为 x 3ky 0,x 3ky 0,2由 x2 y2 解得 x3 3ky 3, y 32 2 21,3 3 31 3k2621所以S AMBN 2 | AB | ( d 1 d 2 )1 2 6(1 k 2)(|kx 3 y 3 2k | | kx 3 y 3 2k|)2( ) 2 1 3k 21 3k 2Ⅱ)当直线 l 斜率不存在时 A, B 的坐标分别为 (2,, (2, 36 ) , | MN | 2 6 ,3四边形 AMBN 面积为1S AMBN | MN | | AB | 4 .2当直线 l 斜率存在时, 设其方程为 y k(x 2),点 A(x 1,y 1) ,B(x 2,y 2),M(x 3,y 3),S AMBN1| AB|(d 1 d 2) .x2由6 212k 2 6x 1 x 2 2 ,1 2 2(1 k 2)[(1123kk 2 )242112k23k26]因为y 1 y 2 k (x 1 x 2精品文档你我共享即当m> 0且m为奇数时,b m= m2- 1当m> 0 且m为偶数时,b m =2 6 1 k2| 3k2y3 y3|21 3k23k2 3 241 3k2 4 11 3k2当k 0时,四边形AMBN 面积的最大值S AMBN = 2 6? 2 4 3.综上四边形AMBN 面积的最大值为4 3 .14 分20.(本小题满分13 分)解:(Ⅰ)若b1 1,因为数列{a n} 单调递增,所以或1.(Ⅱ)因为数列{a n}的每项都是自然数,若a1 0 1 ,则b1 1,与a1 b1 矛盾;若a1 2 ,则因{a n} 单调递增,故不存在2a1 12,又a1是自然数,所以a1 0⋯⋯⋯ 2 分a n 1 ,即b1 0,也与a1 b1矛盾.当a1 1时,因{a n} 单调递增,故n 2时,a n 1,所以b1 1,符合条件,所以,a1 1. 6分Ⅲ)若a n 2n(n 1,2, ),则数列{ a n}单调递增,显然数列{b m} 也单调递增,2 1 2 由a n m2,即2n m2,得n m2,所以,12b m 为不超过1 m2的最大整数,2当m = 2k- 1 (k ? N *)时,因为2k2 2k 1m2 2k2 2k 1 2k2 2k 1,22当m= 2k (k? N*)时,12 2 2m2 2k2,所以,b m 2k综上,?ì2k 2- 2k,m= 2k- 1(k? N*)bm=?í2k2, m= 2k(k? N*)所以b m 2k2 2k ;精品文档 你我共享2有暗香盈袖。

高三数学第一次综合练习试题理朝阳一模,含解析新人教B版

高三数学第一次综合练习试题理朝阳一模,含解析新人教B版

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部份 第一部份(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2【答案】A 【解析】111111(1)(1)222i i i i i i ++===+--+,所以虚部是12,选A. (2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)- 【答案】D 【解析】,所以{13}MN x x =-≤<,选D.(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35【答案】A【解析】(3,1)AB OB OA =-=,因为//AB OC ,所以3(1)20m m +-=,解得3m =-,选A.(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的大小为A .3πB .2πC .32πD .65π【答案】C【解析】直线1cos 2ρθ=对应的直角方程为12x =,由2cos ρθ=得22cos ρρθ=,即222x y x +=,即22(1)1x y -+=。

所以圆心为(1,0)C ,半径为1,所以3OCA π∠=,所以223AOB OCA π∠=∠=,选C. (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③ 【答案】C【解析】①由sin 1α=,得2,2k k Z παπ=+∈,所以①错误。

北京朝阳区届高三年级第一次(3月)综合练习(一模)数学理试卷Word版含答案解析

北京朝阳区届高三年级第一次(3月)综合练习(一模)数学理试卷Word版含答案解析

北京市朝阳区届高三第一次(3月)综合练习(一模)数学理试卷
Word版含解析
北京市朝阳区高三年级第一次综合练习
数学(理)
).3
第一部分(选择题共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.已知集合,集合,则()
A. B. C. D.
【答案】B
【解析】
【分析】
解一元二次不等式求得集合,由此求得两个集合的交集.
【详解】由解得,故,故选B.
【点睛】本小题主要考查集合的交集,考查一元二次不等式的解法,属于基础题.
2.在复平面内,复数对应的点位于()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
【答案】D
【解析】
【分析】
由题意可得:,据此确定复数所在的象限即可.
【详解】由题意可得:,
则复数z 对应的点为,位于第四象限.
本题选择D选项.
【点睛】本题主要考查复数的运算法则,各个象限内复数的特征等知识,意在考查学生的转化能力和计算求解能力.
1 / 1。

朝阳区2020届高三一模数学(理)试题及答案(word版)

朝阳区2020届高三一模数学(理)试题及答案(word版)

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 3.>e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan a c b B +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同(第4题图)(注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A.0r << B.0r <<C.0r << D.0r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=L ______.月23415689 10 7111258(第7题图)正视图侧视图俯视图11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+u u u u r u u u r u u u r.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =L )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =L ,1212(,,,)B b b b =L ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数21()sin 22x f x x ωω=+0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;AMPCBA 1C 1B 1(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l 20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2020学年度第二学期高三年级统一考试数学答案(理工类)一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,21()sin 22x f x x =1sin 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由21()sin 22x f x x ωω=+-1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为随机变量X 的均值0123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A =I ,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rn n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n . 所以二面角P AM B --9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=u u u r u u u r,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-,所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-u u u r.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u rn n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-u u u r ,若1A C //平面AMP ,则10AC ⊥u u u rn . 所以10220AC λλ-⋅=--=u u u r n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aa g x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e <e a x =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y,则12x x +=,21284m x x -=, 112m y +=,222m y +=.显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-===28)(m m ----+=2=220==. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分。

北京市朝阳区高三数学理科一模试题及答案

北京市朝阳区高三数学理科一模试题及答案

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4一、选择题:本大题共8小题,每小题5分,共40分. (1)i 为虚数单位,复数11i-的虚部是 A.12 B.12- C .1i 2- D . 1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x=+≥,则MN=A. (2,)-+∞ B. (2,3)- C. (2,1]-- D. [1,3)-(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35- D .35(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的 大小为 A .3π B .2π C .32π D .65π(5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2; ③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-.其中所有正确命题的序号是 A .② B .③ C .②③ D .①③(6)某个长方体被一个平面所截,得到的几何体的三 视图如图所示,则这个几何体的体积为A. 4B.C.D. 8正视图侧视图俯视图(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.B. 1C. D. 2 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有 A. 1个 B .2个 C .3个 D .4个二、填空题:本大题共6小题,每小题5分,共30分.(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A = .(11)执行如图所示的程序框图,输出的结果S= .(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切 线交BA 的延长线于点D .若CD =2AB AC ==,则线段AD 的长是 ;圆O 的 半径是 . (13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 .(14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 .D三、解答题:本大题共6小题,共80分. (15)(13分)已知函数21()sin sin 222x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间;(Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围.(16)(13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响). (Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX .(17)(14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.(18)(13分)已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤.PDABCFE(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.(19)(14分)已知中心在原点,焦点在x 轴上的椭圆C 过点(1,)2,离心率为2,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .(Ⅰ)求椭圆C 的方程; (Ⅱ)求EM FN ⋅的取值范围.(20)(13分)设1210(,,,)x x x τ=是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4三、解答题:(15)(本小题满分13分)解:(Ⅰ)1cos 1()222x f x x ωω-=-+1cos 22x x ωω=+ sin()6x ωπ=+. …………………………………………4分因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+.由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+.所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分 所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次试验中,卡片上的数字为正数,则 21()42P A ==. 答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分(Ⅱ)设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分(17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分(Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥. 又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-.设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD 9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e e a a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点, 需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增;且48414(e )20,(2)22ln 20e ef f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点. (ⅱ)当02a <<时,函数()f x 在(,1)2a上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2ax ∈时,总有()0f x >.因为22e12a aa +-<<+,所以22222222(e)e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,1314a b c c a ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………………………4分 (Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,E F,(3,),(3,22M N -,所以1EM FN ⋅=. …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =,则1212(3,),(3,)22y yM N x x --.所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分 所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅-- 121212(3)(3)(1)(2)(2)y y x x x x =--+-- 2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅-- 2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++ 222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++ 22221653()(1)414k k k k+-=⋅++ 22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分(20)(本小题满分13分)解:(Ⅰ)1011()|23|7654321012857k k k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤.对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分(Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分。

北京市朝阳区年一模数学理科答案

北京市朝阳区年一模数学理科答案

时,函数
f
(x)
在[1,e] 上单调递减,
所以函数
f
(x)
的最小值为
f
(e)
1 2
ae2
11 a
,得
4 e2
,舍去.
综上所述, a 2 .
…………………………13分
19. (本小题满分14分)
c 3
= a2
1
解:(Ⅰ)由题意得 a2
3 4b2
1
,解得 a=2
,b
1.
x2 y2 1
所以椭圆 C 的方程是 4
a10
a1 9d
d

a10 a1 9
≤ 100 1 11
9
,d
的可能取值为1, 2,L
,11 .
对于给定的 d , a1 a10 9d ≤100 9d , 当 a1 分别取1, 2,3,L ,100 9d
时,可得递增等差数列
100 9d 个(如: d 1时, a1 ≤ 91,当 a1 分别取1, 2,3,L ,91 时,可得递增等差数列91个:1, 2,3,L ,11 ; 2,3, 4,L ,12 ;L ; 91,92,93,L ,100 ,其它同理).
解:函数 f (x) 的定义域是 (0, ) ,
f (x) ax 1 x
ax2 1
x.
(Ⅰ)(1)当
a
0
时,
f
(x)
1 x
0
,故函数
f
(x)

(0, )
上单调递减.
P
(2)当 a 0 时, f (x) 0 恒成立,所以函数 f (x) 在
(0, ) 上单调递减.
G F
(3)当 a 0 时,令 f (x) 0 ,又因为 x 0 ,解得 x

历年北京朝阳区高三一模数学(理)试题

历年北京朝阳区高三一模数学(理)试题

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)- (3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17- C .35- D .35(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的大小为 A .3π B .2π C .32π D .65π (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③(6)某个长方体被一个平面所截,得到的几何体的三 视图如图所示,则这个几何体的体积为2222 11 1 正视图侧视图俯视图A. 4B.C. D. 8(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.3 B. 1C. 3D. 2 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有A. 1个 B .2个 C .3个 D .4个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A = .(11)执行如图所示的程序框图,输出的结果S= .(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切 线交BA 的延长线于点D .若CD =2AB AC ==,则线段AD 的长是 ;圆O 的D半径是 .(13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 .(14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数21()sin 222x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围. (16)(本小题满分13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX . (17)(本小题满分14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且 PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由. (18)(本小题满分13分)PDABCFE已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.(19)(本小题满分14分)已知中心在原点,焦点在x 轴上的椭圆C过点(1,2,离心率为2,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .(Ⅰ)求椭圆C 的方程; (Ⅱ)求EM FN ⋅的取值范围. (20)(本小题满分13分)设1210(,,,)x x x τ=是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.。

北京市朝阳区2019届高三第一次(3月)综合练习(一模)数学理试卷 含解析

北京市朝阳区2019届高三第一次(3月)综合练习(一模)数学理试卷 含解析

北京市朝阳区高三年级第一次综合练习数学(理)2019.3第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,集合,则()A. B. C. D.【答案】B【解析】【分析】解一元二次不等式求得集合,由此求得两个集合的交集.【详解】由解得,故,故选B.【点睛】本小题主要考查集合的交集,考查一元二次不等式的解法,属于基础题.2.在复平面内,复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】由题意可得:,据此确定复数所在的象限即可.【详解】由题意可得:,则复数z对应的点为,位于第四象限.本题选择D选项.【点睛】本题主要考查复数的运算法则,各个象限内复数的特征等知识,意在考查学生的转化能力和计算求解能力.3.的展开式中的常数项为()A. B. C. D.【答案】C【解析】【分析】化简二项式的展开式,令的指数为零,求得常数项.【详解】二项式展开式的通项为,令,故常数项为,故选C.【点睛】本小题主要考查二项式展开式的通项公式,考查二项式展开式中的常数项,属于基础题.4.若函数则函数的值域是()A. B. C. D.【答案】A【解析】【分析】画出函数的图像,由此确定函数的值域.【详解】画出函数的图像如下图所示,由图可知,函数的值域为,故选A.【点睛】本小题主要考查指数函数和对数函数的图像,考查分段函数的值域,考查数形结合的数学思想方法,属于基础题.5.如图,函数的图象是由正弦曲线或余弦曲线经过变换得到的,则的解析式可以是()A. B.C. D.【答案】A【解析】【分析】将图像上特殊点的坐标代入选项进行排除,由此得出正确选项.【详解】对于B选项,由于,不正确;对于C选项,由于,不正确;对于D选项,由于,不正确.故本题选A.【点睛】本小题主要考查已知三角函数图像判断函数的解析式,利用特殊值排除法,可快速得出正确选项,属于基础题6.记不等式组所表示的平面区域为.“点”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】画出可行域和点,将旋转到点的位置,求得的值,由此求得的取值范围,进而判断出充分、必要性.【详解】画出可行域和点如下图所示,将旋转到点的位置,得,当时,;当时,.故“点”是“”的充分必要条件.故选C.【点睛】本小题主要考查线性规划可行域的画法,考查充分、必要条件的判断,属于基础题.7.某三棱锥的三视图如图所示(网格纸上小正方形的边长为),则该三棱锥的体积为()A. B. C. D.【答案】D【解析】【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥,该棱锥的体积:.本题选择D选项.【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.8.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】将原问题转化为Venn的问题,然后结合题意确定这三天都开车上班的职工人数至多几人即可.【详解】如图所示,(a+b+c+x)表示周一开车上班的人数,(b+d+e+x)表示周二开车上班人数,(c+e+f+x)表示周三开车上班人数,x表示三天都开车上班的人数,则有:,即,即,当b=c=e=0时,x的最大值为6,即三天都开车上班的职工人数至多是6.【点睛】本题主要考查Venn图的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线的右焦点到其一条渐近线的距离是_____.【答案】1【解析】【分析】由题意可知,双曲线的右焦点坐标为,渐近线方程为,结合点到直线距离公式求解距离即可. 【详解】由题意可知,双曲线的右焦点坐标为,渐近线方程为:,即,则焦点到渐近线的距离为:.故答案为:.【点睛】本题主要考查双曲线渐近线方程的求解,点到直线距离公式的应用等知识,意在考查学生的转化能力和计算求解能力.10.执行如图所示的程序框图,则输出的值为_____.【答案】【解析】【分析】运行程序,当时退出循环,计算得输出的值.【详解】运行程序,,判断是,,判断是,,判断否,输出.【点睛】本小题主要考查程序框图,考查计算程序框图输出的结果,属于基础题.11.在极坐标系中,直线与圆相交于两点,则___.【答案】【解析】【分析】将极坐标方程转化为直角坐标方程,将直线方程代入圆的方程,求得的坐标,由此求得..【详解】直线即.圆两边乘以得,即,令,解得,故,所以.【点睛】本小题主要考查极坐标方程化为直角坐标方程,考查直线和圆的交点坐标的求法,属于基础题.12.能说明“函数的图象在区间上是一条连续不断的曲线.若,则在内无零点”为假命题的一个函数是_________.【答案】【解析】【分析】由题意给出一个满足题意的函数解析式,然后绘制函数图像说明命题为假命题即可.【详解】考查函数,绘制函数图像如图所示,该函数的图像在区间上是一条连续不断的曲线,,但是函数在内存在零点,故该函数使得原命题为假命题.【点睛】本题主要考查函数零点存在定理应用的条件,注意所有的条件都满足时才能利用函数零点存在定理,否则可能会出现错误.13.天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】(1). (2).【解析】【分析】由题意可知每环的扇面形石块数是一个以9为首项,9为公差的等差数列,据此确定第二十七环的扇面形石块数和上、中、下三层坛所有的扇面形石块数即可.【详解】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列,所以,a n=9+(n-1)×9=9n,所以,a27=9×27=243,前27项和为:=3402.【点睛】本题主要考查等差数列的通项公式,等差数列的前n项和及其应用等知识,意在考查学生的转化能力和计算求解能力.14.在平面内,点是定点,动点满足,,则集合所表示的区域的面积是_______.【答案】【解析】【分析】以为原点建立平面直角坐标系,根据设出两点的坐标,利用向量运算求得点的坐标,化简后可求得点的轨迹也即表示的区域,由此计算出区域的面积.【详解】以为原点建立平面直角坐标系,由于,,即,故设,即,设,由得,即,则,故表示的是原点在圆心,半径为的圆,由于,故点所表示的区域是圆心在原点,半径为的两个圆之间的扇环,故面积为.【点睛】本小题主要考查数形结合的数学思想方法,考查向量的坐标运算,考查化归与转化的数学思想方法,考查分析求解能力,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,,,的面积等于,且.(1)求的值;(2)求的值.【答案】(Ⅰ)1;(Ⅱ).【解析】【分析】(I)利用三角形的面积公式和余弦定理列方程组,解方程组求得的值.(II)利用正弦定理求得的的值,利用二倍角公式求得的值.【详解】解:(Ⅰ)由已知得整理得解得或因为,所以.(Ⅱ)由正弦定理,即.所以【点睛】本小题主要考查三角形的面积公式,考查余弦定理解三角形,考查正弦定理解三角形,考查二倍角公式,属于中档题.16.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为;从乙站的乘客中随机抽取1人,记为.用频率估计概率,求“乘客,乘车等待时间都小于20分钟”的概率;(2)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】【分析】(I)根据频率分布直方图分别计算出两个乘客等待时间小于分钟的频率,按照相互独立事件概率计算公式,计算出“乘客,乘车等待时间都小于20分钟”的概率.(II)根据二项分布概率计算公式以及数学期望计算公式,求得的分布列和数学期望.【详解】解:(Ⅰ)设表示事件“乘客乘车等待时间小于20分钟”,表示事件“乘客乘车等待时间小于20分钟”,表示事件“乘客乘车等待时间都小于20分钟”.由题意知,乘客乘车等待时间小于20分钟的频率为,故的估计值为.乘客乘车等待时间小于20分钟的频率为,故的估计值为.又.故事件的概率为.(Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为,所以乙站乘客乘车等待时间小于20分钟的概率为.显然,的可能取值为且.所以;;;.故随机变量的分布列为【点睛】本小题主要考查相互独立事件概率计算,考查二项分布分布列和数学期望的计算,还考查了由频率分布直方图求频率的方法,属于中档题.17.如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,.(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使得直线平面若存在,求的值;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ)线段上存在点,使得平面,且.【解析】【分析】(I)根据面面垂直的性质定理,证得平面,由此证得.(II)以为轴,轴,轴建立空间直角坐标系,通过计算直线的方向向量和平面的法向量,由此计算出线面角的正弦值.(III)设,用表示出点的坐标,利用直线的方向向量和平面的法向量垂直列方程,解方程求得的值,由此判断存在符合题意的点.【详解】解:(Ⅰ)证明:因为为正方形,所以.又因为平面平面,且平面平面,所以平面.所以.(Ⅱ)由(Ⅰ)可知,平面,所以,.因为,所以两两垂直.分别以为轴,轴,轴建立空间直角坐标系(如图).因为,,所以,所以.设平面的一个法向量为,则即令,则,所以.设直线与平面所成角为,则.(Ⅲ)设,设,则,所以,所以,所以.设平面的一个法向量为,则因为,所以令,则,所以.在线段上存在点,使得平面等价于存在,使得.因为,由,所以,解得,所以线段上存在点,使得平面,且.【点睛】本小题主要考查面面垂直的性质定理,考查利用空间向量法求解线面所成角的正弦值,考查线面平行的向量表示,考查空间想象能力和逻辑推理能力,属于中档题.18.已知函数且.(1)当时,求曲线在点处的切线方程;(2)当时,求证:;(3)讨论函数的极值.【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析.【解析】【分析】(I)求得切点坐标和斜率,由此求得切线方程.(II)将原不等式转化为成立,构造函数,利用导数求得的最大值为零,由此证得不等式成立.(III)对求导后,对分成两类,结合函数的单调区间,讨论得出函数的极值.【详解】解:(Ⅰ)当时,.所以.因为,所以曲线在处的切线方程为.(Ⅱ)当时,.函数的定义域为.不等式成立成立成立.设,则.当变化时,,变化情况如下表:所以.因为,所以,所以.(Ⅲ)求导得. 令,因为可得.当时,的定义域为.当变化时,,变化情况如下表:此时有极大值,无极小值.当时,的定义域为,当变化时,,变化情况如下表:此时有极小值,无极大值.【点睛】本小题主要考查利用导数求曲线的切线方程,考查利用导数证明不等式,考查利用导数研究函数的极值,考查化归与转化的数学思想方法,综合性较强,属于中档题.19.已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.(1)求椭圆的离心率及左焦点的坐标;(2)求证:直线与椭圆相切;(3)判断是否为定值,并说明理由.【答案】(1);(2)证明见解析;(3)答案见解析.【解析】【分析】(1)由题意可得,,据此确定离心率即可;(2)由题意可得.分类讨论和两种情况证明直线与椭圆相切即可;(3)设,,当时,易得.当时,联立直线方程与椭圆方程可得,结合韦达定理和平面向量的数量积运算法则计算可得.据此即可证得为定值.【详解】(1)由题意,,所以离心率,左焦点.(2)由题知,,即.当时直线方程为或,直线与椭圆相切.当时,由得,即所以故直线与椭圆相切.(3)设,,当时,,,,,所以,即.当时,由得,则,,.因为.所以,即.故为定值.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.20.在无穷数列中,是给定的正整数,,.(1)若,写出的值;(2)证明:数列中存在值为的项;(3)证明:若互质,则数列中必有无穷多项为.【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析.【解析】【分析】(I)根据以及的值,由此求得的值,找出规律,求得的值.(II)利用反证法,先假设,利用递推关系找出规律,推出矛盾,由此证明原命题成立.(III)首先利用反证法证明数列中必有“1”项,其次证明数列中必有无穷多项为“1”,由此证得原命题成立.【详解】解:(I)由,以及,可知,,,从开始,规律为两个和一个,周期为,重复出现,故.(II)反证法:假设,由于,记.则.则,,,,,依次递推,有,…,则当时,与矛盾.故存在,使所以,数列必在有限项后出现值为的项.(III)首先证明:数列中必有“1”项.用反证法,假设数列中没有“1”项,由(II)知,数列中必有“0”项,设第一个“0”项是,令,,则必有,于是,由,则,因此是的因数,由,则或,因此是的因数.依次递推,可得是的因数,因为,所以这与互质矛盾.所以,数列中必有“1”项.其次证明数列中必有无穷多项为“1”.假设数列中的第一个“1”项是,令,,则,若,则数列中的项从开始,依次为“1,1,0”的无限循环,故有无穷多项为1;若,则,若,则进入“1,1,0”的无限循环,有无穷多项为1;若,则从开始的项依次为,必出现连续两个“1”项,从而进入“1,1,0”的无限循环,故必有无穷多项为1.【点睛】本小题主要考查递推数列,考查合情推理,考查与数列有关的证明,考查分析问题与解决问题的能力,综合性很强,属于难题.。

北京市朝阳区高三数学第一次(3月)综合练习试题理

北京市朝阳区高三数学第一次(3月)综合练习试题理

北京市朝阳区高三年级第一次综合练习 数学学科测试(理工类) 2017。

3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合{|13}A x x =-≤<,2{|4}Z B x x =∈<,则A B =(A ){0,1} (B ){1,0,1}- (C ){1,0,1,2}-(D ){2,1,0,1,2}--(2)若,x y 满足20,3,0,x y x y x -⎧⎪+⎨⎪⎩≤≤≥ 则2x y +的最大值为(A )0 (B )3 (C)4(D )5(3)执行如图所示的程序框图,若输入4m =,6n =,则输出a =(A )4 (B )8(C )12(D )16(4)给出如下命题:①若“p ∧q ”为假命题,则p , q 均为假命题;②在△ABC 中,“A B >”是“sin sin A B >"的充要条件; ③8(1)x +的展开式中二项式系数最大的项是第五项。

其中正确的是(A)①② (B)②③ (C )①③ (D )①②③(5)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,l PA ⊥,A 为垂足。

若直线AF 的斜率为3=PF开始 a m i =⋅输入m ,n是 1i i =+0i =结束输出a 否a 能被n 整除?(A ) 34 (B ) 6 (C ) 8 (D)16(6)已知函数42log ,04,()1025, 4.x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是(A )(24,25) (B)(18,24) (C) (21,24) (D)(18,25) (7)某四棱锥的三视图如图所示,则该四棱锥的底面的面积是(A)12 (B )32 (C)14 (D )34(8)现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是(A)可能有两支队伍得分都是18分 (B)各支队伍得分总和为180分 (C)各支队伍中最高得分不少于10分 (D )得偶数分的队伍必有偶数个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)复数1ii+在复平面内对应的点的坐标是____. (10)在△ABC 中,3A π∠=,3BC =,6AB =,则C ∠=____。

北京市朝阳区高三数学第一次(3月)综合练习(一模)试题 理 试题

北京市朝阳区高三数学第一次(3月)综合练习(一模)试题 理 试题

北京市朝阳区2019届高三数学第一次(3月)综合练习(一模)试题 理本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答 无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,集合2{|4}B x x =<,则AB =A .{|2}x x >-B .{|12}x x <<C .{|12}x x ≤<D .R 2.在复平面内,复数12iiz +=对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.41()x x-的展开式中的常数项为A .12-B .6-C .6D . 124.若函数22,1,()log ,1x x f x x x ⎧<=⎨-≥⎩, 则函数()f x 的值域是A .(,2)-∞B .(,2]-∞C .[0,)+∞D .(,0)(0,2)-∞5.如图,函数()f x 的图象是由正弦曲线或余弦曲线经过变换得到的,则()f x 的解析式可以是A .()sin(2)3f x x π=+B .()sin(4)6f x x π=+C .()cos(2)3f x x π=+D .()cos(4)6f x x π=+6.记不等式组0,3,y y x y kx ≥⎧⎪≤+⎨⎪≤⎩所表示的平面区域为D .“点(1,1)D -∈”是“1k ≤-”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为 A .4B .2C .83D .43[8.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是A .5B .6C .7D .8第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.双曲线2214x y -=的右焦点到其一条渐近线的距离是 .10.执行如图所示的程序框图,则输出的x 值为 .11.在极坐标系中,直线cos 1ρθ=与圆4cos ρθ=相交于,A B 两点,则AB =___.12.能说明“函数()f x 的图象在区间[]0,2上是一条连续不断的曲线.若(0)(2)0f f ⋅>,则()f x 在(0,2)内无零点”为假命题的一个函数是 .正(主)视图 俯视图侧(左)视图13.天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是 .14.在平面内,点A 是定点,动点C B ,满足||||1AB AC ==,0AB AC ⋅=,则集合{=+,12}|P AP AB AC λλ≤≤所表示的区域的面积是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC △中,a 120A ∠=︒,ABC △b c <. (Ⅰ)求b 的值; (Ⅱ)求cos2B 的值. 16.(本小题满分13分)某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),,[35,40]分组,制成频率分布直方图:时间(分钟)乙站甲站时间(分钟)假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A ;从乙站的乘客中随机抽取1人,记为B .用频率估计概率,求“乘客A ,B 乘车等待时间都小于20分钟”的概率;(Ⅱ)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,X 表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X 的分布列与数学期望. 17.(本小题满分14分)如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,90BAD ∠=︒,1AB AD ==,3BC =. (Ⅰ)求证:AF CD ⊥;(Ⅱ)求直线BF 与平面CDE 所成角的正弦值;[](Ⅲ)线段BD 上是否存在点M ,使得直线//CE 平面AFM ? 若存在,求BMBD的值;若不存在,请说明理由.18.(本小题满分13分)已知函数ln()()ax f x x=(R a ∈且0)a ≠. (Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1a =-时,求证:()1f x x ≥+; (Ⅲ)讨论函数()f x 的极值.19.(本小题满分14分)已知点00(,)M x y 为椭圆22:12x C y +=上任意一点,直线00:22l x x y y +=与圆22(1)6x y -+=交于,A B两点,点F 为椭圆C 的左焦点.(Ⅰ)求椭圆C 的离心率及左焦点F 的坐标; (Ⅱ)求证:直线l 与椭圆C 相切;(Ⅲ)判断AFB ∠是否为定值,并说明理由.20.(本小题满分13分)在无穷数列{}n a 中,12,a a 是给定的正整数,21n n n a a a ++=-,N n ∈*.(Ⅰ)若123,1a a ==,写出910100,,a a a 的值; (Ⅱ)证明:数列{}n a 中存在值为0的项;(Ⅲ)证明:若12,a a 互质,则数列{}n a 中必有无穷多项为1. [北京市朝阳区高三年级第一次综合练习 数学(理)答案2019.3 一、选择题:(本题满分40分)二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15.(本小题满分13分)解:(Ⅰ)由已知得2221=sin 2=2cos120.S bc A b c bc ⎧⎪⎨⎪+-︒⎩整理得22=4,=17.bc b c ⎧⎨+⎩解得=1,=4b c ⎧⎨⎩,或=4,=1.b c ⎧⎨⎩ 因为b c <,所以1b =.………………………………………………….8分(Ⅱ)由正弦定理sin sin a bA B=, 即sin B =.所以2213cos 2=12sin 11414B B -=-= ……………………………….13分16.(本小题满分13分)解:(Ⅰ)设M 表示事件“乘客A 乘车等待时间小于20分钟”,N 表示事件“乘客B 乘车等待时间小于20分钟”,C 表示事件“乘客A,B 乘车等待时间都小于20分钟”.由题意知,乘客A 乘车等待时间小于20分钟的频率为0.0120.0400.048)50.5(++⨯=,故()P M 的估计值为0.5.乘客B 乘车等待时间小于20分钟的频率为0.0160.0280.036)50.4(++⨯=,故()P N 的估计值为0.4.又121()()()()255P C P MN P M P N ==⋅=⨯=. 故事件C 的概率为15.………………………………………………………….6分 (Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为0.4,[所以乙站乘客乘车等待时间小于20分钟的概率为25. 显然,X 的可能取值为0,1,2,3且2(3,)5~X B .所以033327(0)()5125P X C ===;1232354(1)()55125P X C ==⋅=; 2232336(2)()55125P X C ==⋅=;33328(3)()5125P X C ===.故随机变量X 的分布列为26355EX =⨯= .……………….13分 17.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD , 且平面ADEF平面ABCD AD =,所以AF ⊥平面ABCD .所以AF CD ⊥.………………4分(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F , 所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==. 设平面CDE 的一个法向量为(,,)x yz =n ,则0,0.DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,0. x y z +=⎧⎨=⎩令2x =,则1y =-, 所以(2,1,0)=-n .设直线BF 与平面CDE 所成角为θ,则sin |cos ,|BF θ=〈〉==n .9分 (Ⅲ)设( (01])BMBDλλ=∈,, 设()111,,M x y z ,则()1111,,(1,1,0)x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-, 所以()1,,0AM λλ=-.设平面AFM 的一个法向量为000(,,)x y z =m ,则0,0.AM AF ⎧⋅=⎪⎨⋅=⎪⎩m m因为()0,0,1AF =,所以000(1)0,0.x y z λλ-+=⎧⎨=⎩令0x λ=,则01y λ=-,所以(,1,0)λλ=-m .在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[0,1]λ∈,使得0CE ⋅=m . 因为()1,2,1CE =--,由0CE ⋅=m , 所以2(1)0λλ---=, 解得2[0,1]3λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.……………….14分18. (本小题满分13分) 解:(Ⅰ)当1a =时,ln ()x f x x =.所以21ln ()xf x x -'=. 因为(1)1,(1)0f f '==,所以曲线()y f x =在(1,(1))f 处的切线方程为1y x =-.……………….3分(Ⅱ)当1a =-时,ln()()x f x x-=. 函数()f x 的定义域为(,0)-∞. 不等式()1f x x ≥+成立⇔ln()1x x x-≥+成立⇔2ln()0x x x ---≤成立.设2()ln()g x x x x =---((,0))x ∈-∞,则2121(21)(1)()21x x x x g x x x x x--+-++'=--==.当x 变化时,()g x ',()g x 变化情况如下表:所以()(1)g x g ≤-.因为(1)0g -=,所以()0g x ≤,所以ln()1x x x-≥+.………………………………………………………………….8分 (Ⅲ)求导得21ln()()ax f x x -'=. 令()0f x '=,因为0a ≠可得ex a=. 当0a >时,()f x 的定义域为()0,+∞.当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极大值e()eaf a =,无极小值. 当0a <时,()f x 的定义域为(),0-∞,当x 变化时,()f x ',()f x 变化情况如下表:此时()f x有极小值e ()eaf a =,无极大值.……………………………………………….13分19. (本小题满分14分)解:(Ⅰ)由题意a =1b =,1c =所以离心率c e a ==,左焦点(1,0)F -.………………………………………….4分 (Ⅱ)当00y =时直线l 方程为x =或x =l 与椭圆C 相切.当00y ≠时,由22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩得2222000(2)4440y x x x x y +-+-=, 由题知,220012x y +=,即220022x y +=, 所以 22220000(4)4(2)(44)x y x y ∆=-+- 220016[2(1)]x y =--=22016(22)0x y +-=. 故直线l 与椭圆C 相切.………………………………………………………….8分(Ⅲ)设11(,)A x y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =2211(1)FA FB x y ⋅=+-2211(1)6(1)x x =+-+-21240x =-=,所以FA FB ⊥,即90AFB ∠=.当00y ≠时,由2200(1)6,22x y x x y y ⎧-+=⎪⎨+=⎪⎩ 得2222000(1)2(2)2100y x y x x y +-++-=, 则20012202(2)1y x x x y ++=+,21222101y x x y -=+, 2001212122220001()42x x y y x x x x y y y =-++200254422x x y --+=+. 因为1122(1,)(1,)FA FB x y x y ⋅=+⋅+ 1212121x x x x y y =++++2222000000220042084225442222y y x y x x y y -++++--+=+++220025(2)10022x y y -++==+. 所以FA FB ⊥,即90AFB ∠=.故AFB ∠为定值90. ………………………………………………………….14分20. (本小题满分13分)解:(I)9101000,1,1a a a ===..………………………………………………………….3分 (II)反证法:假设i ∀,0.i a ≠由于21n n n a a a ++=-, 记1,2max{}M a a =.则12,a M a M ≤≤.则32101a a a M <=-≤-,43201a a a M <=-≤-,54302a a a M <=-≤-,65402a a a M <=-≤-,,依次递推,有76503a a a M <=-≤-,87603a a a M <=-≤-…,则由数学归纳法易得21,.k a M k k *+≤-∈N当k M >时,210,k a +<与210k a +>矛盾. 故存在i ,使=0.i a所以,数列{}n a 必在有限项后出现值为0的项.………………………………………….8分 (III)首先证明:数列{}n a 中必有“1”项.用反证法,假设数列{}n a 中没有“1”项,由(II)知,数列{}n a 中必有“0”项,设第一个“0”项是m a (3)m ≥,令1m a p -=,1,p p >∈N *,则必有2m a p -=,于是,由1233||||m m m m p a a a p a ----==-=-,则32m a p -=,因此p 是3m a -的因数, 由2344|||2|m m m m p a a a p a ----==-=-,则4m a p -=或3p ,因此p 是4m a -的因数.依次递推,可得p 是12,a a 的因数,因为1p >,所以这与12,a a 互质矛盾.所以,数列{}n a 中必有“1”项. 其次证明数列{}n a 中必有无穷多项为“1”.假设数列{}n a 中的第一个“1”项是k a ,令1k a q -=,1,q q >∈N *, 则111k k k a a a q +-=-=-,若1k a +=11q -=,则数列中的项从k a 开始,依次为“1,1,0”的无限循环, 故有无穷多项为1;若111k a q +=->,则213212,1k k k k k k a a a q a a a +++++=-=-=-=, 若221k a q +=-=,则进入“1,1,0”的无限循环,有无穷多项为1;若221k a q +=->,则从k a 开始的项依次为1,1,2,1,3,4,1q q q q ----,……,必出现连续两个“1”项,从而进入“1,1,0”的无限循环,故必有无穷多项为1.……13分。

北京市朝阳区高三年级第一次综合练习试题理

北京市朝阳区高三年级第一次综合练习试题理

(第6题图)北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2014.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)复数i(2+i)z =在复平面内对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)已知集合1{|()1}2xA x =<,集合{|lg 0}B x x =>,则AB =(A ){|0}x x > (B ){|1}x x > (C ) {|1}{|0}x x x x >< (D ) ∅ (3)已知平面向量a ,b 满足2==a b ,(2)()=2⋅--a +b a b ,则a 与b 的夹角为(A )6π (B ) 3π (C ) 32π (D ) 65π (4)如图,设区域{(,)01,01}D x y x y =≤≤≤≤,向区域D 内随机投一点,且投入到区域内任一点都是等可能的,则点落 入到阴影区域3{(,)01,0}M x y x y x =≤≤≤≤的概率为(A )14(B )13(C )25 (D ) 27(5)在ABC △中,π4A =,BC =“AC =是“π3B =”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)执行如图所示的程序框图,输出的S 值为(A )2 (B )2- (C )4 (D )4-(7)已知函数2sin ()1xf x x =+.下列命题: ①函数()f x 的图象关于原点对称; ②函数()f x 是周期函数; ③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是(A ) ①③ (B )②③ (C ) ①④ (D )②④ (8)直线y x m =+与圆2216x y +=交于不同的两点M ,N ,且3M N O M O N ≥+,其中O 是坐标原点,则实数m 的取值范围是 (A )(2,22⎡-⎣ (B )(22,4⎡--⎣(C ) [2,2]- (D ) [-第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. (9)在各项均为正数的等比数列{}n a 中,12a =,2312a a +=,则该数列的前4项和为 .(10)在极坐标系中,A 为曲线2cos ρθ=上的点,B 为曲线cos 4ρθ=上的点,则线段AB 长度的最小值是 .(11)某三棱锥的三视图如图所示,则这个三棱锥的体积为 ;表面积为 .(12)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b = ;此双曲线的离心率为 .(13)有标号分别为1,2,3的红色卡片3张,标号分别为1,2,3的蓝色卡片3张,现将全部的6张卡片放在2行3列的格内 (如图).若颜色相同的卡片在同一行,则不同的放法种数 为 .(用数字作答)正视图俯视图(14)如图,在四棱锥S ABCD -中,SB ⊥底面ABCD .底面ABCD 为梯形,AB AD ⊥,AB ∥CD ,1,3AB AD ==,2CD =.若点E 是线段AD 上的动点,则满足90SEC ∠=︒的点E 的个数是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数22()2sin()cos sin cos f x x x x x =π-⋅+-,x ∈R . (Ⅰ)求()2f π的值及函数()f x 的最小正周期; (Ⅱ)求函数()f x 在[]0,π上的单调减区间.(16)(本小题满分13分)某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:例如,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为25. (I )求a ,b 的值;(II )从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;(III )从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列及其数学期望E ξ.BCDESA(17)(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧面PAD ⊥底面ABCD .PAD △为等腰直角三角形,且PA AD ⊥. E ,F 分别为底边AB 和侧棱PC 的中点.(Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:EF ⊥平面PCD ; (Ⅲ)求二面角E PD C --的余弦值.(18)(本小题满分13分)已知函数21()ln 2f x ax x =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[1,e]的最小值为1,求a 的值.(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>经过点(1,2,离心率为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.(20)(本小题满分13分)从1,2,3,,n 中这n 个数中取m (,m n *∈N ,3m n ≤≤)个数组成递增等差数列,所有可能的递增等差数列的个数记为(,)f n m .(Ⅰ)当5,3n m ==时,写出所有可能的递增等差数列及(5,3)f 的值; (Ⅱ)求(100,10)f ;(Ⅲ)求证:()(1)(,)2(1)n m n f n m m -+>-.A E BCDPF北京市朝阳区高三年级第一次综合练习数学答案(理工类) 2014.3三、解答题15. (本小题满分13分) 解: ()f x =sin 2cos2x x -)4x π=-.(Ⅰ)())1224f πππ=⋅-==. 显然,函数()f x 的最小正周期为π. …………… 8分 (Ⅱ)令ππ3π2π22π242k x k +-+≤≤得 37ππππ88k x k ++≤≤,k ∈Z .又因为[]0,πx ∈,所以3π7π,88x ⎡⎤∈⎢⎥⎣⎦. 函数()f x 在[]0,π上的单调减区间为3π7π,88⎡⎤⎢⎥⎣⎦. …………… 13分 16. (本小题满分13分)解:(I )设事件A :从20位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.由题意可知,运动协调能力或逻辑思维能力优秀的学生共有(6)a +人. 则62()205a P A +==. 解得 2a =.所以4b =. …………… 4分(II )设事件B :从20人中任意抽取2人,至少有一位运动协调能力或逻辑思维能力优秀的学生.由题意可知,至少有一项能力测试优秀的学生共有8人.则21222062()1()195C P B P B C =-=-=. …………… 7分(III )ξ的可能取值为0,1,2.20位学生中运动协调能力或逻辑思维能力优秀的学生人数为8人.所以21222033(0)95C P C ξ===,1112822048(1)95C C P C ξ===,2822014(2)95C P C ξ===.所以ξ的分布列为所以,0E ξ=⨯33951+⨯48952+⨯1495764955==. …………… 13分 17. (本小题满分14分)(Ⅰ)证明:取PD 的中点G ,连接FG ,AG .因为F ,G 分别是PC ,PD 的中点, 所以FG 是△PCD 的中位线. 所以FG ∥CD ,且12FG CD =. 又因为E 是AB 的中点,且底面ABCD 为正方形,所以1122AE AB CD ==,且AE ∥CD . 所以AE ∥FG ,且AE FG =. 所以四边形AEFG 是平行四边形. 所以EF ∥AG .又EF ⊄平面PAD ,AG ⊂平面PAD ,AE BCDPFG所以EF平面PAD . ……………4分(Ⅱ)证明: 因为平面PAD ⊥平面ABCD ,PA AD ⊥,且平面PAD 平面ABCD AD =, 所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥.又因为ABCD 为正方形,所以AB AD ⊥, 所以,,AB AD AP 两两垂直.以点A 为原点,分别以, , AB AD AP 为, , x y z 轴, 建立空间直角坐标系(如图). 由题意易知AB AD AP ==, 设2AB AD AP ===,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(1,0,0)E ,(1,1,1)F .因为(0,11)EF =,,(022)PD =-,,,(200)CD =-,,,且(0,11)(0,2,2)0EF PD ⋅=⋅-=,,(0,11)(2,00)0EF CD ⋅=⋅-=,,所以EF PD ⊥,EF CD ⊥. 又因为PD ,CD 相交于D ,所以EF⊥平面PCD . …………… 9分(Ⅲ)易得(102)EP =-,,,(0,22)PD =-,.设平面EPD 的法向量为(, , )x y z =n ,则0,0.EP PD ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 20,220. x z y z -+=⎧⎨-=⎩即2,. x z y z =⎧⎨=⎩ 令1z =,则(2,1,1)=n .由(Ⅱ)可知平面PCD 的法向量是(0,11)EF =,, 所以cos ,32EF EF EF⋅〈〉===⋅n n n .由图可知,二面角E PD C --的大小为锐角,所以二面角E PD C -- ……………14分 18. (本小题满分13分)解:函数()f x 的定义域是(0,)+∞, 1()f x ax x'=-21ax x -=.(Ⅰ)(1)当0a =时,1()0f x x'=-<,故函数()f x 在(0,)+∞上单调递减. (2)当0a <时,()0f x '<恒成立,所以函数()f x 在(0,)+∞上单调递减.(3)当0a >时,令()0f x '=,又因为0x >,解得x =①当x ∈时,()0f x '<,所以函数()f x 在单调递减.②当)x ∈+∞时,()0f x '>,所以函数()f x 在)+∞单调递增. 综上所述,当0a ≤时,函数()f x 的单调减区间是(0,)+∞,当0a >时,函数()f x 的单调减区间是,单调增区间为)+∞.…7分 (Ⅱ)(1)当0a ≤时,由(Ⅰ)可知,()f x 在[1,e]上单调递减,所以()f x 的最小值为21(e)e 112f a =-=,解得240e a =>,舍去.(2)当0a >时,由(Ⅰ)可知,1,即1a ≥时,函数()f x 在[1,e]上单调递增, 所以函数()f x 的最小值为1(1)12f a ==,解得2a =.②当1e <<,即211e a <<时,函数()f x 在上单调递减,在上单调递增,所以函数()f x 的最小值为11ln 122f a =+=,解得e a =,舍去.e ,即210e a <≤时,函数()f x 在[1,e]上单调递减,所以函数()f x 的最小值为21(e)e 112f a =-=,得24e a =,舍去.综上所述,2a =. ……………13分19. (本小题满分14分)解:(Ⅰ)由题意得22=21314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =. 所以椭圆C 的方程是2214x y +=. …………… 4分 (Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=恒成立.又因为1012(,)2y PN x x =-,2022(,)2y QN x x =-, 所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=----恒成立. 又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++ 22414k k=+, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k-=+, 所以2222212000212212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x =.故以线段PQ 为直径的圆过x轴上的定点(. …………… 14分 20. (本小题满分13分) 解:(Ⅰ)符合要求的递增等差数列为1,2,3;2,3,4;3,4,5;1,3,5,共4个.所以(5,3)4f =. …………… 3分 (Ⅱ)设满足条件的一个等差数列首项为1a ,公差为d ,d *∈N .1019a a d =+,10110011199a a d --==≤,d 的可能取值为1,2,,11.对于给定的d ,11091009a a d d =--≤, 当1a 分别取1,2,3,,1009d -时,可得递增等差数列1009d -个(如:1d =时,191a ≤,当1a 分别取1,2,3,,91时,可得递增等差数列91个:1,2,3,,11;2,3,4,,12;;91,92,93,,100,其它同理).所以当d 取1,2,,11时,可得符合要求的等差数列的个数为:(100,10)100119(1211)1100966506f =⋅-⋅+++=-⋅=.…………… 8分(Ⅲ)设等差数列首项为1a ,公差为d ,1(1)m a a m d =+-,1111m a a n d m m --=--≤,北京市朝阳区高三年级第一次综合练习试题理11 / 11 记11n m --的整数部分是t ,则11111n n t m m ---<--≤,即111n m n t m m --<--≤. d 的可能取值为1,2,,t ,对于给定的d ,1(1)(1)m a a m d n m d =----≤,当1a 分别取1,2,3,,(1)n m d --时,可得递增等差数列(1)n m d --个.所以当d 取1,2,,t 时,得符合要求的等差数列的个数2(1)121(,)(1)222t t m n m f n m nt m t t +--+=--⋅=-+ 22121(21)()22(1)8(1)m n m n m t m m --+-+=--+-- 易证21112(1)1n m n m n m m m --+-<---≤. 又因为211||12(1)2(1)n m n m m m m m --++-=---,2113||2(1)12(1)n m n m m m m -+---=---, 所以21211||||12(1)2(1)1n m n m n m n m m m m --+-+-->-----. 所以(1)(,)(1)2t t f n m nt m +=--⋅ (1)()(1)11(1)122(1)n m n m n m n m n m m n m m m --+--+-->⋅--⋅=--. 即()(1)(,)2(1)n m n f n m m -+>-. …………… 13分。

北京市朝阳区届高三第一次综合练习理科数学.doc

北京市朝阳区届高三第一次综合练习理科数学.doc

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)-(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的 大小为 A .3π B .2π C .32π D .65π (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .②B .③C .②③D .①③(6)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为 A. 4B.C. D. 8(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.3B. 1C.3D. 2(8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有A. 1个 B .2个 C .3个 D .4个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A = .(11)执行如图所示的程序框图,输出的结果S= .正视图侧视图俯视图(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切线交BA的延长线于点D .若CD =,2AB AC ==,则线段AD 的长是 ;圆O 的半径是 .(13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0a x a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 . (14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数21()sin 22x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围.D-,,2.称“从盒中随机抽取一盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;,,试求随机变量X=ξη⋅的分布列与数学期望(Ⅲ)在两次试验中,记卡片上的数字分别为ξηEX.如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且P A A C ⊥, 2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.PDABCFE已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.已知中心在原点,焦点在x轴上的椭圆C过点,离心率为,点A为其右顶点.过点B,作直线l与椭圆C相交于,E F两点,直线AE,AF与直线3(10)x=分别交于点M,N. (Ⅰ)求椭圆C的方程;⋅的取值范围.(Ⅱ)求EM FN设1210(,,,)x x x τ=是数1,2,3,4,5,6的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4一、选择题:二、填空题:(注:两空的填空,第一空3分,第二空2分) 三、解答题:(15)(本小题满分13分)解:(Ⅰ)1cos 1()22x f x x ωω-=-+1cos 2x x ωω=+ sin()6x ωπ=+. …………………………………………4分 因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+. 由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+. 所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分 所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次试验中,卡片上的数字为正数,则21()42P A ==. 答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分 (Ⅱ)设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分(17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分(Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥.又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分 如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-. 设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD…………………………………9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e ea a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点,需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增;且48414(e )20,(2)22ln 20e e f f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点. (ⅱ)当02a <<时,函数()f x 在(,1)2a上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2a x ∈时,总有()0f x >. 因为22e12a a a +-<<+, 所以22222222(e )e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,1314a b c c a ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………………………4分 (Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,E F,(3,(3,)22M N -,所以1EM FN ⋅=. …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =,则1212(3,),(3,)22y yM N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分 所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅--121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++ 22221653()(1)414k k k k+-=⋅++ 22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分 (20)(本小题满分13分) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤. 对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分(Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分。

2018北京市朝阳区高三年级第一次综合练习数学测试题理科

2018北京市朝阳区高三年级第一次综合练习数学测试题理科

北京市朝阳区高三年级第一次综合练习数学学科测试 (理工类)2018.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为实数集R ,集合2{30}A x x x =-<,{21}x B x =>,则R A B ()=I ðA .(0][3,),-∞+∞UB .(0,1]C .[)3+∞,D .[1),+∞ 2.复数z 满足(1+i)i z =,则在复平面内复数z 所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.直线l的参数方程为=,1+3x y tìïïíï=ïî(t 为参数),则l 的倾斜角大小为 A .6π B . 3π C . 32π D .65π4.已知a b ,为非零向量,则“0a b >⋅”是“a 与b 夹角为锐角”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A .18B .24C .48D .96 6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A .34B .23C .12D .13俯视图正视图侧视图17.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下: 甲说:“我或乙能中奖”; 乙说:“丁能中奖”; 丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A .甲B .乙C .丙D .丁8.在平面直角坐标系xOy 中,已知点(3,0)A ,(1,2)B ,动点P 满足OP OA OB λμ=+u u u r u u u r u u u r ,其中,[0,1],[1,2]λμλμ∈+∈,则所有点P 构成的图形面积为A . 1B . 2C .3 D . 23第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.执行如图所示的程序框图,若输入5m =,则输出k 的值为________.10.若三个点(2,1),(2,3),(2,1)---中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为_____________.11.函数()sin()f x A x ωϕ=+(0,0,2A ωϕπ>><)的部分图象如图所示,则=ω ;函数()f x 在区间[,3ππ]上的零点为 .m >5输出k 结束开始 输入k =0m =2m 1 是k =k +1 否12.已知点(2,0),(0,2)A B -,若点M 是圆22220x y x y +-+=上的动点,则ABM ∆面积的最小值为 .13.等比数列{}n a 满足如下条件:①10a >;②数列{}n a 的前n 项和1n S <. 试写出满足上述所有条件的一个数列的通项公式 .14.已知R a ∈,函数211(+1)0π()sin 2,0.22x x x a x x f x x --+⎧+<⎪⎪=⎨⎪>⎪⎩+, , 当0x >时,函数()f x 的最大值是 ;若函数()f x 的图象上有且只有两对点关于y 轴对称,则a 的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)在ABC ∆中,已知sin 5A =,2cos b a A =. (Ⅰ)若5ac =,求ABC ∆的面积; (Ⅱ)若B 为锐角,求sin C 的值. 16.(本小题满分14分)如图1,在矩形ABCD 中,2AB =,4BC =,E 为AD 的中点,O 为BE 中点.将ABE ∆沿BE 折起到A BE ',使得平面A BE '⊥平面BCDE (如图2).(Ⅰ)求证:A O CD '⊥;(Ⅱ)求直线A C '与平面A DE '所成角的正弦值;(Ⅲ)在线段A C '上是否存在点P ,使得//OP 平面A DE ' 若存在,求出A PA C''的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个图1EABCDOA '图2CBDEO科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率; (Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量221,2,ξ⎧=⎨⎩名男生选考方案相同名男生选考方案不同,,求ξ的分布列及数学期望E ξ.18. (本小题满分13分)已知函数ln 1()x f x ax x-=-. (Ⅰ)当2a =时,(ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(ⅱ)求函数)(x f 的单调区间;(Ⅱ)若12a <<,求证:)(x f 1<-.19. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且过点.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆C 的左焦点的直线1l 与椭圆C 交于,A B 两点,直线2l 过坐标原点且与直线1l 的斜率互为相反数.若直线2l 与椭圆交于,E F 两点且均不与点,A B 重合,设直线AE 与x 轴所成的锐角为1θ,直线BF 与x 轴所成的锐角为2θ,判断1θ与2θ大小关系并加以证明. 20. (本小题满分13分)已知集合128{,,,}X x x x =L 是集合{2001,2002,2003,,2016,2017}S =L 的一个含有8个元素的子集.(Ⅰ)当{2001,2002,2005,2007,2011,2013,2016,2017}X =时,设,(1,8)i j x x X i j ∈≤≤,(i )写出方程2i j x x -=的解(,)i j x x ;(ii )若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值; (Ⅱ)证明:对任意一个X ,存在正整数k ,使得方程(1,8)i j x x k i j -=≤≤至少有三组不同的解.北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)答案2018.3三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由2cos b a A =,得cos 0A >,因为sin 5A =,所以cos A =.因为2cos b a A =,所以4sin 2sin cos 25B A A ===. 故ABC ∆的面积1sin 22S ac B ==. ………………….7分 (Ⅱ)因为4sin 5B =,且B 为锐角,所以3cos 5B =.所以sin sin()sin cos cos sin C A B A B A B =+=+=………….13分16.(本小题满分14分)证明:(Ⅰ)由已知2AB AE ==,因为O 为BE 中点,所以A O BE '⊥.因为平面A BE '⊥平面BCDE ,且平面A BE 'I 平面BCDE BE =,A O '⊂平面A BE ',所以A O '⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A O CD '⊥. ………….5分 (Ⅱ)设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点.由已知易得OF OG ⊥.由(Ⅰ)可知,A O '⊥平面BCDE , 所以A O OF '⊥,A O OG '⊥.以O 为原点,,,OF OG OA '所在直线分别为,,x y z 轴 建立空间直角坐标系(如图). 因为2A B '=,4BC =,所以(00(110),(130),(130),(110)A B C D E ,,,,,,,,'---. 设平面A DE '的一个法向量为111(,,)x y z =m ,因为(13(020)A D DE ,,,,'=-=-u u u u r u u u r, 所以 0, 0,A D DE ⎧'⋅=⎪⎨⋅=⎪⎩u u u u ru u u rm m即111130, 20. x y y ⎧-+=⎪⎨-=⎪⎩ 取11z =-,得1)=-m .而A C '=u u u ur(1,3,.所以直线A C '与平面A DE '所成角的正弦值sin 3θ== ……….10分 (Ⅲ)在线段A C '上存在点P ,使得//OP 平面A DE '.设000(,,)P x y z ,且(01)A PA C λλ'=≤≤',则A P A C λ''=u u u r u u u u r ,[0,1]λ∈.因为(00(130)A C ,,',所以000(,,(,3,)x y z λλ=,所以000,3,x y z λλ===,所以(,3)P λλ,(,3)OP λλ=u u u r.若//OP 平面A DE ',则OP ⊥u u u r m .即0OP ⋅=u u u rm .由(Ⅱ)可知,平面A DE '的一个法向量1)=-m ,0-=,解得1[0,1]2λ=∈,所以当12A P A C '='时,//OP 平面A DE '. ……….14分B17.(本小题满分13分)解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有1018420=1401830⨯⨯人. ……….3分 (Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为21=84; 选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为310. 所以该男生和该女生的选考方案中都含有历史学科的概率为13341040⨯=.…….8分 (Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治. 由已知得ξ的取值为1,2.2242281(1)4C C P C ξ+===, 1111422228()213(2)4C C C C P C ξ++⨯+===, 或3(2)1(1)4P P ξξ==-==. 所以ξ的分布列为所以13712444E ξ=⨯+⨯=. …….13分 18. (本小题满分13分)(Ⅰ)当2a =时,ln 1()2x f x x x-=-.2222ln 22ln ()2x x xf x x x ---'=-=. (ⅰ)可得(1)0f '=,又(1)3f =-,所以()f x 在点(1,3-)处的切线方程为3y =-.….3分 (ⅱ)在区间(0,1)上2220x ->,且ln 0x ->,则()0f x '>. 在区间(1,+∞)上2220x -<,且ln 0x -<,则()0f x '<.所以()f x 的单调递增区间为(0,1),单调递减区间为(1,+∞). ….8分 (Ⅱ)由0x >,()1f x <-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->. 设2()1ln h x ax x x =-+-,只须证()0h x >成立.因为2121()21ax x h x ax x x--'=--=,12a <<,由()0h x '=,得2210ax x --=有异号两根. 令其正根为0x ,则200210ax x --=. 在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>.则()h x 的最小值为20000()1ln h x ax x x =-+-0011ln 2x x x +=-+-003ln 2x x -=-.又(1)220h a '=->,13()2()30222a h a '=-=-<,所以0112x <<.则0030,ln 02x x ->->.因此003ln 02x x -->,即0()0h x >.所以()0h x >所以()1f x <-. ….….13分19. (本小题满分14分)解:(Ⅰ)由题意得22222,111.2c a a b c ab ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩解得a =1b =,1c =.故椭圆C 的方程为2212x y +=. ….….5分(Ⅱ)12=θθ.证明如下:由题意可设直线1l 的方程为(1)y k x =+,直线2l 的方程为y kx =-,设点11(,)A x y ,22(,)B x y ,33(,)E x y ,33(,)F x y --.要证12=θθ,即证直线AE 与直线BF 的斜率之和为零,即0AE BF k k += . 因为13231323AE BF y y y y k k x x x x -++=+-+ 13231323(1)(1)k x kx k x kx x x x x +++-=+-+ 2121231323[2()2]()()k x x x x x x x x x +++=-+.由22(1),1,2y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-=, 所以2122412k x x k -+=+,21222212k x x k -=+.由22,1,2y kx x y =-⎧⎪⎨+=⎪⎩得22(12)2k x +=,所以232212x k =+. 所以2221212322244442()20121212k k x x x x x k k k --+++=++=+++. 2121231323[2()2]0()()AE BFk x x x x x k k x x x x ++++==-+.所以12=θθ. ….….14分20. (本小题满分13分)解:(Ⅰ)(ⅰ)方程2i j x x -=的解有:(,)(2007,2005),(2013,2011)i j x x =.……2分 (ii )以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1; 中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6; 中间相隔三数的两数差:10,11,11,10; 中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次, 所以k 的可能取值有4,6.…………………………………………………………6分 (Ⅱ)证明:不妨设12820012017x x x ≤<<<≤L ,记1(1,2,,7)i i i a x x i +=-=L ,2(1,2,,6)i i i b x x i +=-=L ,共13个差数.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而127126()()2(126)749a a a b b b +++++++≥++++=L L L . …………①又127126818721()()()()a a a b b b x x x x x x +++++++=-++--L L 81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾! 所以结论成立.……………………………………………………………………13分。

朝阳区高三第一次统一考试数学试卷(理科)

朝阳区高三第一次统一考试数学试卷(理科)

朝阳区高三第一次统一考试数学试卷(理科) 2007.4(考试时间120分钟, 满分150分)第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题的4个选项中,只有一项是符合题目要求的.(1) 设全集U=R,集合M={ x | x >0 },N={x| x2≥x },则下列关系中正确的是()A.M∩N∈M B.M∪N⊆MC.(C U M)∪(C U N)=φ D.(C U N)∩M⊆M(2)在△ABC中,sin2A=sin2B是A=B的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件(3) 已知a、b是两条不重合的直线,α、β是两个不重合的平面,给出四个命题:①a∥b,b∥α,则a∥α;②a、b⊂α,a∥β,b∥β,则α∥β;③a与α成30°的角,a⊥b,则b与α成60°的角;④a⊥α,b∥α,则a⊥b.其中正确命题的个数是()A. 4个B.3个C.2个D.1个(4)已知等比数列{a n}的前n项和为S n,S3=3,S6=27,则此等比数列的公比q等于()A. 2B.-2C.12D. -12(5) 从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()A.210种 B.186种 C.180种 D.90种(6) 已知函数f(x在区间M上的反函数是其本身,则M可以是()A.[-2,2] B.[-2,0] C.[0,2] D.[-2,0)(7) 已知椭圆焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为M,则点M的轨迹是()A. 圆 B.椭圆C. 直线 D.双曲线的一支(8) 已知计算机中的某些存储器有如下特性:若存储器中原有数据个数为m个,则从存储器中取出n个数据后,此存储器中的数据个数为m-n个;若存储器中原有数据为m个,则将n 个数据存入存储器后,此存储器中的数据个数为m+n个.现已知计算机中A、B、C三个存储器中的数据个数均为0,计算机有如下操作:第一次运算:在每个存储器中都存入个数不小于2的数据;第二次运算:从A存储器中取出2个数据,将这2个数据存入B存储器中;第三次运算:从C存储器中取出1个数据,将这1个数据存入B存储器中;第四次运算:从B存储器中取出与A存储器中个数相同的数据,将取出的数据存入A存储器,则这时B存储器中的数据个数是()A. 8B. 7C. 6D. 5朝阳区高三第一次统一考试数学试卷(理科)第II卷(非选择题共110分)填空题:本大题共6小题,每小题5分,共30分.将答案填在题中横线上.(9) 设复数z 1=1+2i ,z 2=2-i ,则12z z 等于 . (10) 若(1-ax )6的展开式中x 4的系数是240,则实数a 的值是 .(11)圆x 2+y 2+4x -2y +4=0上的点到直线x -y -1=0的最大距离与最小距离的差为 .(12) 已知一个球与一个二面角的两个半平面都相切,若球心到二面角的棱的距离是5,切点到二面角棱的距离是1,则球的表面积是 ,球的体积是 .(13)已知向量a = (2,3),|b |,且a ∥b ,则|a |= ,b 的坐标是. (14)已知函数f (x )=|1|(1),3(1),x x x x +<⎧⎨-+⎩≥且不等式f (x )≥a 的解集是(]2-∞-,∪[0,2],则实数a 的值是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(15)(本小题满分13分)已知a = (cos x ,sin x ),b = (-cos x ,cos x ),函数f (x )= 2a ·b +1. (Ⅰ)求函数f (x )的最小正周期;(Ⅱ) 当x ∈[0,2π]时,求f (x )的单调减区间.(16)(本小题满分13分)甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获胜的概率为0.4,每场比赛均要分出胜负. 比赛时采用三场两胜制,即先取得两场胜利的球队胜出.(Ⅰ)求甲队以二比一获胜的概率;(Ⅱ)求乙队获胜的概率;(Ⅲ)若比赛采用五场三胜制,试问甲获胜的概率是增大还是减小,请说明理由.(17)(本小题满分13分)如图,棱长为1的正四面体ABCD中,E、F分别是棱AD、CD的中点,O是点A在平面BCD内的射影. (Ⅰ)求直线EF与直线BC所成角的大小;(Ⅱ)求点O到平面ACD的距离;(Ⅲ) 求二面角A-BE-F的大小.(18)(本小题满分13分)已知函数f(x)= x3+ax2+bx+c在x=1处有极值,f(x)在x=2处的切线l不过第四象限且斜率为1,坐标原点到切线l的距离为2.(Ⅰ) 求a、b、c的值;(Ⅱ) 求函数y = f(x)在区间[-1,32]上的最大值和最小值.·ABCDEFO(19)(本小题满分14分)已知双曲线的中心在原点O ,右焦点为(,0)F c ,P 是双曲线右支上任意一点,且OFP ∆(Ⅰ)若点P 的坐标为(2,求此双曲线的离心率;(Ⅱ)若26(1)OF FP c ⋅=,当OP 取得最小值时,求此双曲线的方程.(20)(本小题满分14分)已知数列{}n a 的前n 项和为n S ,点,n S n n ⎛⎫⎪⎝⎭在直线11122y x =+上.数列{}n b 满足2120n n n b b b ++-+=*()n N ∈,且311b =,前9项和为153.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)设3(211)(21)n n n c a b =--,数列{}n c 的前n 项和为n T ,求使不等式57n k T >对一切*n N ∈都成立的最大正整数k 的值;(Ⅲ)设**(21, ),() (2, ).n n a n l l N f n b n l l N ⎧=-∈⎪=⎨=∈⎪⎩是否存在*m N ∈,使得(15)5()f m f m +=成立?若存在,求出m 的值;若不存在,请说明理由.朝阳区高三第一次统一考试数学试卷答案(理科) 2007.4一.选择题(1)D (2)B (3) D (4)A (5)C (6)B (7)A (8)D 二.填空题(9)i (10)±2 (11)2 (12)16π 323π(13(-4,-6)或(4,6) (14)1三.解答题(15) 解:(Ⅰ)因为f (x )= 2a ·b +1= 2(cos x ,sin x )·(-cos x ,cos x )+1=2(-cos 2x + sin x cos x ) +1 ……………………………………2分=1-2cos 2x + 2sin x cos x=sin2x -cos2x ……………………………………4分x -4π) ……………………………………6分 所以f (x )的最小正周期是T=22π= π. ……………………………………7分(Ⅱ)依条件得2k π+2π≤2x -4π≤2k π+32π(k ∈Z). ………………………………9分解得k π+38π≤x ≤k π+78π(k ∈Z). ……………………………………11分又x ∈[0,2π],所以38π≤x ≤78π,118π≤x ≤158π.即当x ∈[0,2π]时,f (x )的单调减区间是[38π,78π],[118π,158π]. …………13分(16) 解: (Ⅰ)甲队以二比一获胜,即前两场中甲胜1场,第三场甲获胜,其概率为P 1=12C ×0.6×0.4×0.6=0.288. ……………………………………4分(Ⅱ)乙队以2:0获胜的概率为 20.40.40.16P '=⨯=;乙队以2:1获胜的概率为 1220.40.60.40.192P C ''=⨯⨯=∴乙队获胜的概率为 P 2=0.42+12C ×0.4×0.6×0.4=0.16+0.192=0.352. …………………8分(Ⅲ)若三场两胜,则甲获胜的概率P 3=0.62+12C ×0.6×0.4×0.6=0.36+0.288=0.648或P 3=1- P 2=1-0.352=0.648; 若五场三胜,则甲获胜的概率P 3′=0.63+23C ×0.62×0.4×0.6+24C ×0.62×0.42×0.6=0.216+0.2592+0.20736=0.68256. ……………………………………12分∵P3< P3′,∴采用五场三胜制,甲获胜的概率将增大. ……………………………………13分(17)方法一:(Ⅰ)因为E、F分别是棱AD、CD的中点,所以EF∥AC.所以∠BCA是EF与BC所成角.∵正四面体ABCD,∴△ABC为正三角形,所以∠BCA=60°.即EF与BC所成角的大小是60°.……………………………………3分(Ⅱ)解法1:如图,连结AO,AF,因为F是CD的中点,且△ACD,△BCD均为正三角形,所以BF⊥CD,AF⊥CD.因为BF∩AF=F,所以CD⊥面AFB.因为CD 面ACD,所以面AFB⊥面ACD.因为ABCD是正四面体,且O是点A在面BCD内的射影,所以点O必在正三角形BCD的中线BF上.在面ABF中,过O做OG⊥AF,垂足为G,所以OG⊥面ACD.即OG的长为点O到面ACD的距离.因为正四面体ABCD的棱长为1,在△ABF容易求出AF=BF=2,OF=6,AO=3因为△AOF∽△OGF,故由相似比易求出所以点O到平面ACD的距离是9……………………………………8分解法2:如图,连结AO,CO,DO,所以点O到平面ACD的距离就是三棱锥O-ACD底面ACD上的高h.与解法1同理容易求出·ABCDEFOG·AB DEFO所以V A-COD =13·312·6·1)=36.因为V O-ACD =V A-COD ,所以O-ACD =13·h ·(12··1) .解得h=9(Ⅲ) 设△ABD 中,AB 边的中线交BE 于H , 连结CH ,则由ABCD 为正四面体知 CH ⊥面ABD.设HD 的中点为K ,则FK ∥CH. 所以FK ⊥面ABD.在面ABD 内,过点K 作KN ∥AD , KN 交BE 于M ,交AB 于N ,因为BE ⊥AD , 所以NM ⊥BE. 连结FM , 所以FM ⊥BE.所以∠NMF 是所求二面角的平面角.因为FK=12CH=12·36MK=12ED=14AD=14, 所以tan ∠FMK=FK MK=3. 所以tan ∠NMF=tan (π-∠FMK)= -3. 所以所求二面角的大小为π-. ……………………………………13分 (或者由正四面体的对称性,可转求二面角C —BF —E 的大小) 方法二:如图,以点A 在面BCD 的射影O 为坐标原点,有向直线OA 为z 轴,有向直线BF 为y 轴,x过点O 与DC 平行方向.因为正四面体ABCD 的棱长为1, 所以可以求出各点的坐标依次为:O(0,0,0),A(0,0,3,B(0,-3,C(12,6,0),D(-12,6,0), HKM · A BCDEFONCDE(-14,12,6,F(0,6,0). (Ⅰ)因为EF =(14,,=(120), 又EF ·=14×120=18+18=14,且|EF |=12||=12,||=1, 所以cos 〈EF ,BC 〉=14112⨯=12. 所以EF 与BC 所成角的大小是60°. ……………………………………3分 (Ⅱ) 因为AC =(12,6,-6), =(-12,6,-6), 设平面ACD 的一个法向量为F ACD = (x 1,y 1,z 1), 由AC ·F ACD =0,AD ·F ACD =0,解得F ACD = (0,2,22). 因为OF =(0,6,0),OF ·F ACD =33,| F ACD|=2, 所以点O 到平面ACD 的距离等于d =ACD ACD OF ⋅F F =33×3…………8分 (Ⅲ)因为AB =(0,-33,,AD =(-12, 设平面ABD 的一个法向量为F ABD = (x 2,y 2,z 2),AB ·F ABD =0,AD ·F ABD =0,可得一个法向量F ABD = (-6,-2, 1).同理可以求出平面BEF 的一个法向量为F BEF = (26,0,3).因为F ABD ·F BEF =-9,|F ABD |=3,|F BEF所以cos β=ABD BEF ABD BEF ⋅F F F F. 所以二面角A-BE-F 的大小为arccos)=π-. …………13分 (18) 解:(I) 由f (x )= x 3+ax 2+bx +c ,得f ′(x )= 3x 2+2ax +b . ………………………2分∵x =1时f (x )有极值,∴f ′(1)= 3+2a +b =0. ①∵f (x )在x =2处的切线l 的斜率为1,∴f ′(2)= 12+4a +b =1. ②由①②可解得a = -4,b =5. ……………………………………4分设切线l 的方程为y =x + m ,由坐标原点(0,0)到切线l 的距离为2,可得m =±1, 又切线不过第四象限,所以m =1,切线方程为y =x +1. ……………………………6分 ∴ 切点坐标为(2,3),∴f (2)=8-16+10+c =3,所以c =1.故a = -4,b =5,c =1. ……………………………………7分(Ⅱ)由(Ⅰ)知f (x )= x 3-4x 2+5x +1,f ′(x )= 3x 2-8x +5=(x -1)(3x -5).∵x ∈[-1,32],∴ 函数f (x )在区间[-1,1]上递增,在3(1,]2上递减 . ………9分 又f (-1)=-9,f (1)=3,f (32)=238, ……………………………………12分 ∴f (x )在区间[-1,32]上的最大值为3,最小值为-9. ……………………………13分 (19) 解:(Ⅰ)设所求的双曲线的方程为22221(0,0)x y a b a b-=>>,则1||2OF =,∴ c =……………………………………1分 ∴ 22222b c a a =-=-. ……………………………………2分由点P 在双曲线上,∴224312a a -=-,解得21a =, ……5分∴ 离心率c e a== ……………………………………6分 (Ⅱ)设所求的双曲线的方程为22221(0,0)x y a b a b-=>>,11(,)P x y , 则11(,)FP x c y =-. ……………………………………7分∵OFP ∆的面积为21122OF y =.∴1y c=……8分∵26(1)3OF FP c ⋅=-, ∴21()(1)3OF FP x c c c ⋅=-=-.解得1x =……………………………………9分∵22OP x ==, …………………………11分当且仅当c =. …………………………………12分此时P .由此得2222221,3a b a b ⎧-=⎪⎨⎪+=⎩解得2212a b ⎧=⎨=⎩或2263a b ⎧=⎨=-⎩(舍). 故所求双曲线的方程为2212y x -=. …………………………………14分(20)解:(Ⅰ)由题意,得11122n S n n =+,即211122n S n n =+. 故当2n ≥时,1n n n a S S -=-=2111()22n n +2111[(1)(1)]22n n --+-5n =+. 注意到1n =时,116a S ==,而当1n =时,56n +=,所以, *5 ()n a n n N =+∈. ………………………………………3分 又2120n n n b b b ++-+=,即211n n n n b b b b +++-=-*()n N ∈, 所以{}n b 为等差数列,于是379()1532b b +=. 而311b =,故723b =,2311373d -==-, 因此,33(3)32n b b n n =+-=+,即32n b n =+*()n N ∈.………………5分 (Ⅱ)3(211)(21)n n nc a b =--3[2(5)11][2(32)1]n n =+-+- 1111(21)(21)22121n n n n ⎛⎫==- ⎪-+-+⎝⎭. 所以,12n n T c c c =+++1111111112335572121n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11122121n n n ⎛⎫=-= ⎪++⎝⎭. ………………………………………8分 由于112321n n n n T T n n ++-=-++10(23)(21)n n =>++, 因此n T 单调递增,故min 1()3n T =. 令1357k >,得19k <,所以 max 18k =. …………………………………10分 (Ⅲ)**+5 (21, ),()3 2 (2, ).n n l l N f n n n l l N ⎧=-∈⎪=⎨+=∈⎪⎩ ① 当m 为奇数时,15m +为偶数.此时(15)3(15)2347f m m m +=++=+,5()5(5)525f m m m =+=+, 所以347m +525m =+,11m =. …………………………………12分 ② 当m 为偶数时,15m +为奇数.此时(15)15520f m m m +=++=+,5()5(32)1510f m m m =+=+, 所以20m +1510m =+,*57m N =∉(舍去). 综上,存在唯一正整数11m =,使得(15)5()f m f m +=成立.…………………………………14分注:(1)2个空的填空题,第一个空给3分,第二个空给2分.(2)如有不同解法,请阅卷老师酌情给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则M N =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)-(3)已知向量()()3,4,6,3OA OB =-=- ,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35 (4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的大小为 A .3π B .2π C .32π D .65π (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③(6)某个长方体被一个平面所截,得到的几何体的三 视图如图所示,则这个几何体的体积为正视图侧视图俯视图A. 4B.C. D. 8(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.3 B. 1C. 3D. 2 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使00()(1)()63f x f x f x n +++++= 成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有A. 1个 B .2个 C .3个 D .4个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A = .(11)执行如图所示的程序框图,输出的结果S= .(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切 线交BA 的延长线于点D .若CD =,2AB AC ==,则线段AD 的长是 ;圆O 的D半径是 .(13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3-上方程2()0a x a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 .(14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数21()sin 222x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围. (16)(本小题满分13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX . (17)(本小题满分14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面A B C D ,且P A A C ⊥,2PA AD ==.四边形ABCD 满足BC AD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由. (18)(本小题满分13分)PDAFE已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.(19)(本小题满分14分)已知中心在原点,焦点在x 轴上的椭圆C 过点2,离心率为2,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)求EM FN ⋅的取值范围.(20)(本小题满分13分)设1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4三、解答题:(15)(本小题满分13分) 解:(Ⅰ)1sin cos 22x x ωω=+ sin()6x ωπ=+. …………………………………………4分 因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+.由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+. 所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次试验中,卡片上的数字为正数,则 21()42P A ==. 答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分 (Ⅱ)设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是12. 所以0041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分 (17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC .因为BC AD ,所以EF AD . 而EF ⊄平面PAD ,AD ⊂平面PAD ,所以EF 平面PAD . ……………………………………………………4分 (Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD 平面PAC AC =,且PA AC ⊥, 所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥. 又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=- .设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉== ,所以异面直线BF 与CD .…………………………………9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC=-=-.由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ =-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩ 令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1),令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e e a a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点, 需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增; 且48414(e )20,(2)22ln 20e ef f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点.(ⅱ)当02a <<时,函数()f x 在(,1)2a 上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2ax ∈时,总有()0f x >.因为22e12a aa +-<<+,所以22222222(e)e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,21314a b c ca ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =.所以椭圆C 的方程为2214x y +=. ………………………………………………4分(Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x轴上方,易得(1,(1,22E F -,(3,22M N -,所以1EM FN ⋅= . …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意. 由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++. 直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---,令3x =,则1212(3,),(3,)22y yM N x x --. 所以1111(3)(3,)2y x EM x x -=-- ,2222(3)(3,)2y x FN x x -=-- . ……………………10分 所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅-- 121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++22221653()(1)414k k k k +-=⋅++22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈ .综上所述,EM FN ⋅ 的取值范围是5[1,)4. ……………………………………14分(20)(本小题满分13分) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2, 30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤.11 对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分 (Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分。

相关文档
最新文档