求解一类线性偏微分方程组一般解的机械化算法

合集下载

(高等数学)偏微分方程

(高等数学)偏微分方程

第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yuy x b x u y x a ,,,,=+∂∂+∂∂就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y uu y x b x u u y x a yu u y x a y x u u y x a x u u y x a就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yuu y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y yu y x d x y u y x c yu y x b x u y x a就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yux u u就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒ 初值问题 只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题. 2︒ 边值问题 只有边值条件而没有初始条件的定解问题称为边值问题.3︒ 混合问题 既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u 在区域D 内满足泛定方程,当点从区域D 内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u 及它的导数的极限处处存在而且满足相应的定解条件,就称u 为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x u x u t u u x x x t F()()0,,,,,,211211=∂∂++∂∂nn n n x u x x x a x u x x x a (1) 式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2)称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ 的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) )是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni i n i x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ 解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2. 非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n i n i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R t un i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()u x x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 ===为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x up p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂== 若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂yb b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bVa V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解. 2︒ 如0=∂∂=∂∂=∂∂=∂∂yb x b y a x a ,即回到完全解. 3︒ 当0/,0/≡∂∂≡∂∂b Va V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uFp x F t p p F p t u p Ft x i i i ni iii i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或u F p x F p u F p x F p p Fp up F x p F xp F x n nnni i i nn ∂∂+∂∂-==∂∂+∂∂-=∂∂=∂∂==∂∂=∂∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组()()F x y z p q G x y z p q a,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解.例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程dz a x zdx y azdy =++-22 得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为zFqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数)可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为n n n n i i iin n n x f p x f p p f p z p f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111 可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1)称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yP x Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足 zU R y U Q x U P ∂∂=∂∂=∂∂=,,从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P xz发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解 ()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数. [特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-j i j i t xa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线. [狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ 的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量. 作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλ ϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tnj i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i (k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关. (ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c)).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1 ,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ图14.3于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B tu A xv D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统. 考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且()()()()()()()()v u t x u t x v v u t x u x t v v u t x v tx u v u t x v x t u ,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A ut D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂t x v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=nnnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni i a .如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u m i nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ 式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222tus u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,对任意x D ∈和任意的a i 有()∑∑==≥ni i nj i jiija aa a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值). 如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。

偏微分方程数值解法及其在机械工程中的应用

偏微分方程数值解法及其在机械工程中的应用

偏微分方程数值解法及其在机械工程中的应用偏微分方程是描述自然界许多现象的重要数学工具,广泛应用于物理学、工程学等领域。

现代科技的发展,需要对偏微分方程进行数值求解,以获得实用的有效解答。

本文将介绍一些常用的偏微分方程数值解法,并探讨这些方法在机械工程中的应用。

一、偏微分方程的基本概念偏微分方程(Partial Differential Equation,简称PDE)是描述函数的变化率与它的各个自变量之间关系的方程。

常见的偏微分方程包括波动方程、扩散方程和泊松方程等。

例如,波动方程可以写作:∂²u/∂t² = c²∇²u其中,u是波动的位移,t是时间,c是波速,∇²u是拉普拉斯算子,表示u各方向二阶偏导数的和。

二、偏微分方程数值求解方法由于偏微分方程通常难以解析求解,因此需要采用数值求解方法。

下面分别介绍有限差分法、有限元法和谱方法三种常用的数值解法。

1. 有限差分法有限差分法(Finite Difference Method,简称FDM)将偏微分方程中的微分算子用差分算子代替,将求解区域离散化为网格点,并在这些点上逐一求解。

基本思想是用中心差分公式近似求得函数在某点处的导数,然后用差分公式得到下一时刻的函数值。

有限差分法简单易行,计算效率高,但需要使用较大的网格才能保证精度。

2. 有限元法有限差分法只能适用于规则网格,而有限元法(Finite Element Method,简称FEM)即使在不规则网格上求解也很有优势。

有限元法将求解区域分成若干个小区域,每个小区域内的函数值近似为一些基函数在该区域内的系数之和。

给定问题的初始边界条件和偏微分方程,可以得到解方程所需的线性方程组,进而求出各个区域内的系数。

有限元法需要选择一组适当的基函数及其系数,计算量较大,但对不规则边界问题的求解有较好的适用性。

3. 谱方法谱方法(Spectral Method)是一种基于傅里叶变换思想的数值解法,将函数在某个特定的函数空间内展开为傅里叶级数,即用一些特定的基函数展开求和。

偏微分方程的解法

偏微分方程的解法

偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。

这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。

解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。

在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。

以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。

分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。

特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。

对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。

分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。

特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。

Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。

非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。

这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。

除了上述解析解法,数值方法也是解偏微分方程的重要手段。

常用的数值方法包括有限差分法、有限元法和谱方法等。

一阶偏微分方程求解方法

一阶偏微分方程求解方法

加权余量法
在求解场域内,偏微分方程的真解为 ,近似解为 它由一组简单函数
ψi 的线性组合表达,表达中有待定系数 Ci 即:
近似解
问题的自 由度
n
Ci i i 1
简单函数,一般选用 简单形式的函数,一 旦选定就是已知的了
待定系数是真 正的求解目标
3.电磁场位函数偏微分方程的数值求解方法-加权余量法

2
w*j
(

n
(2)) d

wj (2 q) d
1 w*j ((1) g) d
2
w*j
(

n

h)
d
n
其中近似解: Ci i ,理论上尝试函数可任意选,
i 1
但适当的选取(作限制)可简化计算,
常常选取 i,使得 =g,则第一类边界条件自动满足
如选取加权函数:w

j

w*j,则上式被大大简化
由于近似解在1类边界 上常数,所以此项为0
选取特殊加权函数后,两 项和为0
第二类边界条件也消失了,说 明已经自动满足了
5. 加权余量法求解一般化方法的进一步优化
令加权余数为0即可得到求解原微分方程的一组代数方程:
Fj(R) wj d wjq d 2 wjh d 0
例1.两极电容板内部电场分布问题: 根据问题特点将3维问题简化为2维, 进一步简化为1维。 该问题是静态电场问题, 偏微分方程和边界条件:
2 0 0 0; d 10;
3. 加权余量法--例
加权余量法求解: 1.选取尝试函数、构造近似解:
理论上任意选取, 操作中越简单越好

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组求解
(实用版)
目录
一、一阶偏微分方程组的基本概念
二、一阶偏微分方程组的求解方法
三、一阶偏微分方程组的应用实例
正文
一、一阶偏微分方程组的基本概念
一阶偏微分方程组是偏微分方程中的一种,指的是包含一组一阶偏导数的方程。

在数学和物理学等领域,一阶偏微分方程组常用于描述许多实际问题,例如流体力学、电磁学等。

二、一阶偏微分方程组的求解方法
求解一阶偏微分方程组的方法有很多,常见的有以下几种:
1.分离变量法:将偏微分方程中的变量分离,转化为普通的微分方程,从而简化求解过程。

2.常数变易法:通过变易法,将偏微分方程转化为一个常微分方程,进而求解。

3.特征方程法:根据一阶偏微分方程的特征方程,求解出特征根,然后利用特征根求解原方程。

4.反演法:通过反演法,将一阶偏微分方程转化为一个二阶偏微分方程,然后利用二阶偏微分方程的求解方法求解。

以上方法并非孤立使用,很多时候需要结合多种方法进行求解。

具体问题具体分析,灵活运用各种方法,才能更好地解决实际问题。

三、一阶偏微分方程组的应用实例
一阶偏微分方程组在实际问题中有广泛的应用,例如:
1.流体力学:描述流体中速度、压力等物理量的变化,可以用一阶偏微分方程组来表示。

2.电磁学:描述电磁场中的电场强度、磁场强度等物理量,可以用一阶偏微分方程组来表示。

3.生物学:描述生物生长过程中的种群数量变化,可以用一阶偏微分方程组来表示。

一阶偏微分方程求解方法

一阶偏微分方程求解方法

VS
举例2
求解一阶偏微分方程时,遇到边界条件为 y'(0)=1,y'(1)=2的情况,可以通过有限差 分法进行处理。
感谢您的观看
THANKS
03
3. 求解参数方程
通过求解参数方程,得到 (t = x^2/2 + C) ,其中 (C) 是常数。
02
2. 建立参数方程
根据参数 (t) 的定义,建立参数方 程 (u'(x) = x + t) 。
04
4. 求得原方程的解
将 (t) 关于 (x) 的表达式代入原方 程,得到原方程的解 (u(x) = x^2/2 + C) 。
04 参数法
适用条件
适用于具有特定形式的一阶偏微分方程,如形如 (u'(x) = f(x, u(x))) 的方程。
适用于已知函数 (f(x, u)) 的情况,且在某些特定点上,方程的解 (u(x)) 可以表示为参数 (x) 的函数。
求解步骤
1. 确定参数
选择一个参数 (t) ,使得方程的解 (u(x)) 可以表示为 (t) 的函数。
乘积或商。
03 偏微分方程中的未知函数可以表示为某种周期函 数的乘积或商。
求解步骤
01
1. 将偏微分方程中的未知函数表示为多个函数的乘积
或商。
02 2. 将每个函数分别求解,得到每个函数的解。
03
3. 将所有函数的解组合起来,得到偏微分方程的解。
举例说明
考虑一阶偏微分方程 $$ frac{partial u}{partial x} + u = f(x) $$ 其中 $u = u(x)$ 是未知函数,$f(x)$ 是已知函数。
(e^{int f(x) dx} y' = f(x) e^{int f(x) dx})

偏微分方程解析解

偏微分方程解析解

偏微分方程解析解偏微分方程(Partial Differential Equation,简称PDE)是数学中研究最广泛的领域之一,它涉及到物理、工程、金融等众多领域中的实际问题。

解析解是指通过解析方法得到的能够精确描述偏微分方程解的解析表达式。

本文将介绍偏微分方程解析解的求解方法,并通过一些具体的例子进行说明。

一、一阶线性偏微分方程1.1 一维线性传热方程考虑一维线性传热方程:$$\frac{{\partial u}}{{\partial t}} = k\frac{{\partial^2 u}}{{\partialx^2}}$$其中,$u(t,x)$表示时间$t$和空间$x$上的温度分布,$k$为传热系数。

为了求解这个方程,我们引入一个新的变量,令$v(t,x) = u(t,x) -F(x)$,其中$F(x)$是由于边界条件所确定的函数。

将$v(t,x)$代入上面的方程得到:$$\frac{{\partial v}}{{\partial t}} = k\frac{{\partial^2 v}}{{\partialx^2}}$$接下来,我们可以使用分离变量法求解这个二阶偏微分方程。

假设$v(t,x)$可以表示为$v(t,x) = T(t)X(x)$的形式,则将这个表达式代入上面的方程中,得到:$$\frac{{T'(t)}}{{T(t)}} = k\frac{{X''(x)}}{{X(x)}}$$由于左边是关于$t$的表达式,右边是关于$x$的表达式,它们只能等于一个常数,即:$$\frac{{T'(t)}}{{T(t)}} = \frac{{X''(x)}}{{X(x)}} = -\lambda^2$$其中,$\lambda$是常数。

对于关于$x$的方程,我们可以得到:$$X''(x) + \lambda^2 X(x) = 0$$这是一个常微分方程,可以求解出$X(x)$的形式。

一类非线性偏微分方程组的直接解法

一类非线性偏微分方程组的直接解法

一类非线性偏微分方程组的直接解法,文章内容要写清楚。

局部最新获得台面(LNMP)定义为局部最小值问题,是指求解一类非线性偏微分方程组的最小值问题。

局部最新获得台面的一般方法是采用梯度下降(gradient descent)和拟牛顿(quasi-Newton)方法,前者被广泛使用,而后者效率更高,但是计算量更大。

近年来,出现了一种称为反射积分(reflection integral)的直接解法,该方法能有效求解局部最新获得台面,并且具有计算量少的优点。

反射积分法采用粒子跟踪技术模拟非线性偏微分方程组,算法运行步骤如下:(1)构造各类反射函数模型;(2)根据反射函数模型产生一系列粒子;(3)反复更新粒子的状态,此过程为“反射积分迭代”,直到满足一定停止准则;(4)使用最终形成的反射波来计算台面最小值。

反射积分法具有时间复杂度小、适用性广等优点。

首先,它只需要单个粒子运行,所以其计算量比现有方法小很多;其次,该算法对非线性模型很有效,可以求解多维、复杂的方程;此外,它将梯度法中的梯度信息转变为粒子的反射波,使计算更简化。

反射积分法的弱点是在反射积分迭代中,只能局部收敛,无法获得全局最小值,其研究的关键在于如何在局部收敛的情况下保证全局最优性。

总之,反射积分是一种高效、稳定的直接解法,可以有效地求解一类非线性偏微分方程组的最小值问题。

它在计算量上具有优势,被广泛应用于金融、环境等多领域。

偏微分方程的基本方法

偏微分方程的基本方法

偏微分方程的基本方法偏微分方程(Partial Differential Equations,简称PDE)是描述多变量函数的微分方程,其中函数的一个或多个变量是多维的。

在数学、物理学、工程学等领域中,偏微分方程被广泛应用于描述自然现象和物理规律。

解决偏微分方程的问题是这些领域中的重要课题之一。

本文将介绍偏微分方程的基本方法,包括分类、求解技巧和常见的数值方法。

### 一、偏微分方程的分类根据方程中未知函数的阶数和自变量的个数,偏微分方程可以分为几种基本类型:1. **椭圆型偏微分方程**:椭圆型偏微分方程的代表是拉普拉斯方程,通常用于描述稳态问题。

椭圆型方程的特点是解的光滑性好,边界条件唯一确定解。

2. **抛物型偏微分方程**:抛物型偏微分方程的代表是热传导方程和波动方程,通常用于描述随时间演化的问题。

抛物型方程的解需要给定初始条件和边界条件。

3. **双曲型偏微分方程**:双曲型偏微分方程的代表是波动方程,通常用于描述波动传播的问题。

双曲型方程的解需要给定初始条件和边界条件,解的行为受到波速的影响。

### 二、偏微分方程的求解方法解偏微分方程的方法主要包括解析解和数值解两种。

1. **解析解**:对于一些简单的偏微分方程,可以通过变量分离、特征线法、变换等方法求得解析解。

解析解的优点是精确性高,能够给出问题的精确解析解。

2. **数值解**:对于大多数复杂的偏微分方程,往往无法得到解析解,需要借助数值方法进行求解。

常见的数值方法包括有限差分法、有限元法、谱方法等。

数值解的优点是适用范围广,可以处理各种复杂情况。

### 三、偏微分方程的常见数值方法1. **有限差分法**:有限差分法是一种常见的数值方法,将偏微分方程中的导数用差分近似代替,将偏微分方程转化为代数方程组。

通过迭代求解代数方程组,可以得到偏微分方程的数值解。

2. **有限元法**:有限元法是一种广泛应用的数值方法,将求解区域划分为有限个单元,通过建立单元之间的关系,将偏微分方程转化为代数方程组。

一类非线性偏微分方程组的直接解法

一类非线性偏微分方程组的直接解法

一类非线性偏微分方程组的直接解法非线性偏微分方程组是数学家和科学家面对复杂场合时常用到的工具,其解法如何才能有效地求得精确结果,是这一领域里的一个重要课题。

近年来,直接解法已经成为求解非线性偏微分方程组的一种重要方法。

本文将对直接解法的基本概念、正确性、计算步骤以及其主要优缺点进行介绍,以期更深入理解和使用这种解法。

首先,直接解法指在求解非线性偏微分方程组时,不使用传统的分离变量法,而是直接求解方程组进行求解。

在求解的过程中,使用的方法不同,包括几何证明、数值解以及代数解等,其中,最常用的是数值解法,它通过迭代的方式来求解原始方程组,可以获得近似解,从而更准确地获得解析解或近似解。

其次,与传统的分离变量法相比,直接解法具有准确性较高的特点。

由于它不需要使用分离变量法进行解法,因此可以更加准确地获得精确解。

因此,直接解法可以更好地解决复杂的非线性偏微分方程组,产生准确的结果。

再次,直接解法的计算步骤也比较简单,主要包括以下几步:首先,确定偏微分方程组的解析解,然后确定正确的精度;其次,根据精度来确定正确的迭代方法;接着,确定正确的迭代步骤;最后,使用迭代方法来求解非线性偏微分方程组。

最后,直接解法的主要优点和缺点也值得指出。

其优点在于可以求解复杂的非线性偏微分方程组,而且可以在较少的计算步骤内获得更准确具有可靠性的精度;其缺点在于当方程组更复杂时,需要耗费更多的计算时间和资源来获得正确的结果。

综上所述,直接解法是求解非线性偏微分方程组的一种重要方法,具有准确性高,步骤简单,可靠性好的特点。

本文对直接解法的基本概念、正确性、计算步骤以及其主要优缺点进行了介绍,为更解决复杂非线性偏微分方程组问题提供了参考。

偏微分方程算法

偏微分方程算法

偏微分方程算法偏微分方程(Partial Differential Equations,简称PDE)是一类数学模型,广泛应用于天文学、物理学、工程学和金融学等领域。

它们描述的是一个变量的空间分布和时间演化,如流体的流动、电磁场的变化等。

因此,PDE算法是掌握这些领域前沿技术的必备知识。

PDE算法主要有三类:有限差分法、有限元法和谱方法。

它们的共同目的是为给定的PDE求解一个数学函数,该函数在空间和时间变量上满足PDE。

下面我们将逐一介绍这三种算法。

1. 有限差分法有限差分法(Finite Difference Method,简称FDM)是一种直接、有效的PDE求解方法。

它的基本思路是将连续的函数离散化为点集,然后用差分代替微分,通过计算这些点的值来逼近真实函数。

FDM的优点是简便易学、速度快,而且对于简单的PDE,求解精度也很高。

以二维Poisson方程为例,公式如下:∇2u = f其中u是待求的二元函数,∇2表示Laplace算子的二阶导数,f 是已知函数。

用有限差分法将其离散化,可以得到如下公式:u[i,j] = ( u[i+1,j] + u[i-1,j] + u[i,j+1] + u[i,j-1] - h2f[i,j] ) / 4其中h是网格步长,用于将求解域离散化成平面网格。

将上式写成矩阵形式,得到一个线性方程组Ax = b。

这个方程组可以用高斯消元法或迭代方法来求解。

2. 有限元法有限元法(Finite Element Method,简称FEM)是一种更广泛适用的PDE数值求解方法。

与FDM相比,它对于复杂的几何形状和边界条件的处理更灵活。

FEM的基本思路是将求解域划分为多个有限元,每个元内的函数与近似PDE解之间存在线性关系。

因此,求解过程就转化成了一个巨大的线性方程组。

以一维泊松方程为例,公式如下:-u'' = f, u(0) = 0, u(1) = 0其中u是待求函数,f是已知函数。

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法引言:偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,广泛应用于自然科学、工程技术和经济管理等领域。

它描述了多个变量之间的关系,具有非常复杂的性质和解法。

本文将对偏微分方程的分类和求解方法进行探讨。

一、偏微分方程的分类偏微分方程可分为线性和非线性两类。

线性偏微分方程的解可以通过叠加原理来求解,而非线性偏微分方程则需要借助数值方法或近似解法来求解。

1. 线性偏微分方程线性偏微分方程的一般形式为:\[ \sum_{i=0}^{n} a_i(x) \frac{\partial^i u}{\partial x^i} = f(x) \]其中,\(a_i\) 是系数函数,\(f(x)\) 是已知函数,\(u\) 是未知函数。

常见的线性偏微分方程有波动方程、热传导方程和亥姆霍兹方程等。

2. 非线性偏微分方程非线性偏微分方程的一般形式为:\[ F(x,u,\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2},...) = 0 \]其中,\(F\) 是非线性函数。

非线性偏微分方程的求解相对困难,通常需要借助数值计算方法来获得近似解。

二、偏微分方程的求解方法偏微分方程的求解方法多种多样,下面将介绍几种常见的方法。

1. 分离变量法分离变量法是一种常用的求解线性偏微分方程的方法。

它的基本思想是将未知函数表示为一系列只与单个变量有关的函数的乘积形式,然后通过分离变量和整理方程,得到一系列常微分方程。

最后,通过求解这些常微分方程,得到原偏微分方程的解。

2. 特征线法特征线法适用于一类特殊的偏微分方程,如一阶线性偏微分方程和一类二阶线性偏微分方程。

它通过引入新的自变量,将原方程转化为常微分方程,然后通过求解常微分方程得到原方程的解。

3. 变换法变换法是通过引入新的变量或者进行坐标变换,将原方程转化为更简单的形式。

偏微分方程求解算法研究及应用

偏微分方程求解算法研究及应用

偏微分方程求解算法研究及应用偏微分方程是描述自然现象和工程问题的重要工具。

从最简单的热传导方程到流体力学中的Navier-Stokes方程,这些方程的求解能够获得很多实际问题的解答。

随着计算机技术的飞速发展,可解决的偏微分方程问题的范围和复杂性也得到了提高。

在本文中,我们将讨论偏微分方程的一些求解算法及其应用,以及这些算法如何在实践中发挥作用。

第一部分:解析方法解析方程的基本思想是寻找满足特定条件的解析表达式。

在偏微分方程的求解中,常见的解析方法包括分离变量法、变量参数法和特征线方法等。

1.1 分离变量法分离变量法是解决大多数运筹学、物理学和工程学问题的重要方法。

它的基本思想是,假设找到一种函数形式,使得偏微分方程中的某些变量可以单独表示,这样就可以得到关于单个变量的一组普通微分方程。

通过求解这些方程,就可以获得原始问题的解。

例如,考虑一个双曲型偏微分方程:$$ \frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial t^2}=0 $$我们可以假设$u(x,t)$的解有如下形式:$$ u(x,t)=X(x)T(t) $$将它代入原方程得到:$$ \frac{X''}{X}=\frac{T''}{T}=-\lambda $$其中$\lambda$是分离常数。

然后,我们可以解出关于$X$和$T$的两个普通微分方程:$$ X''+\lambda X=0, T''+\lambda T=0 $$这两个方程都是熟悉的谐振动方程,其解可以表示为正弦波和余弦波的线性组合。

因此,原方程的通解可以写成:$$ u(x,t)=\sum_{n=1}^{\infty}(A_n\cos(\sqrt{\lambda_n}x)+B_n\sin(\sqrt{\lambda_n}x))(C_n\cos(\sqrt{\lambda_n}t)+D_n\sin(\sqrt{\lambda_n}t)) $$其中,$A_n,B_n,C_n$和$D_n$是一些常数,根据边界条件和初始条件来确定。

2一阶偏微分方程的求解方法

2一阶偏微分方程的求解方法

1)
(6.23)
由假设(6.18), f j (x1, x2,, xn) 在某区域 D 内处处不同时为零, 这意
味着上述以 f j (x1, x2,, xn) ( j 1, 2,, n )为变量的线性方程组在区 域 D 内有非零解, 所以其系数行列式在区域 D 内必为零, 即
u x1
(u, u1 ,, un 1 ) (x1, x2,, xn )
(6.20 )
通过这 n 1个独立的首次积分, 我们可以获得偏微分方程(6.17)
的通解结构.
.
例6.6 试求偏微分方程 u u 0 的通解.
x y
解: 作自变量变换
x
y
1 (t 2 1 (t
s) s)
Байду номын сангаас
2

u u x u y 1 (u u ) 0 s x s y s 2 x y
6.24
其中 (,) 是任意的二元连续可微函数. 确定某函数关系 0 使得(6.24)满足初始条件 u |z1 xy, 我们有
0 ( x y , 2 y ) xy.
令 x y, 2 y. 解之得
x ( 1)2, y 12.
2
4
故可确定
0 为
0 (
,)
xy
1 (
4
1)2 2.
2
回代通解内可得满足满足初始条件的解:
例6.7 求解偏微分方程
(x y) u (x y) u 0,
x
y
其中 x2 y2 0.
解: 特征方程为
dx dy , xy xy
它有一个首次积分:
x2
y2
arctan y
ex
C.

偏微分方程解法

偏微分方程解法

偏微分方程解法一、概述偏微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。

解决偏微分方程的方法有很多种,其中最常用的方法是数值解法和解析解法。

本文将重点介绍偏微分方程的解析解法。

二、基本概念1. 偏微分方程:含有多个自变量和它们的偏导数的方程。

2. 解析解:能够用一定的代数式或函数表示出来的解。

3. 常微分方程:只含一个自变量和它的导数的方程。

4. 偏微分方程分类:(1)线性偏微分方程:各项次数之和为1或2。

(2)非线性偏微分方程:各项次数之和大于2。

5. 解析解法分类:(1)可分离变量法(2)相似变量法(3)积分因子法(4)特征线法(5)变换法三、可分离变量法可分离变量法是求解一类特殊形式线性偏微分方程最常用的方法,其基本思想是将未知函数表示成各自变量之积,然后将其带入原偏微分方程中得到一组常微分方程,再求解这些常微分方程,最后将得到的解代回原方程中即可。

以一阶线性偏微分方程为例:$$\frac{\partial u}{\partial t}+a(t)u=b(t)$$其中$a(t)$和$b(t)$为已知函数,$u=u(x,t)$为未知函数。

将未知函数表示成各自变量之积:$$u=X(x)T(t)$$将其带入原方程中得到:$$XT'+aXT=bXt$$将$X$和$T$分离变量并整理得到:$$\frac{1}{X}\frac{dX}{dx}=\frac{1}{at+b}-\frac{c}{X}$$其中$c$为常数。

对上式两边同时积分得到:$$ln|X|=ln|at+b|-ct+D_1,D_1为常数。

$$即可得到$X(x)$的解析解。

同理,对于$T(t)$也可以通过可分离变量法求出其解析解。

最后将$X(x)$和$T(t)$的解代入原方程中即可得到未知函数$u=u(x,t)$的解析解。

四、相似变量法相似变量法是一种适用于非线性偏微分方程的方法,其基本思想是通过引入新的自变量和因变量,将原偏微分方程转化成一个形式相似但更简单的方程,从而求出原方程的解析解。

一阶线性偏微分方程与解法

一阶线性偏微分方程与解法

一阶线性偏微分方程与解法一阶线性偏微分方程是微分方程中的一类重要方程,它具有广泛的应用领域和解法。

本文将介绍一阶线性偏微分方程的基本形式、解法和具体应用。

一、基本形式一阶线性偏微分方程的一般形式可以表示为:\[ a(x,t)\frac{\partial u}{\partial x} + b(x,t)\frac{\partial u}{\partial t} = c(x,t,u) \]其中,\( u = u(x,t) \) 是未知函数, \( a(x,t), b(x,t), c(x,t,u) \) 是给定函数。

二、解法(1)变量可分离法如果方程可以表示为 \( f(x)dx + g(t)dt = 0 \),其中 \( f(x) \) 和 \( g(t) \) 是关于 \( x \) 和 \( t \) 的函数,那么方程可以通过变量可分离法解析地求解。

具体求解方法是分离变量并进行积分:\[ \int f(x)dx + \int g(t)dt = \int 0 \]求出积分后的结果,并将 \( u(x,t) \) 表示出来。

(2)特征线法特征线法适用于方程为线性齐次的情况,即 \( c(x,t,u) = 0 \)。

使用特征线法可以将一阶线性偏微分方程转化为一阶常微分方程。

求解一阶常微分方程后,再通过特征线反解得到原方程的解。

具体求解步骤如下:1. 确定特征曲线的参数方程,通过 \( \frac{dx}{a(x,t)} =\frac{dt}{b(x,t)} \) 可以得到参数方程。

2. 将未知函数按照参数方程表示,得到 \( u = u(\phi) \),其中 \( \phi \) 是参数。

3. 对上式两边求导,得到 \( \frac{du}{d\phi} = \frac{\partialu}{\partial x}\frac{dx}{d\phi} + \frac{\partial u}{\partial t}\frac{dt}{d\phi} \)。

petrov–galerkin method

petrov–galerkin method

petrov–galerkin method
Petrov-Galerkin方法是一种数值求解偏微分方程的方法,主要用于解决线性偏微分方程组。

该方法的基本思想是将原始的偏微分方程组转化为一个线性方程组,然后通过迭代求解线性方程组来得到解。

Petrov-Galerkin方法的步骤如下:
1. 将原始的偏微分方程组转化为一个线性方程组。

这通常需要使用一些特殊的矩阵变换或者对角化等技术。

2. 初始化一个近似解向量x0,并计算其对应的函数值向量y0。

3. 进行迭代计算,每次迭代中,根据当前的近似解向量xk和函数值向量yk,计算出新的近似解向量xk+1和函数值向量yk+1。

4. 当满足一定的收敛条件时,停止迭代,得到的近似解向量xk+1就是最终的解。

Petrov-Galerkin方法的优点是可以有效地处理大规模的问题,而且计算复杂度相对较低。

但是,由于其基于迭代的方法,因此在某些情况下可能会出现收敛速度较慢的问题。

供参考。

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法

偏微分方程的分类与求解方法偏微分方程(Partial Differential Equations, PDEs)是描述自然界和物理现象中的变化过程的重要数学工具。

它涉及多个自变量和导数,可以用来描述涉及多个变量及其变化率的复杂问题。

在数学、物理学、工程学等领域中,偏微分方程广泛应用于研究和解决实际问题。

本文将介绍偏微分方程的分类与求解方法。

一、偏微分方程的分类偏微分方程可以根据方程中未知函数的阶数、方程类型以及系数的性质等多个因素来进行分类。

下面将介绍几种常见的偏微分方程分类。

1. 齐次与非齐次偏微分方程当方程中未知函数及其各阶偏导数的总次数都为整数时,称为齐次偏微分方程。

齐次偏微分方程的解是一类特殊的函数族。

与之相反,非齐次偏微分方程中的未知函数及其各阶偏导数总次数之和不等于整数。

求解非齐次偏微分方程需要特殊的方法。

2. 线性与非线性偏微分方程根据方程中未知函数的线性性质,可以将偏微分方程分为线性和非线性两类。

当方程中未知函数及其各阶偏导数的系数与未知函数之间都是线性关系时,称为线性偏微分方程。

线性偏微分方程的求解较为简单。

与之相对,非线性偏微分方程的系数与未知函数之间存在非线性关系,求解较为困难。

3. 一阶、二阶和高阶偏微分方程根据未知函数的导数阶数,可以将偏微分方程分为一阶、二阶以及高阶偏微分方程。

一阶偏微分方程中涉及到未知函数的一阶导数,例如常见的一阶线性偏微分方程:$\frac{\partial u}{\partial x} +\frac{\partial u}{\partial y} = 0$。

二阶偏微分方程中涉及到未知函数的二阶导数,例如常见的二阶线性齐次偏微分方程:$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$。

高阶偏微分方程则涉及到更高次的导数。

二、偏微分方程的求解方法对于不同类型的偏微分方程,可以采用不同的求解方法。

求解偏微分方程三种数值方法

求解偏微分方程三种数值方法

求解偏微分方程三种数值方法偏微分方程是数学中研究包含多个变量及其偏导数的方程。

解决偏微分方程的数值方法有很多,但本文将重点介绍三种常用的数值方法,分别是有限差分法、有限元法和谱方法。

一、有限差分法:有限差分法是一种常用的数值方法,用于求解偏微分方程的数值解。

其基本思想是通过建立网格来离散化偏微分方程中的空间变量,并近似替代导数,将偏微分方程转化为代数方程组,进而求解。

常见的有限差分格式有向前差分、向后差分和中心差分。

有限差分法主要包括以下步骤:1.空间离散化:将区域划分为网格点,在每个网格点上计算方程中的函数值。

2.近似代替导数:使用差分公式,将导数近似替代为函数在相邻网格点上的差分。

3.建立代数方程组:根据近似的导数和偏微分方程的形式,可以建立相应的代数方程组。

4.求解方程组:使用求解线性方程组的方法,如高斯消元法或迭代法,求解代数方程组。

5.恢复连续解:通过插值或者其他方法,将离散解恢复为连续解。

二、有限元法:有限元法是一种广泛应用的数值方法,用于求解偏微分方程的数值解。

其基本思想是将区域划分为有限个小区域,称为单元,通过求解单元上的局部方程,最终得到整个区域上的数值解。

有限元法主要包括以下步骤:1.离散化:将区域划分为单元,并选择适当的有限元空间。

2.建立局部方程:在每个单元上,根据选择的有限元空间和边界条件,建立局部方程。

3.组装全局方程:将所有单元上的局部方程组装成整个区域上的全局方程。

4.施加边界条件:根据问题的边界条件,施加适当的边界条件。

5.求解方程组:使用求解线性方程组的方法,求解全局方程组,得到数值解。

6.后处理:通过插值等方法,将离散解恢复为连续解,并进行后续的分析。

三、谱方法:谱方法是一种高精度的数值方法,适用于求解偏微分方程的数值解。

其基本思想是将区域上的函数展开为一组基函数的线性组合,通过选取适当的基函数和系数,来逼近求解方程。

谱方法主要包括以下步骤:1. 选择基函数:根据问题的性质,选择合适的基函数,如Legendre多项式、Chebyshev多项式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

维普资讯
锦 州师 范学 院学报 ( 自然 科 学 版 )
第2括 3
( )首导 数在 方程 的右边 不 出现 ; 3
()方程 组不 出现主 导数 ; 4
( )方程组 的可积条 件为 空集 。 5
3 例 子
定 义 4对 p s中 的任 意 两 个 方 程 V d 一 ,
定 义 3 在 一个 偏 微分 方程 中 , 照上 述 的序 按 关 系 > 的最大 元称为 这个 方程 的首 导数 。 首导 数的
导数称 为 主导数 , 其余 的导数 称 为参数 导数
在 一个 偏微 分 方程 中 首导 数是 唯 一确定 的。 一
多 元 多项 式 的带余 除法 来 求 出 目标 方程 , 以及 原 方程组 的解 和 目标方 程 的 解 之间 的 变换 关 系 。 且 并 这 种新 的机 械化算 法 中的 大量计算 工作 可 以 由计算
U 一 l 2。 *U /x ,r 一 + - P s fO / l . 为 U ( )的 _ z
的形 式 , 为首 导 数 , 户 为 标准型 , D 称 出 如果 满足
如下 条件 :
( ) 同一个 方 程 中 , 1在 左边 导数 严 格 低 于右 边 导数 ;
成 。适 用这 种新 法对 Ma w l方程 组 和按应 力求 解的二 维弹性 力 学方程组进 行 了 求解。得到 了与 xe l
文献 [ ,] 12 中相 同的结 果 。
关 键 词 : a w l方 程 组 ; 维 弹 ・ 学 方 程 组 ; e M x el : l 生力 R i 准 型 ; 积 条 件 d标 可 中 图分 类 号 : 7 . 9 01 5 2 文献标 识 码 : A 文 章 编 号 :0 7 5 3 2 O ) l0 5 —3 1 0 — 3 X( O 2 O 一0 70
D6 一 } ( 一 1 2 … ,) 取 一 ma (, ) ( ,声 ,, , x a, , = 12 … , , , , m)I一 { 一 n f I 一 1 2 … , tP ,,
, 为ps 称 d 的可 积条 件 算法 I
[ 输入] 线性偏微分方程组 p 。 [ 出]目标方程 D 一 0 输 o 。

od a 一 q - 2 … + ≥ 0 r () 4口 + 定义 为偏导
对 于 , b∈ N , d> b当 且 仅 当

数 的 阶 定义 1 ( od a I)r ()> o d 6 或 r ()
(Ⅱ) r 口 o d( )一 od( ) 一 b , , 一 一 r 6 , …
偏 导 数 。 中 : 一 ( 1 一, ) ∈N,一 0, , , 其 n n , 2 d i 1 2
收 稿 日期 :0 10 —0 2 0 —52 .
()方程组 中 的任 意 两个 首导数 彼此不 同 ; 2
基金 项 目 : 国家 自然科 学 基 金 资助 (0 7 0 3 10 2 8 ) 10 2 1 ,0 7 1 9 作 者 简 介 丽 娜 (9 6) 女 , 士 , 事 教 学 机 槭 化 教 学 和研 究 工 作 曹 1 7一 , 硕 从
维普资讯
第 2 卷 第 1期 3
2002年 3月
锦 州师 范学 院 学报 ( 自然科 学f 4)
J u n l fJn h u No ma ol e ( t rlS in eEdto ) o r a o iz o r lC l g Nau a c c i n e e i
…, Βιβλιοθήκη 0 引 言 在 实际 问题 中 , 常会 遇 到 大量 的偏 微 分 方程 经 组 , 以求 解偏 微 分 方 程组 一 直 以来 都 是 一个 非 常 所 重 要的课题 , 是 十分 困难 , 目前为止 还投 有 统一 但 到 的方法 春宝 、 百锁 在上 个世 纪八 十年 代 给出 了 李 王 求 解 × 7一 , ・ = P的 新 公式 0 文 献 7 j
E 一步 ] 一 出。 g [ 二 步 ] ^ 中选 取一个 方程 . 方程 的首 导 第 在 此
() > g 1

( ) = q 口> b 2户 , 。
的 、 容 易求 解 的方程 组 ( 不 原方 程 ) 化成 较 为 简单 转 的 、 易 求解 的 方程 , 转 化 为 已知 解 的方 程 ( 容 或 目标 方程 ) 其 中主要 是 利 用 R i 准 型算 法 和 矩 阵 。 e d标
∥ > b, ‘ i一 1, , 。 … m
定义 2 对于

, , D
> f 当 且 仅 D
[]5 2[]阐 述 了求 解 弹性 力 学 方程 组 一 般 解 的统 一
理论。 从吴 文俊 院士提 出的 数学机 械化 的思 想 出发 ,
通 过 机 械 化 的 方 法 , 出 适 当 的 变 换 , 较 为 复 杂 求 将
机 来完成 。
个方 程组 的所有首 导 数组成首 导 数集 , 用 来表示 。
定义 4 设
方 程 为
D p: U
为一 个偏 微 分 方 程组 , 中的 其
1 确 定 目标 方 程
设 ps d 是一 个偏 微分 方 程组 , 有 m 个 自变量 它 z . , , , 个 函 数 U ( ) U , , ( 1 … " 2 , ( … U ) )
Vo . 3Nn 1 12
M a r 20 O2
求解一 类线性偏微分 方程组一 般解的机械化 算法
曹丽娜 , 张鸿 庆
( 连 理 工 太学 应 用 数 学 系 . 宁 太 连 1 6 2 ) 大 辽 10 4
摘 要 : 出 了求解 一类线 性偏 微 分方 程组 一般 解 的机 械 化算 法 。这 一算 法 可 以在有 限 步完 给
相关文档
最新文档