2015年春季新版苏科版八年级数学下学期周周练习试卷112
2015年春季新版苏科版八年级数学下学期周周练习试卷72
泗洪育才实验学校八年级数学第一次周测试卷(满分:100分 时间:80分钟)班级 姓名 学号 得分一、选择题(每小题3分,共24分)1.下列调查工作需采用的普查方式的是 ( )A . 环保部门对淮河某段水域的水污染情况的调查B . 电视台对正在播出的某电视节目收视率的调查C . 质检部门对各厂家生产的电池使用寿命的调查D . 企业在给职工做工作服前进行的尺寸大小的调查2.要反映宿迁市一周内每天的最高气温的变化情况,宜采用 ( )A .条形统计图B . 扇形统计图C . 折线统计图D . 频数分布直方图3.为了了解某县八年级学生的体重情况,从中抽取了200名学生进行体重测试 .在这个问题中,下列说法错误的是 ( )A .全县八年级学生的体重是总体。
B .200名学生的体重是一个样本。
C .每个学生的体重是一个个体。
D .200名学生的体重是总体4.对某班40同学的一次数学成绩进行统计,适当分组后80~90分这个分数段的划记人数为“正”,那么此班在这个分数段的人数占全班人数的百分比是 ( )A .20%B .40%C .8%D .25%5.在整理数据5,5,3,■,2,,4时,■处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是1800,则■处的数据是( )A .2B .3C .4D .56.下图是某厂2007年各季度产值统计图(单位:万元):则下列说法正确的是 ( )A .四季度中,每季度生产总值有增有减B .四季度中,前三个季度的生产总值增长较快C .四季度中,各季度的生产总值变化一样D .第四季度生产总值增长最快7第二季度比第一季度增长8.如图的两个统计图,女生人数多的学校是 ( )A .甲校B .校C .甲、乙两校女生人数一样多D .无法确定二、填空题(每题3分,共24分) 7题 第8题9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是 _________ ,样本是 _________ .样本容量是 .10.常用统计图的类型有: _________ 、 _________ 、 _________ .11.在对25个数据进行整理的频数分布表中,各组的频数之和等于______,各组的频率之和等于__________.12.某中学数学教研组有25名教师,将他们按年龄分组,在38~45岁组内的教师有8名教师,那么这个小组的频率是 .13.某图书馆有A 、B 、C 三类图书,它的扇形统计图如图所示,那么(1)A 类图书所占百分比为 %;(2)若B 类图书有420万册,则C 类图书有___ 册.A 类书有 册。
苏科版2014-2015学年度第二学期期末考试八年级数学试题(二)
苏科版2014-2015学年度第二学期期末考试八年级数学模拟试题(二)(满分:150分 时间:120分钟)一、选择题:(每小题3分,共30分,)1.下列调查适合普查的是A .夏季冷饮市场上冰淇淋的质量B .某本书中某页的印刷错误C .公民保护环境的意识D .某批灯泡的使用寿命2.下列事件是随机事件的是A .没有水分,种子发芽B .367人中至少有2人的生日相同C .在标准气压下,-1℃冰融化D .小瑛买了一张彩票获得500万大奖 3.下列是中心对称图形的是4.下列各式成立的是A .()23434+=+B .223434+=+C .21122⎛⎫-=± ⎪⎝⎭D .21122⎛⎫-=- ⎪⎝⎭ 5.下列分式中,属于最简分式的是A .42xB .221x x +C .211x x --D .11x x -- 6.在反比例函数2k y x-=图象的每个象限内,y 随x 的增大而减少,则k 值可以是 A .3B .2C .1D .-1 7.如图,在等腰梯形ABCD 中,AD ∥B C ,AB =AD =DC ,∠B =60°,DE//AB ,梯形ABCD 的周长等于20 cm ,则DE 等于A .6 cmB .5 cmC .4 cmD .3 cm8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB'C'D'的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是A .68°B .20°C .28°D .22°9.已知m 是2的小数部分,则2212m m +-的值是 A .0 B .1 C .2 D .310.如图,正方形ABCD 内有两点E 、F 满足AE =4,EF =FC =12,AE ⊥EF ,CF ⊥EF ,则正方形ABCD 的边长为A .252B .102C .20D .202 二、填空题:(本大题共8小题,每小题4分,共32分,把答案直接填在答题卷相对应的位置上)11.当x 等于 时,分式223x x --无意义.12.化简82-的结果是 ▲13.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于 ▲ .14.反比例函数y =k x的图象过点P(2,6),那么k 的值是 . 15.化简113232+-+= . 16.若a <1,化简()211a --的结果为 . 17.设a >b >0.a 2+b 2=4ab ,则22a b ab -的值等于 .18.如图,已知双曲线y =k x(k>0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k = ▲ .三、解答题:(共88分,)19.化简与计算(本题满分24分,每小题6分) (1)114224÷; (2)()2312603a b b b ⎛⎫∙-≥ ⎪⎝⎭ (3)、10112()32(3)2π-+----; (4) 22)232(1)-2(2÷--;20.(本题满分12分,每小题6分)解下列方程:(1)30201x x =+ (2)11322x x x-=---21.(本题满分8分) 先化简,再求值:2111211x x x x x x +⎛⎫+÷⎪--+-⎝⎭,其中x =21+.22.(本题满分12分)今年某中学到“格林乡村公园”植树,已知该中学离公园约15km ,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h .(1)用v 分别表示自行车和汽车从学校到公园所用的时间;(2)求v 的值; (3)植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的23,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.23.(本题满分10分)某校为了提高学生的身体素质,每年都举行“冬季三项比赛”,要求每位同学都从“跳绳、踢毽子、长跑”三个项目中选取一个项目参加比赛.为了便于学校安排场地,体育组老师随机抽取了部分学生,对他们报名情况进行调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题:(1)将两幅统计图补充完整;(2)抽取的学生人数为 ▲ ;(3)若该校有1200名学生,试计算抽取的比例,并估计该校中选择“长跑”的人数.24.(本题满分10分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)△BEC是否为等腰三角形?请给出证明;(2)若AB=1,∠ABE=45°,求矩形的面积.25.(本题满分12分)某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图所示),现己知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y(万件)与时间x(天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,问题本次广告策划,设计师能否拿到“特殊贡献奖”?(说明:天数可以为小数,如3.14天等.)。
苏科版使用地区2015年八年级第二学期学期调查数学试卷
二、填空题: (本大题共 8 小题,每题 3 分,共 24 分)
11.调查市场上某种食品的色素含量是否符合国家标准,这种调查适用 或者“抽样调查” )
12.某中学要了解八年级学生的视力情况,在全校八年级中抽取了 30 名学生进行检测,在这个问题中, 总体是 ______ ___ ,样本是 _________ . ,∠D= .
5.下列事件是必然发生事件的是„„„„„„„„„„„„„„„„„„„„„( ) A.打开电视机,正在转播足球比赛; B.小麦的亩产量一定为 1500 千克; C.在只装有 5 个红球的袋中摸出 1 球,是红球 ; D.农历十五的晚上一定能看到圆月; 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M,向 P, Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最短的是„„ ( )
A.1 个
B.2 个
C.3 个
D.4 个
3.如图是一个风筝设计图,其主体部分(四边形 ABCD)关于 BD 所在的直线对称,AC 与 BD 相交于点 O, 且 AB≠AD, 则下列判断不正确的是„„„„„„„„„„„„„„„„„ ( ) A.△ABD≌△CBD B.△ABC 是等边三角形 C.△AOB≌△COB D.△AOD≌△COD 4.已知:一次函数 y=(a-1)x+b 的图象如图所示,那么 a 的取值范围是„„„„„„„„ ( ) A.a>1 B.a<1 C.a>0 D.a<0
. (填“普查”
13.在平行四边形 ABCD 中,∠B+∠D=200o, 则∠A=
14.点 A(-3,4)关于原点对称的点的坐标为______________. 15.函数 y=kx+b(k≠0)的图象平行于直线 y=2x+3,且交 y 轴于点(0,-1) ,则其函 数表达式是 . 16.如图,已知函数 y1=2x-1 和 y2=x-3 的图像交于点 P(-2,-5),则根据图像可得不 等式 y1>y2 的解集是 . 17.如图,在△ABC 中,∠BAC=90°,AB=6,AC=8,点 P 是 BC 边上任意一点(B、C 除外)PD ⊥AB 于点 E,PF⊥AC 于点 F,连接 EF,则 EF 的最小值为 . 18.如图,在 Rt△ABC 中,∠ACB=90°,AB=5cm,BC=4cm.动点 D 从点 A 出发,以每秒 1cm 的速度沿射线 AC 运动,当 t= 时,△ABD 为等腰三角形.
2015~2016学年苏科版初二数学第二学期期末测试卷 有答案
2015~2016学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B C D 6.下列等式一定成立的是……………………………………………………………( )A =B =;C 3±;D .;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上; C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数ky x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 . 14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = . 16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1) (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221a b a b a b⎛⎫-÷⎪--⎝⎭,其中1a ,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1ky x=和一次函数2y ax b =+的图象相交于点A 和点D ,且点A 的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y ax b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线y=3x-4经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=(x >0)也恰好经过点A . (1)求k 的值;(2)如图2,过O 点作OD ⊥AC 于D 点,求22CD AD -的值;(3)如图3,点P 为x 轴上一动点.在(1)中的双曲线上是否存在一点Q ,使得△PAQ 是以点A 为直角顶点的等腰三角形.若存在,求出点P 、点Q 的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD 是平行四边形,AC 为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M 为AC 的中点,动点E 从点C 出发以每秒1个单位的速度运动到点B 停止,连接EM 并延长交AD 于点F ,设点E 的运动时间为t 秒. (1)求四边形ABCD 的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12. 712;13. 12k <;14.2;15.2;16.3;17.16;18. 3y x=; 三、解答题:19.(13;(2)1x -; 20.(1)3x =-;(2)2x =;21. a b +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形.23.(1)C (8,3),24y x=;(2)4m =;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2).将点A (2,2)代入反比例函数的解析式为ky x=,求得k=4.则反比例函数的解析式为4y x =.(2)点A 的坐标为(2,2),在Rt △AMO 中,222AO AM MO =+=4+4=8. ∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4.在Rt △COD 中,222OC OD CD =+(1);在Rt △AOD 中,222AO AD OD =+(2); (1)-(2),得2222CD AD OC OA -=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ ,∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4y x=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222ME +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况:当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。
2015年春季新版苏科版八年级数学下学期周周练习试卷128
江苏省张家港市第一中学2013-2014学年八年级数学下学期测试题(第五周双休日作业)班级 姓名 学号1.能够找到一点,使该点到各边距离都相等的图形为 ( ) ①平行四边形 ②菱形 ③矩形 ④正方形A .①与②B .②与③C .②与④D .③与④2.矩形、菱形、正方形都具有的性质是 ( ) A .每一条对角线平分一组对角 B .对角线相等 C .对角线互相平分 D .对角线互相垂直3..在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为AB 的中点,且OE=a ,则菱形 ABCD 的周长为 A .16a B .12a C .8a D .4a ( )4.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于 点O ,下列结论:①AE=BF ;②AE ⊥BF ;③AO=OE ;④S △AOB =S 四边OEDF ,其中错误的 有 A .1个 B .2个 C .3个 D .4个 ( )5.如图,直线AB 交y 轴于点C ,与双曲线1y x=(k <0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),Q 为线段BC 上的点(不与B 、C 重合),过点A 、P 、Q 分别向x 轴作垂线,垂足分别为D 、E 、F ,连结OA 、OP 、OQ ,设△AOD 的面积为S 1、△POE 的面积为S 2、△QOF 的面积为S 3,则有 ( ) A .S 1<S 2<S 3 B .S 3<S 1<S 2 C .S 3<S 2<S 1 D .S 1、S 2、S 3 相等 6.如图,已知点A是一次函数y =的图象与反比例函数ky x =点,AB ⊥x 轴于点B ,点C 在x轴的负半轴上,且OA=OC ,△AOB的面积为2,则AC的长为 A B ...4 ( )7.反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3 B .k >0 C .k <3 D . k <08、在反比例函数y=x2的图象中,阴影部分的面积不等于2的是( )9.如果函数122--=m x m y 是反比例函数,则=m () A、0 B 、10.如果一个平行四边形的对角线长分别为8和6,那么这个平行四边形的边长m 的取值范围是__________.11.在菱形ABCD 中,∠A=60°,对角线BD=8,则菱形ABCD 的周长等于________.ABCDPFEDCBA12.方形ABCD 中,P 为AB 的中点,BE ⊥PD 的延长线于点E,连结AE 、BE 、FA ⊥AE 交DP 于点F ,连结BF,FC.下列结论:①△ABE ≌△ADF ; ②FB=AB ;③CF ⊥DP ;④FC=EF 其中正确的是13.如图,A 、B 是双曲线y=kx (k>0)上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若AOC S =6.则k=__________.14.如图,若点A 在反比例函数(0)ky k x=≠的图象上, AM x ⊥轴于点M ,AMO △的面积为4,则k = .15.如图,点A(m ,0),B(0,n),直线AB 与反比例函数m y x=的图象交于C 、D 两点.若S △AOD =S △COD =S △COB ,则n 的值为16.若m <-1,则下列函数:①x my =;② y =-mx+1; ③y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________(填序号)。
2015年春季新版苏科版八年级数学下学期周周练习试卷122
江苏省张家港市第一中学2013-2014学年八年级数学下学期测试题(第十二周双休作业)班级 姓名 学号1.为了了解2014年我市八年级学生学业水平考试的数学成绩,从中随机抽取1000名学生的数学成绩,下列说法正确的是( )A .2014年我市八年级学生是总体B .每一名八年级学生是个体C .1000名八年级学生是总体的一个样本D .样本容量是10002.下列事件中,属于随机事件的是( )A .从装有黑球、白球的袋里摸出红球B .抛出的篮球会下落C .367人中有2人是同月同日出生D .买1张彩票,中500万大奖3.如果把223y x y-中的x 和y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变C .缩小5倍D .扩大4倍 4.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形5.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数为x 人,那么方程是( ) A .4800500020x x =- B .4800500020x x =+ C .4800500020x x =- D .4800500020x x=+ 6.若23a b =,则2a b a b +=- . 7.若分式1x x -有意义,则x 的范围是 .8.如果分式2424a a --的值为零,那么a 的值为 . 9.若关于x 的方程111m x x x ----=0有增根,则m = .10.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是 .11.如图,□ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD =12,则△DOE 的周长为 .12.如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是 cm .13.如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为 .14.如图,点E 、F 、G 、H 分别是四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD的边至少满足条件 时,四边形EFGH 是菱形.15.计算:(1)222b a ab a b a b b a +--+- (2)265222x x x x -⎛⎫÷-- ⎪--⎝⎭16、解方程:(1)1132422x x +=-- (2)214111x x x +-=--17.先化简:2344111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,然后从一1≤x ≤2中选一个合适的整数作为x 的值代入求值.18.计算:⎝ ∙19.若x、y是实数,且12,求11yy--的值.20.某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:(1)求图中的x的值;(2)求最喜欢乒乓球运动的学生人数;(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),通过画树状图或列表列举所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.21.甲、乙两地相距360千米,新修的高速公路开通后,在甲乙两地之间行驶的长途客运车车速提高了50%,而从甲地到乙地的时间缩短了2小时,试求原来的车速.22.已知关于x的分式方程21ax+-=1的解是非负数,求a的取值范围.23.如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,求证:四边形AECF是平行四边形.24.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点.E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=_______时,四边形MENF是正方形(只写结论,不需证明)25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0).(1)求过点C的反比例函数的表达式;(2)若P是(1)中所求函数图像上一点,以P、O、A为顶点的三角形面积与△COD的面积相等,求点P的坐标.26.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若G在AD上,且∠GCE=45°,求证:GE=BE+GD;(3)在(2)条件下,若BC=12,BE=4,求EG的长.。
苏科版八年级数学下册周检1
陆集中学2015年春学期八年级数学第六周周检试卷4.12班级_______姓名___________得分_____________一、填空(每空2分) 1.用分式填空:①小明t 小时走了s 千米的路,则小明的速度是____千米/时; ②a 千克盐溶于b 千克水,所得盐水的含盐量是____;③某食堂有煤m 吨,原计划每天烧煤a 吨,现每天节约用煤b (a b <)吨,则这批煤可比原计划多烧________天.④一货车送货上山,上山速度为x 千米/时,下山速度为y 千米/时,则该货车的平均速度为____千米/时.⑤小明参加打靶比赛,有a 次打了m 环,b 次打了n 环,则此次打靶的平均成绩是________; ⑥一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是______元;2.在x 3-、y x 、22732xy y x -、x 81-、y +53、5y x -、πy x +3中,是分式的有_______________________;3.()()23+÷-m m 写成分式为____________,且当m ≠_____时分式有意义;4.当x________时,分式521--x x无意义,当x________时,分式的值为1; 5.当x= 时,分式112--x x 的值是0。
6、分式 和 的最简公分母是__________.6x 2y 54xy 37、21()()2()x x xy y x ==-- 8、若32=n m ,则=-+n m n m ;若313=-x y x ,则=y x .二、选择(每题3分) 9.下列各式①x 2,②5y x +,③a -21,④1-πx 中,是分式的有 ( ) A ①②. B.③④ C.①③ D.①②③④ 10. 当x=-2时,分式①32--x x ,②22+-x x ,③()()()()3232--++x x x x ,④()()()()3232-+++x x x x 中有意义的有 ( ) A.只有① B.只有④ C.①③ D.②④ 11.若分式x231-的值为正数,则x 的取值应是 ( ) A.0>x , B.23=x C. 23<x D.x 为任意实数 12.要使xyyx +有意义,则下列说法中正确的是 ( ) A.x 、y 全不为零; B.0=x 或0=y ; C.x 、y 不全为零; D. x 、y 全为零 13.当x 为任意实数时,下列分式中,一定有意义的是 ( )A.21x x - B.112-+x x C.112+-x x D.21+-x x14.如果分式212-+-x x x 的值为0,那么x 的值是( )A.±1B.1C.-2D.-115、分式n m a--与下列分式相等的是( ) A .n m a - B. n m a +- C. n m a + D. am n-+16、已知0≠x ,xx x 31211++等于( )、 A 、x 21 B 、x 61 C 、x 65 D 、x611三、解答题(共42分)17..当x 取什么值时,下列分式的值为零?(每题3分,共6分) (1)77--x x ; (2)362--x x .18、约分:(每题3分,共18分)(1(2(3)232636yz z xy - (4(5)2224m m m +- (6) 44422-+-a a a19、通分:(每题3分,共18分)(1)231x ,xy 125; (2)xy c z xy x y 34,65,222;(3)x x +21,xx -21.; (4)x x +21,1212++-x x ;(5)2142,,242x x x x+--; (6)32)(,)(x y x y x x y --;初中数学试卷。
江苏省连云港2015-2016学年八年级数学下册第2周周测试题
广东省揭阳市普宁华侨管理区中学2015-2016学年八年级数学下学期第一次月考试题一、选择题(共10题,每小题3分,共30分)1. 下列条件中能判定△ ABCDEF的是()A. AB = DE , BC = EF ,Z A =Z DB.Z A =Z D,Z B =/ E,Z C=Z FC. AC = DF ,Z B=Z F, AB = DE D . Z B=Z E ,Z C =/ F, AC = DF2. 下列命题中正确的是()A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等3. 对“等角对等边”这句话的理解,正确的是()A .只要两个角相等,那么它们所对的边也相等B. 在两个三角形中,如果有两个角相等,那么它们所对的边也相等C .在一个三角形中,如果有两个角相等,那么它们所对的边也等AD. 以上说法都是正确的4. 已知,如图1,在厶ABC中,OB和OC分别平分Z ABC和ZACB,过O 作DE // BC,分别交AB、AC 于点D、E,若BD+CE=5,则线段DE的长为()B. 6图1图1C . -2x :: -2 yD . -3x 6-3y 65.已知:在△ ABC 中,AB 半AC ,求证:/ B ^Z C .若用反证法 来证明这个结论,可以假设( )Z B =Z C关系为7.以下各组数为三角形的三条边长,其中能作成直角三角形的是A . 2, 3, 4B . 4, 5, 6C . 1, 2 , 3D . 2, 2 , 48.函数y = kx + b (k 、b 为常数,k = 0)的图象如图3所示,则关于 x 的不等式kx+b>0的解集为( ).A . x>0B . x<0图3C . x<2D . x>29.已知x y ,则下列不等式不成立的是 A . x -6 y -6 B . 3x 3yB . AB = BC6.如图2,A ABC 与厶BDE 都是等边三角形, 不动,将△ BDC 绕B 点旋转,则在旋转过程中,AE 与CD 的大小A . AE = CDB . AE>CDC AEVCD D .无法确定).AB<BD .若△ ABC15 如果 1VXV2,贝卩(x -1) (x -2) 0.(填写“ >”、“V ”10.如图4所示,一次函数y=kx + b ( k 、b 为常数,且k-0)与正 比例函数y = ax (a 为常数,且a = 0)相交于点P ,则不等式kx+b>ax 的解集是()二、填空题(共6题,每小题4分,共24 分)11.已知:如图5, AB = AC , FD 丄BC 于D , DE 丄AB 于E ,若/和为12cm,那么斜边长为 ___________ 13如图6, ED ABC 的AC 边的垂直平分线,且 AB=5cm ,ABCE 的周长为8cm ,则BC = _________ 14如图7,在厶ABC 中,/ C = 90°,/ B = 15°, AB 的垂直平分 线交BC 于D ,交AB 于E ,若DB = 10cm ,则AC = ____________ ・AFD = 145° 则/12在直角三角形中,如果一个锐角为 30 °,而斜边与较小直角边的 图4D . x<2图5或“=”16已知点P ( m —3 , m + 1)在第一象限,则m的取值范围是__________________ .三、解答题(4X2 + 6 + 10 + 8 + 8 + 5 + 6 + 6 + 9=) r 2—x+5>1-x17(1)解不等式组,并写出它的非负整数解。
苏科版八年级(下)数学周周练(11)及答案
八年级数学(下)周周练11(10.4-10.5)一、选择题1.下列命题:①三边对应成比例的两个三角形相似;②两边对应成比例且一个角对应相等的两个三角形相似;③一个锐角对应相等的两个直角三角形相似;④有一个角对应相等的两个等腰三角形相似,其中正确的是( ) A.①③B.①④C.①②④D.①③④2.下列命题错误的是( ) A.两角对应相等的两个三角形相似B.两边对应成比例的两个三角形相似C.两边对应成比例且夹角相等的两个三角形相似D.三边对应成比例的两个三角形相似3.如图,E是□ABCD的边BC延长线上的一点,连接AE交CD于点F,则图中共有相似三角形( )A.1对B.2 对C.3对D.4对4.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4和x,那么x的值( ) A.只有1个B.可以有2个C.有2个以上但有限D.有无数个5.已知四边形ABCD∽四边形A′B′C′D′.四边形ABCD与四边形A′B′C′D′的周长分别为24、36,则它们的对角线AC与A′C′的比为( )A.2:3 B.3:2 C.4:9 D.9:46.如图,大正方形是由边长为1的小正方形组成的,则下列图形中的三角形(阴影部分) 与△ABC相似的是( )7.如图,在钝角△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B止.动点E从点C出发到点A止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时.运动的时间是( )A.3 s或4.8 s B.3 s C.4.5 s D.4.5 s或4.8 s8.如图,在Rt△ABC内有边长分别为a、b、c的三个正方形,则a、b、c满足的关系式是( )A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c二、填空题9.下列命题:①有一对锐角相等的两个直角三角形相似;②所有的等腰三角形都相似; ③全等的三角形一定相似;④所有的等边三角形都相似,其中是真命题的有______(写 出正确答案的序号).10.如图,在△ABC 中,若∠AEB=∠ADC ,则图中共有相似三角形_________对.11.两个相似多边形的面积之比为9:25,且这两个多边形的周长之和为160 cm ,则其中较大多边形的周长为_________cm .12.如图,D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,2AD DB =,若S △ABC 的面积为9,则四边形DBCE 的面积为_________.13.如图,在□ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BF FD=__________. 14.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当_________(写出一个即可)时,△AD E ∽△ACB .15.如图,A B ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么 AB=_________.16.在△ABC 中,AB=16,AC=12,点D 在AB 上,且AD=4,若要在AC 上找一点E ,使△ADE 与原三角形相似,那么AE=__________.17.在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,BC=3,AB=5,则其中的一对相似三角形是___________和__________.它们的面积比为___________.18.如图,电影胶片上每一个图片的规格为3.5 cm ×3.5 cm ,放映屏幕的规格为2 m × 2 m ,如果放映机的光源S 距胶片20 cm .那么光源S 距屏幕_________米时,放映的图像刚好不满整个屏幕.三、解答题19.如图,E是矩形ABCD的边CD上的一点,BF⊥AE于点F.试说明:△ABF∽△EAD.20.如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过点D作DE⊥AB交AC于点E,AC=8,BC=6.求DE的长.21.如图,在等边△CDE中,A、B分别是ED、DF延长线上的两个动点,线段DE、AD与EB之间满足关系:DE2=AD·EB.试求∠ACB的度数.22.(9分)如图,在□ABCD中,E是CD延长线上的一点,BE与AD交于点F,1 2DE CD.(1)△ABF与△CEB相似吗?为什么?(2)若△DEF的面积为2,求□ABCD的面积.23.如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DE=3,AC=2DF=4.(1)这两个三角形是否相似?请说明理由.(2)能否分别过点A、D在这两个三角形中各作一条辅助线,使△ABC分割成的两个三角形与△DEF分割成的两个三角形分别对应相似?证明你的结论.24.在等腰△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕点P旋转.(1)如图(1),当三角板的两边分别交AB、AC于点E、F时,△BPE与△CFP相似吗?为什么?(2)将三角板绕点P旋转到图(2)的情形时,三角板的两边分别交BA的延长线、边AC于点E、F.①△BPE与△CFP还相似吗(只需写出结论)?②连接EF,△BPE与△PFE是否相似?请说明理由.参考答案一、1.A 2.B 3.C 4.B 5.A 6.A 7.A 8.A二、9.①③④ 10.2 11.100 12.5 13.23 14.∠ADE=∠ACB(或∠AED=∠ABC 或AD AE AC AB =) 15.4 16.3或16317.△BCD △CAD 9:16(或△BCD △BAC 9:25或△CAD △BAC 16:25) 18.807三、19.因为四边形ABCD 是矩形,AB ∥CD ,∠D=90°,所以∠BAF=∠AED .因为BF ⊥AE ,所以∠AFB=90°.所以∠AFB=∠D .所以△AB F ~△EAD 20.因为在△ABC 中,∠C=90°,AC=8,BC=6,所以2210AB AC BC =+=.又因为BD=BC=6,所以AD=AB -BD=4.因为DE ⊥A B ,所以∠ADE=∠C=90°.又因为∠A=∠A ,所以△AE D ~△ABC .所以DE AD BC AC =.所以4638AD DE BC AC ==⨯= 21.因为△CDE 为等边三角形,所以∠CDE=∠CED=∠DCE=60°.CD=CE=DE .所以∠ADC=∠BEC=120°.因为DE 2=AD ·EB ,所以DE EB AD ED =,即DC EB AD EC =.所以△ACD ∽△CBE .所以∠ACD=∠B .又因为∠ACB=∠ECD+∠ACD+∠ECB ,所以∠ACB=∠B+∠ECB+∠ECD=∠CED+∠ECD=60°+60°=120°.即∠ACB 的度数为120° 22.(1)因为四边形ABCD 是平行四边形,所以∠A=∠C ,AB ∥CD .所以∠ABF=∠CEB .所以△AB F ∽△CEB (2)因为四边形ABCD 是平行四边形,所以AD ∥BC ,ABCD .所以△DEF ∽△CEB ,△DEF ∽△ABF .因为12DE CD =,所以219DEF CEB S DE S EC ∆∆⎛⎫== ⎪⎝⎭,214DEF ABF S DE S AB ∆∆⎛⎫== ⎪⎝⎭.因为S △DEF =2,所以S △CEB =18,S △ABF =8.所以S 四边形BCDF =S △CEB -S △DEF =16.所以S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=24 23.(1)不相似.因为在Rt △BAC 中,∠A=90°,AB=3,AC=4;在Rt △EDF 中,∠D=90°,DE=3,DF=2.所以1AB DE =,2AC DF =.所以AB AC DE DF ≠.同理AB AC DF DE≠.所以Rt △BAC 与Rt △EDF 不相似 (2)能作如图所示的辅助线进行分割.具体作法;作∠BAM=∠E ,交BC 于点M ;作∠ND E=∠B ,交EF 于点N .由作法和已知条件可知△BAM ≌△DEN .因为∠BAM=∠E ,∠NDE=∠B ,∠AMC=∠BAM+∠B ,∠FND=∠E+∠NDE ,所以∠AMC =∠FND .因为∠FDN=90°-∠NDE ,∠C=90°-∠B ,所以∠FDN=∠C .所以△AM C ∽△FND24.(1)在△ABC中,∠BAC=120°,AB=AC,所以∠B=∠C=30°.因为∠B+∠BPE+∠BEP=180°,所以∠BPE+∠BEF=150°.因为∠EPF=30°.∠BPE+∠EPF+∠CPF=180°,所以∠BPE+∠CPF=150°.所以∠BEP=∠CPF.所以△BP E∽△CFP(两角对应相等的两个三角形相似) (2)①△BPE∽△CFP ②△BPE与△PFE相似.同(1)可证△BP E∽△CFP,得CP PFBE PE=.而CP=BP,因此BP PFBE PE=.又因为∠EBP=∠EPF.所以△BP E∽△PFE(两边对应成比例且夹角相等的两个三角形相似)。
2015年春季新版苏科版八年级数学下学期周周练习试卷102
宜陵镇中八年级数学周周练(6)一 分式的概念在x 3-、y x 、22732xy y x -、x 81-、y +53、5y x -、πy x +3中,是整式的有___________________________,是分式的有_______________________;二 .分式中字母的取值(1)当x___________时,分式51-x 有意义;当x________时,分式521--x x 无意义, (2)当x 为任意实数时,下列分式中,一定有意义的是 ( ) A.21x x - B.112-+x x C.112+-x x D.21+-x x(3)函数x xy 21-=中自变量x 的取值范围是:A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠0例题 若分式112+-x x 的值为0,则x 的取值为( )A 、1=xB 、1-=xC 、1±=xD 、无法确定练习 如果分式212-+-x x x 的值为0,那么x 的值是________例题 若关于x 的方程112=-+x ax 的解为正数,求a 的取值范围?练习 已知关于x 的方程322=-+x mx 的解是正数,求m 的取值范围?三 分式的性质: 如果把223yx y -中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍例题 请从下列三个代数式中任选两个构成一个分式,并化简该分式x2-4xy+4y2 x2-4y2 x-2y练习 1.1211222+++÷--x x x x x2.有这样一道题:“计算:2222111x x x x x x x-+-÷--+的值,其中2007x =”,某同学把2007x =错抄成2008x =,但它的结果与正确答案相同,你说这是怎么回事?四 最简公分母 xyzx y xy 61,4,13-的最简公分母是_____。
苏科版八年级数学下册周检.docx
初中数学试卷桑水出品八年级周检试卷班级___________ _姓名_____________一、选择题(3分×8=24分) 1、下列各式:π8,11,5,21,7,322xx y x b a a -++中,分式有( ) A 、1个 B 、2个 C 、3个 D 、4个2、若分式112+-x x 的值为0,则x 的取值为( )A 、1=xB 、1-=xC 、1±=xD 、无法确定 3、如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变 4、下列约分结果正确的是( )A 、yzz y x yz x 1281282222=B 、y x y x y x -=--22C 、11122+-=--+-m m m m D 、b a m b m a =++ 5、计算:xy yy x x 222-+-,结果为( ) A 、1 B 、-1 C 、y x +2 D 、y x + 6、把分式方程12121=----xxx 的两边同时乘以()2-x 约去分母得( ) A.()111=--x B.()111=-+x C.()211-=--x x D.()211-=-+x x 7、如果方程333-=-x mx x 有增根,那么m 的值为( ) A.0 B.-1 C.3 D.18、若xy y x =+,则yx 11+的值为( )A 、0B 、1C 、-1D 、2二、填空题(2分×11=22分) 9、当x 时,分式31-+x x 有意义,当x 时,分式32-x x无意义。
10、xyzx y xy 61,4,13-的最简公分母是 。
11、计算:=•c b a a bc 222 ;=÷23342yxy x ;12、计算:=-b aa b 32 ;=--+y x y x 12 。
13、已知113xy-=,则代数式21422x xy yx xy y----的值为_________.14、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙合作 小时完成。
最新苏科版2015-2016学年八年级册第二学期期末测试题及答案
2015~2016学年度第二学期期末 八年级数学 (满分:100分 考试时间:100分钟) 一、选择题(每小题2分,共12分,每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的括号内) 1.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法: ①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1000名考生是总体的一个样本;④样本容量是1000. 其中说法正确的有 【 】 A. 4个 B. 3个 C. 2个 D.1个 2.若1a ≤,则()31a -化简后为 【 】 A ()11a a -- B.()11a a -- C.()11a a -- D.()11a a -- 3.下列事件中必然事件有 【 】 ①当x 是非负实数时,x ≥0 ; ②打开数学课本时刚好翻到第12页; ③13个人中至少有2人的生日是同一个月; ④在一个只装有白球和绿球的袋中摸球,摸出黑球. A .1个 B .2个 C .3个 D .4个 4.若0414=----x x x m 有增根,则m 的值是 【 】 A.-2 B.2 C.3 D.-3 5.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件: ①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC . 其中一定能判定这个四边形是平行四边形的条件有【 】 A .4组 B .3组 C .2组 D .1组 6.已知点)3,()2,()2,(321x R x Q x P 、、-三点都在反比例函数x a y 12+=的图象上,则下列关系正确的是 【 】 A .231x x x << B .321x x x << C .123x x x << D .132x x x << 二、填空题(每题2分,共20分,请将正确答案填写在相应的横线上) 7.若分式51-x 有意义,则x 的取值范围是__________________. 8.计算(508)2-÷的结果是 . 9. 一个反比例函数y=k x (k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是学校班级 姓名考试号----------------------------------------------密---------------------------------封----------------------------------线---------------------------------------------------.10.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B ,C ,D 随机坐到其他三个座位上,则学生B 坐在2号座位的概率是 .11.如图,在△ABC 中,∠CAB=70º,在同一平面内,将△ABC 绕点A 逆时针旋转50º到 △C B A ''的位置,则∠B CA '= _________度.12.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件, 这个条件可以是 .(只要填写一种情况)13.如图正方形ABCD 中,点E 在边DC 上,DE =2,EC =1 ,把线段AE 绕点A 旋转,使点E 落在直线..BC 上的点F 处,则F 、C 两点的距离为 .14.函数1(0)y x x =≥ , xy 92=(0)x >的图象如图所示,则结论: ① 两函数图象的交点 A 的坐标为(3 ,3 ); ② 当x >3时,y 2>y 1 ; ③ 当 x=1时, BC = 8; ④当 x 逐 渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.其中正确结论的序号是 .15.已知a 、b 为有理数,m 、n 分别表示77-的整数部分和小数部分,且24amn bn +=,则2a b += .第10题图 第11题图第13题图第16题图9x 第14题图16.如图,双曲线)0(3>=x xy 经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .三、解答题(本大题8小题,共68分.把解答过程写在试卷相对应的位置上.解答时应写出必要的计算过程,推演步骤或文字说明)17.计算: (每小题4分,共8分) (1)1(4875)13-⨯;(2)21452025150+-+-.18.(本题8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个. 从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3. (1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.19.(每小题4分,共8分)(1)已知212===242x A B C x x x --+,,.将他们组合成(A -B )÷C 或 A -B ÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x=3.(2)解分式方程:.163104245--+=--x x x x20.(本小题7分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:数据段 频数 频率 30﹣40 10 0.05 40﹣50 36 c 50﹣60 a 0.39 60﹣70 b d 70﹣80 20 0.10 总计 200 1 (1) 表中a 、b 、c 、d 分别为:a= ; b= ; c= ; d= . (2) 补全频数分布直方图; (3) 如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆? 21.(本小题8分)若0>a ,M=21++a a ,N=32++a a , ⑴当3=a 时,计算M 与N 的值; ⑵猜想M 与N 的大小关系,并证明你的猜想.学校 班级 姓名考试号----------------------------------------------密---------------------------------封----------------------------------线---------------------------------------------------22.(本小题9分)如图,将□A BCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF;⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.ADB CFE23.(本小题10分)已知反比例函数y 1=xk 的图象与一次函数y 2=ax+b 的图象交于 点A (1,4)和点B (m ,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y 1>y 2成立的自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.24.(本小题10分)以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH .(1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,① 求证:HE =HG ;② 四边形EFGH 是什么四边形?并说明理由.A B CDHE FG(第24题图2)E BFG DH A C (第24题图3)(第24题图1) A B C D H E F G八年级数学参考答案一、选择题 CDBC BA二、填空题7.x ≠5 8.3 9.y=x 2 10. 31 11.20 12.不唯一,可以是:AB ∥CD 或AD=BC ,∠B+∠C=180°,∠A+∠D=180°等13.1或5 14.①③④ 15. 4 16. 3三、解答题17. (1)原式=4(4353)3-⨯ ……………………2分 2343-=⨯-= ……………………4分 (2)原式=2253545525+-+-……………………2分 =5542211+ ……………………4分 18.(1)由已知得纸箱中蓝色球的个数为:50)3.02.01(100=--⨯(个)……………3分(2)设小明放入红球x 个, 根据题意得:5.010020=++xx , ……………………5分 解得:x=60(个). ……………………6分 经检验:x=60是所列方程的根 ……………………7分 答:略 ……………………8分19.(1)选一:(A -B )÷C = (21224x x ---)÷ 2x x + ……………1分 = 2(2)(2)x x x x x +⨯+- = 12x - ……………3分 当x = 3 时,原式=132- = 1 . ……………4分 选二:A – B ÷C =12x --224x -÷2x x + ……………1分 = 12x --2(2)(2)x x +-×2x x + =12x --2(2)x x -=2(2)x x x -- =1x……………3分 当x = 3 时,原式 = 13……………4分 (2)x=2,检验得增根 (3+1分) ……………4分20.(1)78, 56, 0.18, 0.28 ……………(每格0.5分,共2分)(2)略(2分); ……………2分(3)76辆(3分) ……………3分21.(1)当a=3时,M=54,N=65 ; ……………2分 (2)方法一:)3)(2(1)3)(2()2()3)(1(32212++-=+++-++=++-++=-a a a a a a a a a a a N M ……5分∵a>0∴02>+a ,03>+a ∴0)3)(2(1<++-a a ……………7分 ∴0<-N M ∴N M < ……………8分 方法二:4434232122++++=++⋅++=a a a a a a a a N M ……………5分 ∵a>0∴0>M ,0>N ,0342>++a a ∴1443422<++++a a a a ……………7分 ∴1<NM ∴N M < ……………8分 22.证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD .∴∠ABF=∠ECF.∵EC=DC, ∴AB=EC . ……………2分 在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,AB=EC ,∴△ABF ≌△ECF . ……………4分(2)解法一:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF=EF , BF=CF .∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,又∵∠AFC=2∠D ,∴∠AFC=2∠ABC .∵∠AFC=∠ABF+∠BAF ,∴∠ABF=∠BAF .∴FA=FB .∴FA=FE=FB=FC, ∴AE=BC .∴□ABEC 是矩形. ……………9分 解法二:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D=∠BCE .又∵∠AFC=2∠D ,∴∠AFC=2∠BCE ,∵∠AFC=∠FCE+∠FEC ,∴∠FCE=∠FEC .∴∠D=∠FEC .∴AE=AD .又∵CE=DC ,∴AC ⊥DE .即∠ACE=90°.∴□ABEC 是矩形. ……………9分23.解:(1)∵函数y 1=xk 的图象过点A (1,4),即4=, ∴k=4,即y 1=, ……………2分又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.……………4分(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,∴x<﹣ 2 或0<x<1.……………7分(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.……………10分24.(1)四边形EFGH是正方形.……………2分(2) ①设∠ADC=α(0°<α<90°),在□ABCD中,AB∥CD,∴∠BAD=180°-∠ADC=180°-a;∵△HAD和△EAB都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+a.∵△HAD和△GDC都是等腰直角三角形,∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAD+∠ADC+∠CDG=90°+a=∠HAE.……………5分∵△AEB和△DGC都是等腰直角三角形,∴AE=22AB,DG=22CD,在□ABCD中,AB=CD,∴AE=DG,∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.……………7分②四边形EFGH是正方形.由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),∴GH=GF=FG=FE,∴四边形EFGH是菱形;∵△HAE≌△HDG(已证),∴∠AHE=∠DHG,又∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.……………10分。
苏科版八年级(下)数学周周练(13)及答案
八年级数学(下)周周练12(10.6-10.7)一、选择1.如图,两个三角形是位似图形,那么它们的位似中心是( ) A.点P B.点O C.点M D.点N2.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )3.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,同一时刻与他相邻的一棵树的影长为3.6米,则这棵树的高度为( ) A.5.3米B.4.8米C.4.0米D.2.7米4.如图是小明设计的用手电来测量某古城墙高度的示意图.在点P处放一个水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知A B⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A.6米B.8米C.18米D.24米5.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是( ) A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:96.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是( )A .1:6B .1:5C .1:4D .1:27.如图,在斜坡的顶部有一座铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6 m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m ,那么塔高AB 为 ( )A .24 mB .22 mC .20 mD .18 m8.如图,相邻两根电杆都用钢索在地面上固定,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P 离地面 ( )A .2.4米B .2.8米C .3米D .高度不能确定二、填空9.如图,课堂上小亮站起来回答数学老师提出的问题,那么数学老师观察小亮身后的盲区是_________.10.如图,用放大镜将图形放大,应属于_________(填“对称变换”、“平移变换”、“旋转变换”或“相似变换”).11.在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O 为位似中心,相似比为13,把线段AB 缩小后得到线段A ′B ′,则A ′B ′的长度等于________. 12.如图是农村一个古老的捣碎器,支撑柱AB 的高为0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米.现在踏脚着地,则捣头点E 上升了________米.13.如图,小明将长梯AB 斜靠在墙上,测得梯脚B 与墙脚C 的距离为1.6 m ,梯上的点D 与墙的距离DE 为1.4 m ,BD 长0.55 m ,我们可以应用学过的知识求得该梯子的长为_________m .14.如图,阳光通过窗口照到室内,在地面上留下1.6 m 宽的亮区DE ,已知亮区一边到窗下的墙脚距离CE=3.6 m ,窗高AB=1.2 m ,那么窗口底边离地面的高度BC=________m.15.如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB的高度为36 cm,那么它在暗盒中所成的像CD的高度应为________cm.16.如图,一个落地晾衣架两撑杆的公共点为O,OA=75 cm,OD=50 cm.若撑杆下端点A、B所在直线平行于上端点C、D所在直线,且AB=90 cm,则CD=_______cm.17.如图,△ABC的三个顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以点B为位似中心,画出与△ABC相似的三角形(在点B同侧),且相似比为3,则点A的对应点的坐标是_________.18.如图,在正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2)、(-1,-1),则这两个正方形的位似中心的坐标是___________.三、解答题19.(8分)如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请在网格中画出△OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与△OAB的位似比为2:1.20.(8分)如图,△ABC与△A′B′C′是位似图形,且位似比是1:2.(1)在图中画出位似中心点O.(2)若AB=2 cm,则A′B′的长为多少?21.(9分)如图,A、B两点被池塘隔开,为了测量A、B之间的距离,王刚同学采用了如下的方法解决问题:在AB外任选一点C,连接AC、BC,再分别取其三等分点M、N,量得MN=38 m,即知道了A、B之间的距离,你知道王刚同学是怎样求得结果的吗?请求出A、B之间的距离.22.(9分)如图,晚上小亮在广场上乘凉,图中线段AB表示站在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子.(2)已知灯杆高PO=12 m,小亮的身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.23.(11分)如图,路灯(点P)距地面8米,身高1.6米的小明从距路灯的底部(点O)20 米的点A?沿AO所在的直线行走14米到点B时,身影的长度是变长了还是变短了?变长或变短了多少米?24.(11分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M、颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C、D.然后测出两人之间的距离CD=1.25 m,颖颖与楼之间的距离DN=30 m(C、D、N在同一条直线上),颖颖的身高BD=1.6 m,亮亮蹲地观测时眼睛到地面的距离AC=0.8 m.你能根据以上测量的数据帮助他们求出住宅楼的高度吗?参考答案一、1.A 2.A 3.B 4.B 5.B 6.C 7.A 8.A二、9.△ABE 10.相似变换11.1 12.0.8 13.4.4 14.1.5 15.16 16.60 17.(-6,0) 18.(1,0)或(-5,-2)三、19.如图所示20.(1)连接BB ′、CC ′,它们的交点即为位似中心O (2)A ′B ′的长为4 cm21.A 、B 之间的距离是114 m22.(1)连接PA 并延长交OB 的延长线于点C ,线段BC 就是小亮在照明灯(P)照射下的影子 (2)在△CAB 和△CPO 中,因为∠C =∠C ,∠ABC=∠POC=90°,所以△CA B ∽△CPO .所以AB CB PO CO =,即1.61213CB BC=+.所以BC=2,即小亮影子的长度为2 m 23.小明身影的长度变短了3.5米 24.过点A 作CN 的平行线交BD 于点E ,交MN 于点F .由已知可得FN=ED=AC=0.8m ,AE=CD=1.25m ,EF=DN=30 m ,∠AEB=∠AFM=90°.又因为∠BAE=∠MA F ,所以△AB E ∽△AMF .所以BE AE MF AF =,即1.60.8 1.251.2530MF -=+.解得MF=20m . 所以MN=MF+FN=20+0.8=20.8(m).所以住宅楼的高度为20.8 m。
苏科版八年级下数学周周练试卷
八年级数学周周练0505一、选择题:1. 已知点M 将线段AB 黄金分割(AM >BM),则下列各式中不正确的是( ) A. AM ∶BM=AB ∶AM B. AM=215-AB C. BM=215-AB D. AM ≈0.618AB 2. 下列四个三角形,与左图中的三角形相似的是 ( )3.直线AB 与平行四边形MNPQ 的四边所在直线分别交 于A 、B 、C 、D ,则图中的相似三角形有( ) A.4对 B.5对 C.6对 D.7对4.如图,在平行四边形ABCD 中,O 1、O 2、O 3分别是对角线BD 上的三点,且BO 1=O 1O 2=O 2O 3=O 3D ,连接AO 1并延长交BC 于点E ,连接EO 3并延长交AD 于点F ,则AD :DF 等于( )A. 19:2 B. 9:1 C.8:1 D. 7:15. 如图,在△ABC 中,P 为AB 上一点,则下列条件中(1)∠ACP=∠B ;(2)∠APC=∠ACB ;(3)AC 2=AP •AB ; (4)AB •CP=AP •CB ,其中使△APC 和△ACB 相似的条件有( )A 、1个 B 、2个 C 、3个 D 、4个 二、填空题:1.在比例尺为1∶400000的中国地图上,量得A 、B 两地相距15厘米,那么A 、B 两地的实际距离是 千米.2.已知:点P 是线段AB 的黄金分割点,且AB=10cm ,则线段AP 的长度是 cm.(精确到0.1cm)3.将三角形纸片△ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF 。
已知AB =AC =8,BC =10,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是______________.4.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A 、B 两点,与反比例函数ky x=的图象相交于C 、D 两点,分别过C 、D 两点作y 轴、x 轴的垂线,垂足为E 、F ,连接CF 、DE .有下列四个结论:①AC BD =;②△DCE≌△CDF;③△CEF 与△DEF 的面积相等;④△AOB∽△FOE.其中正确的结论是 .(把你认为正确结论的序号都填上)5.已知a 、b 、c 三条线段,其中2,8a c ==,若线段b 是线段a 、c 的比例中项,则b = 。
苏科版八年级(下)数学周周练(13)及答案
八年级数学(下)周周练12(10.6-10.7)一、选择1.如图,两个三角形是位似图形,那么它们的位似中心是( ) A.点P B.点O C.点M D.点N2.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )3.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,同一时刻与他相邻的一棵树的影长为3.6米,则这棵树的高度为( ) A.5.3米B.4.8米C.4.0米D.2.7米4.如图是小明设计的用手电来测量某古城墙高度的示意图.在点P处放一个水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知A B⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A.6米B.8米C.18米D.24米5.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是( ) A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:96.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是( ) A.1:6 B.1:5 C.1:4 D.1:27.如图,在斜坡的顶部有一座铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m和1 m,那么塔高AB为( ) A.24 m B.22 m C.20 m D.18 m8.如图,相邻两根电杆都用钢索在地面上固定,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面( )A.2.4米B.2.8米C.3米D.高度不能确定二、填空9.如图,课堂上小亮站起来回答数学老师提出的问题,那么数学老师观察小亮身后的盲区是_________.10.如图,用放大镜将图形放大,应属于_________(填“对称变换”、“平移变换”、“旋转变换”或“相似变换”).11.在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O为位似中心,相似比为13,把线段AB缩小后得到线段A′B′,则A′B′的长度等于________.12.如图是农村一个古老的捣碎器,支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米.现在踏脚着地,则捣头点E上升了________米.13.如图,小明将长梯AB斜靠在墙上,测得梯脚B与墙脚C的距离为1.6 m,梯上的点D与墙的距离DE为1.4 m,BD长0.55 m,我们可以应用学过的知识求得该梯子的长为_________m.14.如图,阳光通过窗口照到室内,在地面上留下1.6 m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6 m,窗高AB=1.2 m,那么窗口底边离地面的高度BC=________m.15.如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB的高度为36 cm,那么它在暗盒中所成的像CD的高度应为________cm.16.如图,一个落地晾衣架两撑杆的公共点为O,OA=75 cm,OD=50 cm.若撑杆下端点A、B所在直线平行于上端点C、D所在直线,且AB=90 cm,则CD=_______cm.17.如图,△ABC的三个顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以点B为位似中心,画出与△ABC相似的三角形(在点B同侧),且相似比为3,则点A的对应点的坐标是_________.18.如图,在正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2)、(-1,-1),则这两个正方形的位似中心的坐标是___________.三、解答题19.(8分)如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请在网格中画出△OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与△OAB的位似比为2:1.20.(8分)如图,△ABC与△A′B′C′是位似图形,且位似比是1:2.(1)在图中画出位似中心点O.(2)若AB=2 cm,则A′B′的长为多少?21.(9分)如图,A、B两点被池塘隔开,为了测量A、B之间的距离,王刚同学采用了如下的方法解决问题:在AB外任选一点C,连接AC、BC,再分别取其三等分点M、N,量得MN=38 m,即知道了A、B之间的距离,你知道王刚同学是怎样求得结果的吗?请求出A、B之间的距离.22.(9分)如图,晚上小亮在广场上乘凉,图中线段AB表示站在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子.(2)已知灯杆高PO=12 m,小亮的身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.23.(11分)如图,路灯(点P)距地面8米,身高1.6米的小明从距路灯的底部(点O)20 米的点A?沿AO所在的直线行走14米到点B时,身影的长度是变长了还是变短了?变长或变短了多少米?24.(11分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M、颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C、D.然后测出两人之间的距离CD=1.25 m,颖颖与楼之间的距离DN=30 m(C、D、N在同一条直线上),颖颖的身高BD=1.6 m,亮亮蹲地观测时眼睛到地面的距离AC=0.8 m.你能根据以上测量的数据帮助他们求出住宅楼的高度吗?参考答案一、1.A 2.A 3.B 4.B 5.B 6.C 7.A 8.A二、9.△ABE 10.相似变换 11.1 12.0.8 13.4.4 14.1.5 15.16 16.6017.(-6,0) 18.(1,0)或(-5,-2)三、19.如图所示20.(1)连接BB ′、CC ′,它们的交点即为位似中心O (2)A ′B ′的长为4 cm21.A 、B 之间的距离是114 m22.(1)连接PA 并延长交OB 的延长线于点C ,线段BC 就是小亮在照明灯(P)照射下的影子 (2)在△CAB 和△CPO 中,因为∠C =∠C ,∠ABC=∠POC=90°,所以△CA B ∽△CPO .所以AB CB PO CO =,即1.61213CB BC=+.所以BC=2,即小亮影子的长度为2 m 23.小明身影的长度变短了3.5米 24.过点A 作CN 的平行线交BD 于点E ,交MN 于点F .由已知可得FN=ED=AC=0.8m ,AE=CD=1.25m ,EF=DN=30 m ,∠AEB=∠AFM=90°.又因为∠BAE=∠MA F ,所以△AB E ∽△AMF .所以BE AE MF AF =,即1.60.8 1.251.2530MF -=+.解得MF=20m . 所以MN=MF+FN=20+0.8=20.8(m).所以住宅楼的高度为20.8 m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2 A B
C D
第4题 江苏省仪征市第三中学八年级数学下学期周末练习2
1、能使分式1
22--x x x 的值为零的所有x 的值是( ) A 、 0=x B 、1=x C 、0=x 或1=x D 、0=x 或1±=x
2.如图,在平行四边形ABCD 中,AB=3c m ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是
A .2cm <OA <5cm
B .2cm <OA <8cm
C .1cm <OA <4cm
D .3cm <OA <8cm
3、菱形具有而一般平行四边形不具有的性质是
A. 对角相等
B. 对边相等
C. 对角线互相垂直
D. 对角线相等
第2题 第7题 第8题
4.如图,在平行四边形ABCD 中,下列结论中错误..
的是( ) A .∠1=∠2 B .∠BAD =∠BCD C .AB =CD D . AC ⊥BD
5,四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC
②AD =BC ③OA =OC ④OB =OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )
A .3种
B .4种
C .5种
D .6种
6,若以A (-0.5,0),B (2,0),C (0,1)三点为顶点要画平行四边形,则第四个顶点不
可能在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
7、如图,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( ).
(A 2 (B 3 (C )1:2 (D 1
8、如图,矩形ABCD 的周长为68,它被分成7个全等的矩形,则矩形ABCD•的面积为( )
A .98
B .196
C .280
D .284
二 填空题(10题,每题2分,共20分)
9、若关于x的分式方程
3
2
3
2
-
=
-
-x
m
x
x
无解,则m的值为________
10、如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC=_______,
∠FCA=_____
11.平行四边形ABCD的周长是18 cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差
是5 cm,则边AB的长是________ cm.
12.平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件_________,就可得BE=DF。
13.将一矩形纸条,按如图11所示折叠,则∠1 = _______度。
第14题第15
题
14、如图,在矩形ABCD中,两条对角线AC和BD相交于点O
,AB=OA=4 cm,BD= ______cm AD=. ______cm
15、如图,矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,
则∠BOE= _______度
16、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角(锐角)为 .度
17、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 .
18、已知四边形ABCD是菱形,AEF
∆是正三角形,E、F分别在BC、CD上,且CD
EF=,则=
∠BAD .
三.解答题:(共56分)
19 .(6分)如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.
求证:∠EBF=∠FDE
20、(8分)如图,折叠矩形,使AD边与对角线BD重合,折痕是DG,点A的对应点是E,
若AB=2,BC=1,求AG.
第12题
第13题
G
E
D C
B
A
21、(8分)已知:如右上图,□ ABCD各角的角平分线分别相交于点E,F,G,H. 求证:•四边形EFGH是矩形.
=,且22、(8分)如图,在矩形ABCD中,E是AD上一点,F是AB上一点,EF CE
⊥=,矩形ABCD的周长为16cm,求AE与CF的长.EF CE DE cm
,2
23、(8分)如右上图,在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN
交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点. 求证:四边形AECF是矩形.
24(8分)、在争创全国卫生城市的活动中,我市“青年突击队”决定义务清运一堆重达100吨的垃圾,后因附近居民主动参与到义务劳动中,使任务提前完成.下面是记者与青年突击队员的一段对话:
通过这段对话,请你求出青年突击队原来每小时清运多少吨垃圾?
25、(10分)如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B ′的位置,AB ′与CD 交于点E .
(1)试找出一个与△AED 全等的三角形,并加以证明.
(2)若AB =8,DE =3,P 为线段AC 上的任意一点,
PG ⊥AE 于G ,PH ⊥EC 于H ,试求PG +PH 的值,并说明理由.。