粒子群优化算法PPT
粒子群优化算法与蚁群算法PPT
5
6
背景
对鸟群行为的模拟: Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改 变方向,散开或者聚集等。那么一定有某种潜在 的能力或规则保证了这些同步的行为。这些科学 家都认为上述行为是基于不可预知的鸟类社会行 为中的群体动态学。
粒子群优化算法的基本思想是通过群体中个体 之间的协作和信息共享来寻找最优解.
9
算法介绍
设想这样一个场景:一群鸟在随机的搜索食物。 在这个区域里只有一块食物,所有的鸟都不知道 食物在那。但是它们知道自己当前的位置距离食 物还有多远。
那么找到食物的最优策略是什么?
最简单有效的就是搜寻目前离食物最近的鸟的 周围区域。
在找到这两个最优值后,粒子通过下面的 公式来更新自己的速度和位置。
v k 1 i
vik
c1
rand
()
(
pbest
xik
)
c2
rand
()
(gbest
xik
) (1)式
xk 1 i
xik
vik 1
(2)式
在式(1)、(2)中,i=1,2,…,M,M是该群体中粒
子的总数
12
粒子就是通过自己的经验和同伴中最好的经验 来决定下一步的运动。
以上面两个公式为基础,形成了后来PSO 的标 准形式
15
算法介绍
1998年shi等人在进化计算的国际会议上
发表了一篇论文《A modified particle swarm
optimizer》对前面的公式(1)进行了修正。引 入惯性权重因子。
粒子群优化算法(PSO)
我们采用遗传算法的思想解决。 (1)w*v项可看作是一种变异操作。 (2)c1*(pbest-x) + c2*(gbest-x) 项可看作是一种 交叉操作。
交叉与变异
交叉: P1=(1 2 | 3 4 5 6 | 7 8 9) P2=(9 8 | 7 6 5 4 | 3 2 1) Q1=(1 2 | 7 6 5 4 | 3 8 9) Q2=(9 8 | 3 4 5 6 | 7 2 1) R=(1 2 | 3 4 5 6 | 7 8 9) S=(1 2 | 6 5 4 3 | 7 8 9)
756 4953
遗传算法 1.6s 28.1s 154.6s 200.6s 215.0s
567 3842
粒子群优化 0.016s 0.578s 31.9s 56.1s 73.9s
538 2579
时间分析
性能比较
模拟退火
遗传算法
粒子群优化
研究方向
• (1) 算法分析。PSO在实际应用中被证明是有效的, 但目前 还没有给出完整收敛性、收敛速度估计等方面的数学证明, 已有的工作还远远不够。 • (2) 参数选择与优化。参数w、c1、c2的选择分别关系粒子 速度的3个部分:惯性部分、社 会部分和感知部分在搜索中 的作用.如何选择、优化和调整参数,使得算法既能避免早 熟又 能比较快速地收敛,对工程实践有着重要意义。 • (3) 与其他演化计算的融合。如何将其它演化的优点和PSO 的优点相结合,构造出新的混合算 法是当前算法改进的一 个重要方向。 • (4) 算法应用。算法的有效性必须在应用中才能体现,广泛 地开拓PSO的应用领域,也对深化 研究PSO算法非常有意义。
粒子群算法(基础精讲)课件
神经网络训练
神经网络训练是指通过训练神经网络来使其能够学习和模拟特定的输入输出关系 。粒子群算法可以应用于神经网络的训练过程中,通过优化神经网络的参数来提 高其性能。
例如,在机器视觉、语音识别、自然语言处理等领域中,神经网络被广泛应用于 各种任务。粒子群算法可以用于优化神经网络的结构和参数,从而提高其分类、 预测等任务的准确性。
优势
在许多优化问题中,粒子群算法表现出了良好的全局搜索能 力和鲁棒性,尤其在处理非线性、多峰值等复杂问题时具有 显著优势。
粒子群算法的核心要素
02
粒子个体
01
粒子
在粒子群算法中,每个解被称为一个粒子,代表问题的 一个潜在解。
02
粒子状态
每个粒子的位置和速度决定了其状态,其中位置表示解 的优劣,速度表示粒子改变方向的快慢。
社会认知策略的引入
总结词
引入社会认知策略可以增强粒子的社会性,提高算法的群体协作能力。
详细描述
社会认知策略是一种模拟群体行为的方法,通过引入社会认知策略,可以增强粒子的社会性,提高算 法的群体协作能力。在粒子群算法中引入社会认知策略,可以使粒子更加关注群体最优解,促进粒子 之间的信息交流和协作,从而提高算法的全局搜索能力和鲁棒性。
03 粒子群算法的实现步骤
初始化粒子群
随机初始化粒子群的 位置和速度。
初始化粒子的个体最 佳位置为随机位置, 全局最佳位置为随机 位置。
设置粒子的个体最佳 位置和全局最佳位置 。
更新粒子速度和位置
根据粒子个体和全局最佳位置计 算粒子的速度和位置更新公式。
更新粒子的速度和位置,使其向 全局最佳位置靠近。
每个粒子都有一个记录其历史最 佳位置的变量,用于指导粒子向
优化算法-粒子群优化算法
步骤四:对于粒子的每一维,根据式(1)计算得到一个随机点 的位置。
步骤五:根据式(2)计算粒子的新的位置。
步骤六:判断是否满足终止条件。
粒子群优化算法
PSO算法在组合优化问题中的应用
典型的组合优化问题:TSP
粒子群优化算法
量子行为粒子群优化算法的基本模型
群智能中个体的差异是有限的,不是趋向于无穷大的。群体的聚 集性是由相互学习的特点决定的。
个体的学习有以下特点: 追随性:学习群体中最优的知识
记忆性:受自身经验知识的束缚
创造性:使个体远离现有知识
粒子群优化算法
聚集性在力学中,用粒子的束缚态来描述。产生束缚态的原因是 在粒子运动的中心存在某种吸引势场,为此可以建立一个量子化 的吸引势场来束缚粒子(个体)以使群体具有聚集态。
描述为: 给定n 个城市和两两城市之间的距离, 求一条访问各城市
一次且仅一次的最短路线. TSP 是著名的组合优化问题, 是NP难题, 常被用来验证智能启发式算法的有效性。
vid (t 1) wvid (t) c1r1 pid (t) xid (t) c2r2( pgd (t) xid (t))
xid (t 1) xid (t) vid (t 1)
粒子群优化算法
w 惯性权重 可以是正常数,也可以是以时间为变量的线性或非线性
正数。
粒子群优化算法
通常动态权重可以获得比固定值更好的寻优结果,动态权重可以在 pso搜索过程中呈线性变化,也可以根据pso性能的某个测度函数 而动态改变,目前采用的是shi建议的随时间线性递减权值策略。
粒子群优化算法
《粒子群优化算法》课件
CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数
粒子群优化算法
好地求解各类优化问题。
03
多目标优化
多目标优化是未来粒子群优化算法的一个重要研究方向,可以解决实
际优化问题中多个目标之间的权衡和取舍。
THANKS
谢谢您的观看
粒子群优化算法
xx年xx月xx日
目录
• 粒子群优化算法简介 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进 • 粒子群优化算法的应用案例 • 粒子群优化算法的总结与展望
01
粒子群优化算法简介
什么是粒子群优化算法
粒子群优化算法是一种群体智能优化算法,通过模拟鸟群、 鱼群等动物群体的社会行为,利用群体中个体之间的相互作 用和信息共享,寻找问题的最优解。
动态调整约束参数
通过动态调整约束参数,使算法在不同阶段都能保持较好的优化效果。同时 ,可以设置一些参数的自适应调整策略,如根据迭代次数、最优解的位置和 速度等信息来自适应调整。
04
粒子群优化算法的应用案例
函数优化问题
求解函数最大值
粒子群优化算法可以用于求解各类连续或离散函数的最大值,例如非线性函数、 多峰函数等。通过不断迭代寻优,能够找到函数的局部最大值或全局最大值。
03
粒子群优化算法的参数包括粒子群的规模、惯性权重、加速常数和学习因子等 ,这些参数对算法的性能和收敛速度有着重要影响。
粒子群优化算法的应用领域
粒子群优化算法被广泛应用于各种优化问题中,包括函 数优化、路径规划、电力系统优化、机器学习、图像处 理、控制工程、模式识别、人工智能等领域。
具体应用包括:函数优化问题的求解、神经网络训练的 优化、控制系统参数的优化、机器人路径规划、图像处 理中的特征提取和分类等。
空间搜索的改进
引入高斯分布
通过引入高斯分布,使粒子速度更新过程中更侧重于向当前 最优解方向靠拢,提高算法的局部搜索能力。
粒子群算法
粒子群算法(PSO)
算法在迭代30次后跳出循环,输出最优解为[0.0202,0.0426],此时目标函数值为 因为我们选用的例子为二次型规划,显然最优解为[0,0],最优值为0。 最后,我们用一个三维动画来展示一下粒子群算法的寻优过程。
粒子群算法(PSO)
一、粒子群算法的概述 粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块 食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食物源。鸟群在整个搜寻的过程中,通 过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解, 同时也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,即我们所说的找到了最 优解,即问题收敛。
粒子群算法(PSO)
粒子群算法(PSO)
粒子群算法(PSO)
粒子群算法(PSO)
粒子群优化算法(Particle Swarm Optimization,简称PSO), 由1995年Eberhart博士和Kennedy 博士共同提出,它源于对鸟群捕食行为的研究。粒子群优化算法的基本核心是利用群体中的个体对信息的 共享,从而使得整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。 假设自己是一只身处鸟群中的鸟,现在要跟随头领去森林里找食物,我们每一只鸟都知道自己离食物的距 离,却又不知道食物在哪个方向。 所以,我们在森林里漫无目地的飞啊飞,每隔一段时间,大家会在微信群里共享一次各自与食物的距离。 然后鸟A发现自己与食物的距离是5公里,而群里鸟Z距离食物最近,只有50米的距离。 鸟A当机立断,在群里说:“我要去那看看!”然后一呼百应,鸟B、鸟C等都往鸟Z方向飞去,在鸟Z的周 围寻找食物。 就这样,本来大家都在沿着自己的方向飞,现在都要向鸟Z的位置靠拢,所以大家需要修改自己的飞行速 度和方向。 但是,当所有鸟儿准备调整自己的飞行轨迹时,鸟H突然想到:虽然现在鸟Z离食物只有50米,但是自己 曾经路过点P,那个位置离食物只有40米,所以它不知道自己是应该往点P方向还是往鸟Z的位置飞去。 鸟H就把自己的纠结发到了微信群里,然后大家一致决定,还是两者平衡一下,对两个位置进行矢量相加, 所以大家共同商量出了速度更新公式粒子群算法源自PSO)粒子群算法(PSO)
粒子群优化算法
粒子群优化算法的基本原理是利用群体中粒子的运动状态和个体最优解以及全局最优解之间的关系。通过不断更新粒子的速度和位置
每个粒子都有一个速度和位置,粒子在搜索空间中的运动状态由速度和位置决定
在每次迭代过程中,粒子通过比较自身的个体最优解和全局最优解,更新自己的速度和位置,以便更好地适应整个群体的运动。更新的公式如下
粒子群优化算法在函数优化中的应用
粒子群优化算法可以用于优化神经网络的参数,如学习率、动量等,以提高神经网络的训练效果和性能。
参数优化
粒子群优化算法也可以用于优化神经网络的拓扑结构,如层数、神经元数等,以进一步提高神经网络的性能。
网络结构优化
粒子群优化算法在神经网络训练中的应用
特征选择
粒子群优化算法可以应用于特征选择,通过优化特征组合以提高分类器的性能。
2023
粒子群优化算法
粒子群优化算法简介粒子群优化算法的基本框架粒子群优化算法的改进粒子群优化算法的应用结论
contents
目录
01
粒子群优化算法简介
粒子群优化算法是一种群体智能优化算法,通过模拟鸟群、鱼群等动物群体的社会行为,利用群体中个体之间的相互作用和信息共享,寻找问题的最优解。
粒子群优化算法的基本思想是将每个个体看作是在搜索空间中自由运动的粒子,粒子的运动状态由速度和位置决定,粒子通过不断更新自身的速度和位置来适应整个群体的运动,最终达到全局最优解。
选择最优解
03粒子群优化算法的改进来自对初始粒子群的敏感依赖
惯性权重的固定值问题
对速度更新公式的依赖
粒子群优化算法的局限性
VS
根据算法的迭代过程和性能,动态调整惯性权重的值,使算法更好地平衡探索和开发能力。
多种惯性权重的选择
粒子群优化算法(详细易懂)
粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN
粒子群优化算法PSO
Pbesti : 粒子i所经过的最好位置
Gbest : 种群所经过的最好位置
Vmax ,vi Vmax ,Vmax ,vi超过边界就取边界值
7
3.粒子群算法
區域 最佳解
運動向量
pg
慣性向量
全域 最佳解
8
3.粒子群算法
• 学习因子:分别调节向Pbest和Gbest方向飞行的最大步长,决定 粒子个体经验和群体经验对粒子运行轨迹的影响,反映粒子群之 间的信息交流。
Evaluate particle i and set Pbesti = Xi
end for
Gbest = min {Pbesti}
while not stop
for i=1 to N
Update the velocity and position of particle i
Evaluate particle i
断食物的所在。PSO正是从这种模型中得到了启发
PSO的基础是信息的社会分享
4
3.粒子群算法
• 基本思想
• 所有的粒子都由一个Fitness Function 确定适应值以判断目前的 位置好坏。
• 每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。 • 每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根
Else, vid = wk vid + r Pbestid xid
vid min Vmax d ,max Vmax d ,vid
xid = xid + vid EndFor
If xi X min , X max ,计算粒子i的适应度值,更新Gbest,Pbest,记录粒子的Pbest
粒子群算法ppt课件
粒子群算法Reynolds,Heppner,Grenader等发现,鸟群在行进过程中会突然同步地改变方向,散开或聚集。
一定有种潜在的规则在起作用,据此他们提出了对鸟群行为的模拟。
在他们的早期模型中,仅仅依赖个体间距的操作,即群体的同步是个体之间努力保持最优距离的结果。
1987年Reynolds对鸟群社会系统的仿真研究,一群鸟在空中飞行,每个鸟遵守以下三条规则:1)避免与相邻的鸟发生碰撞冲突;2)尽量与自己周围的鸟在速度上保持协调和一致;3)尽量试图向自己所认为的群体中靠近。
仅通过使用这三条规则,系统就出现非常逼真的群体聚集行为,鸟成群地在空中飞行,当遇到障碍时它们会分开绕行而过,随后又会重新形成群体。
作为CASKennedy和Eberhart在CAS中加入了一个特定点,定义为食物,鸟根据周围鸟的觅食行为来寻找食物。
他们的初衷是希望通过这种模型来模拟鸟群寻找食源的现象,然而实验结果却揭示这个仿真模型中蕴涵着很强的优化能力,尤其是在多维空间寻优中。
鸟群觅食行为Food Global BestSolutionPast BestSolution车辆路径问题构造一个2L维的空间对应有L个发货点任务的VRP问题,每个发货点任务对应两维:完成该任务车辆的编号k,该任务在k车行驶路径中的次序r为表达和计算方便,将每个粒子对应的2L维向量X分成两个L维向量:Xv(表示各任务对应的车辆)和Xr(表示各任务在对应的车辆路径中的执行次序)。
例如,设VRP问题中发货点任务数为7,车辆数为3,若某粒子的位置向量X为:发货点任务号: 1 2 3 4 5 6 7Xv : 1 2 2 2 2 3 3Xr : 1 4 3 1 2 2 1则该粒子对应解路径为:车1:0 → 1 → 0车2:0 → 4 →5 → 3→ 2→ 0车3:0 → 7→ 6→ 0粒子速度向量V与之对应表示为Vv和Vr。
该表示方法的最大优点是使每个发货点都得到车辆的配送服务,并限制每个发货点的需求仅能由某一车辆来完成,使解的可行化过程计算大大减少。
量子行为粒子群优化算法-中文版
量子行为粒子群优化
02
算法的实现过程
初始化阶段
01
02
03
初始化粒子群
在解空间中随机初始化一 组粒子,每个粒子代表一 个潜在的解。
初始化粒子速度
为每个粒子随机分配一个 速度,用于控制其位置的 变化。
初始化粒子位置
根据问题的约束条件和目 标函数,为每个粒子随机 分配一个初始位置。
更新阶段
计算适应度值
量子行为粒子群优化算法的基本原理
• 量子行为粒子群优化算法的基本原理是:每个粒子被视为一 个量子比特,其状态由波函数表示。粒子通过不断更新自己 的位置和速度来搜索解空间,同时通过与其它粒子的信息共 享和协作来不断逼近最优解。在更新过程中,粒子不仅受到 自身经验和群体最佳位置的影响,还受到量子旋转门和量子 测量等量子操作的作用,从而在解空间中实现全局搜索和局 部搜索的平衡。
THANKS.
组合优化问题
组合优化问题是指在一组可行解中寻 找最优解的问题,如旅行商问题、背 包问题、图着色问题等。
量子行为粒子群优化算法能够处理这 类问题,通过粒子间的信息共享和协 作,寻找最优解或近似最优解。
机器学习与数据挖掘
在机器学习和数据挖掘领域,量子行为粒子群优化算法可用 于特征选择、模型参数优化和超参数调整等方面。
算法在实际问题中的应用前景
组合优化问题
量子行为粒子群优化算法在求解组合优化问题方面具有优 势,如旅行商问题、背包问题等,有望在实际生产、物流 等领域得到广泛应用。
机器学习与数据挖掘
量子行为粒子群优化算法可用于特征选择、模型参数优化 等方面,为机器学习和数据挖掘提供新的思路和方法。
控制系统优化
在控制系统的参数优化和控制器设计中,量子行为粒子群 优化算法具有潜在的应用价值,有助于提高控制系统的性 能和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Swarm Intelligence
Swarm Intelligence (SI)的概念最早由Beni、 Hackwood和在分子自动机系统中提出。分子 自动机中的主体在一维或二维网格空间中与相 邻个体相互作用,从而实现自组织。1999年, Bonabeau、Dorigo和Theraulaz 在他们的著作 《Swarm Intelligence: From Natural to Artificial Systems中对群智能进行了详细的论 述和分析,给出了群智能的一种不严格定义: 任何一种由昆虫群体或其它动物社会行为机制 而激发设计出的算法或分布式解决问题的策略 均属于群智能。
Swarm Intelligence(续)
目前,已有的群智能理论和应用研究证明群 智能方法是一种能够有效解决大多数优化问 题的新方法,更重要是,群智能潜在的并行性 和分布式特点为处理大量的以数据库形式存 在的数据提供了技术保证。无论是从理论研 究还是应用研究的角度分析,群智能理论及应 用研究都是具有重要学术意义和现实价值的。
其它群智能优化算法(续)
张玲等则提出了一种“松散的脑袋”群智能模型, 采用特殊的随机人工神经网络构建了一种群智能 数学模型。每个神经元被看成一个主体,主体之 间的通讯连接看成各神经元之间的连接,但连接 是随机而不是固定的,即用一个随机连接的神经 网络来描述一个群体,这种神经网络来描述一个 群体。显然这种神经网络具有群体的智能。 基于群智能的优化算法设计必须遵守简单有 效的原则,对于自然现象过于复杂的模拟往往会 导致算法不具有推广性和实用价值,许多群智能 算法不成功的原因就在于此。
蚁群算法
蚁群算法(Ant Colony Optimization, ACO)由 Colorni,Dorigo和Maniezzo在1991年提出,它是通 过模拟自然界蚂蚁社会的寻找食物的方式而得出的一 种仿生优化算法。自然界种蚁群寻找食物时会派出一 些蚂蚁分头在四周游荡,如果一只蚂蚁找到食物,它 就返回巢中通知同伴并沿途留下“信息素” (pheromone) 作为蚁群前往食物所在地的标记。 信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物, 又采取不同路线回到巢中,那么比较绕弯的一条路上 信息素的气味会比较淡,蚁群将倾向于沿另一条更近 的路线前往食物所在地。
蚁群算法(续)
其它群智能优化算法
目前,还有一些不成熟的群智能优化算法, 国内值得关注的有以下几种。 2003年李晓磊、邵之江等提出的鱼群算法, 它利用自上而下的寻优模式模仿自然界鱼群觅 食行为,主要利用鱼的觅食、聚群和追尾行为, 构造个体底层行为;通过鱼群中各个体的局部 寻优,达到全局最优值在群体中凸现出来的目 的。在基本运算中引入鱼群的生存机制、竞争 机制以及鱼群的协调机制,提高算法的有效效 率。
Swarm Intelligence(续)
Swarm可被描述为一些相互作用相邻个体的集合体, 蜂群、蚁群、鸟群都是Swarm的典型例子。鱼聚集成 群可以有效地逃避捕食者,因为任何一只鱼发现异常 都可带动整个鱼群逃避。蚂蚁成群则有利于寻找食物, 因为任一只蚂蚁发现食物都可带领蚁群来共同搬运和 进食。一只蜜蜂或蚂蚁的行为能力非常有限,它几乎 不可能独立存在于自然世界中,而多个蜜蜂或蚂蚁形 成的Swarm则具有非常强的生存能力,且这种能力不 是通过多个个体之间能力简单叠加所获得的。社会性 动物群体所拥有的这种特性能帮助个体很好地适应环 境,个体所能获得的信息远比它通过自身感觉器官所 取得的多,其根本原因在于个体之间存在着信息交互 能力。
Swarm Intelligence(续)
[1] Proximity Principle: 群内个体具有能执行简单 的时间或空间上的评估和计算的能力。 [2] Quality Principle: 群内个体能对环境(包括群 内其它个体)的关键性因素的变化做出响应。 [3] Principle of Diverse Response: 群内不同个体 对环境中的某一变化所表现出的响应行为具有 多样性。 [4] Stability Principle: 不是每次环境的变化都会导 致整个群体的行为模式的改变。 [5] Adaptability Principle: 环境所发生的变化中, 若出现群体值得付出代价的改变机遇,群体必 须能够改变其行为模式。
Russell C. Eberhart (M’88–SM’89– F’01) received the Ph.D. degree in electrical engineering from Kansas State University, Manhattan.He is the Chair and Professor of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indiana University–Purdue University Indianapolis (IUPUI),Indianapolis, IN. He is coeditor of Neural Network PC Tools(1990),coauthor of Computational Intelligence PC Tools (1996), coauthor of Swarm Intelligence(2001), Computational Intelligence: Concepts to Implementations(2004). He has published over 120 technical papers.Dr. Eberhart was awarded the IEEE Third Millenium Medal. In 2002, he became a Fellow of the American Institute for Medical and Biological Engineering.
优化问题简介
PSO算法简介
粒子群算法(particle swarm optimization,PSO) 由Kennedy和Eberhart在1995年提出,该算法模 拟鸟集群飞行觅食的行为,鸟之间通过集体的协 作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。同遗传算法类似,也是 一种基于群体叠代的,但并没有遗传算法用的交 叉以及变异,而是粒子在解空间追随最优的粒子 进行搜索。PSO的优势在于简单容易实现同时又 有深刻的智能背景,既适合科学研究,又特别适 合工程应用,并且没有许多参数需要调整。
Swarm Intelligence(续)
信息的交互过程不仅仅在群体内传播了信息,而 且群内个体还能处理信息,并根据所获得的信息 (包括环境信息和附近其它个体的信息)改变自身 的一些行为模式和规范,这样就使得群体涌现出一 些单个个体所不具备的能力和特性,尤其是对环境 的适应能力。这种对环境变化所具有适应的能力可 以被认为是一种智能(关于适应性与智能之间的关 系存在着一些争议,Fogel认为智能就是具备适应 的能力),也就是说动物个体通过聚集成群而涌现 出了智能。因此,Bonabeau 将SI的定义进一步推 广为:无智能或简单智能的主体通过任何形式的聚 集协同而表现出智能行为的特性。这里我们关心的 不是个体之间的竞争,而是它们之间的协同。
蚁群算法(续)
ACO算法设计虚拟的“蚂蚁”,让它们摸索不同 路线,并留下会随时间逐渐消失的虚拟“信息 素”。根据“信息素较浓的路线更近”的原则, 即可选择出最佳路线。 目前,ACO算法已被广泛应用于组合优化问题 中,在图着色问题、车间流问题、车辆调度问题、 机器人路径规划问题、路由算法设计等领域均取 得了良好的效果。也有研究者尝试将ACO算法应 用于连续问题的优化中。由于ACO算法具有广泛 实用价值,成为了群智能领域第一个取得成功的 实例,曾一度成为群智能的代名词,相应理论研 究及改进算法近年来层出不穷。
Swarm Intelligence(续)
James Kennedy和Russell C.Eberhart在2001年出 版了《Swarm Intelligence》,是群智能发展的一个 重要历程碑,因为此时已有一些群智能理论和方法 得到了应用。他们不反对Bonabeau关于SI定义,赞 同其定义的基本精神,但反对定义中使用“主体” 一词。其理由是“主体”所带有自治性和特殊性是 许多Swarm的个体所不具备和拥有的,这将大大限 制Swarm的定义范围。他们认为暂时无法给出合适 的定义,赞同由Mark Millonas(1994)提出的构建 一个SI系统所应满足的五条基本原则:
James Kennedy received the Ph.D. degree from theUniversity of North Carolina, Chapel Hill, in 1992.He is with the U.S. Department of Labor, Washington,DC. He is a Social Psychologist who has been working with the particle swarm algorithm since 1994. He has published dozens of articles and chapters on particle swarms and related topics, in computer science and social science journals and proceedings. He is a coauthor of Swarm Intelligence (San Mateo, CA: Morgan Kaufmann, 2001), with R.C. Eberhart and Y. Shi, now in its third printing.
Swarm InΒιβλιοθήκη elligence(续)目前,已有的基于SI的优化算法都是源于对 动物社会通过协作解决问题行为的模拟,它 主要强调对社会系统中个体之间相互协同作 用的模拟。这一点与EC不同,EC是对生物演 化中适者生存的模拟。与EC一样的是,SI的 目的并不是为了忠实地模拟自然现象,而是 利用他们的某些特点去解决实际问题。另一 个与EC的相同点是,基于SI的优化算法也是概 率搜索算法。