江苏省苏州市2016-2017学年高一第一学期期末考试数学试卷
江苏省苏州市2017-2018学年高一上学期期末数学试卷+Word版含解析
苏州市2018年学业质量阳光指标调研卷高一数学 2018.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.........1. 已知集合,则=______.【答案】【解析】,填.2. 函数的定义域是______.【答案】【解析】由题设有,解得,故函数的定义域为,填.3. 若,则的值等于______.【答案】【解析】,填.4. 已知角的终边经过点,则的值等于______.【答案】【解析】,所以,,故,填.5. 已知向量,,,则的值为______.【答案】【解析】,所以,所以,故,填.6. 已知函数则的值为______.【答案】【解析】,所以,填2.............【答案】【解析】扇形的半径为,故面积为(平方米),填.8. 已知函数则函数的零点个数为______.【答案】【解析】的零点即为的解.当时,令,解得,符合;当,令,解得,符合,故的零点个数为2.9. 已知函数在区间上的最大值等于8,则函数的值域为______.【答案】【解析】二次函数的对称轴为,故,所以且,对称轴为,故所求值域为,填.10. 已知函数是定义在R上的偶函数,则实数的值等于____.【答案】11. 如图,在梯形ABCD中,,P为线段CD上一点,且,E为BC的中点,若,则的值为______.【答案】【解析】,整理得到,又,所以,也就是,,填.12. 已知,则的值等于______.【答案】【解析】令,则,所以,因为,所以故,填.点睛:三角变换中,对于较为复杂的角,可用换元法去处理角与角的关系.13. 将函数的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,若函数在区间上有且仅有一个零点,则的取值范围为____.【答案】【解析】由题设,令,解得,取,分别得到,它们是函数在轴右侧的第一个零点和第二个零点,所以,故,故填.点睛:因为,所以该函数的图像必过定点且在轴的右侧的第一个对称中心的横坐标在内,第二个对称中心的横坐标不在中,从而得到.14. 已知为非零实数,,且同时满足:①,② ,则的值等于______.【答案】【解析】由题设有,,所以,解得或者.而,故,所以,所以,填.点睛:题设中有3个变量,两个等式,注意到两个方程都与相关,故把看成一个整体,把代入另一个方程就能构建关于的方程,解出就能得到的值,注意只有一个解.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 已知全集,集合.(1)若,求和;(2)若,求实数m的取值范围;(3)若,求实数m的取值范围.【答案】(1),;(2);(3)或.【解析】试题分析:(1)当时,求出,,借助数轴可求得,.(2)依据集合的包含关系,得到区间端点的大小关系为,解得.(3)依据交集为空集,得到区间的端点的大小关系为或,也即是或.解析:(1)当时,,由得,,所以,;.(2)因为,则,解得.(3)因为因为或,所以或.16. 已知函数的图象过点.(1)判断函数的奇偶性,并说明理由;(2)若,求实数的取值范围.【答案】(1)是奇函数,理由见解析;(2).【解析】试题分析:(1)因为的图像过,代入后得到,这样可化简为,依据奇函数的定义可判断其为奇函数.(2)不等式可化简为,从而不等式的解为.解析:(1)因为的图象过点,所以,解得,所以的定义域为.因为,所以是奇函数.(2)因为,所以,所以,所以,所以,解得.17. 如图,在四边形中,.(1)若△为等边三角形,且,是的中点,求;(2)若,,,求.【答案】(1)11;(2).【解析】试题分析:(1)由题设可以得到,故就是一组基底,通过线性运算可以得到,而,故可以转化基底向量之间的数量积计算.另一方面,因为有等边三角形,图形较为规则,故可以建立直角坐标系来计算数量积.(2)要计算,关键在于计算,可把已知条件变形为,再利用可得,最后利用计算.解析:(1)法一:因为△为等边三角形,且所以.又所以,因为是中点,所以.又,所以.法二:如图,以为原点,所在直线为轴,建立平面直角坐标系,则,因为△为等边△,且所以. 又所以,所以因为是中点,所以 所以,所以. (2)因为所以,因为所以所以又所以.所以.所以.18. 某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形的半径为200米,圆心角,点在上,点在上,点在弧上,设.(1)若矩形是正方形,求的值;(2)为方便市民观赏绿地景观,从点处向修建两条观赏通道和(宽度不计),使,其中PT 依PN 而建,为让市民有更多时间观赏,希望最长,试问:此时点应在何处?说明你的理由.【答案】(1);(2)答案见解析.【解析】试题分析:(1)因为四边形是扇形的内接正方形,所以,注意到,代入前者就可以求出.(2)由题设可由,,利用两角差的正弦和辅助角公式把化成的形式,从而求出的最大值.解析:(1)在中,,,在中,,所以,因为矩形是正方形,,所以,所以,所以.(2)因为所以,,.所以, 即时,最大,此时是的中点.答:(1)矩形是正方形时,;(2)当是的中点时,最大.19. 已知,函数.(1)求在区间上的最大值和最小值;(2)若,,求的值;(3)若函数在区间上是单调递增函数,求正数的取值范围.【答案】(1);(2);(3).【解析】试题分析:(1)利用数量积的计算得到,再利用二倍角公式和辅助角公式得到,从而可求在上的最值.(2)等价于,把变形为,利用两角差的余弦可以得到.(3)先求出单调增区间为,因此存在,使得,从而,根据不等式的形式和可得,因此.解析:(1),因为,所以,所以,所以.(2)因为,所以,所以,因为,所以,所以,所以.(3),令得,因为函数在上是单调递增函数,所以存在,使得,所以有即,因为所以又因为,所以, 所以从而有,所以,所以(另解:由,得.因为,所以,所以或,解得或.又,所以)点睛:对于函数,如果它在区间上单调,那么基本的处理方法是先求出单调区间的一般形式,利用是单调区间的子集得到满足的不等式组,利用和不等组有解确定整数的取值即可.20. 已知函数.(1)当时,函数恰有两个不同的零点,求实数的值;(2)当时,① 若对于任意,恒有,求的取值范围;② 若,求函数在区间上的最大值.【答案】(1);(2)①.;②.【解析】试题分析:(1)当时,考虑的解,化简后得到或者,它们共有两个不同的零点,所以必有解,从而.(2)在上恒成立等价于在上恒成立,因此考虑在上的最小值和在上的最大值即可得到的取值范围.(3)可化为,则当或时,在上递增;当时,在上单调递增,在上单调递减,两类情形都可以求得函数的最大值.当时,在上单调递增,在上单调递减,在上单调递增,因此,比较的大小即可得到的表达式.解析:(1)当时,,由解得或,由解得或.因为恰有两个不同的零点且,所以,或,所以.(2)当时,,①因为对于任意,恒有,即,即,因为时,,所以,即恒有令,当时,,,所以,所以,所以.②当时,,这时在上单调递增,此时;当时,,在上单调递增,在上单调递减,在上单调递增,所以,,而,当时,;当时,;当时,,这时在上单调递增,在上单调递减,此时;当时,,在上单调递增,此时;综上所述,时,点睛:(1)若对任意的恒成立,则有对任意的恒成立.(2)对于含有绝对值符号的函数,我们可以考虑先去掉绝对值符号,把它转化分段函数且不同范围上的解析式是熟悉的形式(如二次函数等),然后依据对称轴和分段点的大小关系分类讨论即可,最后再根据单调性的变化进一步细分,从而完成问题的讨论.- 11 -。
江苏省苏州市2017-2018学年高一第一学期期末试卷(精品Word版,含答案解析)
苏州市2018年学业质量阳光指标调研卷高一数学2018.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.........1.已知集合,则=______.【答案】【解析】,填.2.函数的定义域是______.【答案】【解析】由题设有,解得,故函数的定义域为,填.3.若,则的值等于______.【答案】【解析】,填.4.已知角的终边经过点,则的值等于______.【答案】【解析】,所以,,故,填.5.已知向量,,,则的值为______.【答案】8【解析】,所以,所以,故,填.6.已知函数则的值为______.【答案】【解析】,所以,填2.7.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.【答案】120【解析】扇形的半径为,故面积为(平方米),填.8.已知函数则函数的零点个数为______.【答案】【解析】的零点即为的解.当时,令,解得,符合;当,令,解得,符合,故的零点个数为2.9.已知函数在区间上的最大值等于8,则函数的值域为______.【答案】【解析】二次函数的对称轴为,故,所以且,对称轴为,故所求值域为,填.10.已知函数是定义在R上的偶函数,则实数的值等于____.【答案】-1【解析】因为为偶函数,故,所以,整理得到,即,又当时,有,,故,为偶函数,故填.11.如图,在梯形ABCD中,,P为线段CD上一点,且,E为BC的中点,若,则的值为______.【答案】【解析】,整理得到,又,所以,也就是,,填.12.已知,则的值等于______.【答案】【解析】令,则,所以,因为,所以故,填.点睛:三角变换中,对于较为复杂的角,可用换元法去处理角与角的关系.13.将函数的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,若函数在区间上有且仅有一个零点,则的取值范围为____.【答案】.【解析】由题设,令,解得,取,分别得到,它们是函数在轴右侧的第一个零点和第二个零点,所以,故,故填.点睛:因为,所以该函数的图像必过定点且在轴的右侧的第一个对称中心的横坐标在内,第二个对称中心的横坐标不在中,从而得到.14.已知为非零实数,,且同时满足:①,②,则的值等于______.【答案】【解析】由题设有,,所以,解得或者.而,故,所以,所以,填.点睛:题设中有3个变量,两个等式,注意到两个方程都与相关,故把看成一个整体,把代入另一个方程就能构建关于的方程,解出就能得到的值,注意只有一个解.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知全集,集合.(1)若,求C U B和;(2)若,求实数m的取值范围;(3)若,求实数m的取值范围.【答案】(1) ,;(2) ;(3) 或.【解析】试题分析:(1)当时,求出,,借助数轴可求得,.(2)依据集合的包含关系,得到区间端点的大小关系为,解得.(3)依据交集为空集,得到区间的端点的大小关系为或,也即是或.解析:(1)当时,,由得,,所以, ;.(2)因为,则,解得.(3)因为因为或,所以或.16.已知函数的图象过点.(1)判断函数的奇偶性,并说明理由;(2)若,求实数的取值范围.【答案】(1)为偶函数,理由见解析;(2)。
2017-2018学年苏州市高一上学期期末数学试卷
2017-2018学年苏州市高一上学期期末数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.已知集合A ={0,1,2},B ={0,2,4},则A ∩B =_________.2.函数y =lg (2−x )的定义域是_________.3.若α=240°,则sin (150°−α)的值等于_________.4.已知角α的终边经过点P (−2,4),则sin α−cos α的值等于_________.5.已知向量AB =(m ,5),AC =(4,n ),BC =(7,6),则m +n 的值为_________.6.已知函数 f (x )=⎩⎨⎧≥-<-2),1(log 2,2231x x x e x ,则f (f (2))的值为_________. 7.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为_________平方米.8.已知函数f (x )=⎩⎨⎧>≤-11232x xx x ,则函数g (x )=f (x )−2的零点个数为_________. 9.已知函数f (x )=x 2+ax +2(a >0)在区间[0,2]上的最大值等于8,则函数y =f (x )(x ∈[−2,1])的值域为_________.10.已知函数f (x )=x 2+2X −m •2−X 是定义在R 上的偶函数,则实数m 的值等于_________.11.如图,在梯形ABCD 中,=2AB ,P 为线段CD 上一点,且=3,E 为BC 的中点,若=λ1AB +λ2(λ1,λ2∈R ),则λ1+λ2的值为_________. 12.已知tan (α−4π)=2,则sin (2α−4π)的值等于_________. 13.将函数y =sinx 的图象向左平移3π个单位长度,再将图象上每个点的横坐标变为原来的ω1(ω>0)倍(纵坐标不变),得到函数y =f (x )的图象,若函数y =f (x )在区间(0,2π)上有且仅有一个零点,则ω的取值范围为_________. 14.已知x ,y 为非零实数,θ∈(4π,2π),且同时满足:①θsin y =θcos x ,②2210y x +=xy3,则cos θ的值等于_________. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知全集U =R ,集合A ={x|x 2−4x ≤0},B ={x|m ≤x ≤m +2}.(1)若m =3,求∁U B 和A ∪B ;(2)若B ⊆A ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.16.已知函数f (x )=a +141 x 的图象过点(1,−103). (1)判断函数f (x )的奇偶性,并说明理由;(2)若−61≤f(x)≤0,求实数x 的取值范围.17.如图,在四边形ABCD 中,AD =4,AB =2.(1)若△ABC 为等边三角形,且AD ∥BC ,E 是CD 的中点,求•;(2)若AC =AB ,cos ∠CAB =53,•=54,求||.18.某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB 的半径为200米,圆心角∠AOB =60°,点Q 在OA 上,点M ,N 在OB 上,点P 在弧AB 上,设∠POB =θ.(1)若矩形MNPQ 是正方形,求tan θ的值;(2)为方便市民观赏绿地景观,从P 点处向OA ,OB 修建两条观赏通道PS 和PT (宽度不计),使PS ⊥OA ,PT ⊥OB ,其中PT 依PN 而建,为让市民有更多时间观赏,希望PS +PT 最长,试问:此时点P 应在何处?说明你的理由.19.已知=(2cosx ,1),=(3sinx +cosx ,−1),函数f (x )=•.(1)求f (x )在区间[0,4π]上的最大值和最小值; (2)若f (x 0)=56,x 0∈[4π,2π],求cos2x 0的值; (3)若函数y =f (ωx )在区间(3π,32π)上是单调递增函数,求正数ω的取值范围.20.已知函数f (x )=x|x −a|+bx (a ,b ∈R ).(1)当b =−1时,函数f (x )恰有两个不同的零点,求实数a 的值;(2)当b =1时,①若对于任意x ∈[1,3],恒有xx f )(≤21 x ,求a 的取值范围; ②若a >0,求函数f (x )在区间[0,2]上的最大值g (a ).。
2017-2018学年江苏省苏州市高一(上)期末数学试卷及参考答案与解析
,2017-2018学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={0,2,4},则A∩B=.2.(5分)函数y=lg(2﹣x)的定义域是.3.(5分)若α=240°,则sin(150°﹣α)的值等于.4.(5分)已知角α的终边经过点P(﹣2,4),则sinα﹣cosα的值等于.5.(5分)已知向量=(m,5),=(4,n),=(7,6),则m+n的值为.6.(5分)已知函数f(x)=,则f(f(2))的值为.7.(5分)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为平方米.8.(5分)已知函数f(x)=,则函数g(x)=f(x)﹣2的零点个数为.9.(5分)已知函数f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值等于8,则函数y =f(x)(x∈[﹣2,1])的值域为.10.(5分)已知函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,则实数m的值等于.11.(5分)如图,在梯形ABCD中,=2,P为线段CD上一点,且=3,E为BC的中点,若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为.12.(5分)已知tan()=2,则sin(2)的值等于.13.(5分)将函数y=sinx的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,则ω的取值范围为.14.(5分)已知x,y为非零实数,θ∈(),且同时满足:①=,②=,则cosθ的值等于.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U=R,集合A={x|x2﹣4x≤0},B={x|m≤x≤m+2}.(1)若m=3,求∁U B和A∪B;(2)若B⊆A,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.16.(14分)已知函数f(x)=a+的图象过点(1,).(1)判断函数f(x)的奇偶性,并说明理由;(2)若,求实数x的取值范围.17.(14分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求;(2)若AC=AB,cos,=,求||.18.(16分)某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60°,点Q在OA上,点M,N在OB上,点P在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⊥OA,PT⊥OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT最长,试问:此时点P应在何处?说明你的理由.19.(16分)已知=(2cosx,1),=(sinx+cosx,﹣1),函数f(x)=.(1)求f(x)在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[],求cos2x0的值;(3)若函数y=f(ωx)在区间()上是单调递增函数,求正数ω的取值范围.20.(16分)已知函数f(x)=x|x﹣a|+bx(a,b∈R).(1)当b=﹣1时,函数f(x)恰有两个不同的零点,求实数a的值;(2)当b=1时,①若对于任意x∈[1,3],恒有,求a的取值范围;②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).,2017-2018学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={0,2,4},则A∩B={0,2} .【解答】解:∵集合A={0,1,2},B={0,2,4},∴A∩B={0,2}.故答案为:{0,2}.2.(5分)函数y=lg(2﹣x)的定义域是(﹣∞,2).【解答】解:由2﹣x>0,得x<2.∴函数y=lg(2﹣x)的定义域是(﹣∞,2).故答案为:(﹣∞,2).3.(5分)若α=240°,则sin(150°﹣α)的值等于﹣1.【解答】解:∵α=240°,则sin(150°﹣α)=sin(﹣90°)=﹣sin90°=﹣1,故答案为:﹣1.4.(5分)已知角α的终边经过点P(﹣2,4),则sinα﹣cosα的值等于.【解答】解:∵角α的终边经过点P(﹣2,4),∴x=﹣2,y=4,r=|OP|=2,∴sinα==,cosα==﹣,则sinα﹣cosα=,故答案为:.5.(5分)已知向量=(m,5),=(4,n),=(7,6),则m+n的值为8.【解答】解:∵向量=(m,5),=(4,n),=(7,6),∴,即(7,6)=(4﹣m,n﹣5),∴,解得m=﹣3,n=11,∴m+n=8.故答案为:8.6.(5分)已知函数f(x)=,则f(f(2))的值为2.【解答】解:∵函数f(x)=,∴f(2)==1,f(f(2))=f(1)=2e1﹣1=2.故答案为:2.7.(5分)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为120平方米.【解答】解:由题意可得:弧长l=20,半径r=12,扇形面积S=lr=×20×12=120(平方米),故答案为:120.8.(5分)已知函数f(x)=,则函数g(x)=f(x)﹣2的零点个数为2.【解答】解:根据题意,函数f(x)=,g(x)=f(x)﹣2=0,即f(x)=2,当x≤1时,f(x)=3﹣2x=2,解可得x=,即是函数g(x)的1个零点;当x>1时,f(x)=x2=2,解可得x=或﹣(舍),即是函数g(x)的1个零点;综合可得:函数g(x)共有2个零点,即和;故答案为:2.9.(5分)已知函数f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值等于8,则函数y =f(x)(x∈[﹣2,1])的值域为[,4] .【解答】解:∵数f(x)=x2+ax+2(a>0)的开口向上,∴f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值为max{f(0,f(2)},∵f(0)=2,f(2)=6+2a,且f(x)区间[0,2]上的最大值等于8,∴f(2)=6+2a=8,解得a=1,∴f(x)=x2+x+2=(x+)2+,当x=﹣时,f(x)有最小值,最小值为,当x=﹣2时,f(x)有最大值,最小值为4,∴函数y=f(x)(x∈[﹣2,1])的值域为[,4],故答案为:[[,4].10.(5分)已知函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,则实数m的值等于﹣1.【解答】解:函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,可得f(﹣x)=f(x),即为x2+2﹣x﹣m•2x=x2+2x﹣m•2﹣x,即有(m+1)(2x﹣2﹣x)=0,由x∈R,可得m+1=0,即m=﹣1,故答案为:﹣1.11.(5分)如图,在梯形ABCD中,=2,P为线段CD上一点,且=3,E为BC的中点,若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为.【解答】解:===﹣.∴,λ1+λ2=.故答案为:.12.(5分)已知tan()=2,则sin(2)的值等于.【解答】解:由tan()=2,得,即,解得tanα=﹣3.∴sin(2)=sin2αcos cos2αsin====.故答案为:.13.(5分)将函数y=sinx的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,则ω的取值范围为(,] .【解答】解:将函数y=sinx的图象向左平移个单位长度,可得y=sin(x+)的图象;再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)=sin(ωx+)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,∵ω•0+=,∴ω•+∈( π,2π],∴ω∈(,],故答案为:(,].14.(5分)已知x,y为非零实数,θ∈(),且同时满足:①=,②=,则cosθ的值等于.【解答】解:由=,得,由=,得,即,则,即,解得tanθ=3或tanθ=.∵θ∈(),∴tanθ=3.联立,解得cosθ=.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U=R,集合A={x|x2﹣4x≤0},B={x|m≤x≤m+2}.(1)若m=3,求∁U B和A∪B;(2)若B⊆A,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.【解答】解:(1)当m=3时,B={x|3≤x≤5},集合A={x|x2﹣4x≤0}={x|0≤x≤4},…(2分)∴C U B={x|x<3或x>5},…(4分)A∪B={x|0≤x≤5}.…(6分)(2)∵集合A{x|0≤x≤4},B={x|m≤x≤m+2},B⊆A,∴,…(8分)解得0≤m≤2.∴实数m的取值范围[0,2].…(10分)(3)∵集合A={x|0≤x≤4},B={x|m≤x≤m+2}.A∩B=∅,∴m+2<0或m>4,…(12分)解得m<﹣2或m>4.∴实数m的取值范围(﹣∞,﹣2)∪(4,+∞).…(14分) 16.(14分)已知函数f(x)=a+的图象过点(1,).(1)判断函数f(x)的奇偶性,并说明理由;(2)若,求实数x的取值范围.【解答】解:(1)因为f(x)的图象过点(1,),所以a+=﹣,解得a=﹣,所以f(x)=﹣=,f(x)的定义域为R.因为f(﹣x)===﹣f(x),所以f(x)是奇函数.(2)因为,所以﹣≤﹣≤0,即≤≤,可得2≤4x+1≤3,即1≤4x≤2,解得0≤x≤.17.(14分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求;(2)若AC=AB,cos,=,求||.【解答】解:(1)因为△ABC为等边三角形,且AD∥BC,所以∠DAB=120°.又AD=2AB,所以AD=2BC,因为E是CD的中点,所以:=,=.又,所以,=.=,=11.(2)因为AB=AC,AB=2,所以:AC=2.因为:,所以:.所以:.又=4.所以:.所以:=.故:.18.(16分)某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60°,点Q在OA上,点M,N在OB上,点P在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⊥OA,PT⊥OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT最长,试问:此时点P应在何处?说明你的理由.【解答】(本题满分为14分)解:(1)在Rt△PON中,PN=200sinθ,ON=200cosθ,在Rt△OQM中,QM=PN=200sinθ,…(2分)OM===,所以MN=0N﹣OM=200cosθ﹣,…(4分)因为矩形MNPQ是正方形,∴MN=PN,所以200cosθ﹣=200sinθ,…(6分)所以(200+)sinθ=200cosθ,所以tanθ===. …(8分)(2)因为∠POM=θ,所以∠POQ=60°﹣θ,∴PS+PT=200sinθ+200sin(60°﹣θ)=200(sinθ+cosθsinθ) …(10分)=200(sinθ+cosθ)=200sin(θ+60°),0°<θ<60°. …(12分)所以θ+60°=90°,即θ=30°时,PS+PT最大,此时P是的中点. …(14分)19.(16分)已知=(2cosx,1),=(sinx+cosx,﹣1),函数f(x)=.(1)求f(x)在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[],求cos2x0的值;(3)若函数y=f(ωx)在区间()上是单调递增函数,求正数ω的取值范围.【解答】解:(1)f(x)==2cosx(sinx+cosx)﹣1=sin2x+cos2x=2sin(2x+)因为x∈[0,],所以≤2x+≤,所以≤2sin(2x+)≤1,所以f(x)max=2,f(x)min=1.(2)因为f(x0)=,所以2sin(2x0+)=,所以sin(2x0+)=,因为x0∈[],所以≤2x0+≤,所以cos(2x0+)=﹣=﹣,所以cos2x0=cos[(2x0+)﹣]=cos(2x0+)+sin(2x0+)=×(﹣)+×=.(3)f(ωx)=sin(2ωx+)令2kπ≤2ωx+≤2kπ+,k∈Z,得﹣≤x≤+,因为函数函数y=f(ωx)在区间()上是单调递增函数,所以存在k0∈Z,使得()⊆(﹣,+)所以有即,因为ω>0所以k0>﹣又因为﹣≤﹣,所以0<ω≤,所以k0,从而有﹣<k0≤,所以k0=0,所以0<ω≤.20.(16分)已知函数f(x)=x|x﹣a|+bx(a,b∈R).(1)当b=﹣1时,函数f(x)恰有两个不同的零点,求实数a的值;(2)当b=1时,①若对于任意x∈[1,3],恒有,求a的取值范围;②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).【解答】解:(1)当b=﹣1时,f(x)=x|x﹣a|﹣x=x(|x﹣a|﹣1),由f(x)=0,解得x=0或|x﹣a|=1,由|x﹣a|=1,解得x=a+1或x=a﹣1.∵f(x)恰有两个不同的零点且a+1≠a﹣1,∴a+1=0或a﹣1=0,得a=±1;(2)当b=1时,f(x)=x|x﹣a|+x,①∵对于任意x∈[1,3],恒有,即,即|x﹣a|,∵x∈[1,3]时,,∴,即恒有,令t=,当x∈[1,3]时,t∈[],x=t2﹣1.∴,∴,综上,a的取值范围是[0,];②=.当0<a≤1时,,,这时y=f(x)在[0,2]上单调递增,此时g(a)=f(2)=6﹣2a;当1<a<2时,0<<a<2,f=f(x)在[0,]上单调递增,在[,a]上单调递减,在[a,2]上单调递增,∴g(a)=max{f(),f(2)},,f(2)=6﹣2a,而,当1<a<时,g(a)=f(2)=6﹣2a;当≤a<2时,g(a)=f()=;当2≤a<3时,<2≤a,这时y=f(x)在[0,]上单调递增,在[,2]上单调递减,此时g(a)=f()=;当a≥3时,≥2,y=f(x)在[0,2]上单调递增,此时g(a)=f(2)=2a﹣2.综上所述,x∈[0,2]时,.。
江苏省苏州市-2017学年高一(上)期末数学试卷(解析版)
2016-2017学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14个小题,每小题5分,共计70分.1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B=.2.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=.3.若tanα=3,,则tan(α﹣β)等于.4.已知A(﹣3,4)、B(5,﹣2),则||=.5.函数y=e2x﹣1的零点是.6.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为.7.若函数f(x)=,则f(log23)=.8.函数的单调递增区间为.9.设是两个不共线向量,,,,若A、B、D 三点共线,则实数P的值是.10.若=﹣,则sin2α的值为.11.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.12.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为.13.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.14.函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.二、解答题:本大题共6小题,计90分.15.已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.16.已知,,,.(I)求tan2β的值;(II)求α的值.17.已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)19.如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.20.已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.2016-2017学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分.1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .【考点】交集及其运算.【分析】利用交集的性质求解.【解答】解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}.故答案为:{0,1}.2.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=2.【考点】函数的值.【分析】由题意得当x<0时,f(x)=﹣x+1,由此能求出f(﹣1).【解答】解:∵f(x)是偶函数,当x≥0时,f(x)=x+1,∴当x<0时,f(x)=﹣x+1,∴f(﹣1)=﹣(﹣1)+1=2.故答案为:2.3.若tanα=3,,则tan(α﹣β)等于.【考点】两角和与差的正切函数.【分析】由正切的差角公式tan(α﹣β)=解之即可.【解答】解:tan(α﹣β)===,故答案为.4.已知A(﹣3,4)、B(5,﹣2),则||=10.【考点】平面向量坐标表示的应用.【分析】由题意,已知A(﹣3,4)、B(5,﹣2),将此两点坐标代入向量求模的公式,计算即可得到||的值【解答】解:由题意A(﹣3,4)、B(5,﹣2),∴||===10故答案为105.函数y=e2x﹣1的零点是0.【考点】函数的零点.【分析】令y=0,求出x的值,即函的零点即可.【解答】解:令y=0,即e2x=1,解得:x=0,故答案为:0.6.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为y=sin(2x﹣).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sinx的图象上所有点向右平移个单位,得到y=sin[2(x﹣)],写出要求的结果.【解答】解:把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sin2x的图象上所有点向右平移个单位,得到y=sin[2(x﹣)]=sin(2x﹣)对图象,∴所求函数的解析式为:y=sin(2x﹣).故答案为:y=sin(2x﹣).7.若函数f(x)=,则f(log23)=9.【考点】函数的值.【分析】由log23>log22=1,得到f(log23)=,由此利用对数性质及运算法则能求出结果.【解答】解:∵函数f(x)=,log23>log22=1,∴f(log23)===9.故答案为:9.8.函数的单调递增区间为.【考点】复合三角函数的单调性.【分析】令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间.【解答】解:令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,k∈z,故函数的增区间为故答案为.9.设是两个不共线向量,,,,若A、B、D 三点共线,则实数P的值是﹣1.【考点】向量加减混合运算及其几何意义.【分析】要求三点共线问题,先求每两点对应的向量,然后再按两向量共线进行判断,本题知道,要根据和算出,再用向量共线的充要条件.【解答】解:∵,,∴,∵A、B、D三点共线,∴,∴2=2λ,p=﹣λ∴p=﹣1,故答案为:﹣1.10.若=﹣,则sin2α的值为﹣.【考点】两角和与差的正弦函数;二倍角的正弦;二倍角的余弦.【分析】由三角函数公式化简已知式子可得cosα﹣sinα=0或cosα+sinα=,平方可得答案.【解答】解:∵=﹣,∵2cos2α=sin(﹣α),∴2(cos2α﹣sin2α)=cosα﹣sinα,∴cosα﹣sinα=0,或cosα+sinα=,平方可得1﹣sin2α=0,或1+sin2α=,∴sin2α=1,或sin2α=﹣,∵若sin2α=1,则cos2α=0,代入原式可知应舍去,故答案为:﹣.11.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(﹣∞,﹣]∪[,+∞).【考点】函数恒成立问题.【分析】问题转化为|x+t|≥|x|在[t,t+2]恒成立,去掉绝对值,得到关于t 的不等式,求出t的范围即可.【解答】解:f(x)=x2,x∈[t,t+2],不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,即|x+t|≥|x|在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,或x≤(1﹣)t在[t,t+2]恒成立,解得:t≥或t≤﹣,故答案为:(﹣∞,﹣]∪[,+∞).12.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为[0.).【考点】向量在几何中的应用.【分析】设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ即可.【解答】解:设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ∈[0,2)的范围为:[0,),故答案为[0,).13.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.【考点】三角形中的几何计算.【分析】根据图形判断直角三角形,利用直角三角形求解AE=GEcos2θ=lsinθcos2θ,由AE+BE=lsinθcos2θ+lsinθ=6,求解即可.【解答】解:由已知及对称性知,GF=BF=lcosθ,GE=BE=lsinθ,又∠GEA=∠GFB=2θ,∴AE=GEcos2θ=lsinθcos2θ,又由AE+BE=lsinθcos2θ+lsinθ=6得:l===.故答案为:.14.函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.【考点】函数奇偶性的性质.【分析】由f(0)=0可求c,根据f(﹣2)≤f(x)≤f(2),利用基本不等式,即可得出结论.【解答】解:∵函数是奇函数且定义域内有0∴f(0)=0解得c=0,故f(x)=.x>0,a>0,f(x)==≤(ax=时取等号)∵f(﹣2)≤f(x)≤f(2),∴2a=,∴a=.故答案为.二、解答题:本大题共6小题,计90分.15.已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.【分析】(Ⅰ)利用两个向量坐标形式的加减运算法则,进行运算.(Ⅱ)把两个向量的坐标直接代入两个向量的夹角公式进行运算.(Ⅲ)因为向量与互相垂直,所以,它们的数量积等于0,解方程求得k的值.【解答】解:(Ⅰ)=(1,2)﹣2(﹣3,1)=(1+6,2﹣2)=(7,0).(Ⅱ)=﹣.(Ⅲ)因为向量与互相垂直,所以,()•()=0,即因为=5,,所以,5﹣10k2=0,解得.16.已知,,,.(I)求tan2β的值;(II)求α的值.【考点】两角和与差的正切函数.【分析】(I)由已知利用同角三角函数基本关系式可求sinβ,tanβ,进而利用二倍角的正切函数公式即可求得tan2β.(II)由已知可求范围α+β∈(,),利用同角三角函数基本关系式可求cos (α+β)的值,进而利用两角差的余弦函数公式即可计算得解cosα的值,结合范围,可求α=.【解答】(本题满分为14分)解:(I)∵,,可得:sin=, (2)分∴tan==﹣2,…4分∴tan2β==…7分(II)∵,,∴α+β∈(,),又∵,∴cos(α+β)=﹣=﹣,…9分∴cosα=cos(α+β﹣β)=cos(α+β)cosβ+sin(α+β)sinβ=()×(﹣)+×()=,∵,∴α=.…14分17.已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.【考点】指、对数不等式的解法;函数解析式的求解及常用方法.【分析】(1)可令t=x+1,则x=t﹣1,代入可得f(t),即f(x)的解析式;再由对数的真数大于0,可得函数的定义域;(2)运用对数的运算性质和对数函数的单调性,可得不等式,解不等式可得解集;(3)f(x)在(﹣1,1)上为增函数.由单调性定义,分设值、作差、变形和定符号、下结论,注意运用对数函数的性质,即可得证.【解答】解:(1)f(x+1)=lg(2+x)﹣lg(﹣x),可令t=x+1,则x=t﹣1,可得f(t)=lg(1+t)﹣lg(1﹣t),即有f(x)=lg(1+x)﹣lg(1﹣x),由1+x>0且1﹣x>0,解得﹣1<x<1,则函数f(x)的定义域为(﹣1,1);(2)由f(x)<1即lg(1+x)﹣lg(1﹣x)<1,即为lg(1+x)<lg10(1﹣x),可得0<1+x<10(1﹣x),解得﹣1<x<,则不等式的解集为(﹣1,);(3)证明:f(x)在(﹣1,1)上为增函数.理由:设﹣1<m<n<1,则f(m)﹣f(n)=lg(1+m)﹣lg(1﹣m)﹣[lg(1+n)﹣lg(1﹣n)]=lg﹣lg=lg•=lg•,由于﹣1<m<n<1,可得1﹣m>1﹣n>0,1+n>1+m>0,可得0<<1,0<<1,则0<•<1,即有lg•<0,则f(m)﹣f(n)<0,即f(m)<f(n),故f(x)在(﹣1,1)上为增函数.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)【考点】函数模型的选择与应用;分段函数的应用.【分析】(1)根据当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,可求得一次订购量为550个时,每个零件的实际出厂价格恰好降为51元;(2)函数为分段函数,当0≤x≤100时,p为出厂单价;当100<x<550时,;当x≥550时,p=51,故可得结论;(3)根据工厂售出一个零件的利润=实际出厂单价﹣成本,求出利润函数,利用利润为6000元,可求得结论.【解答】解:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则(个)因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元.…(2 )当0≤x≤100时,p=60;…当100<x<550时,;…当x≥550时,p=51.…所以…(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则…当0<x≤100时,L≤2000;…当x≥500时,L≥6050;…当100<x<550时,.由,解得x=500.答:当销售商一次订购500个时,该厂获得的利润为6000元.…19.如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.【考点】向量在几何中的应用.【分析】(I)延长AD到A1使得AD=DA1,连接CA1,A1B,证明四边形ACA1B是平行四边形,即可证明:;(II)证明•(﹣)=(+)•(﹣)=•+•,即可得出:为常数,并求该常数;(III)确定•(+)=2x(﹣x),利用基本不等式,求的范围.【解答】(I)证明:延长AD到A1使得AD=DA1,连接CA1,A1B,∵D是BC的中点,∴四边形ACA1B是平行四边形,∴=+,∵;(II)证明:∵=+,∴•(﹣)=(+)•(﹣)=•+•,∵DE⊥BC,∴•=0,∵•=()=,∴•(﹣)=(III)解:△ABC中,||=2,||=1,cosA=,,∴||==,同理+=2,∴•(+)=•2=||•||,设||=x,则||=﹣x(0),∴•(+)=2x(﹣x)≤2=1,当且仅当x=时取等号,∴•(+)∈(0,1].20.已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.【考点】函数恒成立问题;根的存在性及根的个数判断.【分析】(1)对g(x)配方,求出对称轴x=a,讨论若1≤a≤3时,若a>3时,若a<1,由单调性可得最小值,解方程,即可得到所求a的值;(2)由题意可得(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,求出t的范围,求得右边函数的最小值即可得到k的范围;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,讨论t的范围和单调性,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k,由二次函数图象可得不等式组,解不等式可得k的范围.【解答】解:(1)g(x)=x2﹣2ax+1=(x﹣a)2+1﹣a2在区间[1,3]上的值域[0,4].若1≤a≤3时,g(x)的最小值为g(a)=1﹣a2,由1﹣a2=0,可得a=1(﹣1舍去),g(x)=(x﹣1)2满足在区间[1,3]上的值域[0,4];若a>3时,g(x)在[1,3]递减,g(x)的最小值为g(3),由g(3)=10﹣6a=0,解得a=(舍去);若a<1,则g(x)在[1,3]递增,g(x)的最小值为g(1),由g(1)=2﹣2a=0,解得a=1.综上可得,a=1;(2)由g(2x)﹣k•4x≥0即(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,由x≥1可得0<t≤,则k≤t2﹣2t+1,0<t≤,记h(t)=t2﹣2t+1,0<t≤,由单调递减,可得h(t)的最小值为(﹣1)2=,则k的取值范围是k≤;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,则t>0,由2x﹣1>﹣1,当x<0时,t=|2x﹣1|=1﹣2x,t∈(0,1]且递减,当0<x<1时,t=|2x﹣1|=2x﹣1,t∈(0,1)且递增,当x=1时,t=1.当x>1时,t=|2x﹣1|=2x﹣1,t∈(1,+∞)且递增,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k,则或,解得k>0或k无实数解,综上可得,k的取值范围是(0,+∞).2017年2月28日。
江苏省苏州市2016_2017高一下学期数学期末试卷含答案
2016~2017学年第二学期苏州市高一期末调研测试数 学2017.6一、填空题:本大题共14小题.每小题5分.共70分.不需要写出解答过程.请把答案直接填在答题卡相应位置上......... 1. 已知全集{0}U x x =>.{3}A x x =≥.则U A =ð .2. 若数据128,,,x x x ⋅⋅⋅的方差为3.则数据1282,2,,2x x x ⋅⋅⋅的方差为 .3.某高级中学共有1200名学生.现用分层抽样的方法从该校学生中抽取一个容量为60的样本.其中高一年级抽30人.高三年级抽15人. 则该校高二年级学生人数为 . 4.集合{1,2,3,4}A =.{1,2,3}B =.点P 的坐标为(),m n .m A ∈.n B ∈.则点P 在直线5x y +=上的概率为 .5. 已知3cos 5θ=-.,2θ⎛⎫∈ ⎪⎝⎭ππ.则cos 3θ⎛⎫-= ⎪⎝⎭π .6. 算法流程图如右图所示.则输出的结果是 . 7. 已知{}n a 为等差数列.1233a a a ++=-.4566a a a ++=.则8S = .(第6题图)区间表示为 .9.如图.为了探求曲线2y x =.2x =与x 轴围成的曲边三角形OAP 的面积.用随机模拟的方法向矩形OAPB 内随机投点1080次.现统计落在曲边三角形OAP 的次数360次.则可估算曲边三角形OAP 面积为 .10.ABC ∆中.3,4AB AC ==,若ABC ∆的面积为则BC 的长是 .11.若点(),x y 位于曲线y x =与1y =所围成的封闭区域内(含边界).则2x y -的最小值为 .12.已知,x y 是正实数.则223y x x yx y--+的最小值为 . 13. 如图.等腰梯形AMNB 内接于半圆O .直径4AB =. 2MN =.MN 的中点为C .则AM BC ⋅uuu r uu u r的值为 .14.已知等差数列{}n a 和等比数列{}n b 满足117a b +=. 224a b +=.335a b +=.442a b +=.则n n a b += .二、解答题:本大题共6小题.共90分.请在答题卡指定区域.......内作答.解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数2x y =(03x <<)的值域为A .函数[]lg ()(2)y x a x a =-+-- (其中0a >)的定义域为B .(1)当4a =时.求A B I ;(2)若A B ⊆.求正实数a 的取值范围.16.(本小题满分14分)已知向量a ()2cos x x =.b ()3cos ,2cos x x =-.设函数()f x =a ⋅b .(第13题图)(2)若0,2x ⎡⎤∈⎢⎥⎣⎦π.求()f x 的值域.17.(本小题满分14分)平面直角坐标系xOy 中.()2,4A .()1,2B -.,C D 为动点. (1)若()3,1C .求平行四边形ABCD 的两条对角线的长度;(2)若(,)C a b .且()3,1CD =u u u r.求AC BD ⋅uuu r uu u r 取得最小值时,a b 的值.18.(本小题满分16分)某生态公园的平面图呈长方形(如图).已知生态公园的长AB =8(km).宽AD =4(km).M .N 分别为长方形ABCD 边AD .DC 的中点.P .Q 为长方形ABCD 边AB .BC (不含端点)上的一点.现公园管理处拟修建观光车道P -Q -N -M -P .要求观光车道围成四边形(如图阴影部分)的面积为15(km 2).设BP =x (km).BQ =y (km).(1)试写出y 关于x 的函数关系式.并求出x 的取值范围;(2)若B 为公园入口.P .Q 为观光车站.观光车站P 位于线段AB 靠近入口B 的一侧.经测算.每天由B 入口至观光车站P.Q 乘坐观光车的游客数量相等.均为1万人.问如何确定观光车站P .Q 的位置.使所有游客步行距离之和最大.并求出最大值.19.(本小题满分16分)已知正项数列{}n a 满足11a =.()221110n n n n n a a a na ++++-=.数列{}n b 的前n 项和为n S 且PQCNMBD A(第18题图)(1)求{}n a 和{}n b 的通项; (2)令nn nb c a =. ①求{}n c 的前n 项和n T ;②是否存在正整数m 满足3m >.23,,m c c c 成等差数列?若存在.请求出m ;若不存在.请说明理由.20.(本小题满分16分)已知函数()()2f x x x a x a =-+∈R (1)当4a =时.解不等式()8f x ≥;(2)当[]0,4a ∈时.求()f x 在区间[]3,4上的最小值;(3)若存在[]0,4a ∈.使得关于x 的方程()()f x tf a =有3个不相等的实数根.求实数t 的取值范围.2016~2017学年苏州市高一期末调研测试数学参考答案 2017.61.()0,3 2.12 3.300 4.14 5.5 7.12 8.()2,0(2,)-+∞9.83103- 12.4313.1 14.()171n n --+- 二、解答题: 15.(本小题满分14分)解:(1){}|18A x x =<<. ……3分 当4a =时.{}{}2|224046B x x x x x =--<=-<<. ……5分{}|16A B x x ∴=<<. ……8分(2)0a >,{}{}()(2)02B x x a x a x a x a ∴=+--<=-<<+. ……10分1,28a A B a -⎧⊆∴⎨+⎩≥….解得6;a ≥ ……13分 当A B ⊆.实数a 的取值范围是[6,)+∞. ……14分16.(本小题满分14分)(1)2()6cos cos f x x b x a x ⋅==- ……2分1+cos2622xx =⨯……4分=3cos 223x x +=)36x p++. ……6分∴()f x 的最小正周期为22T ==ππ. ……8分 (2)0,2x ⎡⎤∈⎢⎥⎣⎦π.∴72666x +πππ剟. ……10分∴1-…cos(2)6x +π-?……12分∴()f x 值域为[3- ……14分17.(本小题满分14分) (1)()2,4A .()3,1C .∴()1,3AC =-.10AC =……2分又ABCD 是平行四边形∴AB CD =.()3,2AB =--. 设(),D x y .又()3,1DC x y =--.所以63x y =⎧⎨=⎩即()6,3D =. ……5分 ()7,1BD =.故52BD =. ……7分()2222545452541244AC BD a a b b a b ⎛⎫⋅=++--=++--≥- ⎪⎝⎭. ……12分当且仅当51,2a b =-=时AC BD ⋅的最小值为454-. ……14分18.(本小题满分16分) 解:(1)长方形ABCD 中.AB =8.AD =4.M 、N 分别为AD 、DC 的中点.且BP =x .BQ =y .∴AP =8-x .CQ =4-y . ……1分 则4CMN S ∆= .2(4)CNQ S y ∆=- .8AMP S x ∆=- .12BPQ S xy ∆=. ∴PQMN ABCD =()CMN CNQ AMP BPQ S S S S S S ∆∆∆∆-+++四边形长方形.=1122152x y xy ++-=. ……4分 ∴2(3)4x y x -=-. ……5分又0804x y <<⎧⎨<<⎩.解得:03x <<或58x <<. …… 8分 (2)设游客步行距离之和为l (万千米). 则l x y =+=2(3)4x x x -+-=26[(4)]4x x--+-. ……11分 观光车站P 位于线段AB 靠近入口B 的一侧.∴03x <<.即144x <-<.由基本不等式:2(4)4x x-+-≥4x =.等号成立). ……13分∴当4x =-2y =.max 6l =-. ……15分答:应选定P 离入口B 为4km )处.选定Q 离入口B 为2(km )处可使游客步行距离之和最大.最大值为6- ……16分 19.(本小题满分16分)解析:(1)由()221110n n n n n a a a na ++++-=可以得到()()1110n n n n n a na a a +++-+=⎡⎤⎣⎦.10n n a a ++>.∴()110n n n a na ++-=.∴()11n n n a na ++=. ……2分由1n n S a =-可以得到111b b =-也就是112b =且111n n S b ++=-.因此11n n n b b b ++=-.即为112n n b b +=.{}n b 为等比数列.12nn b ⎛⎫= ⎪⎝⎭. ……6分(2)①12n n n n b c n a ⎛⎫== ⎪⎝⎭.211112222nn T n ⎛⎫⎛⎫=⨯+⨯++ ⎪ ⎪⎝⎭⎝⎭……8分()211111112222nn n T n n +⎛⎫⎛⎫⎛⎫=⨯++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111122222nn n T n +⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以111222n nn T n -⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭. ……11分②由题设有313322284m c c =+=⨯=. 所以14m c =. ……12分 当3k ≥时.()1111122kk k k c c k k --⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭()111122k k k k -⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭()122kk ⎛⎫=- ⎪⎝⎭.10k k c c --<.所以当3k ≥时.{}k c 为减数列. ……15分又414c =.所以4m =. 所以存在正整数4m =此时234,,c c c 成等差数列 ……16分 20.(本小题满分16分)(1)当4a =时.不等式可化为428x x x -+≥.若4x ≥.则2280x x --≥.∴4x ≥; ……2分 若4x <.则2680x x -+….∴24x <…. ……4分 综上.不等式解集为[)2,+∞. ……5分(2)2222222222(2)()(2)2222a a x x ax a xx a f x x a xx a a a x x a⎧--⎛⎫⎛⎫--⎪ ⎪ ⎪⎧--⎪⎝⎭⎝⎭==⎨⎨-++<++⎩⎛⎫⎛⎫⎪--+< ⎪ ⎪⎪⎝⎭⎝⎭⎩≥≥ ……7分∵[]0,4a ∈. ∴当[]0,2a ∈时.22022a a a ----=<.22022a aa +--=≥∴()f x 在在R ∴()f x 3a ……9分当(2,4a ∈a -∴f .. 若34a <….则()f x 在区间[]3,4上的最小值为()2f a a =. ……12分(3)由(2)知当[]0,2a ∈时.如图1.关于x 的方程()()f x tf a =不可能有3个不相等的实数根. ……13分当(]2,4a ∈时.要存在a .使得关于x 的方程()()f x tf a =有3个不相等的实数根.则2()()2a f a tf a f +⎛⎫<< ⎪⎝⎭有解.∴()max2()2124()a f t a f a +⎛⎫⎪<<<⎪ ⎪⎝⎭… ……14分 2()142(4)()8a f a f a a+=++.且函数4y a a =+在区间(]2,4上为增函数(不证明单调性扣1分)∴2()92()8a f f a +⎛⎫⎪= ⎪ ⎪.∴918t <<. ……16分x。
2016-2017年江苏省苏州市高一上学期数学期中试卷和解析
2016-2017学年江苏省苏州市高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={1,2,3,4},B={0,1,3,5},则A∩B等于()A.{1,3}B.{2,4}C.{0,5}D.{0,1,2,3,4,5}2.(5分)若函数f(x)=x+log x,则f(27)等于()A.2 B.1 C.﹣1 D.03.(5分)下列函数中,在(0,+∞)上单调递增的是()A.y= B.y=1﹣x2C.y=()x D.y=lgx4.(5分)函数f(x)=x2﹣的零点位于区间()A.(1,)B.(,)C.(,)D.(,2)5.(5分)列车从A地出发直达500km外的B地,途中要经过离A地300km的C地,假设列车匀速前进,5h后从A地到达B地,则列车与C地距离y(单位:km)与行驶时间t(单位:h)的函数图象为()A.B. C.D.6.(5分)若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则e f (﹣2)的值为()A.B.C.D.7.(5分)已知函数f(x)=4x2+kx﹣1在区间[1,2]上是单调函数,则实数k的取值范围是()A.(﹣∞,﹣16]∪[﹣8,+∞)B.[﹣16,﹣8]C.(﹣∞,﹣8)∪[﹣4,+∞)D.[﹣8,﹣4]8.(5分)已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁R B)=∅,则实数a的取值范围是()A.(1,+∞)B.(0,+∞)C.(﹣∞,1)D.(﹣∞,0)9.(5分)已知a=2,b=log 3,c=log4,则()A.b<a<c B.c<a<b C.c<b<a D.b<c<a10.(5分)若函数y=a x在区间[0,2]上的最大值和最小值的和为5,则函数y=log a x 在区间[,2]上的最大值和最小值之差是()A.1 B.3 C.4 D.511.(5分)已知alog23=1,4b=3,则ab等于()A.0 B.C.D.112.(5分)已知函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),f(0)>0,且f (m)=f(n)=0(m≠n),则log 4m﹣log n的值是()A.小于1 B.等于1C.大于1 D.由b的符号确定二、填空题(共4小题,每小题5分,满分20分)13.(5分)设集合A={x|x2﹣2x=0},B={0,1},则集合A∪B的子集的个数为.14.(5分)函数f(x)=,则f(f(﹣3))=.15.(5分)已知幂函数y=f(x)的图象过点(2,),若f(m)=2,则m=.16.(5分)已知函数f(x)=满足f(0)=1,且f(0)+2f(﹣1)=0,那么函数g(x)=f(x)+x有个零点.三、解答题(共6小题,满分70分)17.(10分)(1)计算:﹣()0+0.25×()﹣4;(2)已知x+x=3,求的值.18.(12分)已知集合A={x|﹣4<x<1},B={x|()x≥2}.(1)求A∩B,A∪B;(2)设函数f(x)=的定义域为C,求(∁R A)∩C.19.(12分)已知函数y=f(x)满足f(x﹣1)=2x+3a,且f(a)=7.(1)求函数f(x)的解析式;(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.20.(12分)已知函数f(x)=x2+.(1)求证:f(x)是偶函数;(2)判断函数f(x)在(0,)和(,+∞)上的单调性并用定义法证明.21.(12分)设a>1,函数f(x)=log2(x2+2x+a),x∈[﹣3,3].(1)求函数f(x)的单调区间;(2)若f(x)的最大值为5,求f(x)的最小值.22.(12分)已知函数f(x)=.(1)求函数f(x)的零点;(2)若实数t满足f(log2t)+f(log2)<2f(2),求f(t)的取值范围.2016-2017学年江苏省苏州市高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={1,2,3,4},B={0,1,3,5},则A∩B等于()A.{1,3}B.{2,4}C.{0,5}D.{0,1,2,3,4,5}【解答】解:∵A={1,2,3,4},B={0,1,3,5},∴A∩B={1,3},故选:A.2.(5分)若函数f(x)=x+log x,则f(27)等于()A.2 B.1 C.﹣1 D.0【解答】解:函数f(x)=x+log x,则f(27)=27+log27=3﹣3=0,故选:D.3.(5分)下列函数中,在(0,+∞)上单调递增的是()A.y= B.y=1﹣x2C.y=()x D.y=lgx【解答】解:由题意可知,选项A,B,C三个函数都是在(0,+∞)上单调递减,只有y=lgx在(0,+∞)上单调递增.故选:D.4.(5分)函数f(x)=x2﹣的零点位于区间()A.(1,)B.(,)C.(,)D.(,2)【解答】解:函数f(x)=x2﹣,可得f(1)=﹣1<0,f()=﹣>0,f()==﹣<0.f()•f()<0.函数f(x)=x2﹣的零点位于区间:(,).故选:B.5.(5分)列车从A地出发直达500km外的B地,途中要经过离A地300km的C地,假设列车匀速前进,5h后从A地到达B地,则列车与C地距离y(单位:km)与行驶时间t(单位:h)的函数图象为()A.B. C.D.【解答】解:列车的运行速度为km/h,∴列车到达C地的时间为h,故当t=3时,y=0.故选:C.6.(5分)若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则e f (﹣2)的值为()A.B.C.D.【解答】解:由题意可得e f(﹣2)=e﹣f(2)=e﹣ln2==,故选:B.7.(5分)已知函数f(x)=4x2+kx﹣1在区间[1,2]上是单调函数,则实数k的取值范围是()A.(﹣∞,﹣16]∪[﹣8,+∞)B.[﹣16,﹣8]C.(﹣∞,﹣8)∪[﹣4,+∞)D.[﹣8,﹣4]【解答】解:函数f(x)=4x2+kx﹣1的对称轴为x=﹣,若f(x)在区间[1,2]上是单调增函数,可得﹣≤1,解得k≥﹣8;若f(x)在区间[1,2]上是单调减函数,可得﹣≥2,解得k≤﹣16.综上可得k的范围是[﹣8,+∞)∪[﹣∞,﹣16].故选:A.8.(5分)已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁R B)=∅,则实数a 的取值范围是()A.(1,+∞)B.(0,+∞)C.(﹣∞,1)D.(﹣∞,0)【解答】解:由题意得,B={x|x>2a+1},则∁R B={x|x≤2a+1},∵A={x|x≥1},A∩(∁R B)=∅,∴2a+1<1,得a<0,∴实数a的取值范围是(﹣∞,0),故选:D.9.(5分)已知a=2,b=log 3,c=log4,则()A.b<a<c B.c<a<b C.c<b<a D.b<c<a【解答】解:a=2>1,b=log 3∈(0,1).,c=log4<0,∴a>b>c.故选:C.10.(5分)若函数y=a x在区间[0,2]上的最大值和最小值的和为5,则函数y=log a x 在区间[,2]上的最大值和最小值之差是()A.1 B.3 C.4 D.5【解答】解:∵函数y=a x在区间[0,2]上的最大值和最小值的和为5,∴1+a2=5,解得a=2,a=﹣2(舍去),∴y=log2x在区间[,2]上为增函数,∴y max=log22=1,y min=log2=﹣2,∴1﹣(﹣2)=3,故选:B.11.(5分)已知alog23=1,4b=3,则ab等于()A.0 B.C.D.1【解答】解:alog23=1,4b=3,可得a=log32,b=log23,ab═log32•(log23)=.故选:B.12.(5分)已知函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),f(0)>0,且f (m)=f(n)=0(m≠n),则log 4m﹣log n的值是()A.小于1 B.等于1C.大于1 D.由b的符号确定【解答】解:函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),∴函数的对称轴为x=2,∵f(m)=f(n)=0(m≠n),∴m+n=4,∴mn<()2=4∴log 4m﹣log n=log4m+log4n=log4mn<log44=1,故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设集合A={x|x2﹣2x=0},B={0,1},则集合A∪B的子集的个数为8.【解答】解:由集合A中的方程得:x=0或2,即A={0,2},∵B={0,1},∴A∪B={0,1,2},则A∪B的子集的个数为23=8个,故答案为:814.(5分)函数f(x)=,则f(f(﹣3))=.【解答】解:函数f(x)=,则f(f(﹣3))=f(9)==.故答案为:.15.(5分)已知幂函数y=f(x)的图象过点(2,),若f(m)=2,则m=.【解答】解:设幂函数y=f(x)=x a,∵幂函数y=f(x)的图象过点(2,),∴,则a=,若f(m)==2,则m=,故答案为:16.(5分)已知函数f(x)=满足f(0)=1,且f(0)+2f(﹣1)=0,那么函数g(x)=f(x)+x有2个零点.【解答】解:函数f(x)=满足f(0)=1,可得c=1,f(0)+2f (﹣1)=0,可得﹣1﹣b+1=﹣,b=,∴当x>0时,g(x)=f(x)+x=2x﹣2=0,解得x=1,当x≤0时,g(x)=f(x)+x=﹣x2+x+1,令g(x)=0,解得x=2舍去,或x=﹣.综上函数的零点有2个.故答案为:2.三、解答题(共6小题,满分70分)17.(10分)(1)计算:﹣()0+0.25×()﹣4;(2)已知x+x=3,求的值.【解答】解:(1)﹣()0+0.25×()﹣4;原式=﹣4﹣1+×=﹣5+=﹣5+2=﹣3(2)已知:x+x=3,则(x+x)2=9⇒x+x﹣1+2=9⇒x+x﹣1=7∴(x+x﹣1)2=49⇒x2+x﹣2+2=49⇒x2+x﹣2=47所以:=.18.(12分)已知集合A={x|﹣4<x<1},B={x|()x≥2}.(1)求A∩B,A∪B;(2)设函数f(x)=的定义域为C,求(∁R A)∩C.【解答】解:(1)由()x≥2得()x≥=()﹣1,则x≤﹣1,即B={x|x≤﹣1},∵A={x|﹣4<x<1},∴A∩B={x|﹣4<x≤﹣1},A∪B={x|x<1};(2)由题意得,,即,解得x≥2,∴函数f(x)的定义域C={x|x≥2},由A={x|﹣4<x<1}得,∁R A={x|x≤﹣4或x≥1},∴(∁R A)∩C={x|x≥2}.19.(12分)已知函数y=f(x)满足f(x﹣1)=2x+3a,且f(a)=7.(1)求函数f(x)的解析式;(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.【解答】解:(1)f(x﹣1)=2x+3a=2(x﹣1)+3a+2,则f(x)=2x+3a+2,∵f(a)=7,∴2a+3a+2=7,解得a=1,∴f(x)=2x+5,(2)g(x)=x•f(x)+λf(x)+x=x(2x+5)+2λx+5λ=2x2+(6+2λ)x+5λ,则其对称轴为x=﹣,当﹣≤0时,即λ≥﹣3时,函数g(x)在[0,2]上单调递增,故g(x)max=g (2)=9λ+20,当﹣≥2时,即λ≤﹣7时,函数g(x)在[0,2]上单调递减,故g(x)max=g (0)=5λ,当0<﹣≤1时,即﹣5≤λ<﹣3时,g(x)max=g(2)=9λ+20,当1<﹣<2时,即﹣7<λ<﹣5时,g(x)max=g(0)=5λ,故,当λ≥﹣5时,g(x)max=g(2)=9λ+20=2,解得λ=﹣2,当λ<﹣5时,g(x)max=g(0)=5λ=2,解的λ=,舍去综上所述λ的值为﹣220.(12分)已知函数f(x)=x2+.(1)求证:f(x)是偶函数;(2)判断函数f(x)在(0,)和(,+∞)上的单调性并用定义法证明.【解答】解:(1)f(x)=x2+,则其定义域为{x|x≠0},关于原点对称,f(﹣x)=(﹣x)2+=x2+=f(x),故函数f(x)为偶函数,(2)根据题意,函数f(x)在(0,)为减函数,在(,+∞)上为增函数;证明如下:设0<x1<x2<,则f(x1)﹣f(x2)=(x1)2+()﹣(x2)2+()=[(x1)2﹣(x2)2][]=[(x1﹣x2)(x1+x2)][],又由0<x1<x2<,则f(x1)﹣f(x2)>0,则f(x)在(0,)为减函数,同理设<x1<x2,则f(x1)﹣f(x2)=(x1)2+()﹣(x2)2+()=[(x1)2﹣(x2)2][]=[(x1﹣x2)(x1+x2)][],又由<x1<x2,分析可得f(x1)﹣f(x2)<0,则f(x)在(0,)为增函数.21.(12分)设a>1,函数f(x)=log2(x2+2x+a),x∈[﹣3,3].(1)求函数f(x)的单调区间;(2)若f(x)的最大值为5,求f(x)的最小值.【解答】解:(1)当a>1时,知x2+2x+1>0对任意的x∈[﹣3,3],令t(x)=x2+2x+a,x∈[﹣3,3],则y=log2t,且t(x)=(x+1)2+a﹣1,x∈[﹣3,3],∴t(x)在[﹣3,﹣1]上为减函数,在(﹣1,3]为增函数,∵y=log2t为增函数,∴f(x)=log2(x2+2x+a)的两个单调区间为[﹣3,﹣1],(﹣1,3],且f(x)在[﹣3,﹣1]为减函数,在(﹣1,3]为增函数;(2)由(1)的单调性知,f(x)在x=﹣1处取得最小值,在x=3取得最大值,∴f(x)max=f(3)=log2(a+15)=5,解得a=17,∴f(x)min=f(﹣1)=log216=4.22.(12分)已知函数f(x)=.(1)求函数f(x)的零点;(2)若实数t满足f(log2t)+f(log2)<2f(2),求f(t)的取值范围.【解答】解:(1)当x<0时,解得:x=ln=﹣ln3,当x≥0时,解得:x=ln3,故函数f(x)的零点为±ln3;(2)当x>0时,﹣x<0,此时f(﹣x)﹣f(x)===0,故函数f(x)为偶函数,又∵x≥0时,f(x)=为增函数,∴f(log2t)+f(log 2)<2f(2)时,2f(log2t)<2f(2),即|log2t|<2,﹣2<log2t<2,∴t ∈(,4)故f(t )∈(,)赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-a1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
(完整)江苏省苏州市2016_2017高一下学期数学期末试卷含答案,推荐文档
⎪ ⎪数 学2017.6注意事项:1. 本试卷共 4 页.包括填空题(第 1 题~第 14 题)、解答题(第 15题~第 20 题)两部分.本试卷满分 160 分.考试时间 120 分钟.2. 答题前.请您务必将自己的姓名、考试号用 0.5 毫米黑色字迹的签(第 9 题图)字笔填写在答题卡的指定位置.3. 答题时.必须用0.5 毫米黑色字迹的签字笔填写在答题卡的指定位置.在其它位置作答一律无效.4. 如有作图需要.可用 2B 铅笔作答.并请加黑加粗.描写清楚.5. 请保持答题卡卡面清洁.不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.n 6.样本数据 x , x , , x 的方差 s 2= 1 n ∑ i =1(x - x ) .其中 x = x . 21 12 ni n ∑ n i i =1 2016~2017 学年第二学期苏州市高一期末调研测试一、填空题:本大题共 14 小题.每小题 5 分.共 70 分.不需要写出解答过程.请把答案直接填在答题卡相应位置上.1. 已知全集U = {x x > 0}. A = {x x ≥ 3} .则 ðU A =.2. 若数据 x 1, x 2 ,⋅ ⋅ ⋅, x 8 的方差为 3.则数据2x 1 , 2x 2 ,⋅ ⋅ ⋅,2x 8 的方差为.3.某高级中学共有 1200 名学生.现用分层抽样的方法从该校学生中抽取一个容量为 60 的样本.其中高一年级抽 30 人.高三年级抽 15 人. 则该校高二年级学生人数为.4.集合 A = {1,2,3, 4} . B = {1,2,3}.点 P 的坐标为(m , n ). m ∈ A . n ∈ B .则点 P 在直线x + y = 5 上的概率为 .5. 已知cos = - 3 .∈⎛ π , π ⎫ .则cos ⎛ π -⎫= .5 2 3 ⎝ ⎭ ⎝ ⎭6. 算法流程图如右图所示.则输出的结果是.7. 已知{a n }为等差数列. a 1 + a 2 + a 3 = -3 . a 4 + a 5 + a 6 = 6 .则 S 8 =.(第 6 题图)8. 已知 f (x ) 是定义在 R 上的奇函数.当 x > 0 时. f (x ) = x 2 - x .则不等式 f (x ) > x 的解集用区间表示为.3 MCNAO B9. 如图.为了探求曲线 y = x 2 . x = 2 与 x 轴围成的曲边三角形 OAP 的面积.用随机模拟的方法向矩形 OAPB 内随机投点 1080 次.现统计落在曲边三角形 OAP 的次数 360 次.则可估 算曲边三角形 OAP 面积为 .10. 1 0 .∆ABC 中. AB = 3, AC = 4 ,若∆ABC 的面积为3 .则BC 的长是 .11. 若点(x , y ) 位于曲线 y = x 与 y = 1所围成的封闭区域内(含边界).则2x - y 的最小值为 .2 y - x 2x - y12. 已知 x , y 是正实数.则 + 的最小值为.x 3y13. 如图.等腰梯形 AMNB 内接于半圆O .直径 AB = 4 . MN = 2 . MN 的中点为C .则 AM ⋅ BC 的值为. 14.已知等差数列{a n }和等比数列{b n }满足 a 1+ b 1 = 7 . a 4 + b 4 = 2 .则 a n + b n =.(第 13 题图)a 2 +b 2 = 4 . a 3 + b 3 = 5 .二、解答题:本大题共 6 小题.共 90 分.请在答题卡指定区域内作答.解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分 14 分)已知函数 y = 2x ( 0 < x < 3 )的值域为 A .函数 y = lg [-(x + a )(x - a - 2)]定义域为 B .(1) 当 a = 4 时.求 A I B ;(2) 若 A ⊆ B .求正实数 a 的取值范围.(其中 a > 0 )的16.(本小题满分 14 分)已知向量 a = (2 cos x , 3 sin x ).b = (3cos x , -2 cos x ).设函数 f (x ) = a ⋅ b .(1)求f (x) 的最小正周期;∈ ⎡ π ⎤(2) 若 x 0, .求 f (x ) 的值域.⎣⎢ 2 ⎥⎦17.(本小题满分 14 分)平面直角坐标系 xOy 中. A (2, 4). B (-1, 2). C , D 为动点.(1) 若C (3,1).求平行四边形 ABCD 的两条对角线的长度;(2)若C (a ,b ) .且CD = (3,1).求 AC ⋅ BD 取得最小值时a ,b 的值.18.(本小题满分 16 分)某生态公园的平面图呈长方形(如图).已知生态公园的长 AB =8(km).宽AD =4(km).M .N 分别为长方形 ABCD 边 AD .DC 的中点.P .Q 为长方形 ABCD 边 AB .BC (不含端点)上的一点.现公园管理处拟修建观光车道 P -Q -N -M -P .要求观光车道围成四边形(如图阴影部分)的面积为15(km 2).设 BP =x (km).BQ =y (km).(1) 试写出 y 关于 x 的函数关系式.并求出 x 的取值范围;(2) 若 B 为公园入口.P .Q 为观光车站.观光车站 P 位于线段 AB 靠近入口 B 的一侧.经测算.每天由 B 入口至观光车站 P.Q 乘坐观光车的游客数量相等.均为 1 万人.问如何确定观光车站 P .Q 的位置.使所有游客步行距离之和最大.并求出最大值.CM QB(第 18 题图)19.(本小题满分 16 分)已知正项数列{a }满足 a = 1 . (n + 1)a 2 + a a - na 2 = 0 .数列{b }的前n 项和为 S 且 n1n +1n +1 nnnnS n = 1 -bn.(1)求{a n}和{b n}的通项;(2)令cn =bn .an①求{c n}的前n项和T n;②是否存在正整数m 满足m > 3 . c2 , c3, cm成等差数列?若存在.请求出m ;若不存在.请说明理由.20.(本小题满分 16 分)已知函数f (x) =x x -a + 2x (a ∈R )(1)当 a = 4 时.解不等式f (x) ≥8 ;(2)当a ∈[0, 4]时.求f (x) 在区间[3, 4]上的最小值;(3)若存在a ∈[0, 4].使得关于x 的方程f (x) =tf (a) 有 3 个不相等的实数根.求实数t 的取值范围.2016~2017 学年苏州市高一期末调研测试数学参考答案2017.6一、填空题:13 37102 ⎩⎩ 1. (0,3)2.12 3.300 4. 1 5. 4 106.5 7.12 8. (-2, 0) (2, +∞)9. 83二、解答题:10. 或 11 -312.313.1 14. 7 - n + (-1)n -115.(本小题满分 14 分) 解:(1) A = {x |1 < x < 8}. (3)分当 a = 4 时. B = {x | x 2 - 2x - 24 < 0}= {x - 4 < x < 6}.……5 分 ∴ A B = {x |1 < x < 6}.……8 分(2) a > 0 ,∴ B = {x (x + a )(x - a - 2) < 0}= {x -a < x < a + 2}.......10 分 ⎧-a (1)A ⊆B ,∴⎨a + 2 ≥ 8 .解得 a ≥ 6;……13 分 当 A ⊆ B .实数a 的取值范围是[6, +∞) .……14 分16.(本小题满分 14 分)(1) f (x ) = a ⋅ b = 6 c os 2 x - 2 3 sin x cos x……2 分 = 6 ⨯ 1+cos 2x -2sin 2x……4 分= 3cos 2x - 3 sin 2x + 3 = 2 3 cos(2x + p+) 3 .……6 分 6∴ f (x ) 的最小正周期为T = 2π= π .……8 分 2(2) x ∈ ⎡0, π ⎤.∴ π … 2x + π … 7π .……10 分⎣⎢ 2 ⎥⎦6 6 6 ∴ -1… --- cos(2x + π )…62……12 分 ∴ f (x ) 值域为[3 - 2 3, 6]……14 分17.(本小题满分 14 分)(1) A (2, 4). C (3,1).∴ AC = (1, -3). AC = ……2 分又 ABCD 是平行四边形∴ AB = CD . AB = (-3, -2).设 D (x , y ).又= (3 - x ,1- y ).所以⎧x = 6 即 D = (6, 3). ……5 分DC⎨y = 3BD = (7,1).故 BD = 5 .……7 分(2) C (a , b ).则 D (3 + a , b +1).∴AC = (a - 2, b - B 4D ).= (a + 4, b -1).4 3 - 34 3 - 4 3 32 2 2 2 22⎛ 5⎫2 4545 ……9 分AC ⋅ BD = a 2 + 2a + b 2 - 5b - 4 = (a +1) + b - ⎪ - ≥ - .............................. 12 分a = -1,b = 5⎝ 2 ⎭ 4 4 45当且仅当 时 AC ⋅ BD 的最小值为- . ……14 分2 418.(本小题满分 16 分)解:(1)长方形 ABCD 中. AB =8.AD =4.M 、N 分别为 AD 、DC 的中点.且BP =x .BQ =y .∴AP =8-x .CQ =4-y .……1 分则 S ∆CMN = 4 . S ∆CNQ = 2(4 - y ) .S ∆AMP = 8 - x . S ∆BPQ = 1xy . 2∴ S 四边形P 长Q 方M 形N =SABCD- (S ∆CMN + S ∆CNQ + S ∆AMP + S ∆BPQ ) .=12 + x + 2 y - 1xy = 15 . ……4 分2 ∴ y =2(x -3) . ……5 分x - 4⎧0 < x < 8 又 ⎨ ⎩0 < y < 4 .解得: 0 < x < 3 或5 < x < 8 .…… 8 分(2) 设游客步行距离之和为 l (万千米).则l = x + y = x +2(3 - x ) = 6 -[(4 - x ) + 4 - x2 4- x].……11 分观光车站 P 位于线段 AB 靠近入口 B 的一侧.∴ 0 < x < 3 .即1 < 4 - x < 4 .由基本不等式: (4 - x ) +2≥ 2 4 - x(当且仅当 x = 4 - 时.等号成立).……13 分 ∴当 x = 4 - . y = 2 - 时. l max = 6 - 2 .……15 分答:应选定 P 离入口 B 为4-(km )处.选定 Q 离入口 B 为2 -(km )处可使游客步行距离之和最大.最大值为6 - 2 (万千米)……16 分19.(本小题满分 16 分)解析:(1)由(n +1)a 2 + a a - na 2 = 0 可以得到⎡(n +1)a- na ⎤ (a + a )= 0 . n +1n +1 nn⎣n +1 n ⎦ n +1 na n +1 + a n > 0 .∴ (n +1)a n +1 - na n = 0 .∴ (n +1)a n +1 = na n .……2 分2 2 22 n n ⎪ { } b ⎛ 1 ⎫ 1 ⎛ 1 ⎫ 1⎛ 2 2 22 即(n +1)a= na = = a = 1.∴ {a }的通项为 a = 1 . ……4 分 n +1 n 1 n n n 1由 S = 1- a 可以得到b = 1- b 也就是b = 且S = 1- b .因此b = b - b .即为 n n 1 11 2n +1 n +1 n +1 n n +1 b n +1 = 1b . b⎛ 1 ⎫n为等比数列. b n = . ⎝ ⎭……6 分 n 2 n (2)① c = n = n. T = 1⨯ + 2 ⨯ + + n ……8 分n a n ⎝ 2 ⎭⎪ n 2 ⎝ 2 ⎪⎭ ⎝ 2 ⎪⎭1 ⎛ 1 ⎫2n -1) ⎪n 1 n +12 T = 1⨯ 2 ⎪ + ⎛ 12 ⎫ + n ⎛ 2⎫⎪n⎝ ⎭ 2 + ( ⎝ ⎭ ⎝ ⎭ n1 1 ⎛ 1 ⎫ T⎛ 1 ⎫⎛ 1 ⎫n +1 n = + ⎪ + + ⎪ -n ⎪ 2 ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 所以T = 2 - ⎛ 1 ⎫n -1 - n ⎛ 1 ⎫n n 2 ⎪2 ⎪ . ……11 分⎝ ⎭ ⎝ ⎭②由题设有2c = 1+ c = 2 ⨯ 3 = 3. 所以c = 1.……12 分3m8 4m42⎛ 1 ⎫k -k -1 ⎛ 1 ⎫k -1 ⎛ 1 ⎫k -k -1 ⎛ 1 ⎫k -1 = ⎛ 1 ⎫2 - k 当 k ≥3 时. c k - c k -1 = k 2 ⎪ ( ) 2 ⎪ = k 2 ⎪ ( ) 2 ⎪2 ⎪ ( ). ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭c k - c k -1 < 0 .所以当 k ≥ 3 时.{c k }为减数列.……15 分又c = 1.所以 m = 4 .44所以存在正整数 m = 4 此时c 2 , c 3, c 4 成等差数列……16 分20.(本小题满分 16 分)(1)当 a = 4 时.不等式可化为 x x - 4 + 2x ≥ 8 .若 x ≥ 4 .则 x 2 - 2x - 8≥ 0 .∴ x ≥ 4 ; 若 x < 4 .则 x 2 - 6x + 8… 0 .∴ 2… x < 4 .……2 分 ……4 分 综上.不等式解集为[2, +∞).……5 分k⎭ ⎭ 2 ⎧ ⎛ a - 2 ⎫2 ⎛ a - 2 ⎫2⎧ x 2 - (a - 2)x x ≥ a ⎪ x - 2 ⎪ - 2 ⎪ x ≥ a (2) f (x ) = ⎨-x 2 + (a + 2)x x < a = ⎪⎨ ⎝ a + 2 ⎝ a + 2……7 分⎩ ⎪ ⎛ 2 ⎫ + ⎛ 2 ⎫ ⎪- x - ⎪ ⎪ x < a⎩ ⎝ a - 2 a + 2下面比较 , , a 的大小:2 2∵ a ∈[0, 4].2 ⎭ ⎝ 2 ⎭ ∴当 a ∈[0, 2]时. a - 2 - a = -a - 2 < 0 . a + 2 - a = 2 - a≥ 02 2 2 2∴作出函数 f (x ) 的图像如图 1∴ f (x ) 在(-∞, a ],[a , +∞)为增函数.即 f (x ) 在 R 上是增函数. ∴ f (x ) 在区间[3,4]上的最小值为 f (3) = 15 - 3a .……9 分xx图 1图 2当 a ∈(2, 4]时. a - 2- a =-a - 2< 0 . a + 2 - a = 2 - a < 0 . a + 2… 3 .2 22 2 2∴作出函数 f (x ) 的图像如图 2∴ f (x ) 在⎛ -∞, a + 2 ⎤ ,[a , +∞)为增函数.在⎡ a + 2 , a ⎤为减函数.⎥ ⎢ 2 ⎥ ⎝⎦⎣⎦∴若 a … 3 .则 f (x ) 在区间[3, 4]为增函数.最小值为 f (3) = 15 - 3a ; 若3 < a … 4 .则 f (x ) 在区间[3,4]上的最小值为 f (a ) = 2a .……12 分(3) 由(2)知当 a ∈[0, 2]时.如图 1.关于 x 的方程 f (x ) = tf (a ) 不可能有 3 个不相等的实数根. ……13 分当 a ∈(2, 4]时.要存在 a .使得关于 x 的方程 f (x ) = tf (a ) 有 3 个不相等的实数根.则 f (a ) < tf (a ) < f ⎛ a + 2 ⎫有解.∴1 < t < ⎛ f ( a +2 2)⎪⎫(2 < a … 4) ……14 分⎪ f (a ) ⎪⎝ 2 ⎭ ⎪⎝ ⎭max. .2 ∴ f ( ) 8 8 f ( a + 2) = 1 (a + 4 + 4) .且函数 y = a + 4 在区间(2, 4]上为增函数(不证明单调性f (a ) 8 a a扣 1 分)⎛ a 2+ 2 ⎪⎫ f (a ) ⎪ ⎝ ⎭max= 9 .∴1 < t < 9 . ……16 分“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
江苏省苏州一中2016-2017学年高一上学期期中数学试卷 Word版含解析
2016-2017学年江苏省苏州一中高一(上)期中数学试卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填写在答题卡相应位置.)1.已知集合A={﹣1,0,1,2},B={﹣2,1,2},则A∩B=.2.求函数y=的定义域.3.函数f(x)=的值域为.4.设f(x)=,则f[f(2)]的值为.5.若f(x)=a+是奇函数,则a=.6.设a=0.53,b=30.5,c=log0.53,则a,b,c三者的大小关系是.(用“<”连接)7.如果幂函数的图象不过原点,则m的值是.8.函数f(x)=在区间(﹣2,+∞)上是递增的,求实数a的取值范围.9.已知函数f(x)=lg(x2﹣2mx+m+2),若该函数的定义域为R,则实数m的取值范围是.10.函数y=(x﹣3)|x|的减区间为.11.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?12.设定义在R上的偶函数f(x)在区间(﹣∞,0]上单调递减,若f(1﹣m)<f(m),则实数m的取值范围是.13.已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.14.若方程lg|x|=﹣|x|+5在区间(k,k+1)(k∈Z)上有解,则所有满足条件的k 的值的和为.二、解答题:(本大题共6小题,共90分.请在答题卡规定区域写出文字说明、证明过程或演算步骤.)15.已知集合A=,B={x|m+1≤x≤2m﹣1}.(1)求集合A;(2)若B⊆A,求实数m的取值范围.16.已知函数f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)﹣mx在[2,4]上为单调函数,求实数m的取值范围.17.已知关于x的二次方程x2+2mx+2m+1=0.(Ⅰ)若方程有两根,其中一根在区间(﹣1,0)内,另一根在区间(1,2)内,求m 的取值范围.(Ⅱ)若方程两根均在区间(0,1)内,求m的取值范围.18.已知幂函数f(x)=x,(k∈Z)满足f(2)<f(3).(1)求实数k的值,并求出相应的函数f(x)解析式;(2)对于(1)中的函数f(x),试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上值域为.若存在,求出此q.19.已知函数,常数a>0.(1)设m•n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.20.如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.(1)写出y关于x的函数关系式,并指出这个函数的定义域;(2)当AE为何值时,绿地面积y最大?2016-2017学年江苏省苏州一中高一(上)期中数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填写在答题卡相应位置.)1.已知集合A={﹣1,0,1,2},B={﹣2,1,2},则A∩B={1,2} .【考点】交集及其运算.【分析】利用交集的定义找出A,B的所有的公共元素组成的集合即为A∩B.【解答】解:∵集合A={﹣1,0,1,2},B={﹣2,1,2},∴A∩B={1,2},故答案为:{1,2}.2.求函数y=的定义域.【考点】函数的定义域及其求法.【分析】直接利用对数的真数大于0,分母不为0,求解不等式组,可得函数的定义域.【解答】解:要使函数有意义,可得,解得x∈(﹣1,1)∪(1,+∞).函数的定义域为:(﹣1,1)∪(1,+∞).3.函数f(x)=的值域为(﹣∞,2).【考点】对数函数的值域与最值;函数的值域.【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).4.设f(x)=,则f[f(2)]的值为2.【考点】函数的值.【分析】先求出f(2)=log3(4﹣1)=1,从而f[f(2)]=f(1),由此能求出结果.【解答】解:∵f(x)=,∴f(2)=log3(4﹣1)=1,f[f(2)]=f(1)=2e1﹣1=2.故答案为:2.5.若f(x)=a+是奇函数,则a=﹣.【考点】奇函数;函数奇偶性的性质.【分析】充分不必要条件:若奇函数定义域为R(即x=0有意义),则f(0)=0.或用定义:f(﹣x)=﹣f(x)直接求a.【解答】解:函数的定义域为R,且为奇函数,则f(0)=a+=0,得a+=0,得a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.6.设a=0.53,b=30.5,c=log0.53,则a,b,c三者的大小关系是c<a<b.(用“<”连接)【考点】对数值大小的比较.【分析】利用指数函数、对数函数的单调性求解.【解答】解:∵0<a=0.53<0.50=1,b=30.5>30=1,c=log0.53<log0.51=0,∴a,b,c三者的大小关系为c<a<b.故答案为:c<a<b.7.如果幂函数的图象不过原点,则m的值是1.【考点】幂函数的图象.【分析】幂函数的图象不过原点,所以幂指数小于0,系数为1,求解即可.【解答】解:幂函数的图象不过原点,所以解得m=1,符合题意.故答案为:18.函数f(x)=在区间(﹣2,+∞)上是递增的,求实数a的取值范围.【考点】函数单调性的性质.【分析】先将函数解析式进行常数分离,然后利用增函数的定义建立关系,进行通分化简,判定每一个因子的符号,从而求出a的范围.【解答】解:f(x)===+a、任取x1,x2∈(﹣2,+∞),且x1<x2,则f(x1)﹣f(x2)=﹣=.∵函数f(x)=在区间(﹣2,+∞)上为增函数,∴f(x1)﹣f(x2)<0,∵x2﹣x1>0,x1+2>0,x2+2>0,∴1﹣2a<0,a>,即实数a的取值范围是(,+∞).9.已知函数f(x)=lg(x2﹣2mx+m+2),若该函数的定义域为R,则实数m的取值范围是(﹣1,2).【考点】对数函数的图象与性质.【分析】根据对数函数的性质以及二次函数的性质求出m的范围即可.【解答】解:∵函数f(x)=lg(x2﹣2mx+m+2)的定义域为R,∴x2﹣2mx+m+2>0在R上恒成立,△=4m2﹣4(m+2)<0,即m2﹣m﹣2<0,解得:﹣1<m<2,故实数m的取值范围是(﹣1,2),故答案为:(﹣1,2).10.函数y=(x﹣3)|x|的减区间为[0,] .【考点】函数的单调性及单调区间.【分析】这是含绝对值的函数,先讨论x的取值把绝对值号去掉,便得到两段函数,都是二次函数,根据二次函数的单调区间,去找每段函数的单调减区间,从而找出原函数的单调减区间.【解答】解:y=根据二次函数的单调性:x≥0时,函数(x﹣3)x在[0,]上单调递减;x<0时,函数﹣x(x﹣3)不存在单调区间.∴函数y=(x﹣3)|x|的单调减区间为[0,].故答案为:[0,].11.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是该商品的日销售量Q (件)与时间t (天)的函数关系是Q=﹣t +40(0<t ≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天? 【考点】分段函数的应用.【分析】先设日销售金额为y 元,根据y=P•Q 写出函数y 的解析式,再分类讨论:当0<t <25,t ∈N +时,和当25≤t ≤30,t ∈N +时,分别求出各段上函数的最大值,最后综合得出这种商品日销售额的最大值即可. 【解答】解:设日销售金额为y (元),则y=p•Q .∴=当0<t <25,t ∈N ,t=10时,y max =900(元); 当25≤t ≤30,t ∈N ,t=25时,y max =1125(元).由1125>900,知y max =1125(元),且第25天,日销售额最大12.设定义在R 上的偶函数f (x )在区间(﹣∞,0]上单调递减,若f (1﹣m )<f (m ),则实数m 的取值范围是 (,+∞) . 【考点】奇偶性与单调性的综合.【分析】根据题意,结合函数的奇偶性与单调性分析可得其在区间[0,+∞)上单调递增,进而可以将f (1﹣m )<f (m )转化为|1﹣m |<|m |,解可得m 的取值范围,即可得答案.【解答】解:根据题意,函数f (x )为偶函数且在区间(﹣∞,0]上单调递减, 则函数f (x )在区间[0,+∞)上单调递增,若f (1﹣m )<f (m ),由函数为偶函数,可得f (|1﹣m |)<f (|m |), 又由函数f (x )在区间[0,+∞)上单调递增, 则|1﹣m |<|m |,解可得:m >;则实数m的取值范围为:(,+∞);故答案为:(,+∞).13.已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(25,34).【考点】分段函数的解析式求法及其图象的作法;函数的图象.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨设a<b<c,求出a+b+c 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则:b+c=2×12=24,a∈(1,10)则a+b+c=24+a∈(25,34),故答案为:(25,34).14.若方程lg|x|=﹣|x|+5在区间(k,k+1)(k∈Z)上有解,则所有满足条件的k 的值的和为﹣1.【考点】根的存在性及根的个数判断.【分析】构造函数y=lg|x|,y=﹣|x|+5,画出图象,结合函数的奇偶性,推出结论.【解答】解:由方程可令,y=lg|x|,y=﹣|x|+5,画出图象,两个函数都是偶函数,所以函数图象的交点,关于y轴对称,因而方程lg|x|=﹣|x|+5在区间(k,k+1)(k∈Z)上有解,一根位于(﹣5,﹣4),另一根位于(4,5),K的值为﹣5和4,则所有满足条件的k的值的和:﹣1,故答案为:﹣1二、解答题:(本大题共6小题,共90分.请在答题卡规定区域写出文字说明、证明过程或演算步骤.)15.已知集合A=,B={x|m+1≤x≤2m﹣1}.(1)求集合A;(2)若B⊆A,求实数m的取值范围.【考点】集合的包含关系判断及应用.【分析】(1)求使log2(x+2)<3有意义的x的范围和x2≤2x+15有意义的x的范围的交集可得集合A;(2)根据B⊆A,建立条件关系即可求实数m的取值范围.【解答】解:(1)由题意,集合A需满足解得:﹣2<x≤5,故得集合A={x|﹣2<x≤5}(2)∵B={x|m+1≤x≤2m﹣1}.要使B⊆A成立:当B=∅时,满足题意,此时m+1>2m﹣1,解得:m<2.当B≠∅时,要使B⊆A成立,需满足解得:2≤m≤3综上可得实数m的取值范围是(﹣∞,3]16.已知函数f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)﹣mx在[2,4]上为单调函数,求实数m的取值范围.【考点】二次函数在闭区间上的最值;函数单调性的性质.【分析】(1)由于函数f(x)=a(x﹣1)2+2+b﹣a,(a≠0),对称轴为x=1,分当a>0时、当a<0时两种情况,分别依据条件利用函数的单调性求得a、b的值.(2)由题意可得可得,g(x)=x2﹣(m+2)x+2,根据条件可得≤2,或≥4,由此求得m的范围.【解答】解:(1)由于函数f(x)=ax2﹣2ax+2+b=a(x﹣1)2+2+b﹣a,(a≠0),对称轴为x=1,当a>0时,函数f(x)在区间[2,3]上单调递增,由题意可得,解得.当a<0时,函数f(x)在区间[2,3]上单调递减,由题意可得,解得.综上可得,,或.(2)若b<1,则由(1)可得,g(x)=f(x)﹣mx=x2﹣(m+2)x+2,再由函数g(x)在[2,4]上为单调函数,可得≤2,或≥4,解得m≤2,或m≥6,故m的范围为(﹣∞,2]∪[6,+∞).17.已知关于x的二次方程x2+2mx+2m+1=0.(Ⅰ)若方程有两根,其中一根在区间(﹣1,0)内,另一根在区间(1,2)内,求m 的取值范围.(Ⅱ)若方程两根均在区间(0,1)内,求m的取值范围.【考点】一元二次方程的根的分布与系数的关系.【分析】(Ⅰ)把问题转化为抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(﹣1,0)和(1,2)内,解不等式组求出m的取值范.(Ⅱ)若抛物线与x轴交点均落在区间(0,1)内,则有,由此求得m的取值范围.【解答】解:(Ⅰ)设f(x)=x2+2mx+2m+1,问题转化为抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(﹣1,0)和(1,2)内,则,可得.解得,∴m 的取值范围为.(Ⅱ)若抛物线与x轴交点均落在区间(0,1)内,则有,即,解得,故m的取值范围为.18.已知幂函数f(x)=x,(k∈Z)满足f(2)<f(3).(1)求实数k的值,并求出相应的函数f(x)解析式;(2)对于(1)中的函数f(x),试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上值域为.若存在,求出此q.【考点】函数恒成立问题;函数解析式的求解及常用方法.【分析】(1)由已知可得幂函数f(x)=x,(k∈Z)为增函数,由﹣k2+k+2>0求得k的值,则幂函数解析式可求;(2)把f(x)代入g(x)=1﹣qf(x)+(2q﹣1)x,整理后求其对称轴方程,分对称轴大于﹣1和小于等于﹣1分类分析得答案.【解答】解:(1)由f(2)<f(3),可得幂函数f(x)=x,(k∈Z)为增函数,则﹣k2+k+2>0,解得:﹣1<k<2,又k∈Z,∴k=1或k=0,则f(x)=x2;(2)由g(x)=1﹣qf(x)+(2q﹣1)x=﹣qx2+(2q﹣1)x+1,其对称轴方程为x=,由q>0,得,当,即时,=.由,解得q=2或q=(舍去),此时g(﹣1)=﹣2×(﹣1)2+3×(﹣1)+1=﹣4,g(2)=﹣2×22+3×2+1=﹣1,最小值为﹣4,符合要求;当,即时,g(x)max=g(﹣1)=﹣3q+2,g(x)min=g(2)=﹣1,不合题意.∴存在正数q=2,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上值域为.19.已知函数,常数a>0.(1)设m•n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.【考点】函数单调性的性质;函数的值域.【分析】(1)运用函数的定义判断证明函数的单调性的步骤:①取值x1,x2∈[m,n];②作差f(x1)﹣f(x2)变形;③定号;④下结论;(2)逆向运用函数单调性的定义,我们可以得到:f(m)=m,f(n)=n,转化为方程的根的问题,利用根的判别式,从而求出参数的范围.【解答】解:(1)任取x1,x2∈[m,n],且x1<x2,,因为x1<x2,x1,x2∈[m,n],所以x1x2>0,即f(x1)<f(x2),故f(x)在[m,n]上单调递增.(2)因为f(x)在[m,n]上单调递增,f(x)的定义域、值域都是[m,n]⇔f(m)=m,f(n)=n,即m,n是方程的两个不等的正根⇔a2x2﹣(2a2+a)x+1=0有两个不等的正根.所以△=(2a2+a)2﹣4a2>0,20.如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.(1)写出y关于x的函数关系式,并指出这个函数的定义域;(2)当AE为何值时,绿地面积y最大?【考点】函数模型的选择与应用.【分析】(1)利用y=S ABCD﹣2(S△AEH +S△BEF),化简即得结论;(2)通过(1)可知y=﹣2x2+(a+2)x的图象为开口向下、对称轴是的抛物线,比较与2的大小关系并结合函数的单调性即得结论.【解答】解:(1)依题意,,,∴,由题意,解得:0<x≤2,∴y=﹣2x2+(a+2)x,其中0<x≤2;(2)∵y=﹣2x2+(a+2)x的图象为抛物线,其开口向下、对称轴是,∴y=﹣2x2+(a+2)x在上递增,在上递减,若,即a<6,则时,y取最大值;若,即a≥6,则y=﹣2x2+(a+2)x,0<x≤2是增函数,故当x=2时,y取最大值2a﹣4;综上所述:若a<6,则时绿地面积取最大值;若a≥6,则AE=2时绿地面积取最大值2a﹣4.2017年2月23日。
苏州市2015-2016学年上学期期末考试高一数学
苏州市2015–2016学年第一学期期末考试2016.1.14高一数学注意事项:1.本试卷共4页.满分160分,考试时间120分钟.2.请将填空题的答案和解答题的解题过程写在答题卡的规定区域,在本试卷上答题无效.3.答题前,考生务必将自己的姓名、学校、考试号写在答题卡的指定位置.一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在.答.题.卡.相.应.位.置.上.1.若集合A ={−1,0,1},B ={0,1,2},则A ∩B =.2.函数f(x)=2tan (πx +3)的最小正周期为.3.函数f(x)=ln (2−x)的定义域是.4.若向量a =(3,4),则|a|的值为.5.已知f(x)是定义在R 上的奇函数,当x >0时,f(x)=2x −x 2,则f(−1)的值是.6.已知a =log 132,b =213,c =(13)2,则a,b,c 的大小关系为.(用<号连接)7.计算10lg 2−log 213−log 26的值是.8.在△ABC 中,已知sin A +cos A =15,则sin A −cos A 的值为.9.如图,在△ABC 中,AD DC =BEEA=2,若# »DE =λ# »AC +μ# »CB ,则λ+μ的值是.BC10.已知方程2x +x =4的解在区间(n,n +1)上,其中n ∈Z ,则n 的值是.11.已知角α的终边经过点P (−1,2),则sin (π+α)+2cos (2π−α)sin α+sin (π2+α)的值是.12.已知f (x)是定义在R 上的偶函数,且在[0,+∞)上是增函数,若f(1)=0,则(f(log 2x)>0的解集是.13.在△ABC 中,已知AB =AC ,BC =2,点P 在边BC 上,若# »P A ⋅# »P C =−14,则# »P B ⋅# »P C 的值是.14.已知函数f (x)=⎧⎪⎨⎪⎩x +1,0⩽x <1,2x −12,x ⩾1,若a >b ⩾0,且f(a)=f(b),则bf(a)的取值范围是.二.解答题:本大题共6小题,共计90分.请在.答.题.卡.指.定.区.域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知向量a,b满足:|a|=1,|b|=√3,a+b=(√3,1).(1)求|a−b|的值;(2)求a+b与a−b的夹角.16.(本小题满分14分)已知函数f(x)=sin(x+π6),将y=f(x)的图象上所有点的横坐标扩大到原来的2倍(纵坐标不变)得到y=ℎ(x)的图象.(1)求y=ℎ(x)的单调递减区间;(2)若f(α)=14,求sin(5π6−α)+sin2(π3−α)的值.如图,用一根长为10m的绳索围成一个圆心角小于π且半径不超过3m的扇形场地.设扇形的半径为x m,面积为S m2.(1)写出S关于x的函数表达式,并指出该函数的定义域;(2)当半径x的圆心角α分别是多少时,所围扇形场地的面积S最大,并求出S的最大值.αx18.(本小题满分15分)已知向量a=(1,−x),b=(x2,4cosθ),函数f(x)=a⋅b−1,θ∈[−π,π].(1)当θ=23π时,求函数f(x)在[−2,2]上的最大值和最小值;(2)若函数f(x)在区间[1,√2]上不单调,求角θ的取值范围.设函数f(x)=x|x−1|+m,常数m∈R.(1)当m=−2时,解关于x的不等式f(x)>0;(2)当m>1时,求函数f(x)在区间[0,m]上的最大值.20.(本小题满分16分)已知函数f k(x)=a x−(k−1)a−x(k∈Z,a>0,a≠1,x∈R),g(x)=f2(x)f0(x).(1)当a>1时,判断并证明函数g(x)的单调性;(2)若函数f1(x)在区间[1,2]上的最大值与最小值之差为2,求证:函数g(x)是奇函数;(3)在(2)的条件下,若函数ℎ(x)=f0(2x)+2mf2(x)在x∈[1,+∞)上有零点,求实数m的取值范围.。
(精品)江苏省苏州市2016-2017学年高二上学期期末考试数学试题-版含答案
2016—2017学年第一学期期末考试试卷高二数学第一卷 2017.01一、填空题:(本大题共14小题,每小题5分,共70分)1.命题2",9"x R x的否定是 .2.抛物线22y x 的焦点坐标为 .3.过点0,1P ,且与直线2340x y 垂直的直线方程为 .4.直线34120x y 与两条坐标轴分别交于点A,B,O 为坐标原点,则ABO 的面积等于 . 5.函数322y xxx 的单调递减区间为 .6.“1m”是“直线1:210l mx y 和直线2:120l xm y相互平行”的条件.(用“充分不必要”,“必要不充分条件”,“充要”,“既不充分也不必要”填空)7.函数2ln y xx x 在区间1,3上的最小值等于 .8.如图,四棱锥PABCD 中,PA底面ABCD ,底面ABCD 为正方形,则下列结论:①//AD 平面PBC ;②平面PAC 平面PBC ;③平面PAB 平面PAC ;④平面PAD 平面PDC . 其中正确的结论序号是 . 9.已知圆22:4210C x yx y 上存在两个不同的点关于直线10x ay 对称,过点4,Aa 作圆C 的切线,切点为B,则AB.10.已知圆柱甲的底面半径R 等于圆锥乙的底面直径,若圆柱甲的高为R,圆锥乙的侧面积为224R,则圆柱甲和圆锥乙的体积之比为 .11.已知函数23xxf xe在区间,2m m上单调递减,则实数m的取值范围为 .12.在平面直角坐标系xoy中,已知直线:20l ax y和点3,0A,若直线l上存在点M满足MA=2MO,则实数a的取值范围为 .13.在平面直角坐标系xoy中,直线2y x b是曲线2lny a x的切线,则当0a 时,实数b的最小值是 .14.已知F是椭圆2222:10x yC a ba b的左焦点,A,B为椭圆C的左、右顶点,点P在椭圆C上,且PF x轴,过点A的直线与线段PF交与点M,与轴交与点E,直线BM与y轴交于点N,若NE=2ON,则椭圆C的离心率为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)已知圆M的圆心在直线y x上,且经过点3,0,1,2.A B(1)求圆M的方程;(2)直线l与圆M相切,且l在y轴上的截距是在x轴上截距的两倍,求直线l的方程.16.(本题满分14分)如图,四棱柱1111ABCDA BC D 的底面ABCD 为矩形,平面11CDD C 平面ABCD ,,E F 分别是,CD AB 的中点,求证:(1)AD CD ;(2)//EF 平面11ADD A .17.(本题满分14分)从旅游景点A 到B 有一条100km 的水路,某轮船公司开设一个游轮观光项目.已知游轮每小时使用燃料费用与速度的立方成正比例,其他费用为每小时3240元,游轮最大时速为50km/h ,当游轮的速度为10km/h 时,燃料费用为每小时60元,设游轮的航速为vkm/h,游轮从A 到B 一个单程航行的总费用为S 元.(1)将游轮从A 到B 一个单程航行的总费用S 表示为游轮的航速v 的函数Sf v ;(2)该游轮从A 到B 一个单程航行的总费用最少时,游轮的航速为多少,并求出最小总费用.18.(本题满分16分)已知椭圆2222:10x y C a bab的左右顶点分别为A,B ,1F 为左焦点,且12AF ,又椭圆C 过点0,23.(1)求椭圆C 的方程;(2)点P 和Q 分别在椭圆C 和圆222xya 上(点A,B除外),设直线PB,QB 的斜率分别为12,k k ,若1234k k ,证明:A,P,Q 三点共线.19.(本题满分16分)已知函数1ln f xa x x (a 为实数),,1,,g x f x g x g xx h xf x f xg x.(1)当1a 时,求函数1ln f x a x x 在点1,1f 处的切线方程;(2)讨论函数f x 的单调性;(3)若h xf x ,求实数a 的值.20.(本题满分16分)在平面直角坐标系xoy 中,圆22:1O x y,P 为直线12xt t 上一点.(1)已知43t.①若点P 在第一象限,且53OP,求过点P 的圆O 的切线方程;②若存在过点P 的直线交圆O 于点A,B,且B 恰为线段AP 的中点,求点P纵坐标的取值范围;(2)设直线l 与x 轴交与点M ,线段OM 的中点为Q ,R 为圆O 上一点,且RM=1,直线RM 与圆O 交于另一点N,求线段NQ 长的最小值.2016—2017学年第一学期期末考试试卷高二数学第二卷(附加题)21.(本小题满分10份)求曲线2xx f xe在2x处的切线与x 轴交点A 的坐标.22.(本小题满分10份)已知点P 是圆221x y上的一个动点,定点1,2M ,Q 是线段PM 延长线上的一点,且2PMMQ ,求点Q 的轨迹方程.23.(本小题满分10份)如图所示,在四棱锥PABCD 中,PA 底面ABCD ,,//,2,1ADAB AB DC ADDCAPAB,点E 为棱PC 的中点,在如图所示的空间直角坐标系中,(1)求直线BE 与平面PBD 所成角的正弦值;(2)若F 为棱PC 上一点,满足BFAC ,求二面角F ABP 的余弦值.24.(本小题满分10份)如图,已知抛物线24yx ,过点2,0P 做斜率分别12,k k 为的两条直线,与抛物线相交于点A,B 和C,D,且M,N 分别是AB,CD 的中点(1)若120k k ,2APPB ,求线段MN 的长;(2)若121k k,求PMN面积的最小值.。
2016~2017学年第二学期苏州市高一期末调研测试
2016~2017学年第二学期苏州市高一期末调研测试数 学 2017.6注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在答题卡的指定位置.3.答题时,必须用0.5毫米黑色字迹的签字笔填写在答题卡的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. 6.样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. 已知全集{0}U x x =>,{3}A x x =≥,则U A =ð ▲ .2. 若数据128,,,x x x ⋅⋅⋅的方差为3,则数据1282,2,,2x x x ⋅⋅⋅的方差为 ▲ .3.某高级中学共有1200名学生,现用分层抽样的方法从该校学生中抽取一个容量为60的样本,其中高一年级抽30人,高三年级抽15人. 则该校高二年级学生人数为 ▲ . 4.集合{1,2,3,4}A =,{1,2,3}B =,点P 的坐标为(),m n ,m A ∈,n B ∈,则点P 在直线5x y +=上的概率为 ▲ .5. 已知3cos 5θ=-,,2θ⎛⎫∈ ⎪⎝⎭ππ,则cos 3θ⎛⎫-= ⎪⎝⎭π ▲ .6. 算法流程图如右图所示,则输出的结果是 ▲ . 7. 已知{}n a 为等差数列,1233a a a ++=-,4566a a a ++=,(第6题图)则8S = ▲ .8. 已知()f x 是定义在R 上的奇函数,当0x >时,2()f x x x =-,则不等式()f x x >的解集用区间表示为 ▲ .9.如图,为了探求曲线2y x =,2x =与x 轴围成的曲边三角形OAP 的面积,用随机模拟的方法向矩形OAPB 内随机投点1080次,现统计落在曲边三角形OAP 的次数360次,则可估算曲边三角形OAP 面积为 ▲ . 10.ABC ∆中,3,4AB AC ==,若ABC ∆的面积为BC 的长是 ▲ . 11.若点(),x y 位于曲线y x =与1y =所围成的封闭区域内(含边界),则2x y -的最小值为 ▲ .12.已知,x y 是正实数,则223y x x yx y--+的最小值为 ▲ . 13. 如图,等腰梯形AMNB 内接于半圆O ,直径4AB =,2MN =,MN 的中点为C ,则AM BC ⋅uuu r uu u r的值为 ▲ .14.已知等差数列{}n a 和等比数列{}n b 满足117a b +=, 224a b +=,335a b +=,442a b +=,则n n a b += ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数2x y =(03x <<)的值域为A ,函数[]lg ()(2)y x a x a =-+-- (其中0a >)的定义域为B .(1)当4a =时,求A B I ;(2)若A B ⊆,求正实数a 的取值范围.(第13题图)(第9题图)16.(本小题满分14分)已知向量a ()2cos x x =,b ()3cos ,2cos x x =-,设函数()f x =a ⋅b . (1)求()f x 的最小正周期;(2)若0,2x ⎡⎤∈⎢⎥⎣⎦π,求()f x 的值域.17.(本小题满分14分)平面直角坐标系xOy 中,()2,4A ,()1,2B -,,C D 为动点. (1)若()3,1C ,求平行四边形ABCD 的两条对角线的长度;(2)若(,)C a b ,且()3,1CD =u u u r,求AC BD ⋅uu u r uu u r 取得最小值时,a b 的值.18.(本小题满分16分)某生态公园的平面图呈长方形(如图),已知生态公园的长AB =8(km),宽AD =4(km),M ,N 分别为长方形ABCD 边AD ,DC 的中点,P ,Q 为长方形ABCD 边AB ,BC (不含端点)上的一点.现公园管理处拟修建观光车道P -Q -N -M -P ,要求观光车道围成四边形(如图阴影部分)的面积为15(km 2),设BP =x (km),BQ =y (km),(1)试写出y 关于x 的函数关系式,并求出x 的取值范围;(2)若B 为公园入口,P ,Q 为观光车站,观光车站P 位于线段AB 靠近入口B 的一侧.经测算,每天由B 入口至观光车站P ,Q 乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P ,Q 的位置,使所有游客步行距离之和最大,并求出最大值.PQCNMBD A(第18题图)19.(本小题满分16分)已知正项数列{}n a 满足11a =,()221110n n n n n a a a na ++++-=,数列{}n b 的前n 项和为nS 且1n n S b =-.(1)求{}n a 和{}n b 的通项; (2)令nn nb c a =, ①求{}n c 的前n 项和n T ;②是否存在正整数m 满足3m >,23,,m c c c 成等差数列?若存在,请求出m ;若不存在,请说明理由.20.(本小题满分16分)已知函数()()2f x x x a x a =-+∈R (1)当4a =时,解不等式()8f x ≥;(2)当[]0,4a ∈时,求()f x 在区间[]3,4上的最小值;(3)若存在[]0,4a ∈,使得关于x 的方程()()f x tf a =有3个不相等的实数根,求实数t 的取值范围.2016~2017学年苏州市高一期末调研测试数学参考答案 2017.6一、填空题:1.()0,3 2.12 3.300 4.145 6.5 7.12 8.()2,0(2,)-+∞9.8310 11 3- 12 13.1 14.()171n n --+-二、解答题:15.(本小题满分14分)解:(1){}|18A x x =<<, ……3分当4a =时,{}{}2|224046B x x x x x =--<=-<<, ……5分{}|16A B x x ∴=<<. ……8分(2)0a >,{}{}()(2)02B x x a x a x a x a ∴=+--<=-<<+, ……10分1,28a A B a -⎧⊆∴⎨+⎩≥…,解得6;a ≥ ……13分 当A B ⊆,实数a 的取值范围是[6,)+∞. ……14分16.(本小题满分14分)(1)2()6cos cos f x x b x a x ⋅==- ……2分1+cos2622xx =⨯……4分=3cos223x x +=)36x p++. ……6分∴()f x 的最小正周期为22T ==ππ, ……8分 (2)0,2x ⎡⎤∈⎢⎥⎣⎦π,∴72666x +πππ剟, ……10分∴1-…cos(2)6x +π-? ……12分∴()f x 值域为[3- ……14分17.(本小题满分14分) (1)()2,4A ,()3,1C ,∴()1,3AC =-,10AC =……2分又ABCD 是平行四边形∴AB CD =,()3,2AB =--,设(),D x y ,又()3,1DC x y =--,所以63x y =⎧⎨=⎩即()6,3D =, ……5分 ()7,1BD =,故52BD = ……7分(2)(),C a b ,则()3,1D a b ++,∴()2,4AC a b =--,()4,1BD a b =+-,……9分()2222545452541244AC BD a a b b a b ⎛⎫⋅=++--=++--≥- ⎪⎝⎭, ……12分当且仅当51,2a b =-=时AC BD ⋅的最小值为454-. ……14分18.(本小题满分16分) 解:(1)长方形ABCD 中,AB =8,AD =4,M 、N 分别为AD 、DC 的中点,且BP =x ,BQ =y .∴AP =8-x ,CQ =4-y . ……1分 则4CMN S ∆= ,2(4)CNQ S y ∆=- ,8AMP S x ∆=- ,12BPQ S xy ∆=. ∴PQMN ABCD =()CMN CNQ AMP BPQ S S S S S S ∆∆∆∆-+++四边形长方形. =1122152x y xy ++-=. ……4分 ∴2(3)4x y x -=-. ……5分又0804x y <<⎧⎨<<⎩,解得:03x <<或58x <<. …… 8分(2)设游客步行距离之和为l (万千米). 则l x y =+=2(3)4x x x -+-=26[(4)]4x x--+-. ……11分观光车站P 位于线段AB 靠近入口B 的一侧,∴03x <<,即144x <-<.由基本不等式:2(4)4x x-+-≥4x =. ……13分∴当4x =2y =max 6l =- ……15分答:应选定P 离入口B为4km )处,选定Q 离入口B为2km )处可使游客步行距离之和最大,最大值为6- ……16分19.(本小题满分16分)解析:(1)由()221110n n n n n a a a na ++++-=可以得到()()1110n n n n n a na a a +++-+=⎡⎤⎣⎦,10n n a a ++>,∴()110n n n a na ++-=,∴()11n n n a na ++=, ……2分即()1111n n n a na a ++====,∴{}n a 的通项为1n a n=. ……4分 由1n n S a =-可以得到111b b =-也就是112b =且111n n S b ++=-,因此11n n n b b b ++=-,即为112n n b b +=,{}n b 为等比数列,12nn b ⎛⎫= ⎪⎝⎭. ……6分 (2)①12nn n n b c n a ⎛⎫== ⎪⎝⎭,211112222nn T n ⎛⎫⎛⎫=⨯+⨯++ ⎪ ⎪⎝⎭⎝⎭……8分()211111112222nn n T n n +⎛⎫⎛⎫⎛⎫=⨯++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111122222nn n T n +⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以111222n nn T n -⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭. ……11分②由题设有313322284m c c =+=⨯=, 所以14m c =, ……12分 当3k ≥时,()1111122kk k k c c k k --⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭()111122k k k k -⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭()122kk ⎛⎫=- ⎪⎝⎭,10k k c c --<,所以当3k ≥时,{}k c 为减数列, ……15分又414c =,所以4m =. 所以存在正整数4m =此时234,,c c c 成等差数列 ……16分20.(本小题满分16分)(1)当4a =时,不等式可化为428x x x -+≥.若4x ≥,则2280x x --≥,∴4x ≥; ……2分 若4x <,则2680x x -+…,∴24x <…. ……4分 综上,不等式解集为[)2,+∞. ……5分(2)2222222222(2)()(2)2222a a x x ax a x x a f x x a x x a a a x x a⎧--⎛⎫⎛⎫--⎪ ⎪ ⎪⎧--⎪⎝⎭⎝⎭==⎨⎨-++<++⎩⎛⎫⎛⎫⎪--+< ⎪ ⎪⎪⎝⎭⎝⎭⎩≥≥ ……7分下面比较22,,22a a a -+的大小: ∵[]0,4a ∈, ∴当[]0,2a ∈时,22022a a a ----=<,22022a aa +--=≥∴()f x 在R ∴()f x a . ……9分当(2,4a ∈a =∴f 若34a <…,则()f x 在区间[]3,4上的最小值为()2f a a =. ……12分x(3)由(2)知当[]0,2a ∈时,如图1,关于x 的方程()()f x tf a =不可能有3个不相等的实数根. ……13分当(]2,4a ∈时,要存在a ,使得关于x 的方程()()f x tf a =有3个不相等的实数根,则2()()2a f a tf a f +⎛⎫<< ⎪⎝⎭有解,∴()max2()2124()a f t a f a +⎛⎫ ⎪<<<⎪ ⎪⎝⎭… ……14分 2()142(4)()8a f a f a a +=++,且函数4y a a=+在区间(]2,4上为增函数(不证明单调性扣1分)∴max2()92()8a f f a +⎛⎫⎪= ⎪ ⎪⎝⎭,∴918t <<. ……16分。
江苏省苏州市2016-2017高一下学期数学期末试卷含答案
2016~2017学年第二学期苏州市高一期末调研测试数 学2017.6注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在答题卡的指定位置.3.答题时,必须用0.5毫米黑色字迹的签字笔填写在答题卡的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. 6.样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. 已知全集{0}U x x =>,{3}A x x =≥,则UA = .2. 若数据128,,,x x x ⋅⋅⋅的方差为3,则数据1282,2,,2x x x ⋅⋅⋅的方差为 .3.某高级中学共有1200名学生,现用分层抽样的方法从该校学生中抽取一个容量为60的样本,其中高一年级抽30人,高三年级抽15人. 则该校高二年级学生人数为 . 4.集合{1,2,3,4}A =,{1,2,3}B =,点P 的坐标为(),m n ,m A ∈,n B ∈,则点P 在直线5x y +=上的概率为 .5. 已知3cos 5θ=-,,2θ⎛⎫∈ ⎪⎝⎭ππ,则cos 3θ⎛⎫-= ⎪⎝⎭π .6. 算法流程图如右图所示,则输出的结果是 . 7. 已知{}n a 为等差数列,1233a a a ++=-,4566a a a ++=,则8S = .8. 已知()f x 是定义在R 上的奇函数,当0x >时,2()f x x x =-,则不等式()f x x >的解(第6题图)(第9题图)集用区间表示为 .9.如图,为了探求曲线2y x =,2x =与x 轴围成的曲边三角形OAP 的面积,用随机模拟的方法向矩形OAPB 内随机投点1080次,现统计落在曲边三角形OAP 的次数360次,则可估算曲边三角形OAP 面积为 .10.ABC ∆中,3,4AB AC ==,若ABC ∆的面积为BC 的长是 .11.若点(),x y 位于曲线y x =与1y =所围成的封闭区域内(含边界),则2x y -的最小值为 .12.已知,x y 是正实数,则223y x x yx y--+的最小值为 . 13. 如图,等腰梯形AMNB 内接于半圆O ,直径4AB =,2MN =,MN 的中点为C ,则AM BC ⋅的值为 .14.已知等差数列{}n a 和等比数列{}n b 满足117a b +=, 224a b +=,335a b +=,442a b +=,则n n a b += .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数2x y =(03x <<)的值域为A ,函数[]lg ()(2)y x a x a =-+-- (其中0a >)的定义域为B .(1)当4a =时,求A B ;(2)若A B ⊆,求正实数a 的取值范围.16.(本小题满分14分)已知向量a ()2cos x x =,b ()3cos ,2cos x x =-,设函数()f x =a ⋅b . (1)求()f x 的最小正周期;(第13题图)(2)若0,2x ⎡⎤∈⎢⎥⎣⎦π,求()f x 的值域.17.(本小题满分14分)平面直角坐标系xOy 中,()2,4A ,()1,2B -,,C D 为动点. (1)若()3,1C ,求平行四边形ABCD 的两条对角线的长度; (2)若(,)C a b ,且()3,1CD =,求AC BD ⋅取得最小值时,a b 的值.18.(本小题满分16分)某生态公园的平面图呈长方形(如图),已知生态公园的长AB =8(km),宽AD =4(km),M ,N 分别为长方形ABCD 边AD ,DC 的中点,P ,Q 为长方形ABCD 边AB ,BC (不含端点)上的一点.现公园管理处拟修建观光车道P -Q -N -M -P ,要求观光车道围成四边形(如图阴影部分)的面积为15(km 2),设BP =x (km),BQ =y (km),(1)试写出y 关于x 的函数关系式,并求出x 的取值范围;(2)若B 为公园入口,P ,Q 为观光车站,观光车站P 位于线段AB 靠近入口B 的一侧.经测算,每天由B 入口至观光车站P ,Q 乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P ,Q 的位置,使所有游客步行距离之和最大,并求出最大值.19.(本小题满分16分)已知正项数列{}n a 满足11a =,()221110n n n n n a a a na ++++-=,数列{}n b 的前n 项和为n S 且1n n S b =-.PQCNMBD A(第18题图)(1)求{}n a 和{}n b 的通项; (2)令nn nb c a =, ①求{}n c 的前n 项和n T ;②是否存在正整数m 满足3m >,23,,m c c c 成等差数列?若存在,请求出m ;若不存在,请说明理由.20.(本小题满分16分)已知函数()()2f x x x a x a =-+∈R (1)当4a =时,解不等式()8f x ≥;(2)当[]0,4a ∈时,求()f x 在区间[]3,4上的最小值;(3)若存在[]0,4a ∈,使得关于x 的方程()()f x tf a =有3个不相等的实数根,求实数t 的取值范围.2016~2017学年苏州市高一期末调研测试数学参考答案 2017.6一、填空题:1.()0,3 2.12 3.300 4.14 5.3106.5 7.12 8.()2,0(2,)-+∞9.8310 11 3- 12.4313.1 14.()171n n --+- 二、解答题: 15.(本小题满分14分)解:(1){}|18A x x =<<, ……3分 当4a =时,{}{}2|224046B x x x x x =--<=-<<, ……5分{}|16A B x x ∴=<<. ……8分(2)0a >,{}{}()(2)02B x x a x a x a x a ∴=+--<=-<<+, ……10分1,28a A B a -⎧⊆∴⎨+⎩≥,解得6;a ≥ ……13分 当A B ⊆,实数a 的取值范围是[6,)+∞. ……14分16.(本小题满分14分)(1)2()6cos cos f x x b x a x ⋅==- ……2分1+cos2622xx =⨯……4分=3cos223x x +=)36x ++. ……6分∴()f x 的最小正周期为22T ==ππ, ……8分 (2)0,2x ⎡⎤∈⎢⎥⎣⎦π,∴72666x +πππ, ……10分 ∴1-3cos(2)6x +π ……12分∴()f x 值域为[3- ……14分17.(本小题满分14分) (1)()2,4A ,()3,1C ,∴()1,3AC =-,10AC =……2分又ABCD 是平行四边形∴AB CD =,()3,2AB =--, 设(),D x y ,又()3,1DC x y =--,所以63x y =⎧⎨=⎩即()6,3D =, ……5分 ()7,1BD =,故52BD =. ……7分(2)(),C a b ,则()3,1D a b ++,∴()2,4AC a b =--,()4,1BD a b =+-,……9分()2222545452541244AC BD a a b b a b ⎛⎫⋅=++--=++--≥- ⎪⎝⎭, ……12分当且仅当51,2a b =-=时AC BD ⋅的最小值为454-. ……14分18.(本小题满分16分) 解:(1)长方形ABCD 中,AB =8,AD =4,M 、N 分别为AD 、DC 的中点,且BP =x ,BQ =y .∴AP =8-x ,CQ =4-y . ……1分 则4CMN S ∆= ,2(4)CNQ S y ∆=- ,8AMP S x ∆=- ,12BPQ S xy ∆=. ∴PQMN ABCD =()CMN CNQ AMP BPQ S S S S S S ∆∆∆∆-+++四边形长方形.=1122152x y xy ++-=. ……4分 ∴2(3)4x y x -=-. ……5分又0804x y <<⎧⎨<<⎩,解得:03x <<或58x <<. …… 8分 (2)设游客步行距离之和为l (万千米). 则l x y =+=2(3)4x x x -+-=26[(4)]4x x--+-. ……11分观光车站P 位于线段AB 靠近入口B 的一侧,∴03x <<,即144x <-<.由基本不等式:2(4)4x x-+-≥4x =. ……13分∴当4x =-2y =max 6l =- ……15分答:应选定P 离入口B 为4km )处,选定Q 离入口B 为2(km )处可使游客步行距离之和最大,最大值为6- ……16分 19.(本小题满分16分)解析:(1)由()221110n n n n n a a a na ++++-=可以得到()()1110n n n n n a na a a +++-+=⎡⎤⎣⎦,10n n a a ++>,∴()110n n n a na ++-=,∴()11n n n a na ++=, ……2分即()1111n n n a na a ++====,∴{}n a 的通项为1n a n=. ……4分 由1n n S a =-可以得到111b b =-也就是112b =且111n n S b ++=-,因此11n n n b b b ++=-,即为112n n b b +=,{}n b 为等比数列,12nn b ⎛⎫= ⎪⎝⎭. ……6分(2)①12n n n n b c n a ⎛⎫== ⎪⎝⎭,211112222nn T n ⎛⎫⎛⎫=⨯+⨯++ ⎪ ⎪⎝⎭⎝⎭……8分()211111112222nn n T n n +⎛⎫⎛⎫⎛⎫=⨯++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111122222nn n T n +⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以111222n nn T n -⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭. ……11分②由题设有313322284m c c =+=⨯=, 所以14m c =, ……12分 当3k ≥时,()1111122kk k k c c k k --⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭()111122k k k k -⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭()122kk ⎛⎫=- ⎪⎝⎭,10k k c c --<,所以当3k ≥时,{}k c 为减数列, ……15分又414c =,所以4m =. 所以存在正整数4m =此时234,,c c c 成等差数列 ……16分20.(本小题满分16分)(1)当4a =时,不等式可化为428x x x -+≥.若4x ≥,则2280x x --≥,∴4x ≥; ……2分 若4x <,则2680x x -+,∴24x <. ……4分 综上,不等式解集为[)2,+∞. ……5分(2)2222222222(2)()(2)2222a a x x ax a xx a f x x a xx a a a x x a⎧--⎛⎫⎛⎫--⎪ ⎪ ⎪⎧--⎪⎝⎭⎝⎭==⎨⎨-++<++⎩⎛⎫⎛⎫⎪--+< ⎪ ⎪⎪⎝⎭⎝⎭⎩≥≥ ……7分下面比较22,,22a a a -+的大小: ∵[]0,4a ∈, ∴当[]0,2a ∈时,22022a a a ----=<,22022a aa +--=≥∴()f x 在R ∴()f x a .……9分当(2,4a ∈a -=∴f 为减函数, 若34a <,则()f x 在区间[]3,4上的最小值为()2f a a =. ……12分(3)由(2)知当[]0,2a ∈时,如图1,关于x 的方程()()f x tf a =不可能有3个不相等的实数根. ……13分当(]2,4a ∈时,要存在a ,使得关于x 的方程()()f x tf a =有3个不相等的实数根,则2()()2a f a tf a f +⎛⎫<< ⎪⎝⎭有解,∴()max2()2124()a f t a f a +⎛⎫⎪<<< ⎪ ⎪⎝⎭ ……14分x2()142(4)()8a f a f a a+=++,且函数4y a a =+在区间(]2,4上为增函数(不证明单调性扣1分)∴max2()92()8a f f a +⎛⎫⎪= ⎪ ⎪⎝⎭,∴918t <<. ……16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016~2017学年第一学期期末考试试卷
高一数学
一、填空题:本大题共14个小题,每小题5分,共计70分。
1. 已知集合}101{,,-=A ,}210{,,=B ,则=B A __________.
2. 已知)(x f 是偶函数,当0≥x 时,1)(+=x x f ,则=-)1(f __________.
3. 若3tan =α,3
4tan =β,则=-)tan(βα__________. 4. 已知)4,3(-A ,)25(-,
B ,则=||__________. 5. 函数12-=x e y 的零点是__________.
6. 把函数x y sin =的图象上所有点的横坐标缩小到原来的
21(纵坐标不变),再将图象上所有点右平移3
π个单位,所得函数图象所对应的解析式=y __________. 7. 若函数⎪⎩⎪⎨⎧∈-∈=]
2017,0[,4)0,2017[,)41()(x x x f x x ,则=)3(log 2f __________.
8. 函数)42sin(π
-=x y 的单调增区间为__________.
9. 设b a 、是两个不共线向量,b a p +=2,b a +=,b a 2-=,若D B A 、、三点共线,则实数=p __________.
10. 若2
2)4sin(2cos -=-παα
,则=α2sin __________. 11. 2)(x x f =,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是__________.
12. 如图,O 是坐标原点,N M 、是单位圆上的两点,且分别在第一和第三象限,则||+的范围为__________.
13. 如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若4
1sin =θ,则折痕l 的长度=__________cm.
14. 函数),,(1
)(2R ∈++=c b a ax c bx x f 是奇函数,且)2()()2(f x f f ≤≤-,则=a __________.
二、解答题:本大题共6小题,计90分。
15. (本题满分14分)
已知)2,1(=a ,)1,3(-=b .
(I)求b a 2-;
(II)设b a ,的夹角为θ,求θcos 的值;
(III)若向量b a k +与b a k -互相垂直,求k 的值.
16. (本题满分14分) 已知⎪⎭⎫ ⎝⎛∈20πα,,⎪⎭⎫
⎝⎛∈ππβ,2,31cos -=β,()624sin -=+βα. (I)求β2tan 的值;
(II)求α的值.。