广东省12大市2013届高三二模数学(理)试题分类汇编6:不等式

合集下载

2013年广州二模数学理科答案详解

2013年广州二模数学理科答案详解

1.集合N M x N x y y M x 则},44|{)},1lg(|{2<=+==等于 ( )A .[)+∞,0B .[)1,0C .()+∞,1D .(]1,0 2.15cot 15tan -的值是( )A .3-B .32C .3D .32-3.要得到函数)42sin(3π-=x y 的图象,可将函数x y 2sin 3=的图象沿x 轴( ) A .向左平移4π单位 B .向右平移4π单位C .向左平移8π单位D .向右平移8π单位4.函数)(32R x y x ∈+=的反函数为( )A .)3(23log 2>-=x x y B .)3)(3(log 2>-=x x yC .)3)(3(log 2>-=x x yD .)3(23log 2>-=x xy 5.011<<ba 若,则下列不等式正确的个数是( )①||||b a > ②ab b a <+ ③2>+baa b ④b a ba -<22A .1个B .2个C .3个D .4个6.过点(1,1)的直线l 与圆4)2(22=+-y x 相交于A 、B 两点,当弦AB 的长度最小时,直线l 的斜率为 ( )A .2B .-1C .-2D .1 7.等差数列{}1418161042,30,a a a a a a n -=++则中的值为 ( )A .20B .-20C .10D .-108.函数)(x f y =图象如右图所示,不等式0)()(>--x f x f 的解集是 ( )A .(-1,0)B .(0,1)C .)0,1[-D .]1,0(9.设a ,b ,c 是△ABC 的三条边,若a ,b ,c 成等比数列,且c =2a ,则cos B 等于( )A .41B .43 C .42 D .3210.已知△ABC 中,向量,0||||(=⋅+AC AB 满足与21||||=AC AB ,则△ABC 为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形11.已知点(x ,y )在如图所示平面区域内运动(包含边界),目标函数.y kx z -=当且仅当54,32==y x 时,目标函数z 取最小值,则实数k 的取值范围是 ( )A .)103,512(--B .]103,512[--C .)310,125(--D .]310,125[--12.已知奇函数)(x f 的定义域为R ,且是以2为周期的周期函数,数列{}n a 是首项为1,公差为1的等差数列,则)()()(1021a f a f a f +++ 的值为 ( )A .0B .1C .-1D .2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小数点题,每小题4分,共16分.把答案填在题中横线上) 13.不等式21≥-xx 的解集为 . 14.若),(,2||,1||b a a b a -⊥==则向量a 与b 的夹角为 . 15.已知αββαtan ,41tan ,52)tan(则==+= . 16.定义“等积数列”:在一个数列中,如果每一项与它后一项的积都为同一常数,那么这个数列叫做“等积数列”,这个常数叫做该数列的公积。

2013广州二模理科数学试卷

2013广州二模理科数学试卷
,
⒛ .(本 小题满分 ⒕ 分 )
经过点 F(O,1)且 与直线 y=-I相 切的动圆的圆心轨迹为 M点
A、
D在 轨迹 〃 上
,
且关于 y轴 对称 ,过 线段 AD(两 端点除外 )上 的任意一点作直线 J,使 苴线 J与 轨迹 〃 在点 D处 的切线平行 ,设 直线 J与 轨迹 ″ 交于点 B、 G
本容量 刀=~。
10.已 知 α为锐角 ,且 ∞s(α +毋
)〓
导 ,则
蕊 = nα
1I.用 O,1,2,3,4,5这 六个数字 ,可 以组成____个 没有重 复数字且能 5整 被 除的
五位数 (结 果用数值表示 ).
12,已 知 函 数 r(豸 )='-‰ ,点 集 ″ =I(豸 ,丿 )|r⑺ +r(v)≤ 21,Ⅳ Ⅳ f(J,y) |r(豸 )-丑 冫 01,则 〃∩ 所构成平面区域的面积为 )≥
.
数学 (理 科 )试 题 B
第 3页 (共 4页 )
18.
等边三角形 ABC的 边长为 3,点
(如 图 3).将 △ADE沿
D、
E分 另 边 AB、 肥 上 的`点 ,且 满足 =簧 =÷ 堤 筅
,
DE折 起到 △A1DE的 位置 ,使 二面角 A1-DE-B成 直二 面角
连结 A1B、 ⒕ 1C(如 图 4)。 (1)求 证 :A1D⊥ 平面 Bα D;
}
刂 的前 刀项 和为 S刀 ’贝 S⒛
(二 )选 做题
=____;‰
13ˉ
____・
)
(14~15题 ,考 生只能从 中选做 一题
14.(几 何 证 明选讲选做 题 )
在 △ABC中

广东省13大市区高三数学 最新试题精选二模分类汇编9 圆锥曲线 理

广东省13大市区高三数学 最新试题精选二模分类汇编9 圆锥曲线 理

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线一、选择题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 ( )A .14B .12C .2D .4【答案】A2 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)定义:关于x 的不等式||x A B-<的解集叫A 的B 邻域.已知2a b +-的a b +邻域为区间(2,8)-,其中a b 、分别为椭圆12222=+by a x 的长半轴和短半轴.若此椭圆的一焦点与抛物线x y 542=的焦点重合,则椭圆的方程为( )A .13822=+y xB .14922=+y xC .18922=+y xD .191622=+y x【答案】B3 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)已知椭圆()2222:10x y C a b a b+=>>,双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为.A 22184x y += .B 221126x y += .C 221168x y += .D 221205x y +=【答案】B4 .(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .4【答案】D 双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.5 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))设F 1,F 2是椭圆)0(12222>>=+b a b y a x 的左右焦点,若直线x =m a (m >1)上存在一点P,使ΔF 2PF 1是底角为300的等腰三角形,则m 的取值范围是( )A D .【答案】A6 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知双曲线22221x y a b-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )A .12B .2C .2D .1【答案】A7 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))方程||||169x x y y +=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点;③函数y=f(x)的值域是R;④f(x)的图象不经过第一象限,其中正确的个数是 ( ) A .1个 B .2个 C .3个 D .4个 【答案】D二、填空题 8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.【答案】22143x y -=9.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为20x y +=,则双曲线的离心率e 的值为__________ .10.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方程为___,渐近线方程为___.【答案】221432x y -= y =±11.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知动点P 在抛物线y 2=4x 上,那么使得点P 到定点Q(2,,-1)的距离与点P 到抛物线焦点的距离之和最小的点P 的坐标为___【答案】)1,41(-12.(广东省梅州市2013届高三3月总复习质检数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>的两条近线的夹角为3π,则双曲线的离心率为___13.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))已知点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:22221(0,0)x y a b a b-=>>的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线的离心率等于____14.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知双曲线221x ky -=的一个焦点是),则其渐近线方程为________.【答案】2y x =±;15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为______________.【答案】22115()()222x y -+-=[或2220x y x y +---=];易得圆心坐标为11(,)22,半径为r =, 故所求圆的方程为22115()()222x y -+-=【或2220x y x y +---=. 】16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy 中,若双曲线14222=+-m y m x 的焦距为8,则=m _______.【答案】3(未排除4-,给3分)17.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知抛物线24x y =上一点P 到焦点F 的距离是5,则点P 的横坐标是_____.【答案】4± 18.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设点P 是双曲线22221(0,0)x y a b a b-=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________.19.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽________米.【答案】20.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 ________.【答案】双曲线221916x y -=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.三、解答题 21.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )在平面直角坐标系xoy 中,设点F (1,0),直线l :1x =-,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,,RQ FP PQ l ⊥⊥.(Ⅰ)求动点Q 的轨迹的方程;(Ⅱ) 记Q 的轨迹的方程为E ,过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为N M ,.求证:直线MN 必过定点)0,3(R .【答案】解:(Ⅰ)依题意知,直线l 的方程为:1x =-.点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线∴PQ 是点Q 到直线l 的距离.∵点Q 在线段FP 的垂直平分线,∴PQ QF =故动点Q 的轨迹E 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)y x x => (Ⅱ) 设()()B B A A y x B y x A ,,,,()()N N M M y x N y x M ,,,,直线AB 的方程为)1(-=x k y则⎪⎩⎪⎨⎧==)2(4)1(422BB A A x y x y(1)—(2)得k y y B A 4=+,即ky M 2=, 代入方程)1(-=x k y ,解得122+=kx M .所以点M 的坐标为222(1,)k k+同理可得:N 的坐标为2(21,2)k k +-. 直线MN 的斜率为21kkx x y y k N M N M MN -=--=,方程为 )12(1222---=+k x kk k y ,整理得)3()1(2-=-x k k y , 显然,不论k 为何值,(3,0)均满足方程, 所以直线MN 恒过定点R (3,0).1422.(广东省汕头一中2013年高三4月模拟考试数学理试题 )在平面直角坐标系中,已知点()2,0A 、()2,0B -,P 是平面内一动点,直线PA 、PB 的斜率之积为34-.(1)求动点P 的轨迹C 的方程;(2)过点1,02⎛⎫⎪⎝⎭作直线l 与轨迹C 交于E 、F 两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围.2013年4月汕头一中高三模拟考 【答案】(1)依题意,有3224PA PB y y k k x x ⋅=⋅=--+(2x ≠±), ----------------------------- 化简得: 22143x y += (2x ≠±),为所求动点P 的轨迹C 的方程------------------------ (2)依题意,可设(,)M x y 、(,)E x m y n ++、(,)F x m y n --,则有2222()()143()()143x m y n x m y n ⎧+++=⎪⎪⎨--⎪+=⎪⎩,两式相减,得443004342EF mx n n x y k m y x -+=⇒==-=-, 由此得点M 的轨迹方程为:226830x y x +-=(0x ≠).------------------------------ 设直线MA :2x my =+(其中1m k=),则 22222(68)211806830x my m y my x y x =+⎧⇒+++=⎨+-=⎩, ------------------------------ 故由22(21)72(68)0||8m m m ∆=-+≥⇒≥,即18k≥, 解得:k 的取值范围是11,88⎡⎤-⎢⎥⎣⎦. ---------------------------23.(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知抛物线C :212x y =,过焦点F 的动直线l 交抛物线于A 、B 两点,O 为坐标原点. (1)求证:OA OB ⋅为定值;(2)设M 是线段AB 的中点,过M 作x 轴的垂线交抛物线C 于点N ,证明:抛物线C 在点N 处的切线与AB 平行.【答案】(1)设直线l 的方程为:18y kx =+,()11,A x y ,()22,B x y . ------------------------- 由21218x y y kx ⎧=⎪⎪⎨⎪=+⎪⎩得:2110264x kx --=,∴12116x x =- ------------------------ ∴()2121212123464OA OB x x y y x x x x ⋅=+=+=-为定值---------------------------- (2)由(1)得:点M 的横坐标为4k ,∴点N 的横坐标为4k----------------------------∵'4y x = ∴4'|k x y k == ----------------------------∴平行另解:设()00,N x y ,则12024x x k x +==,220028k y x == ---------------------------- 设抛物线C 在点N 处的切线为284k k y m x ⎛⎫-=- ⎪⎝⎭由228412k k y m x x y⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩得:2202816m mk k x x -+-= ------------------------------- ∴22404816m mk k ⎛⎫∆=--= ⎪⎝⎭,解得:m k = -------------------------------∴平行24.(广东省东莞市2013届高三第二次模拟数学理试题)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为e =,直线:2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=⋅,求||QS 的取值范围.【答案】解:(1)由直线:2l y x =+与圆222x y b +=相切,b =,即b =由e =,得222213b e a =-=,所以a =所以椭圆的方程是221:132x y C +=(2)由条件,知2||||MF MP =,即动点M 到定点2F 的距离等于它到直线1:1l x =-的距离,由抛物线的定义得点M 的轨迹2C 的方程是x y 42=(3)由(2),知(0,0)Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, ∴222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭由0=⋅,得()()222121121016y y y y y y -+-=∵12y y ≠,∴21116y y y ⎛⎫=-+⎪⎝⎭,∴222121256323264y y y =++≥=,当且仅当2121256y y =,即14y =±时等号成立 又||y QS ⎛== ,∵2264y ≥,∴当2264y =,即28y =±时,min ||QS =故||QS 的取值范围是)⎡+∞⎣25.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知两圆222212:20,:(1)4C x y x C x y +-=++=的圆心分别为12,C C ,P 为一个动点,且12||||PC PC +=(1)求动点P 的轨迹M 的方程;(2)是否存在过点(2,0)A 的直线l 与轨迹M 交于不同的两点C 、D,使得11||||C C C D =?若存在,求直线l 的方程;若不存在,请说明理由.【答案】解:(1)两圆的圆心坐标分别为1(1,0),C 和2(1,0)C - ∵1212||||||2PC PC C C +=>=∴根据椭圆的定义可知,动点P 的轨迹为以原点为中心,1(1,0),C 和2(1,0)C -为焦点,长轴长为2a =的椭圆, 1,1a c b ====∴椭圆的方程为2212x y +=,即动点P 的轨迹M 的方程为2212x y += (2)(i)当直线l 的斜率不存在时,易知点(2,0)A 在椭圆M 的外部,直线l 与椭圆M 无交点,所以直线l 不存在.(ii)设直线l 斜率存在,设为k ,则直线l 的方程为(2)y k x =-由方程组2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(21)8820k x k x k +-+-=①依题意28(21)0k ∆=-->解得22k -<<当22k -<<时,设交点1122(,),(,)C x y D x y ,CD 的中点为00(,)N x y ,方程①的解为221222884242k k x x k k ==++ ,则212024221x x k x k +==+ ∴2002242(2)22121k ky k x k k k ⎛⎫-=-=-= ⎪++⎝⎭ 要使11||||C C C D =,必须1C N l ⊥,即11C N k k ⋅=-∴222212114021kk k kk --+⋅=--+,即2102k k -+=②∵1114102∆=-⨯=-<或,∴2102k k -+=无解所以不存在直线,使得11||||C C C D =综上所述,不存在直线l ,使得11||||C C C D =26.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知椭圆2222:1(0)x y C a b a b+=>>,. (1)求椭圆C 的方程 (2)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l求AOB △面积的最大值.【答案】(2)设11()A x y ,,22()B x y ,.27.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)己知斜率为1的直线l 与双曲线2222:1x y C a b-=(0a >,0b >),相交于B 、D 两点,且BD 的中点为(1,3)M(1)求双曲线C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,||||17DF BF ⋅=,证明:过A 、B 、D 三点的圆与x 轴相切. 【答案】解:(1)由题设知,直线l 的方程为2y x =+代入双曲线C 的方程,并化简得:2222222()440b a x a x a a b ----=设11(,)B x y ,22(,)D x y ,则212224a x x b a +=-,22212224a a b x x b a +⋅=- ①由(1,3)M 为BD 的中点知:1212x x +=,故2221412a b a ⋅=-,即223b a = ②所以2223c a a -=,即224c a = 故2ce a==所以双曲线C 的离心率为2e = (注:本题也可用点差法解决)(2)由①、②知,双曲线C 的方程为:22233x y a -=(,0)A a ,(2,0)F a ,122x x +=,2124302a x x +⋅=-<1|||2|BF x a =-同理2|||2|DF x a =-2222121212|||||(2)(2)||42()||864||548|BF DF x a x a x x a x x a a a a a a ⋅=--=-++=----=++又因为||||17DF BF ⋅= 且25480a a ++> 所以254817a a ++= 解得:1a =,95a =-(舍去)12|||6BD x x -==连结MA ,则由(1,0)A ,(1,3)M 知||3MA =,从而||||||MA MB MD ==,且MA x ⊥轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切. 所以过A 、B 、D 三点的圆与x 轴相切 28.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))已知直线033=+-y x 经过椭圆C :12222=+by a x (0>>b a )的一个顶点B 和一个焦点F .⑴求椭圆的标准方程;⑵设P 是椭圆C 上动点,求||||||PB PF -的取值范围,并求||||||PB PF -取最小值时点P 的坐标. 【答案】【答案】⑴依题意,)1 , 0(B ,)0 , 3(-F , 所以1=b ,3=c ,222=+=c b a ,所以椭圆的标准方程为1422=+y x 5分. ⑵||||||||0BF PB PF ≤-≤,当且仅当||||PB PF =时,0||||||=-PB PF ,当且仅当P 是直线BF 与椭圆C 的交点时,||||||||BF PB PF =- ,2||=BF ,所以||||||PB PF -的取值范围是]2 , 0[ . 设) , (n m P ,由||||PB PF =得013=++n m ,由⎪⎩⎪⎨⎧=++=+0131422n m n m ,解得⎩⎨⎧-==10n m 或⎪⎪⎩⎪⎪⎨⎧=-=13111338n m ,所求点P 为)1 , 0(-P 和)1311, 1338(-P . 29.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)在平面直角坐标系xOy 中,动点P到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.【答案】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C是以(0),0)为焦点,长半轴长为2 的椭圆.故曲线C 的方程为2214x y +=(Ⅱ)存在△AOB 面积的最大值因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得 22(4)230m y my +--= 由22(2)12(4)0m m ∆=++>. 设1122()()A x y B x y ,,,.解得1y =2y =. 则21||y y -=因为1212AOB S OE y y ∆=⋅-= 设1()g t t t=+,t =t ≥.则()g t在区间)+∞上为增函数.所以()g t ≥.所以AOB S ∆≤当且仅当0m =时取等号,即max ()AOB S ∆=. 所以AOB S ∆30.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)〔本小题满分14分)如图.已知椭圆22221(0)x y a b a b +=>>的长轴为AB,过点B 的直线l 与x 轴垂直,椭圆的离心率e =,F 为椭圆的左焦点且11AF F B =1 .(I)求椭圆的标准方程; (II)设P 是椭圆上异于A 、B 的任意一点,PH⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ.连接AQ 并延长交直线l 于点M.N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【答案】解:(Ⅰ)易知A )0,(a -, B )0,(a )0,(1c F - 1)()0,(11=+⋅-=⋅∴c a c a F AF1222==-∴b c a又23=e 43122222=-==∴aa a c e ,解得42=a 1422=+∴y x 所求椭圆方程为:(Ⅱ)设),(00y x P 则)2,(00y x Q )22(≠-≠x x 及 2200+=∴x y k AQ 所以直线AQ 方程)2(22:00++=x x y y)28,2(00+∴x y M )24,2(00+∴x y N 42222420000000-=--+=∴x y x x y x y k QN又点P 的坐标满足椭圆方程得到:442020=+y x ,所以 202044y x -=-200200024242y x y y x x y x k QN -=-=-=∴ ∴直线 QN 的方程:)(22000x x y x y y --=- 化简整理得到:442202000=+=+y x y y x x 即4200=+y y x x 所以 点O 到直线QN 的距离244220=+=y x d∴直线QN 与AB 为直径的圆O 相切.31.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(本小题满分14分)已知F 1,F 2分别是椭圆C:22221(0)y x a b a b+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =. (1)求椭圆C 1的方程;(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB 相交于点D,与椭圆C 1相交于点E,F 两点,求四边形AEBF 面积的最大值. 【答案】32.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))如图,已知点M0(x0,y0)是椭圆C:222yx=1上的动点,以M0为切点的切线l0与直线y=2相交于点P.(1)过点M0且l0与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;(2)在y轴上是否存在定点T,使得以PM0为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.【答案】解:(1)由椭圆得:y ='y =1222(22)x x ---切线的斜率为,所以,直线l 1的方程为:000)y y x x -=-,与y 轴交点纵坐标为因为011x -≤≤,所以,2001x ≤≤,200222x ≤-≤,所以,当切点在第一、二象限时l 1与y 轴交点纵坐标的取值范围为:02y ≤≤,则对称性可知 l 1与y 轴交点纵坐标的取值范围为:22y -≤≤. (2)依题意,可得∠PTM 0=90°,设存在T(0,t),M 0(x 0,y 0)由(1)得点P 的坐标(220000222y y x x -+,2),由00PT M T =可求得t=1所以存在点T(0,1)满足条件.33.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知椭圆1C :22221x y a b+= (0a b >>),连接椭圆的四个顶点得到的四边形的面积为(1)求椭圆1C 的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直1l 于点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设O 为坐标原点,取2C 上不同于O 的点S ,以OS 为直径作圆与2C 相交另外一点R ,求该圆面积的最小值时点S 的坐标.【答案】解:(1)解:由3e =,得223a c =,再由222c a b =-,解得2a =由题意可知1222a b ⋅⋅=,即a b ⋅解方程组2a ab ⎧=⎪⎨⎪=⎩得a b ==所以椭圆C 1的方程是22132x y +=(2)因为2MP MF =,所以动点M 到定直线1:1l x =-的距离等于它到定点2F (1,0)的距离,所以动点M 的轨迹2C 是以1l 为准线,2F 为焦点的抛物线, 所以点M 的轨迹2C 的方程为24y x =(3)因为以OS 为直径的圆与2C 相交于点R ,所以∠ORS = 90°,即0OR SR ⋅= 设S (1x ,1y ),R (2x ,2y ),SR =(2x -1x ,2y -1y ),OR =(2x ,2y )所以222221*********()()()()016y y y OR SR x x x y y y y y y -⋅=-+-=+-= 因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭所以221222256323264y y y =++≥=, 当且仅当2222256y y =即22y =16,y 2=±4时等号成立 圆的直径|OS===因为21y ≥64,所以当21y =64即1y =±8时,min OS =, 所以所求圆的面积的最小时,点S 的坐标为(16,±8)34.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a y ax C 的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r 最小值为0.(1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.图(6)F 2F 1oyx【答案】解:(1)设),(y x P ,则有),(1y c x P F +=,),(2y c x P F -=[]a a x c x aa c y x PF PF ,,11222222221-∈-+-=-+=⋅ 由12PF PF ⋅uuu r uuu r最小值为0得210122=⇒=⇒=-a c c , ∴椭圆C 的方程为1222=+y x(2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+ 把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+同理,2212n k =+∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =- 设在x 轴上存在点(,0)B t ,点B 到直线12,ll 的距离之积为1,则1=,即2222||1k t m k -=+,--- 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;---------------------------------------------------------②当直线12,l l 斜率不存在时,其方程为x =和x =,定点(1,0)-到直线12,l l 的距离之积为1)1-+=;定点(1,0)到直线12,l l 的距离之积为1)1=; 综上所述,满足题意的定点B 为(1,0)-或(1,0)35.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知椭圆C 的中心在原点O ,离心率23=e ,右焦点为)0 , 3( F . ⑴求椭圆C 的方程;⑵设椭圆的上顶点为A ,在椭圆C 上是否存在点P ,使得向量OA OP +与FA 共线?若存在,求直线AP 的方程;若不存在,简要说明理由.【答案】解:⑴设椭圆C 的方程为22221(0)x y a b a b+=>>,椭圆C 的离心率23=e ,右焦点为)0 , 3( F ,∴c c a ==, 222a b c =+,∴2,1,a b c ===,故椭圆C 的方程为2214x y += ⑵假设椭圆C 上是存在点P (00,x y ),使得向量OA OP +与FA 共线,00(,1)OP OA x y +=+,(FA =,∴011y +=,即001)x y =+,(1) 又点P (00,x y )在椭圆2214x y +=上,∴220014x y += (2)由⑴、⑵组成方程组解得0001x y =⎧⎨=-⎩,或0017x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴(0,1)P -,或1()7P , 当点P 的坐标为(0,1)-时,直线AP 的方程为0y =,当点P的坐标为1()7P 时,直线AP440y -+=, 故直线AP 的方程为0y =440y -+=36.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知焦点在x轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点D (0, 2 )为圆心,1为半径的圆相切,又知双曲线C 的一个焦点与D 关于直线y =x 对称. (Ⅰ)求双曲线C 的方程;(Ⅱ)设直线y =mx +1与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,F 1F 2为双曲线C 的左,右两个焦点,从F 1引∠F 1QF 2的平分线的垂线,垂足为N ,试求点N 的轨迹方程.【答案】解:(Ⅰ)设双曲线C 的渐近线方程为y =kx ,则kx -y =0 ∵该直线与圆x 2+(y - 2 )2=1相切,有|- 2 |k 2+ 1= 1 ⇒ k =±1. ∴双曲线C 的两条渐近线方程为y =±x , 故设双曲线C 的方程为 x 2a 2-y 2a2 = 1 .易求得双曲线C 的一个焦点为 ( 2 ,0),∴2a 2=2,a 2=1.∴双曲线C 的方程为x 2-y 2=1.(Ⅱ)由 ⎩⎨⎧ y =mx +1 x 2-y 2=1得(1-m 2)x 2-2mx -2=0.令f (x )= (1-m 2)x 2-2mx -2直线与双曲线左支交于两点,等价于方程f (x )=0在(-∞,0)上有两个不等实根. 因此 ⎩⎪⎨⎪⎧ △>02m 1-m <0-21-m 2>0解得1<m <2 .又AB 中点为(m 1-m 2 ,11-m2 ),zxxk∴直线l 的方程为y =1-2m 2+m +2 (x +2). 令x =0,得b =2-2m 2+m +2=2-2(m -14 )2+178.∵1<m < 2 ,∴-2(m -14 )2+178 ∈ (-2+ 2 , 1),∴b ∈ (-∞,-2- 2 )∪(2,+∞).(Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在QF 2上取一点T ,使| QT |=|QF 1 |.根据双曲线的定义| TF 2 |=2,所以点T 在以F 2( 2 ,0)为圆心,2为半径的圆上,即点T 的轨迹方程是(x - 2 )2+y 2=4 (x ≠ 0) ①由于点N 是线段F 1T 的中点,设N (x ,y ),T (x T ,y T ).则 ⎩⎪⎨⎪⎧ x =x T- 2 2 y =y T2,即 ⎩⎨⎧ x T=2x + 2y T= 2y .代入①并整理得点N 的轨迹方程为x 2+y 2=1.(x ≠ -22) (或者用几何意义得到| NO |=12 | F 2T |=1, 得点N 的轨迹方程为x 2+y 2=1.)37.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)设抛物线()2:20C x py p =>的焦点为F ,()()000,0A x y x ≠是抛物线C 上的一定点.(1)已知直线l 过抛物线C 的焦点F ,且与C 的对称轴垂直,l 与C 交于,Q R 两点, S 为C 的准线上一点,若QRS ∆的面积为4,求p 的值;(2)过点A 作倾斜角互补的两条直线AM ,AN ,与抛物线C 的交点分别为()11,,M x y ()22,N x y .若直线AM ,AN 的斜率都存在,证明:直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.【答案】(本小题主要考查直线、抛物线、对称等知识,考查数形结合、化归与转化、方程的思想方法,考查数学探究能力以及运算求解能力) 解: (1)由题设0,2p F ⎛⎫ ⎪⎝⎭,设1,,2p Q x ⎛⎫ ⎪⎝⎭则1,2p R x ⎛⎫- ⎪⎝⎭2p ===.∴由QRS ∆的面积为4,得:1242p p ⨯⨯=,得: 2.p =(2)由题意()100,A x y -首先求抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.解法一:设抛物线在1A 处的切线的斜率为k ,则其方程为()00y k x x y =++ 联立()0022y k x x y x py⎧=++⎪⎨=⎪⎩得2002220x pkx px k py ---=将2002py x =代入上式得:2200220x pkx px k x ---=()()22002420pk px k x ∆=-++=即2220020p k px k x ++= zxxk 即()200pk x += 得0.x k p=-即抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率为0.x p-解法二:由22x py =得212y x p=, ∴'x y p=∴抛物线C 在点A 关于对称轴的对称点()100,A x y -处的切线的斜率为0.x p-再求直线MN 的斜率.解法一:设直线AM 的斜率为1k ,则由题意直线AN 的斜率为1k -直线AM 的的方程为()010y y k x x -=-,则直线AN 的的方程为()010y y k x x -=--.联立()21002x py y k x x y ⎧=⎪⎨=-+⎪⎩得221100220x pk x pk x x -+-=(1)方程(1)有两个根01,x x ,∴()()2210102420pk px k x ∆=--->∴0,1x =0112x x pk +=,即1102x pk x =-,同理可得2102x pk x =--直线MN 的斜率222121122121222MNx x y y x x p p k x x x x p --+===--0022x x p p-==- ∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率解法二:AM AN k k =- zxxk01020102y y y y x x x x --∴=--- 将222012012,,222x x x y y y p p p ===分别代入上式得:2222001201022222x x x x p p p p x x x x --=---, 整理得0122x x x =+∴直线MN 的斜率222121122121222MNx x y y x x p p k x x x x p --+===--0022x x p p-==- ∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.38.(广东省广州市2013届高三调研测试数学(理)试题)如图5, 已知抛物线2P y x :=,直线AB 与抛物线P 交于A B ,两点,OA OB ^,OA OB OC uu r uu u r uu u r+=,OC 与AB 交于点M .(1) 求点M 的轨迹方程;求四边形AOBC 的面积的最小值.,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,, ∵OA OB OC +=, ∴M 是线段AB 的中点 ∴()222121212222yy y y y y x +-+==,①122y y y +=. ② ∵OA OB ⊥, ∴0OA OB ⋅=.∴2212120y y y y +=依题意知120y y ≠,∴121y y =-. ③把②、③代入①得:2422y x +=,即()2112y x =- ∴点M 的轨迹方程为()2112yx =- (2)解:依题意得四边形AOBC 是矩形,∴四边形AOBC 的面积为S OA OB ==⋅===∵22121222y y y y +≥=,当且仅当12y y =时,等号成立,∴2S ≥=∴四边形AOBC 的面积的最小值为2 解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=. 解得0x =或21x k=∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭同理得点B 的坐标为()2k k ,- ∵OA OB OC +=, ∴M 是线段AB 的中点 设点M 的坐标为()x y ,,则221212k k x k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩消去k ,得()2112yx =- ∴点M 的轨迹方程为()2112y x =-(2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB==⋅=≥2=当且仅当221kk=,即21k =时,等号成立 ∴四边形AOBC 的面积的最小值为239.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y =交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l 交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212PF PF AF AF +=+的点P ? 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.【答案】(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a ba b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ∴ 椭圆1C 的方程为2211612x y += 解法2:设椭圆1C 的方程为22221x y a b +=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =,∵2c =, ∴22212b a c =-=∴椭圆1C 的方程为2211612x y +=(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x BC --=, )413,2(211x x --=, ∵C B A ,,三点共线, (苏元高考吧:) ∴BC BA // ∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① 由24x y =,即214y x ,=得y '=12x ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ 设点),(y x P ,由②③得:=-211412x x x 222412x x x -, 而21x x ≠,则 )(2121x x x += 代入②得 2141x x y =, 则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212PF PF AF AF +=+ 的点P 有两个 解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24x y =,即214y x ,=得y '=12x ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=∵21141x y =, ∴112y x x y -= . ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002, ∵点)3,2(A 在直线L 上, ∴300-=x y ∴点P 的轨迹方程为3-=x y若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212PF PF AF AF +=+ 的点P 有两个 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==- 由24x y =,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+= ∵21141x y =, ∴211124x y x x =-. 同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =- 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上 ∴()()2222311612k k -+=.化简得271230k k --=.(*)由()2124732280Δ=-⨯⨯-=>,可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个40.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)已知点(4,0)M 、(1,0)N ,若动点P 满足6||MN MP NP =⋅.(1)求动点P 的轨迹C ; (2)在曲线C 上求一点Q ,使点Q 到直线l :2120x y +-=的距离最小.【答案】解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N , ∴(4,)MP x y =-,(3,0)MN =-,(1,)NP x y =-由6||MN MP NP =⋅,得3(4)x --=∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=,∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆;评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-= 且与椭圆C 相切的直线1l 与直线l 的距离. 设直线1l 的方程为20(12)x y m m ++=≠-由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离d ==.当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==.由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =. 由1240y +-=,得32y =,故3(1,)2Q . ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小 41.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)设椭圆22221(0,0)x y a b b a+=>>的离心率为12,其左焦点E 与抛物线21:4C x y =-的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线与曲线C 只有一个交点P ,则(1)求直线的方程;(2)椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.【答案】解:(Ⅰ)抛物线C 的焦点为(1,0)E -,它是题设椭圆的左焦点.离心率为112b =,所以,2b =.由2221b a -=求得a =因此,所求椭圆的方程为22143x y += (*)(Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线的斜率为k ,① 若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线 的方程为0y =;② 若0k ≠,因直线过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线的方程为1y x =-或1y x =-+.因此,所求的直线的方程为0y =或1y x =-或1y x =-+.(2)由(1)可求出点P 的坐标是(0,0)或(1,2)-或(1,2)--. ①若点P 的坐标是(0,0),则1PF =.于是12MPF S ∆==112y ⨯⨯,从而1y =±,代入(*)式联立: 221431x y y ⎧+=⎪⎨⎪=⎩或221431x y y ⎧+=⎪⎨⎪=-⎩,求得x =此时满足条件的点M 有4个: ,,1,1⎫⎛⎫⎫⎛⎫--⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭⎝⎭⎭⎝⎭. ②若点P 的坐标是(1,2)-,则PF =点M 到直线:1y x =-+于是有11122MPF S y ∆==⨯-,从而112x y +-=±, 与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪+-=⎪⎩或22143112x y x y ⎧+=⎪⎪⎨⎪+-=-⎪⎩解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫- ⎪⎝⎭,31,2⎛⎫- ⎪⎝⎭. ③ 若点P 的坐标是(1,2)--,则PF =,点(,)M x y 到直线:1y x =-是有11122MPF S y ∆==⨯-,从而112x y --=±,与(*)式联立:22143112x yx y⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x yx y⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M有4个:,,1115,714⎛⎫⎪⎝⎭,31,2⎛⎫--⎪⎝⎭.综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点M共有12个.图上椭圆上的12个点即为所求.42.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD版))已知抛物线C:y2=4x, F 是抛物线的焦点,设A(x1,y1),B(x2 ,y2)是C上异于原点O的两个不重合点,OA丄OB,且AB与x轴交于点T(1) 求x1x2的值;(2) 求T的坐标;(3) 当点A在C上运动时,动点R满足:FRFBFA=+,求点R的轨迹方程.【答案】F的43.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知动点M到点(0,1) y=的距离之和为5.距离与到直线4(1)求动点M的轨迹E的方程,并画出图形;=+与轨迹E有两个不同的公共点,A B,求m的取值范围;(2)若直线:l y x mAB的最大值.(3)在(2)的条件下,求弦长||【答案】44.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知椭圆)(1122221 >=-+a a y a x 的左右焦点为21,F F ,抛物线C:px y 22=以F 2为焦点且与椭圆相交于点()11,M x y 、N()22,x y ,点M在x 轴上方,直线1F M 与抛物线C 相切.(1)求抛物线C 的方程和点M 、N 的坐标;(2)设A,B 是抛物线C 上两动点,如果直线MA ,MB 与y 轴分别交于点,P Q . MPQ ∆是以MP ,MQ 为腰的等腰三角形,探究直线AB 的斜率是否为定值?若是求出这个定值,若不是说明理由.【答案】解:(1)由椭圆方程得半焦距1)1(c 22=--a a = 所以椭圆焦点为),( ,01F )01(21-F 又抛物线C 的焦点为)0,2(p ,2,12==∴p p x y C 42=∴: ∵),(11y x M 在抛物线C 上, ∴1214x y =,直线M F 1的方程为)1(111++=x x y y 代入抛物线C 得22211(1)4(1),y x x x +=+22114(1)4(1)x x x x +=+即 22111(1)0,x x x x x ∴-++= ∵1F M 与抛物线C 相切,04)121221=-+∆∴x x =(,11,x ∴= ∴ M、N 的坐标分别为(1,2)、(1,-2) (2)直线AB 的斜率为定值—1. 证明如下:设11(,)A x y ,22(,)B x y ,(1,2)M ,A 、B 在抛物线24y x =上,∴211222244241y x y x ⎧=⎪=⎨⎪=⨯⎩①②③由①-③得,1112412MA y k x y -==-+④由②-③得,2222412MB y k x y -==-+④因为MPQ ∆是以MP,MQ 为腰的等腰三角形,所以MA MB k k =-由MAMB k k =-得11222124122412y x y y x y -⎧=-⎪-+⎪⎨-⎪=-⎪-+⎩ 化简整理,。

广东省东莞市2013届高三第二次模拟数学理试题(WORD解析版)

广东省东莞市2013届高三第二次模拟数学理试题(WORD解析版)

2013年广东省东莞市高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2013•东莞二模)设z=1﹣i(是虚数单位),则=()A.2B.2+i C.2﹣i D.2+2i考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数的运算法则和共轭复数的定义即可得出.解答:解:∵z=1﹣i,∴,==.∴==1+i+1+i=2+2i.故选D.点评:熟练掌握复数的运算法则和共轭复数的定义是解题的关键.2.(5分)(2013•东莞二模)命题“∀x∈R,x2+1≥1”的否定是()A.∀x∈R,x2+1<1 B.∃x∈R,x2+1≤1 C.∃x∈R,x2+1<1 D.∃x∈R,x2+1≥1考点:V enn图表达集合的关系及运算;交、并、补集的混合运算.专题:规律型.分析:全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,结合已知中原命题“∀x∈R,都有有x2+1≥1”,易得到答案.解答:解:∵原命题“∀x∈R,有x2+1≥1”∴命题“∀x∈R,有x2+1≥1”的否定是:∃x∈R,使x2+1<1.故选C.点评:本题考查的知识点是命题的否定,其中熟练掌握全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,是解答此类问题的关键.3.(5分)(2013•湛江一模)若,则a0=()A.1B.32 C.﹣1 D.﹣32考点:二项式定理的应用.专题:概率与统计.分析:根据(x+1)5=[2+(x﹣1)]5=•25+•24(x﹣1)+•23•(x﹣1)2+•22(x﹣1)3+•2•(X﹣1)4+•(x﹣1)5,结合所给的条件求得a0的值.解答:解:∵(x+1)5=[2+(x﹣1)]5=•25+•24(x﹣1)+•23•(x﹣1)2+•22(x﹣1)3+•2•(X﹣1)4+•(x﹣1)5,而且,故a0=•25=32,故选B.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.4.(5分)(2013•梅州一模)如图是一个几何体的三视图,若它的体积是3,则a=()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:先由三视图画出几何体的直观图,理清其中的线面关系和数量关系,再由柱体的体积计算公式代入数据计算即可.解答:解:由三视图可知此几何体为一个三棱柱,其直观图如图:底面三角形ABC为底边AB边长为2的三角形,AB边上的高为AM=a,侧棱AD⊥底面ABC,AD=3,∴三棱柱ABC﹣DEF的体积V=S△ABC×AD=×2×a×3=3,∴a=.故选C.点评:本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力5.(5分)(2013•东莞二模)已知函数y=sinx+cosx,则下列结论正确的是()B.此函数的最大值为1;A.此函数的图象关于直线对称D.此函数的最小正周期为π.C.此函数在区间上是增函数.考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性.专题:三角函数的图像与性质.分析:利用两角和与差的三角函数化简函数为一个角的一个三角函数的形式,解答:解:因为函数y=sinx+cosx=sin(x+),当时函数值为:0,函数不能取得最值,所以A不正确;函数y=sinx+cosx=sin(x+),当x=时函数取得最大值为,B不正确;因为函数x+∈(),即x在上函数是增函数,所以函数在区间上是增函数,正确.函数的周期是2π,D不正确;故选C.点评:本题考查三角函数的化简求值,正弦函数的周期与最值、单调性与对称性,考查基本知识的应用.6.(5分)(2013•湛江一模)已知函数f(x)=lg(x2﹣a n x+b n),其中a n,b n的值由如图的程序框图产生,运行该程序所得的函数中,定义域为R的有()A.1个B.2个C.3个D.4个考点:程序框图.专题:计算题.分析:要使函数f(x)=lg(x2﹣an x+b n)定义域为R,则必须满足△=<0,成立.由循环结构输出的数值a i,及b i(i=1,2,3,4,5)进行判定即可.。

【解析版】广东省江门、佛山市2013年高考数学二模试卷(理科)

【解析版】广东省江门、佛山市2013年高考数学二模试卷(理科)
解:设复数z的虚部是为b,∵已知复数z的实部为1,且|z|=2,
故有1+b2=4,解得b=± ,
故选D.
点评:
本题主要考查复数的基本概念,求复数的模,属于基础题.
3.(5分)(2013•江门二模)已知数列{an}是等差数列,若a3+a11=24,a4=3,则{an}的公差是( )
A.
1
B.
3
C.
5
D.
(法二)设等差数列的公差为d
∵a3+a11=24,a4=3

解得a1=﹣6,d=3
故选B.
点评:
本题法一:主要考查等差数列的性质:若m+n=p+q,则am+an=ap+aq,灵活运用该性质可以简化基本运算.
法二:主要是运用等差数列的通项公式,利用等差数列的基本量a1,d表示an,及基本运算.
4.(5分)(2013•江门二模)为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是( )
③f(﹣1.9)<f(π)<f(2013);
④ .
其中正确的说法个数为( )
A.
0
B.
1
C.
2
D.3考点:Fra bibliotek命题的真假判断与应用.
专题:
函数的性质及应用.
分析:
先根据题意画出顶点P(x,y)的轨迹,如图所示.轨迹是一段一段的圆弧组成的图形.从图形中可以看出,关于函数y=f(x)的说法的正确性.
6
考点:
等差数列的性质.
专题:
计算题.
分析:
(法一)利用等差数列的性质把已知条件转化可得a7=12,利用公式 求解.

广东省13大市区高三数学 最新试题精选二模分类汇编9

广东省13大市区高三数学 最新试题精选二模分类汇编9

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线一、选择题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 ( )A .14B .12C .2D .4【答案】A2 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)定义:关于x 的不等式||x A B-<的解集叫A 的B 邻域.已知2a b +-的a b +邻域为区间(2,8)-,其中a b 、分别为椭圆12222=+by a x 的长半轴和短半轴.若此椭圆的一焦点与抛物线x y 542=的焦点重合,则椭圆的方程为( )A .13822=+y xB .14922=+y xC .18922=+y xD .191622=+y x【答案】B3 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)已知椭圆()2222:10x y C a b a b+=>>的离心率为22,双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为.A 22184x y += .B 221126x y += .C 221168x y += .D 221205x y +=【答案】B4 .(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .4【答案】D 双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.5 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))设F 1,F 2是椭圆)0(12222>>=+b a b y a x 的左右焦点,若直线x =m a (m >1)上存在一点P,使ΔF 2PF 1是底角为300的等腰三角形,则m 的取值范围是( )A .1 < m < 2B .m > 2C .1 < m <23D .m >23【答案】A6 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知双曲线22221x y a b-=的渐近线方程为3y x =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )A .12B .22C .32D .1【答案】A7 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))方程||||169x x y y +=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点;③函数y=f(x)的值域是R;④f(x)的图象不经过第一象限,其中正确的个数是 ( ) A .1个 B .2个 C .3个 D .4个 【答案】D二、填空题 8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.【答案】22143x y -= 9.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为20x y +=,则双曲线的离心率e 的值为__________ . 【答案】510.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方程为___,渐近线方程为___.【答案】221432x y -= 22y x =± 11.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知动点P 在抛物线y 2=4x 上,那么使得点P 到定点Q(2,,-1)的距离与点P 到抛物线焦点的距离之和最小的点P 的坐标为___【答案】)1,41(-12.(广东省梅州市2013届高三3月总复习质检数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>的两条近线的夹角为3π,则双曲线的离心率为___2313.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))已知点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:22221(0,0)x y a b a b-=>>的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线的离心率等于____ 【答案】514.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知双曲线221x ky -=的一个焦点是(50,),则其渐近线方程为________. 【答案】2y x =±;15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为______________.【答案】22115()()222x y -+-=[或2220x y x y +---=]; 易得圆心坐标为11(,)22,半径为52r =, 故所求圆的方程为22115()()222x y -+-=【或2220x y x y +---=. 】16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy 中,若双曲线14222=+-m y m x 的焦距为8,则=m _______. 【答案】3(未排除4-,给3分)17.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知抛物线24x y =上一点P 到焦点F 的距离是5,则点P 的横坐标是_____.【答案】4±18.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设点P 是双曲线22221(0,0)x y a b a b-=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________.【答案】102; 19.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽________米.【答案】4220.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 ________.【答案】双曲线221916x y -=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.三、解答题 21.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )在平面直角坐标系xoy 中,设点F (1,0),直线l :1x =-,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,,RQ FP PQ l ⊥⊥.(Ⅰ)求动点Q 的轨迹的方程;(Ⅱ) 记Q 的轨迹的方程为E ,过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为N M ,.求证:直线MN 必过定点)0,3(R .【答案】解:(Ⅰ)依题意知,直线l 的方程为:1x =-.点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线∴PQ 是点Q 到直线l 的距离.∵点Q 在线段FP 的垂直平分线,∴PQ QF =故动点Q 的轨迹E 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)y x x => (Ⅱ) 设()()B B A A y x B y x A ,,,,()()N N M M y x N y x M ,,,,直线AB 的方程为)1(-=x k y则⎪⎩⎪⎨⎧==)2(4)1(422BB A A x y x y(1)—(2)得k y y B A 4=+,即ky M 2=, 代入方程)1(-=x k y ,解得122+=kx M .所以点M 的坐标为222(1,)k k+同理可得:N 的坐标为2(21,2)k k +-. 直线MN 的斜率为21kkx x y y k N M N M MN -=--=,方程为 )12(1222---=+k x kk k y ,整理得)3()1(2-=-x k k y , 显然,不论k 为何值,(3,0)均满足方程, 所以直线MN 恒过定点R (3,0).1422.(广东省汕头一中2013年高三4月模拟考试数学理试题 )在平面直角坐标系中,已知点()2,0A 、()2,0B -,P 是平面内一动点,直线PA 、PB 的斜率之积为34-.(1)求动点P 的轨迹C 的方程;(2)过点1,02⎛⎫⎪⎝⎭作直线l 与轨迹C 交于E 、F 两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围.2013年4月汕头一中高三模拟考 【答案】(1)依题意,有3224PA PB y y k k x x ⋅=⋅=--+(2x ≠±), ----------------------------- 化简得: 22143x y += (2x ≠±),为所求动点P 的轨迹C 的方程------------------------(2)依题意,可设(,)M x y 、(,)E x m y n ++、(,)F x m y n --,则有 2222()()143()()143x m y n x m y n ⎧+++=⎪⎪⎨--⎪+=⎪⎩, 两式相减,得4430014342EF mx n n x y k m y x -+=⇒==-=-, 由此得点M 的轨迹方程为:226830x y x +-=(0x ≠).------------------------------ 设直线MA :2x my =+(其中1m k=),则 22222(68)211806830x my m y my x y x =+⎧⇒+++=⎨+-=⎩, ------------------------------ 故由22(21)72(68)0||8m m m ∆=-+≥⇒≥,即18k≥,解得:k 的取值范围是11,88⎡⎤-⎢⎥⎣⎦. ---------------------------23.(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知抛物线C :212x y =,过焦点F 的动直线l 交抛物线于A 、B 两点,O 为坐标原点.(1)求证:OA OB ⋅u u u r u u u r为定值;(2)设M 是线段AB 的中点,过M 作x 轴的垂线交抛物线C 于点N ,证明:抛物线C 在点N 处的切线与AB 平行.【答案】(1)设直线l 的方程为:18y kx =+,()11,A x y ,()22,B x y . ------------------------- 由21218x y y kx ⎧=⎪⎪⎨⎪=+⎪⎩得:2110264x kx --=,∴12116x x =- ------------------------∴()2121212123464OA OB x x y y x x x x ⋅=+=+=-u u u r u u u r 为定值----------------------------(2)由(1)得:点M 的横坐标为4k ,∴点N 的横坐标为4k----------------------------∵'4y x = ∴4'|k x y k == ----------------------------∴平行另解:设()00,N x y ,则12024x x k x +==,220028k y x ==---------------------------- 设抛物线C 在点N 处的切线为284k k y m x ⎛⎫-=- ⎪⎝⎭ 由228412k k y m x x y⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩得:2202816m mk k x x -+-= ------------------------------- ∴22404816m mk k ⎛⎫∆=--= ⎪⎝⎭,解得:m k = ------------------------------- ∴平行24.(广东省东莞市2013届高三第二次模拟数学理试题)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为e =,直线:2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=⋅,求||QS u u u r的取值范围.【答案】解:(1)由直线:2l y x =+与圆222x y b +=相切,b =,即b =由e =,得222213b e a =-=,所以a =所以椭圆的方程是221:132x y C +=(2)由条件,知2||||MF MP =,即动点M 到定点2F 的距离等于它到直线1:1l x =-的距离,由抛物线的定义得点M 的轨迹2C 的方程是x y 42=(3)由(2),知(0,0)Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, ∴222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r 由0=⋅,得()()222121121016y y y y y y -+-=∵12y y ≠,∴21116y y y ⎛⎫=-+ ⎪⎝⎭,∴222121256323264y y y =++≥=,当且仅当2121256y y =,即14y =±时等号成立又||QS ==u u u r ,∵2264y ≥,∴当2264y =,即28y =±时,min ||QS =u u u r故||QS u u ur的取值范围是)⎡+∞⎣25.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知两圆222212:20,:(1)4C x y x C x y +-=++=的圆心分别为12,C C ,P 为一个动点,且12||||22PC PC +=.(1)求动点P 的轨迹M 的方程;(2)是否存在过点(2,0)A 的直线l 与轨迹M 交于不同的两点C 、D,使得11||||C C C D =?若存在,求直线l 的方程;若不存在,请说明理由.【答案】解:(1)两圆的圆心坐标分别为1(1,0),C 和2(1,0)C - ∵1212||||22||2PC PC C C +=>=∴根据椭圆的定义可知,动点P 的轨迹为以原点为中心,1(1,0),C 和2(1,0)C -为焦点,长轴长为222a =的椭圆, 222,1,211a c b a c ===-=-= ∴椭圆的方程为2212x y +=,即动点P 的轨迹M 的方程为2212x y += (2)(i)当直线l 的斜率不存在时,易知点(2,0)A 在椭圆M 的外部,直线l 与椭圆M 无交点,所以直线l 不存在.(ii)设直线l 斜率存在,设为k ,则直线l 的方程为(2)y k x =-由方程组2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(21)8820k x k x k +-+-=①依题意28(21)0k ∆=-->解得22k <<当22k <<,设交点1122(,),(,)C x y D x y ,CD 的中点为00(,)N x y , 方程①的解为221222884242k k x x k k +∆-∆==++ ,则212024221x x k x k +==+∴2002242(2)22121k ky k x k k k ⎛⎫-=-=-= ⎪++⎝⎭要使11||||C C C D =,必须1C N l ⊥,即11C N k k ⋅=-∴222212114021kk k k k --+⋅=--+,即2102k k -+=② ∵1114102∆=-⨯=-<或,∴2102k k -+=无解所以不存在直线,使得11||||C C C D =综上所述,不存在直线l ,使得11||||C C C D =26.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知椭圆2222:1(0)x y C a b a b+=>>,. (1)求椭圆C 的方程(2)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l,求AOB △面积的最大值.【答案】(2)设11()A x y ,,22()B x y ,.27.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)己知斜率为1的直线l 与双曲线2222:1x y C a b-=(0a >,0b >),相交于B 、D 两点,且BD 的中点为(1,3)M(1)求双曲线C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,||||17DF BF ⋅=,证明:过A 、B 、D 三点的圆与x 轴相切. 【答案】解:(1)由题设知,直线l 的方程为2y x =+代入双曲线C 的方程,并化简得:2222222()440b a x a x a a b ----=设11(,)B x y ,22(,)D x y ,则212224a x x b a +=-,22212224a a b x x b a +⋅=- ①由(1,3)M 为BD 的中点知:1212x x +=,故2221412a b a ⋅=-,即223b a = ② 所以2223c a a -=,即224c a = 故2c e a==所以双曲线C 的离心率为2e = (注:本题也可用点差法解决)(2)由①、②知,双曲线C 的方程为:22233x y a -=(,0)A a ,(2,0)F a ,122x x +=,2124302a x x +⋅=-<1|||2|BF x a ===-同理2|||2|DF x a =-2222121212|||||(2)(2)||42()||864||548|BF DF x a x a x x a x x a a a a a a ⋅=--=-++=----=++又因为||||17DF BF ⋅= 且25480a a ++> 所以254817a a ++= 解得:1a =,95a =-(舍去)222121212||11||2()4242(43)2186BD x x x x x x a =+-=⋅+-⋅=⋅++=⋅=连结MA ,则由(1,0)A ,(1,3)M 知||3MA =,从而||||||MA MB MD ==,且MA x ⊥轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切. 所以过A 、B 、D 三点的圆与x 轴相切 28.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))已知直线033=+-y x 经过椭圆C :12222=+by a x (0>>b a )的一个顶点B 和一个焦点F .⑴求椭圆的标准方程;⑵设P 是椭圆C 上动点,求||||||PB PF -的取值范围,并求||||||PB PF -取最小值时点P 的坐标. 【答案】【答案】⑴依题意,)1 , 0(B ,)0 , 3(-F , 所以1=b ,3=c ,222=+=c b a ,所以椭圆的标准方程为1422=+y x 5分. ⑵||||||||0BF PB PF ≤-≤,当且仅当||||PB PF =时,0||||||=-PB PF ,当且仅当P 是直线BF 与椭圆C 的交点时,||||||||BF PB PF =- ,2||=BF ,所以||||||PB PF -的取值范围是]2 , 0[ . 设) , (n m P ,由||||PB PF =得013=++n m ,由⎪⎩⎪⎨⎧=++=+0131422n m n m ,解得⎩⎨⎧-==10n m 或⎪⎪⎩⎪⎪⎨⎧=-=13111338n m , 所求点P 为)1 , 0(-P 和)1311, 1338(-P . 29.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)在平面直角坐标系xOy 中,动点P 到两点(30),(30),的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.【答案】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C 是以(30),(30),为焦点,长半轴长为2 的椭圆.故曲线C 的方程为2214x y +=(Ⅱ)存在△AOB 面积的最大值因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得 22(4)230m y my +--= 由22(2)12(4)0m m ∆=++>. 设1122()()A x y B x y ,,,.解得 212234m m y m ++=+, 222234m m y m -+=+.则 221243||4m y y m +-=+. 因为1212AOB S OE y y ∆=⋅-22222321433m m m m +==++++ 设1()g t t t=+,23t m =+,3t ≥.则()g t 在区间[3,)+∞上为增函数.所以43()3g t ≥. 所以32AOB S ∆≤,当且仅当0m =时取等号,即max 3()2AOB S ∆=. 所以AOB S ∆的最大值为3230.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)〔本小题满分14分)如图.已知椭圆22221(0)x y a b a b +=>>的长轴为AB,过点B 的直线l 与x 轴垂直,椭圆的离心率32e =,F 为椭圆的左焦点且11AF F B u u u r u u u rg =1 .(I)求椭圆的标准方程; (II)设P 是椭圆上异于A 、B 的任意一点,PH⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ.连接AQ 并延长交直线l 于点M.N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【答案】解:(Ⅰ)易知A )0,(a -, B )0,(a )0,(1c F - 1)()0,(11=+⋅-=⋅∴c a c a F AF1222==-∴b c a又23=e 43122222=-==∴aa a c e ,解得42=a 1422=+∴y x 所求椭圆方程为:(Ⅱ)设),(00y x P 则)2,(00y x Q )22(≠-≠x x 及 2200+=∴x y k AQ 所以直线AQ 方程)2(22:00++=x x y y )28,2(00+∴x y M )24,2(00+∴x y N 42222420000000-=--+=∴x y x x y x y k QN又点P 的坐标满足椭圆方程得到:442020=+y x ,所以 202044y x -=-200200024242y x y y x x y x k QN -=-=-=∴ ∴直线 QN 的方程:)(22000x x y x y y --=- 化简整理得到:442202000=+=+y x y y x x 即4200=+y y x xxyOlABPQ MNH•1F所以 点O 到直线QN 的距离244220=+=y x d∴直线QN 与AB 为直径的圆O 相切.31.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(本小题满分14分)已知F 1,F 2分别是椭圆C:22221(0)y x a b a b+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =. (1)求椭圆C 1的方程;(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB 相交于点D,与椭圆C 1相交于点E,F 两点,求四边形AEBF 面积的最大值. 【答案】32.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))如图,已知点M 0(x 0,y 0)是椭圆C:222y x +=1上的动点,以M 0为切点的切线l 0与直线y=2相交于点P. (1)过点M 0且l 0与垂直的直线为l 1,求l 1与y 轴交点纵坐标的取值范围;(2)在y 轴上是否存在定点T,使得以PM 0为直径的圆恒过点T?若存在,求出点T 的坐标;若不存在,说明理由.【答案】解:(1)由椭圆得:22(1)y x =-,'y =1222(22)x x ---切线的斜率为:k=0222x -,所以,直线l 1的方程为:2000022()x y y x x --=-,与y 轴交点纵坐标为:y=2022x --2022x -=2022x -因为011x -≤≤,所以,2001x ≤≤,200222x ≤-≤,所以,当切点在第一、二象限时l 1与y 轴交点纵坐标的取值范围为:202y ≤≤,则对称性可知 l 1与y 轴交点纵坐标的取值范围为:2222y -≤≤. (2)依题意,可得∠PTM 0=90°,设存在T(0,t),M 0(x 0,y 0)由(1)得点P 的坐标(220000222y y x x -+,2),由00PT M T =u u u r u u u u r g 可求得t=1所以存在点T(0,1)满足条件.33.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知椭圆1C :22221x y a b+= (0a b >>)的离心率为33,连接椭圆的四个顶点得到的四边形的面积为6.(1)求椭圆1C 的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直1l 于点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设O 为坐标原点,取2C 上不同于O 的点S ,以OS 为直径作圆与2C 相交另外一点R ,求该圆面积的最小值时点S 的坐标.【答案】解:(1)解:由33e =,得223a c =,再由222c a b =-,解得62a =由题意可知122262a b ⋅⋅=,即6a b ⋅= 解方程组626a b ab ⎧=⎪⎨⎪=⎩得32,a b ==所以椭圆C 1的方程是22132x y +=(2)因为2MP MF =,所以动点M 到定直线1:1l x =-的距离等于它到定点2F (1,0)的距离,所以动点M 的轨迹2C 是以1l 为准线,2F 为焦点的抛物线, 所以点M 的轨迹2C 的方程为24y x =(3)因为以OS 为直径的圆与2C 相交于点R ,所以∠ORS = 90°,即0OR SR ⋅=u u u r u u r设S (1x ,1y ),R (2x ,2y ),SR u u r =(2x -1x ,2y -1y ),OR uuu r=(2x ,2y )所以222221*********()()()()016y y y OR SR x x x y y y y y y -⋅=-+-=+-=u u u r u u r 因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭所以22212222222562563223264y y y y y =++≥⋅+=, 当且仅当2222256y y =即22y =16,y 2=±4时等号成立 圆的直径|OS |=4222422211111111116(8)641644y x y y y y y +=+=+=+-因为21y ≥64,所以当21y =64即1y =±8时,min 85OS =, 所以所求圆的面积的最小时,点S 的坐标为(16,±8)34.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a y ax C 的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r 最小值为0.(1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.图(6)F 2F 1oyx【答案】解:(1)设),(y x P ,则有),(1y c x P F +=,),(2y c x P F -=[]a a x c x aa c y x PF PF ,,11222222221-∈-+-=-+=⋅ 由12PF PF ⋅uuu r uuu r最小值为0得210122=⇒=⇒=-a c c , ∴椭圆C 的方程为1222=+y x(2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+ 把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+同理,2212n k =+∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =- 设在x 轴上存在点(,0)B t ,点B 到直线12,l l 的距离之积为1,则22||||111kt m kt m k k +-⋅=++,即2222||1k t m k -=+,--- 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;--------------------------------------------------------- ②当直线12,l l 斜率不存在时,其方程为2x =和2x =-,定点(1,0)-到直线12,l l 的距离之积为(21)(21)1-+=; 定点(1,0)到直线12,l l 的距离之积为(21)(21)1=; 综上所述,满足题意的定点B 为(1,0)-或(1,0)35.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知椭圆C 的中心在原点O ,离心率23=e ,右焦点为)0 , 3( F . ⑴求椭圆C 的方程;⑵设椭圆的上顶点为A ,在椭圆C 上是否存在点P ,使得向量OA OP +与FA 共线?若存在,求直线AP 的方程;若不存在,简要说明理由.【答案】解:⑴设椭圆C 的方程为22221(0)x y a b a b+=>>,Q 椭圆C 的离心率23=e ,右焦点为)0 , 3( F , Q∴33c c a ==, Q 222a b c =+,∴2,1,3a b c ===,故椭圆C 的方程为2214x y +=⑵假设椭圆C 上是存在点P (00,x y ),使得向量OA OP +与FA 共线,Q 00(,1)OP OA x y +=+u u u r u u u r ,(3,1)FA =-u u u r,∴00113y +=-,即003(1)x y =-+,(1) 又Q 点P (00,x y )在椭圆2214x y +=上,∴220014x y += (2)由⑴、⑵组成方程组解得0001x y =⎧⎨=-⎩,或0083717x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴(0,1)P -,或831(,)77P -, 当点P 的坐标为(0,1)-时,直线AP 的方程为0y =,当点P 的坐标为831(,)77P -时,直线AP 的方程为3440x y -+=, 故直线AP 的方程为0y =或3440x y -+=36.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知焦点在x轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点D (0, 2 )为圆心,1为半径的圆相切,又知双曲线C 的一个焦点与D 关于直线y =x 对称. (Ⅰ)求双曲线C 的方程;(Ⅱ)设直线y =mx +1与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,F 1F 2为双曲线C 的左,右两个焦点,从F 1引∠F 1QF 2的平分线的垂线,垂足为N ,试求点N 的轨迹方程.【答案】解:(Ⅰ)设双曲线C 的渐近线方程为y =kx ,则kx -y =0 ∵该直线与圆x 2+(y - 2 )2=1相切,有|- 2 |k 2+ 1= 1 ⇒ k =±1. ∴双曲线C 的两条渐近线方程为y =±x , 故设双曲线C 的方程为 x 2a 2-y 2a2 = 1 .易求得双曲线C 的一个焦点为 ( 2 ,0),∴2a 2=2,a 2=1.∴双曲线C 的方程为x 2-y 2=1.(Ⅱ)由 ⎩⎨⎧ y =mx +1 x 2-y 2=1得(1-m 2)x 2-2mx -2=0. 令f (x )= (1-m 2)x 2-2mx -2直线与双曲线左支交于两点,等价于方程f (x )=0在(-∞,0)上有两个不等实根. 因此 ⎩⎪⎨⎪⎧ △>02m 1-m 2 <0-21-m 2>0解得1<m <2 .又AB 中点为(m 1-m 2 ,11-m2 ),zxxk∴直线l 的方程为y =1-2m 2+m +2 (x +2). 令x =0,得b =2-2m 2+m +2=2-2(m -14 )2+178.∵1<m < 2 ,∴-2(m -14 )2+178 ∈ (-2+ 2 , 1),∴b ∈ (-∞,-2- 2 )∪(2,+∞).(Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在QF 2上取一点T ,使| QT |=|QF 1 |.根据双曲线的定义| TF 2 |=2,所以点T 在以F 2( 2 ,0)为圆心,2为半径的圆上,即点T 的轨迹方程是(x - 2 )2+y 2=4 (x ≠ 0) ①由于点N 是线段F 1T 的中点,设N (x ,y ),T (x T ,y T ).则 ⎩⎪⎨⎪⎧ x =x T- 2 2 y =y T2,即 ⎩⎨⎧ x T=2x + 2y T= 2y .代入①并整理得点N 的轨迹方程为x 2+y 2=1.(x ≠ -22) (或者用几何意义得到| NO |=12 | F 2T |=1, 得点N 的轨迹方程为x 2+y 2=1.)37.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)设抛物线()2:20C x py p =>的焦点为F ,()()000,0A x y x ≠是抛物线C 上的一定点.(1)已知直线l 过抛物线C 的焦点F ,且与C 的对称轴垂直,l 与C 交于,Q R 两点, S 为C 的准线上一点,若QRS ∆的面积为4,求p 的值;(2)过点A 作倾斜角互补的两条直线AM ,AN ,与抛物线C 的交点分别为()11,,M x y ()22,N x y .若直线AM ,AN 的斜率都存在,证明:直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.【答案】(本小题主要考查直线、抛物线、对称等知识,考查数形结合、化归与转化、方程的思想方法,考查数学探究能力以及运算求解能力) 解: (1)由题设0,2p F ⎛⎫ ⎪⎝⎭,设1,,2p Q x ⎛⎫ ⎪⎝⎭则1,2p R x ⎛⎫- ⎪⎝⎭ ()()221122p p QR x x ⎛⎫=--+- ⎪⎝⎭2122222p x p p ==⨯=.∴由QRS ∆的面积为4,得:1242p p ⨯⨯=,得: 2.p =(2)由题意()100,A x y -首先求抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.解法一:设抛物线在1A 处的切线的斜率为k ,则其方程为()00y k x x y =++ 联立()0022y k x x y x py⎧=++⎪⎨=⎪⎩得2002220x pkx px k py ---=将2002py x =代入上式得:2200220x pkx px k x ---=()()22002420pk px k x ∆=-++=即2220020p k px k x ++= zxxk 即()200pk x += 得0.x k p=-即抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率为0.x p-解法二:由22x py =得212y x p=, ∴'x y p=∴抛物线C 在点A 关于对称轴的对称点()100,A x y -处的切线的斜率为0.x p-再求直线MN 的斜率.解法一:设直线AM 的斜率为1k ,则由题意直线AN 的斜率为1k -直线AM 的的方程为()010y y k x x -=-,则直线AN 的的方程为()010y y k x x -=--.联立()21002x py y k x x y ⎧=⎪⎨=-+⎪⎩得221100220x pk x pk x x -+-=(1)Q 方程(1)有两个根01,x x ,∴()()2210102420pk px k x ∆=---> ∴10,122pk x ±∆=0112x x pk +=,即1102x pk x =-,同理可得2102x pk x =--直线MN 的斜率222121122121222MNx x y y x x p p k x x x x p --+===--0022x x p p-==- ∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率解法二:AM AN k k =-Q zxxk01020102y y y y x x x x --∴=--- 将222012012,,222x x x y y y p p p ===分别代入上式得:2222001201022222x x x x p p p p x x x x --=---, 整理得0122x x x =+∴直线MN 的斜率222121122121222MNx x y y x x p p k x x x x p --+===--0022x x p p-==- ∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.38.(广东省广州市2013届高三调研测试数学(理)试题)如图5, 已知抛物线2P y x :=,直线AB与抛物线P 交于A B ,两点,OA OB ^,OA OB OC uu r uu u r uuu r+=,OC 与AB 交于点M .(1) 求点M 的轨迹方程;求四边形AOBC 的面积的最小值.yxOMCBA【答案】(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,,∵OA OB OC +=u u u r u u u r u u u r ,∴M 是线段AB 的中点 ∴()222121212222yy y y y y x +-+==,①122y y y +=. ② ∵OA OB ⊥, ∴0OA OB ⋅=u u u r u u u r.∴2212120y y y y +=依题意知120y y ≠,∴121y y =-. ③把②、③代入①得:2422y x +=,即()2112y x =- ∴点M 的轨迹方程为()2112yx =- (2)解:依题意得四边形AOBC 是矩形,∴四边形AOBC 的面积为S OA OB =u u u r u u u r =()()2222221122y y y y +⋅+()()()222121211y y y y =++222212121y y y y =+++ 22122y y =++∵22121222y y y y +≥=,当且仅当12y y =时,等号成立,∴222S ≥+=∴四边形AOBC 的面积的最小值为2 解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=.解得0x =或21x k=∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭同理得点B 的坐标为()2k k ,-∵OA OB OC +=u u u r u u u r u u u r ,∴M 是线段AB 的中点 设点M 的坐标为()x y ,,则221212k k x k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩消去k ,得()2112yx =- ∴点M 的轨迹方程为()2112y x =-(2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB =u u u r u u ur=⋅=≥2=当且仅当221kk=,即21k =时,等号成立 ∴四边形AOBC 的面积的最小值为239.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y =交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l 交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212PF PF AF AF +=+的点P ? 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.【答案】(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ∴ 椭圆1C 的方程为2211612x y += 解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =,∵2c =, ∴22212b a c =-=∴ 椭圆1C 的方程为2211612x y += (2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=, ∵C B A ,,三点共线, (苏元高考吧:)∴BC BA //u u u r u u u r∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① 由24xy =,即214y x ,=得y '=12x ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ 设点),(y x P ,由②③得:=-211412x x x 222412x x x -, 而21x x ≠,则 )(2121x x x += 代入②得 2141x x y =, 则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y . 若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212PF PF AF AF +=+ 的点P 有两个 解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy =,即214y x ,=得y '=12x ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002, ∵点)3,2(A 在直线L 上, ∴300-=x y ∴点P 的轨迹方程为3-=x y若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212PF PF AF AF +=+ 的点P 有两个解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==- 由24xy =,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+= ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =- 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上 ∴()()2222311612k k -+=.化简得271230k k --=.(*)由()2124732280Δ=-⨯⨯-=>,可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个40.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)已知点(4,0)M 、(1,0)N ,若动点P 满足6||MN MP NP =⋅u u u u r u u u r u u u r.(1)求动点P 的轨迹C ; (2)在曲线C 上求一点Q ,使点Q 到直线l :2120x y +-=的距离最小.【答案】解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r由6||MN MP NP =⋅u u u u r u u u r u u u r ,得223(4)6(1)()x x y --=-+-∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=,∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆;评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-= 且与椭圆C 相切的直线1l 与直线l 的距离. 设直线1l 的方程为20(12)x y m m ++=≠-由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离|412|165514d +==+. 当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离|412|85514d -+==+. 由于8516555<,故曲线C 上的点Q 到直线l 的距离的最小值为855当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小 41.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)设椭圆22221(0,0)x y a b b a+=>>的离心率为12,其左焦点E 与抛物线21:4C x y =-的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线与曲线C 只有一个交点P ,则(1)求直线的方程;(2)椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.【答案】解:(Ⅰ)抛物线C 的焦点为(1,0)E -,它是题设椭圆的左焦点.离心率为112b =, 所以,2b =.由2221b a -=求得3a =因此,所求椭圆的方程为22143x y += (*)(Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线的斜率为k ,① 若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线 的方程为0y =;② 若0k ≠,因直线过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线的方程为1y x =-或1y x =-+.因此,所求的直线的方程为0y =或1y x =-或1y x =-+.(2)由(1)可求出点P 的坐标是(0,0)或(1,2)-或(1,2)--. ①若点P 的坐标是(0,0),则1PF =.于是12MPF S ∆==112y ⨯⨯,从而1y =±,代入(*)式联立: 221431x y y ⎧+=⎪⎨⎪=⎩或221431x y y ⎧+=⎪⎨⎪=-⎩,求得26x =此时满足条件的点M 有4个: 26262626,,1,1⎫⎛⎫⎫⎛⎫--⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭⎝⎭⎭⎝⎭. ②若点P 的坐标是(1,2)-,则22PF =点M 到直线:1y x =-+的距离是12x y +-,于是有111221222MPF x y S x y ∆+-==⨯⨯=+-,从而112x y +-=±, 与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪+-=⎪⎩或22143112x y x y ⎧+=⎪⎪⎨⎪+-=-⎪⎩解之,可求出满足条件的点M 有4个:6579257+-,6579257-+,1115,714⎛⎫- ⎪⎝⎭,31,2⎛⎫- ⎪⎝⎭. ③ 若点P 的坐标是(1,2)--,则22PF =,点(,)M x y 到直线:1y x =-的距离是12x y --,于是有111221222MPF x y S x y ∆--==⨯⨯=--,从而112x y --=±,与(*)式联立:221 43112 x yx y⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x yx y⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M有4个:6579257,714⎛⎫+-+⎪⎪,6579257,714⎛⎫---⎪⎪,1115,714⎛⎫⎪⎝⎭,31,2⎛⎫--⎪⎝⎭.综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点M共有12个.图上椭圆上的12个点即为所求.42.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD版))已知抛物线C:y2=4x, F 是抛物线的焦点,设A(x1,y1),B(x2 ,y2)是C上异于原点O的两个不重合点,OA丄OB,且AB与x轴交于点T(1) 求x1x2的值;(2) 求T的坐标;(3) 当点A在C上运动时,动点R满足:FRFBFA=+,求点R的轨迹方程.【答案】F的43.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知动点M到点(0,1) y=的距离之和为5.距离与到直线4(1)求动点M的轨迹E的方程,并画出图形;=+与轨迹E有两个不同的公共点,A B,求m的取值范围;(2)若直线:l y x mAB的最大值.(3)在(2)的条件下,求弦长||【答案】44.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知椭圆)(1122221 >=-+a a y a x 的左右焦点为21,F F ,抛物线C:px y 22=以F 2为焦点且与椭圆相交于点()11,M x y 、N()22,x y ,点M在x 轴上方,直线1F M 与抛物线C 相切.。

广东省12大市高三数学 二模文试题分类汇编9 圆锥曲线 理

广东省12大市高三数学 二模文试题分类汇编9 圆锥曲线 理

广东省12大市2013届高三二模数学(理)试题分类汇编9:圆锥曲线一、选择题 1 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))设F 1,F 2是椭圆)0(12222>>=+b a b y a x 的左右焦点,若直线x =m a (m >1)上存在一点P,使ΔF 2PF 1是底角为300的等腰三角形,则m 的取值范围是( )A D .2 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知双曲线22221x y a b-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )A .12B .2C D .13 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))方程||||169x x y y +=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点;③函数y=f(x)的值域是R;④f(x)的图象不经过第一象限,其中正确的个数是 ( ) A .1个 B .2个 C .3个 D .4个 4 .(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))设抛物线的顶点在原点,准线方程为-2,x =则抛物线的方程是( )A .28y x = B .28y x =-C .24y x =-D .24y x =二、填空题5 .(广东省韶关市2013届高三4月第二次调研测试数学理试题)设点P 是双曲线22221(0,0)x y a b a b-=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________.6 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽________米.7 .(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 ________. 三、解答题8.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)设椭圆22221(0,0)x y a b b a+=>>的离心率为12,其左焦点E 与抛物线21:4C x y =-的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线与曲线C 只有一个交点P ,则(1)求直线的方程;(2)椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.9.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知抛物线C:y 2=4x, F 是抛物线的焦点,设A(x 1,y 1),B(x 2 ,y 2)是C 上异于 原点O 的两个不重合点,OA 丄OB,且AB 与x 轴交于点T(1) 求x 1x 2的值; (2) 求T 的坐标;(3) 当点A 在C 上运动时,动点R 满足:FR FB FA =+,求点R 的轨迹方程.10.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知动点M 到点(0,1)F 的距离与到直线4y =的距离之和为5. (1)求动点M 的轨迹E 的方程,并画出图形;(2)若直线:l y x m =+与轨迹E 有两个不同的公共点,A B ,求m 的取值范围; (3)在(2)的条件下,求弦长||AB 的最大值.11.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知椭圆)(1122221 >=-+a a y a x 的左右焦点为21,F F ,抛物线C:px y 22=以F 2为焦点且与椭圆相交于点()11,M x y 、N()22,x y ,点M 在x轴上方,直线1F M 与抛物线C 相切.(1)求抛物线C 的方程和点M 、N 的坐标;(2)设A,B 是抛物线C 上两动点,如果直线MA ,MB 与y 轴分别交于点,P Q . MPQ ∆是以MP ,MQ 为腰的等腰三角形,探究直线AB 的斜率是否为定值?若是求出这个定值,若不是说明理由.12.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知动点(,)P x y 与两个定点(1,0),(1,0)M N -的连线的斜率之积等于常数λ(0λ≠) (1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状;(3)当2λ=时,对于平面上的定点(E F ,试探究轨迹C 上是否存在点P ,使得120EPF ∠=︒,若存在,求出点P 的坐标;若不存在,说明理由.13.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))在平面直角坐标系xoy 中,动点在椭圆C 1:2212x y +=上,动点Q 是动圆C 2:222(12)x y r r +=<<上一点.(1)求证:动点P 到椭圆C 1的右焦点的距离与到直线x=2的距离之比等于椭圆的离心率;(2)设椭圆C1上的三点1122(,),(,)A x y B C x y 与点F(1,0)的距离成等差数列,线段AC 的垂直平分线是否经过一个定点为?请说明理由.(3)若直线PQ 与椭圆C 1和动圆C 2均只有一个公共点,求P 、Q 两点的距离|PQ|的最大值. 14.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)如图(6)已知抛物线2:2(0)C y px p =>的准线为l ,焦点为F,圆M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点作倾斜角为3π的直线t ,交l 于点A,交圆M 于点B,且||||2AO OB ==. (1)求圆M 和抛物线C 的方程;(2)设,G H 是抛物线C 上异于原点O 的两个不同点,且0OG OH ⋅=,求GOH ∆面积的最小值; (3)在抛物线C 上是否存在两点Q P ,关于直线()():10m y k x k =-≠对称?若存在,求出直线m 的方程,若不存在,说明理由.15.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)在平面直角坐标系内,动圆C过定点()1,0F,且与定直线1x=-相切.(1)求动圆圆心C的轨迹2C的方程;(2)中心在O的椭圆1C的一个焦点为F,直线过点(4,0)M.若坐标原点O关于直线的对称点P在曲线2C上,且直线与椭圆1C有公共点,求椭圆1C的长轴长取得最小值时的椭圆方程.16.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD版))已知中心在原点O,焦点在x轴上,的椭圆过点).(1)求椭圆的方程;(2)设不过原点O的直线与该椭圆交于P、Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求OPQ∆面积的取值范围.17.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))经过点()0,1F 且与直线1y =-相切的动圆的圆心轨迹为M .点A 、D 在轨迹M 上,且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线,使直线与轨迹M 在点D 处的切线平行,设直线与轨迹M 交于点B 、C .(1)求轨迹M 的方程;(2)证明:BAD CAD ∠=∠; (3)若点D 到直线ABABC 的面积为20,求直线BC 的方程.18.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)设椭圆22221(0)x y a b a b+=>>的左右顶点分别为(2,0),(2,0)A B -,离心率e =过该椭圆上任一点P 作PQ x ⊥轴,垂足为Q ,点C 在QP 的延长线上,且||||QP PC =.(1)求椭圆的方程; (2)求动点C 的轨迹E 的方程;(3)设直线AC (C 点不同于,A B )与直线2x =交于点R ,D 为线段RB 的中点,试判断直线CD 与曲线E 的位置关系,并证明你的结论.广东省13大市2013届高三二模数学(理)试题分类汇编9:圆锥曲线参考答案一、选择题 1. A 2. A 3. D4. 【解析】抛物线的准线方程为-2,x =,∴抛物线的开口向右.设抛物线的标准方程为y 22(0)px p =>,则其准线方程为2p x =-, ∴22p-=-,解得4,p = ∴抛物线的标准方程为y 28x =.故选A . 二、填空题6. 7. 双曲线221916x y -=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.三、解答题8.解:(Ⅰ)抛物线C 的焦点为(1,0)E -,它是题设椭圆的左焦点.离心率为112b =,所以,2b =.由2221b a -=求得a =因此,所求椭圆的方程为22143x y += (*) (Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线的斜率为k ,① 若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线的方程为0y =;② 若0k ≠,因直线过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线的方程为1y x =-或1y x =-+.因此,所求的直线的方程为0y =或1y x =-或1y x =-+.(2)由(1)可求出点P 的坐标是(0,0)或(1,2)-或(1,2)--. ①若点P 的坐标是(0,0),则1PF =.于是12MPF S ∆==112y ⨯⨯,从而1y =±,代入(*)式联立: 221431x y y ⎧+=⎪⎨⎪=⎩或221431x y y ⎧+=⎪⎨⎪=-⎩,求得x =此时满足条件的点M 有4个: ,,1,1⎫⎛⎫⎫⎛⎫--⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭⎝⎭⎭⎝⎭. ②若点P 的坐标是(1,2)-,则PF =点M 到直线:1y x =-+于是有11122MPF S y ∆==⨯-,从而112x y +-=±, 与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪+-=⎪⎩或22143112x y x y ⎧+=⎪⎪⎨⎪+-=-⎪⎩解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫- ⎪⎝⎭,31,2⎛⎫- ⎪⎝⎭. ③ 若点P 的坐标是(1,2)--,则PF =,点(,)M x y 到直线:1y x =-是有11122MPF S y ∆==⨯-,从而112x y --=±, ④ 与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x y x y ⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫⎪⎝⎭,31,2⎛⎫--⎪⎝⎭.综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点M共有12个.图上椭圆上的12个点即为所求.9.10.11.解:(1)由椭圆方程得半焦距1)1(c 22=--a a =所以椭圆焦点为),( ,01F )01(21-F 又抛物线C 的焦点为)0,2(p ,2,12==∴p p x y C 42=∴:∵),(11y x M 在抛物线C 上, ∴1214x y =,直线M F 1的方程为)1(111++=x x y y 代入抛物线C 得22211(1)4(1),y x x x +=+22114(1)4(1)x x x x +=+即 22111(1)0,x x x x x ∴-++= ∵1F M 与抛物线C 相切,04)121221=-+∆∴x x =(,11,x ∴= ∴ M、N 的坐标分别为(1,2)、(1,-2) (2)直线AB 的斜率为定值—1. 证明如下:设11(,)A x y ,22(,)B x y ,(1,2)M ,A 、B 在抛物线24y x =上,∴211222244241y x y x ⎧=⎪=⎨⎪=⨯⎩①②③由①-③得,1112412MA y k x y -==-+④由②-③得,2222412MB y k x y -==-+④因为MPQ ∆是以MP,MQ 为腰的等腰三角形,所以MA MB k k =-由MAMB k k =-得11222124122412y x y y x y -⎧=-⎪-+⎪⎨-⎪=-⎪-+⎩ 化简整理, 得12211121222244422444y y y y x y y y y x -+-=-+⎧⎨-+-=-+⎩⑥⑦由⑥-⑦得:12124()4()y y x x -=--1212414y y k x x --∴===--为定值解法二:设211(,)4y A y ,222(,)4y B y则121214AM y k y -=-142y =+,242BMk y =+ 因为MPQ ∆是以MP,MQ 为腰的等腰三角形,所以MA MB k k =- 即1244022y y +=++ 所以121240(2)(2)y y y y ++=++所以,由1240y y ++=得 124y y +=- 所以,21222144AB y y k y y -=-2122214()y y y y -=-124y y =+44=- 1.=- 所以,直线AB 的斜率为定值,这个定值为 1.- 12.解、(Ⅰ)由题设可知;PN PM ,的斜率存在且不为0,所以λ=-⋅+11x y x y ,即)0(122≠=-y y x λ(Ⅱ)讨论如下:(1)当0>λ时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点)(2)当01<<-λ时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴两个端点) (3)当1-=λ时,轨迹C 为以原点为圆心,1为半径的圆(除去点(-1,0),(1,0)) (4)当1-<λ时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴两个端点)(Ⅲ)、当2=λ时,轨迹C 的方程为)0(1222≠=-y y x ,显然定点E 、F 为其左右焦点.假设存在这样的点P,使得0120=∠EPF ,记θ=∠EPF ,32,,===EF n PF m PE ,那么在EPF ∆中:⎪⎪⎩⎪⎪⎨⎧-+===-+⇒=-∆θθcos 2)32(sin 2142222222mn n m mn S mn n m n m EPF整理可得:8)cos 1(2=-θmn ,所以38120cos 14cos 140=-=-=θmn所以332233821120sin 210=⨯⨯==∆mn S EPF 又因为332322121=⨯⨯=⨯⨯=∆P P EPF y y EF S所以,32=P y 故,32±=P y 代入椭圆的方程可得:)0(123222≠=⎪⎭⎫⎝⎛±-y x P所以311±=P x ,所以满足题意的点P 有四个,坐标分别为)32,311(,)32,311(-,)32,311(-,)32,311(--13.14. 解:(1)∵1cos 602122p OA ==⨯=,即2p =, ∴所求抛物线的方程为24y x =∴设圆的半径为r,则122cos 60OB r =⋅=,∴圆的方程为22(2)4x y -+=(2) 设()()1122,,,G x y H x y ,由0OG OH ⋅=得02121=+y y x x ∵2211224,4y x y x ==,∴1216x x =, ∵12GOH S OG OH ∆=,∴()()222222*********GOHS OG OH x y x y ∆==++=()()2211221444x x x x ++=()()21212121214164x x x x x x x x ⎡⎤+++⎣⎦≥()212121214164x x x x x x ⎡⎤+⋅⎣⎦=256 ∴16GOH S ∆≥,当且仅当122x x ==时取等号, ∴GOH ∆面积最小值为16(3) 设()()4433,,,y x Q y x P 关于直线m 对称,且PQ 中点()00,y x D ∵ ()()4433,,,y x Q y x P 在抛物线C 上,∴2233444,4y x y x ==两式相减得:()()()3434344y y y y x x -+=- ∴343434444PQx x y y k y y k -+=⋅==--,∴02y k =-∵()00,y x D 在()():10m y k x k =-≠上 ∴010x =-<,点()00,y x D 在抛物线外∴在抛物线C 上不存在两点Q P ,关于直线m 对称15. ⑴由题可知,圆心C 到定点()1,0F 的距离与到定直线1x =-的距离相等由抛物线定义知,C 的轨迹2C 是以()1,0F 为焦点,直线1x =-为准线的抛物线 (确定“曲线是抛物线”1分,说明抛物线特征1分) 所以动圆圆心C 的轨迹2C 的方程为24y x = ⑵解法1、设(,)P m n ,则OP 中点为(,)22m n , 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221n m k n k m⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩(中点1分,方程组2分,化简1分) 将其代入抛物线方程,得:222288()411k k k k-=⋅++,所以21k = 联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-=由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥因此,椭圆1C.此时椭圆的方程为22+1171522x y =解法2、设2,4m P m ⎛⎫⎪⎝⎭ ,因为O P 、两点关于直线对称,则=4OM MP =,即4=,解之得4m =± 即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于,A B .则11AB OPk k =-=,于是直线方程为4y x =-(斜率1分,方程1分)联立 222241y x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-=由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥因此,椭圆1C . 此时椭圆的方程为22+1171522x y =16.解:(1)由题意可设椭圆方程为22221x y a b+=(0)a b >>,则222112c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, , 解的21a b =⎧⎨=⎩,所以,椭圆方程为2214x y += (2)由题意可知,直线的斜率存在且不为0,故可设直线的方程为(0)y kx m m =+≠,1,12,2(),()P x y Q x y ,由2214y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 得222(14)84(1)0k x kmx m +++-=, 则22222226416(14)(1)16(41)0k b k b b k m ∆=-+-=-+>,且122814km x x k -+=+,21224114m x x k-=+ 故2212121212()()()y y kx m kx m k x x km x x m =++=+++. 因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以,2221121222112()y y k x x km x x m k x x x x +++⋅==,即22228014k m m k-+=+, 又0m ≠,所以214k =,即12k =± 由于直线OP ,OQ 的斜率存在,且△>0,得202m <<且21m ≠. 设d 为点O 到直线的距离,则11122OPQ S d PQ m x ∆=⋅=⋅, 所以OPQ S ∆的取值范围为(0,1)17. (本小题主要考查动点的轨迹和直线与圆锥曲线的位置关系、导数的几何意义等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)解:(1)方法1:设动圆圆心为(),x y ,依题意得整理,得24x y =.所以轨迹M 的方程为24x y =方法2:设动圆圆心为P ,依题意得点P 到定点()0,1F 的距离和点P 到定直线1y =-的距离相等, 根据抛物线的定义可知,动点P 的轨迹是抛物线 且其中定点()0,1F 为焦点,定直线1y =-为准线. 所以动圆圆心P 的轨迹M 的方程为24x y = (2)由(1)得24x y =,即214y x =,则12y x '=. 设点2001,4D x x ⎛⎫⎪⎝⎭,由导数的几何意义知,直线的斜率为012BC k x =由题意知点2001,4A x x ⎛⎫- ⎪⎝⎭.设点2111,4C x x ⎛⎫ ⎪⎝⎭,2221,4B x x ⎛⎫⎪⎝⎭,则2212120121114442BCx x x x k x x x -+===-,即1202x x x +=A B CDOxylE因为2210101011444ACx x x x k x x --==+,2220202011444AB x x x x k x x --==+由于()120102020444AC AB x x x x x x x k k +---+=+==,即AC AB k k =- 所以BAD CAD ∠=∠(3)方法1:由点D 到ABBAD ∠45= 不妨设点C 在AD 上方(如图),即21x x <,直线AB 的方程为:()20014y x x x -=-+. 由()20021,44.y x x x x y ⎧-=-+⎪⎨⎪=⎩解得点B 的坐标为()20014,44x x ⎛⎫-- ⎪⎝⎭)()042x ---=-.由(2)知CAD BAD ∠=∠45=,同理可得2AC =+ 所以△ABC的面积20122244202S x =⨯-⨯+=-=, 解得03x =±当03x =时,点B 的坐标为11,4⎛⎫- ⎪⎝⎭,32BCk =, 直线BC 的方程为()13142y x -=+,即6470x y -+= 当03x =-时,点B 的坐标为497,4⎛⎫- ⎪⎝⎭,32BCk =-, 直线BC 的方程为()493742y x -=-+,即6470x y +-= 方法2:由点D 到ABBAD ∠45= 由(2)知CAD BAD ∠=∠45=,所以CAB ∠90=,即AC AB ⊥. 由(2)知104AC x x k -=,204AB x x k -=.所以1020144AC AB x x x x k k --=⨯=-. 即()()102016x x x x --=-. ① 由(2)知1202x x x +=. ②不妨设点C 在AD 上方(如图),即21x x <,由①、②解得10204,4.x x x x =+⎧⎨=-⎩2=-,同理2AC =+ 以下同方法1.18.解析:(1)由题意可得2a =,2c e a ==,∴c =∴2221b a c =-=,所以椭圆的方程为2214x y += (2)设(,)C x y ,00(,)P x y ,由题意得002x x y y =⎧⎨=⎩,即0012x xy x =⎧⎪⎨=⎪⎩,又220014x y +=,代入得221()142x y +=,即224x y +=. 即动点C 的轨迹E 的方程为224x y += (3)设(,)C m n ,点R 的坐标为(2,)t , ∵,,A C R 三点共线,∴//AC AR ,而(2,)AC m n =+,(4,)AR t =,则4(2)n t m =+, ∴42nt m =+, ∴点R 的坐标为4(2,)2n m +,点D 的坐标为2(2,)2nm +, ∴直线CD 的斜率为222(2)22244nn m n n mn m k m m m -+-+===---,而224m n +=,∴224m n -=-, ∴2mn m k n n==--, ∴直线CD 的方程为()m y n x m n -=--,化简得40mx ny +-=, ∴圆心O 到直线CD 的距离2d r ====, 所以直线CD 与圆O 相切。

2013年广州二模数学理科试题

2013年广州二模数学理科试题

2013年广州二模数学理科试题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷有三个大题,26个小题.满分为130分,考试时间为120分钟.2.请用蓝、黑圆珠笔或水笔答题,并按要求将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.4.抛物线的顶点坐标为.试题卷Ⅰ一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1. 的值等于(▲)A.4 B. C. D.22.据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为( ▲).A. B. C. D.3.计算的结果是(▲)A.B.C.D.4. 在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是………………………(▲)A. B. C. D.5.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米, CA=1米, 则树的高度为(▲)A. 4.5米B. 6米C. 3米D. 4米6.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为(▲)A.r B.22 r C.10 r D.3r7.小兰画了一个函数的图象如图,那么关于x的分式方程的解是(▲)A.x=1B.x=2 C.x=3 D.x=48.从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三角形的概率为(▲)A.B.C.D.9.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是(▲).A.B.若MN与⊙O相切,则C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切10. 如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b 的值为( ▲)A.3 B.C.D.11.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a <0)的图象上,则a的值为(▲)A.B.C.D.12. 如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上()A.1 B.2 C.3 D.5试题卷Ⅱ二、填空题(每小题3分,共18分)13.在函数y= 1 x-2 中,自变量x的取值范围是▲.14.已知关于x的方程的一个根是1,则k= ▲.15. 如图,在长为8 ,宽为4 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是▲.16.抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是▲17.如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是▲18. 如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连结AP,以AP为边在其左侧作等边△APQ ,连结PB、BA.若四边形ABPQ为梯形,则(1)当AB为梯形的底时,点P的横坐标是▲;(2)当AB为梯形的腰时,点P的横坐标是▲.三.解答题(第19题6分,第20-22题各8分,第23-24题10分,第25题12分,第26题14分,共76分)19. (本题6分)计算:20.先化简再求值:,其中.21.(本题8分)某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2012年宁波市区初二学生约为2万人,按此调查,可以估计2012年宁波市区初二学生中每天锻炼未超过1小时的学生约有多少万人?(4)请根据以上结论谈谈你的看法.22. (本题8分)如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=10cm,求阴影部分面积.23.宁波滨海水产城一养殖专业户陈某承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,陈某养殖甲鱼20亩,桂鱼10亩.求陈某这一年共收益多少万元?(收益=销售额-成本)(2) 2011年,陈某继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求陈某原定的运输车辆每次可装载饲料多少kg?24. (1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为。

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7立体几何

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7立体几何

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7:立体几何一、选择题1 .(广东省东莞市2013届高三第二次模拟数学理试题)如图是一个几何体的三视图,若它的体积是,则a =( )AB C D 【答案】C2 .(广东省中山市2013届高三上学期期末统一考试数学(理)试题)如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行;④当1AA E ∈时,BF AE +是定值. 其中所有正确的命题的序号是( )A .①②③B .①③C .②④D .①③④【答案】D3 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知某个几何体的三视图如图2所示,根据图中标出的尺寸(单位:cm),则这个几何体的体积是 ( )A .38cmB .312cmC .324cmD .372cm【答案】B 解析:三视图的直观图是有一个侧面垂直于底面三棱锥,底面是底边长为6高为4的等腰三角形,三棱锥的高为3,所以,这个几何体的体积116431232V =⨯⨯⨯⨯= 4 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)某几何体的三视图如图所示,当a b +取最大值时,这个几何体的体积为( )A .16B .13C .23D .12【答案】D5 .(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为( )A .π4B .π2C .π3D .23π【答案】D6 .(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))若某空间几何体的三视图如图所示,则该几何体的体积是【答案】B7 .(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知一个几何体的三视图及其大小如图1,这个几何体的体积=V ( )A .π12B .π16C .π18D .π64【答案】B8 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于 圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两部分,则截面的面积为 ( ) A .14π B .πC .94π D .4π【答案】C9 .(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))如图是某简单组合体的三视图,则该组合体的体积为图2( )A.π+ B.2)π+ C.D.2)+【答案】【解析】由三视图可知几何体是由截面相同的半个圆锥与半个三棱锥组合而成的.圆椎底面半径为6,椎体底面边长为12,高为.1111361262)3232V ππ=⨯⨯⨯⨯+⨯⨯⨯⨯=+故选B .10.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)下列命题中假命题...是 ( )A .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;B .垂直于同一条直线的两条直线相互垂直;C .若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;D .若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行. 【答案】B11.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图(1)示,则该几何体的体积为 ( )A .7B .223 C .476D .233图(1)【答案】依题意可知该几何体的直观图如右上图,其体积为.3112322111323-⨯⨯⨯⨯⨯=,故选 D .侧视图正视图12.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)某三棱锥的三视图如图所示,该三棱锥的体积是 ( )A .403 B .3C .503D .6【答案】A 二、填空题13.(广东省中山市2013届高三上学期期末统一考试数学(理)试题)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积...等于_______【答案】6+14.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)一个几何体的三视图如图所示,正视图是正方形,俯视图为半圆,侧视图为矩形,则其表面保积为________【答案】π34+;15.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形则此三棱锥的体积等于_____________ .【答案】16.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知集合A B C 、、,A ={直线},B ={平面},C A B =.若,,a A b B c C ∈∈∈,给出下列四个命题:①//////a b a c c b ⎧⇒⎨⎩ ②//a b a c c b ⊥⎧⇒⎨⊥⎩ ③//a ba c cb ⎧⇒⊥⎨⊥⎩ ④//a ba c c b⊥⎧⇒⊥⎨⎩ 其中所有正确命题的序号是__________.【答案】【解析】由题意知:C 可以是直线,也可以是平面,当C 表示平面时,①②③都不对,故选④正确.17.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))一个几何体的三视图如图所示,则这个几何体的体积为___【答案】103三、解答题18.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )如图,在三棱拄111ABC A B C -中,AB ⊥侧面11BB C C ,已知11,3BC BCC π=∠=(Ⅰ)求证:1C B ABC ⊥平面;(Ⅱ)试在棱1CC (不包含端点1,)C C 上确定一点E 的位置,使得1EA EB ⊥; (Ⅲ) 在(Ⅱ)的条件下,求二面角11A EB A --的平面角的正切值.EC 1B 1A1CA【答案】证(Ⅰ)因为AB ⊥侧面11BB C C ,故1AB BC ⊥在1BC C 中,1111,2,3BC CC BB BCC π===∠=由余弦定理有1BC == 故有 222111BC BC CC C B BC += ∴⊥而 BC AB B = 且,AB BC ⊂平面ABC∴1C B ABC ⊥平面(Ⅱ)由11,,,,EA EB AB EB ABAE A AB AE ABE ⊥⊥=⊂平面从而1B E ABE ⊥平面 且BE ABE ⊂平面 故1BE B E ⊥不妨设 CE x =,则12C E x =-,则221BE x x =+-又1123B C C π∠= 则2211B E x x =++在1Rt BEB 中有 22114x x x x +++-+= 从而1x =±(舍负)111故E 为1CC 的中点时,1EA EB ⊥ 法二:以B 为原点1,,BC BC BA为,,x y z 轴,设CE x=,则11(0,0,0),(1),(2B E x B A -- 由1EA EB ⊥得 10EAEB ⋅= 即11(1,,0)0222211(1)(2)02222x x x x x x x x ---=⎫---=⎪⎪⎭化简整理得 2320x x -+= 1x = 或 2x = 当2x =时E 与1C 重合不满足题意 当1x =时E 为1CC 的中点 故E 为1CC 的中点使1EA EB ⊥(Ⅲ)取1EB 的中点D ,1A E 的中点F ,1BB 的中点N ,1AB 的中点M 连DF 则11//DF A B ,连DN 则//DN BE ,连MN 则11//MN A B 连MF 则//MF BE ,且MNDF 为矩形,//MD AE 又1111,A B EB BE EB ⊥⊥ 故MDF ∠为所求二面角的平面角在Rt DFM 中,111(22DF A B BCE==∆为正三角形)111222MF BE CE === 1tan 22MDF ∴∠==法二:由已知1111,EA EB B A EB ⊥⊥, 所以二面角11A EB A --的平面角θ的大小为向量11B A 与EA 的夹角因为11B A BA == 1(22EA =-- 故 11112cos tan 23EA B A EA B A θθ⋅==⇒=⋅19.(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )四棱锥P —ABCD 中,侧面PDC 是MP A BC D • EF G 边长为2的正三角形,且与底面垂直,底面ABCD 是∠ADC ︒=60的菱形,M 为PB 的中点,Q 为CD 的中点. (1) 求证:PA ⊥CD ;(2) 求AQ 与平面CDM 所成的角.【答案】解:(1)连结PQ ,AQ .∵△PCD 为正三角形, ∴PQ ⊥CD . ∵底面ABCD 是∠ADC ︒=60的菱形, ∴AQ ⊥CD. ∴CD ⊥平面PAQ ∴PA ⊥CD .(2)设平面CDM 交PA 于N ,∵CD //AB , ∴CD //平面PAB .∴CD //MN .由于M 为PB 的中点,∴N 为PA 的中点.又PD =CD =AD ,∴DN ⊥PA . 由(1)可知PA ⊥CD ,∴PA ⊥平面CDM∴平面CDM ⊥平面PAB . ∵PA ⊥平面CDM ,联接QN 、QA ,则∠AQN 为AQ 与平面CDM 所成的角 在Rt ∆PMA 中,AM =PM =3, ∴AP =6,∴AN =26,sin ∠AQN =AQ AN =22.∴∠AQN =45°(2)另解(用空间向量解): 由(1)可知PQ ⊥CD ,AQ ⊥CD .又由侧面PDC ⊥底面ABCD ,得PQ ⊥AQ .因此可以如图建立空间直角坐标系xyz Q -易知P (0 , 0 ,3)、A (3, 0 , 0)、B (3, 2 , 0)、C (0 , 1 , 0)、D (0 , -1 , 0)①由=(3, 0 , -3),=(0 , -2 , 0),得⋅=0. ∴PA ⊥CD②由M (23, 1 , -23),CM =(23, 0 , -23),得⋅CM =0. ∴PA ⊥CM∴PA ⊥平面CDM ,即平面CDM ⊥平面PAB .从而就是平面CDM 的法向量设AQ 与平面所成的角为θ , 则sin θ =|cos<,PA >|=22|633|=⨯. 第18题图CB DQPMBCBDQPM 第17题图∴AQ 与平面所成的角为45°20.(广东省东莞市2013届高三第二次模拟数学理试题)如图,PA 垂直⊙O 所在平面ABC,AB 为⊙O 的直径,PA=AB,14BF BP =,C 是弧AB 的中点. (1)证明:BC ⊥平面PAC; (2)证明:CF ⊥BP;(3)求二面角F —OC —B 的平面角的正弦值.【答案】证明:(1)∵PA ⊥平面ABC,BC ⊂平面ABC,∴BC ⊥PA∵∠ACB 是直径所对的圆周角, ∴90o ACB ∠=,即BC ⊥AC又∵PA AC A =,∴BC ⊥平面PAC(2)∵PA ⊥平面ABC,OC ⊂平面ABC, ∴OC ⊥PA∵C 是弧AB 的中点,∴∆ABC 是等腰三角形,AC=BC, 又O 是AB 的中点,∴OC ⊥AB又∵PA AB A =,∴OC ⊥平面PAB ,又PB ⊂平面PAB ,∴BP OC ⊥设BP 的中点为E,连结AE,则//OF AE ,AE BP ⊥ ∴BP OF ⊥∵OC OF O =,∴BP ⊥平面CFO . 又CF ⊂平面CFO ,∴CF BP ⊥ 解:(3)由(2)知OC ⊥平面PAB ,∴OF OC ⊥,OC OB ⊥, ∴BOF ∠是二面角F OC B --的平面角 又∵BP OF ⊥,045FBO ∠=,∴045FOB ∠=,∴sin FOB ∠=,即二面角F OC B --21.(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD —A 1B 1C 1D 1? 如何组拼?试证明你的结论;(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD —A 1B 1C 1D 1的棱CC 1的中点为E, 求平面AB 1E 与平面ABC 所成二面角的余弦值.【答案】解:(Ⅰ)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的 正方形,高为CC 1=6,故所求体积是7266312=⨯⨯=V(Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体, 其拼法如图2所示证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的正方形,于是D D AA C A ABB C ABCD C V V V 1111111---== 故所拼图形成立(Ⅲ)方法一:设B 1E,BC 的延长线交于点G, 连结GA,在底面ABC 内作BH⊥AG,垂足为H, 连结HB 1,则B 1H⊥AG,故∠B 1HB 为平面AB 1E 与 平面ABC 所成二面角或其补角的平面角 在Rt△ABG 中,180=AG ,则512180126=⨯=BH ,5182121=+=BB BH H B 32cos 11==∠HB HB HB B ,故平面AB 1E 与平面ABC 所成二面角的余弦值为32± 方法二:以C 为原点,CD 、CB 、CC 1所在直线分别为x 、y 、z 轴建立直角坐标系(如图3),∵正方体棱长为6,则E(0,0,3),B 1(0,6,6),A(6,6,0). 设向量n =(x ,y ,z ),满足n ⊥1EB ,n ⊥1AB ,正视图侧视图俯视图于是⎩⎨⎧=+-=+066036z x z y ,解得⎪⎩⎪⎨⎧-==z y zx 21取z =2,得n =(2,-1,2). 又=1BB (0,0,6),321812||||,cos 111==>=<BB n BB 故平面AB 1E 与平面ABC 所成二面角的余弦值为32±22.(广东省中山市2013届高三上学期期末统一考试数学(理)试题)如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 、E 分别为11A B 、1AA 的中点,点F 在棱AB 上,且14AF AB =. (Ⅰ)求证://EF 平面1BDC ;(Ⅱ)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G 的位置;若不存在,说明理由.【答案】所以符合要求的点G 不存在.23.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)如图5,在四棱锥P ABCD -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,22,,PA AD AB BC M N ====分别为,PC PB 的中点.(1)求证:PB DM ⊥;(2)求平面ADMN 与平面ABCD 所成的二面角的余弦值;(3)求点B 到平面PAC 的距离.【答案】解:(1)证明:因为N 是PB 的中点,PA AB =, 所以AN PB ⊥由PA ⊥底面ABCD ,得PA AD ⊥, 又90BAD ︒∠=,即BA AD ⊥,又,BA PA 在平面PAB 内,∴ AD ⊥平面PAB ,所以AD PB ⊥ ,又,AD AN 在平面ADMN 内,∴ PB ⊥平面ADMN , ∴PB DM ⊥.(2)方法一:由(1)知,AD ⊥平面PAB ,所以AN AD ⊥ , 由已知可知,AB AD ⊥所以BAN ∠是平面ADMN 与平面ABCD 所成的二面角的平面角 在直角三角形PAB 中,PB ===因为N 直角三角形PAB 斜边PB 的中点,所以AN =在直角三角形NAB 中,cos 2AN BAN AB ∠== 即平面ADMN 与平面ABCD所成的二面角的余弦值为2. 方法二:如图建立空间直角坐标系,则(0,0,0),(1,0,1)A N ,(0,2,0)D(1,0,1)AN =,(0,2,0)AD =设平面ADMN 的法向量为(,,)n x y z =,则0n AN n AD ⎧=⎪⎨=⎪⎩即020x z y +=⎧⎨=⎩,令1z =-,则1x =,所以平面ADMN 的一个法向量为(1,0,1)n =- 显然(0,0,2)a =是平面ABCD 的一个法向量 设平面ADMN 与平面ABCD 所成的二面角的平面角为θ,则cos ||||222n ana θ-===⋅⋅即平面ADMN 与平面ABCD .(3)由已知得,AC ==11122123323P ABC ABC V S PA -∆=⋅=⨯⨯⨯⨯=设点B 到平面PAC 的距离为h ,则1112332B ACP ACP V S h h -∆=⋅=⨯⨯=由P ABC B ACP V V --=,即233h =,得5h =即点B 到平面PAC 的距离5. 24.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)如图5,在四棱锥ABCD P -中,PA ⊥平面ABCD ,4=AB ,3=BC ,090,5=∠=∠=ABC DAB AD ,E 是CD 的中点.(1)求证:CD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和直线PB 与平面ABCD 所成的角相等,求四棱锥ABCD P -的体积.【答案】(1)如图(1),连接AC ,由090,3,4=∠==ABC BC AB,得5=AC5,AD =又E 是CD 的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE (2)过点B 作,,,,.BG CD AE AD F G PF //分别与相交于连接由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角 由题意,知,PBA BPF ∠=∠因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠=知,又所以四边形BCDG 是平行四边形,故3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以2AB BG BF BG =====于是PA BF ==又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:),0,0(),0,4,2(),0,5,0(),0,3,4(),0,0,4(),0,0,0(h P E D C B A(1)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面 (2)由题设和(1)知,,CD AP 分别是PAE 平面、ABCD 平面的法向量 由(1)知,(4,2,0),(0,0,),CD AP h =-=-而直线PB 与PAE 平面所成的角和直线PB 与ABCD 平面所成的角相等,所以cos ,cos ,.CD PB PA PB CD PB PA PB CD PBPA PB⋅⋅<>=<>=⋅⋅,即由(4,0,),PB h =-故222160016520016hh h h+⋅++=+⋅++-解得h =又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为 111633V S PA =⨯⨯=⨯=25.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)如图,在底面为直角梯形的四棱锥ABCD P -中,BC AD //,︒=∠90ABC ,⊥PD 平面ABCD ,1=AD ,3=AB ,4=BC (1)求直线AB 与平面PDC 所成的角;(2)设点E 在棱PC 上,λ=,若//DE 平面PAB ,求λ的值.APEC DB【答案】解1:(1)∵⊥PD 平面ABCD ⊂PD 面PDC∴平面⊥PDC 平面ABCD过D 作AB DF //交BC 于F 过点F 作CD FG ⊥交CD 于G , ∵平面 PDC 平面CD ABCD =∴⊥FG 面PDC∴FDG ∠为直线AB 与平面PDC 所成的角 在DFC Rt ∆中,︒=∠90DFC ,3=DF ,3=CF ∴3tan =∠FDG , ∴︒=∠60FDG即直线AB 与平面PDC 所成角为︒60(2)连结EF ,∵AB DF //,⊄DF 平面PAB ,⊂AB 平面PAB ∴//DF 平面PAB又∵//DE 平面PAB 且D DF DE = ∴平面//DEF 平面PABPEFBCDAGPE∴AB EF //又∵1=AD ,4=BC ,1=BF∴41==BC BF PC PE ∴41=,即41=λ 解2:如图,在平面ABCD 内过D 作直线AB DF //,交BC 于F ,分别以DA 、DF 、DP 所在的直线为x 、y 、z 轴建立空间直角坐标系.设a PD =,则)0,0,0(D 、)0,0,1(A 、)0,3,1(B 、)0,3,3(-C 、),0,0(a P (1)设面PDC 的法向量为),,(z y x n = ∵)0,3,3(-=DC 、),0,0(a =∴由⎪⎩⎪⎨⎧=⋅=⋅00 得⎪⎩⎪⎨⎧==+-0033az y x 令1=x 可解得⎪⎩⎪⎨⎧==03z y∴)0,3,1(=n ∵)0,3,0(= ∴2323030||||,cos =⨯++=⋅<n AB n AB ∴直线AB 与平面PDC 所成的角θ,则23|,cos |sin =><=θ∵︒<<︒900θ ∴︒=60θ 即直线AB 与平面PDC 所成的角为︒60(2)∵),3,3(a PC --= ∴),3,3(λλλλa --==∴),3,3(),3,3(),0,0(λλλλλλa a a a --=--+=+= 设面PAB 的法向量为),,(111z y x = ∵)0,3,0(=、),0,1(a -=∴由⎪⎩⎪⎨⎧=⋅=⋅00 得⎪⎩⎪⎨⎧=-=003az x y 令1=z 可解得⎩⎨⎧==a x y 0∴)1,0,(a =若//DE 平面PAB ,则003)1,0,(),3,3(=-++-=⋅--=⋅λλλλλa a a a a a m DE 而0≠a , 所以41=λ 26.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))如图,ABC ∆的外接圆⊙OB其中AB 为圆直径,CD ⊥⊙O 所在的平面,//,4,2BE CD CD BC ==,且1BE =. (1)求证:平面ADC ⊥平面BCDE ;(2)试问线段DE 上是否存在点M,使得直线AM 与平面ACD 所成角的正弦值为27?若存在,确定M 的位置,若不存在,请说明理由.【答案】解:(Ⅰ)∵AB 是直径,∴AC⊥BC,又∵CD ⊥平面ABC,∴CD⊥BC,故BC⊥平面ACDBC ⊂平面BCDE,∴平面ADC ⊥平面BCDE(Ⅱ)方法一:假设点M 存在,过点M 作MN⊥CD 于N, 连结AN,作MF⊥CB 于F,连结AF∵平面ADC ⊥平面BCDE,∴MN⊥平面ACD,∴∠MAN 为MA 与平面ACD 所成的角 设MN=x ,计算易得,DN=32x ,MF=342x -故AM ===2sin 7MNMAN AM∠===12分 解得:83x =-(舍去) 43x =,故23MN CB =,从而满足条件的点M 存在,且23DM DE = 方法二:建立如图所示空间直角坐标系C —xyz ,则:A(4,0,0),B(0,2,0),D(0,0,4),E(0,2,1),C(0,0,0)则(0,2,3)DE =-易知平面ACD 的法向量为C (0,2,0)OB =,假设M 点存在,设(,,)M a b c ,则(,,4)DM a b c =-, 再设,(0,1]DM DE λλ=∈00224343a a b b c c λλλλ==⎧⎧⎪⎪∴=⇒=⎨⎨⎪⎪-=-=-⎩⎩,即(0,2,43)M λλ-, 从而(4,2,43)AM λλ=--设直线AM 与平面ACD 所成的角为θ,则:22sin cos ,72164OB θλ==++ 22sin cos ,72164OB θλ===+解得4233λλ=-=或,其中4(0,1]3λ=-∉应舍去,而2(0,1]3λ=∈故满足条件的点M 存在,且点M 的坐标为4(0,,2)327.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)如图,在四棱锥P-ABCD 中,底面ABCD 为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q 为AD 的中点,M 是棱PC 上的点,PA=PD=2,BC=12. (1)若点M 是棱PC 的中点,求证:PA // 平面BMQ;(2)求证:平面PQB⊥平面PAD;(3)若二面角M-BQ-C 为30°,设PM=tMC,试确定t 的值 .【答案】(Ⅱ)∵AD // BC,BC=12AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.又∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD另证:AD // BC,BC=12AD,Q为AD的中点∴ BC // DQ 且BC= DQ,∴ 四边形BCDQ为平行四边形,∴CD // BQ .∵ ∠ADC=90° ∴∠AQB=90° 即QB⊥AD∵ PA=PD, ∴PQ⊥AD∵ PQ∩BQ=Q,∴AD⊥平面PBQ∵ AD⊂平面PAD,∴平面PQB⊥平面PAD(Ⅲ)∵PA=PD,Q为AD的中点, ∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD(不证明PQ⊥平面ABCD 直接建系扣1分) 如图,以Q 为原点建立空间直角坐标系. 则平面BQC 的法向量为(0,0,1)n =;(0,0,0)Q,P,B,(C -设(,,)M x y z ,则(,,PM x y z =,(1,)MC x y z =---,∵PM tMC =,∴ (1))(x t x y t y z t z =--⎧⎪=⎨⎪=-⎩), ∴ 111t x ty t z t⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩28.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为点D ,PD DB =.(1)求证:PA CD ⊥;(2)求二面角C PB A --的余弦值.第18题图【答案】解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥, 由BC =知,60CAB ∠=, ∴ACO ∆为等边三角形,从而CD AO ⊥ ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中设1AD =,由3AD DB =BC =得,3DB =,4AB =,BC =,∴BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥ ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥法3:∵AB 为圆O 的直径,∴AC CB ⊥, 在Rt ABC ∆BC =得,30ABC ∠=, 设1AD =,由3AD DB =得,3DB =,BC =由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=,∴222CD DB BC +=,即CD AO ⊥. - ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥(Ⅱ)法1:(综合法)过点D 作DE PB ⊥,垂足为E ,连接CE 由(1)知CD ⊥平面PAB ,又PB ⊂平面PAB , ∴CD PB ⊥,又DE CD D =, ∴PB ⊥平面CDE ,又CE ⊂平面CDE , ∴CE PB ⊥,∴DEC ∠为二面角C PB A --的平面角 由(Ⅰ)可知CD =,3PD DB ==,(注:在第(Ⅰ)问中使用方法1时,此处需要设出线段的长度,酌情给分∴PB =则2PD DB DE PB ⋅===, ∴在Rt CDE ∆中,tan 3CD DEC DE ∠===, ∴cos 5DEC ∠=,即二面角C PB A --的余弦值为5法2:(坐标法)以D 为原点,DC 、DB 和DP 的方向分别为x 轴、y 轴和z 轴的正向,建立如图所示的空间直角坐标系(注:如果第(Ⅰ)问就使用“坐标法”时,建系之前先要证明CD AB ⊥,酌情给分.) 设1AD =,由3AD DB =BC =得,3PD DB ==,CD =∴(0,0,0)D ,C ,(0,3,0)B ,(0,0,3)P , ∴(3,0,3)PC =-,(0,3,3)PB =-,(CD =,由CD ⊥平面PAB ,知平面PAB 的一个法向量为(CD = 设平面PBC 的一个法向量为(,,)x y z =n ,则00PC PB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即30330y y z -=-=⎪⎩,令1y =,则x =1z =,∴=n ,设二面角C PB A --的平面角的大小为θ,则cos 5||5CD CD θ⋅===-⋅n |n |, ∴二面角C PB A --的余弦值为529.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图 3).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1AC (如图4).(1)求证:1A D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.【答案】(本小题主要考查空间直线与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力等,本小题满分14分)证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =,所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得3DE ==. 因为222AD DE AE +=, 所以AD DE ⊥. 折叠后有1A D DE ⊥因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED 又平面1A DE平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED(2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60. 如图,作PH BD ⊥于点H ,连结1A H 、1A P 由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED , 所以1A D ⊥PH又1A DBD D =,所以PH ⊥平面1A BD所以1PA H ∠是直线1PA 与平面1A BD 所成的角 设PB x =()03x ≤≤,则2xBH =,PH x =在Rt △1PA H 中,160PA H ∠=,所以112A H x = 在Rt △1A DH 中,11A D =,122DH x =- 由22211A D DH A H +=,得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭解得52x =,满足03x ≤≤,符合题意 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y标系D xyz -如图 设2PB a =()023a ≤≤,则BH a =,PH =,2DH a =-所以()10,0,1A ,()2,0P a -,()E 所以()12,,1PA a =- 因为ED ⊥平面1A BD ,所以平面1A BD 的一个法向量为()DE = 因为直线1PA 与平面1A BD 所成的角为60, 所以11sin 60PA DE PA DE===, 解得54a =即522PB a ==,满足023a ≤≤,符合题意所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =30.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(本小题满分14分)如图,111ABC A B C -中,侧棱与底面垂直, AB AC ⊥,12AB AC AA ===,点,M N 分别为1A B 和11B C 的中点.(1)证明: 11//MN A ACC 平面; (2)求二面角N MC A --的正弦值.B 1A 1PC 1NCBAMB 1【答案】(本小题主要考查空间线面关系、空间向量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解 :(1)证法一: 连接1,1AB AC由题意知,点,M N 分别为1AB 和11B C 的中点,1//MN AC ∴又MN ⊂平面11A ACC ,1AC ⊂平面11A ACC , //MN ∴平面11A ACC证法二:取11A B 中点P ,连,MP NP ,而,M N 分别为1AB 与11B C 的中点,1//MP A A ∴,11MP A ACC ⊄平面,111AA A ACC ⊂平面, 11//MP A ACC ∴平面, 同理可证11//NP A ACC 平面又MP NP P = ∴平面MNP //平面11A ACC MN ⊂平面MNP ,//MN ∴平面11A ACC证法三(向量法): 以点A 为坐标原点,分别以直线1,,AB AC AA 为x 轴, y 轴, z 轴建立空间直角坐标系A xyz-,如图所示.于是(0,0,0),(2,0,0),A B (1,0,1),(1,1,2)M N 1,AB AC AB AA ⊥⊥,1ACAA A =,11AB A ACC ∴⊥平面∴向量(2,0,0)AB 是平面11A ACC 的一个法向量(0,1,1)MN ,2001010AB MN ⋅=⨯+⨯+⨯=AB MN ∴⊥又11MN A ACC ⊄平面 //MN ∴平面11A ACC(2)解法一: 以点A 为坐标原点,分别以直线1,,AB AC AA 为x 轴, y 轴, z 轴建立空间直角坐标系A xyz -,如图所示.于是(0,0,0),(2,0,0),(0,2,0)A B C ,111(0,0,2),(2,0,2),(0,2,2)A B C ,(1,0,1),(1,1,2)M NB 1A 1QPHOD 1DC 1NC B A MB 1PQHOMD 1CA由(1)知1MA 是平面MCA 的一个法向量, 1(1,0,1)MA =-设平面NMC 的法向量为(,,)n x y z =,(0,1,1)MN =,(1,2,1)MC =--,002030n MN y z y z x y z x zn MC ⎧⋅=+==-⎧⎧⎪⇒⇒⎨⎨⎨-+-==-⋅=⎩⎩⎪⎩, (3,1,1)n ∴=-设向量1MA 和向量n 的夹角为θ,则11cos (MAn MA nθ⋅===- ∴二面角N MC A --==解法二(几何法):如图,将几何体补形成一个正方体,连11DC CD 、交于点O ,连11B A B O 、,显然,11A M C B D O 、、、、、,都在同一平面11ACB D 上 易证1//B O MC ,11C O CD ⊥,11B D ⊥平面11C CDD ,1C O ⊂平面11C CDD , 111C O B D ∴⊥,又1111B D CD D =1C O ∴⊥平面11ACB D . 取1B O 中点H ,连NH ,N H 、分别是111,B O B C 的中点1//NH C O ∴,NH ∴⊥平面11ACB D ,且H 为垂足,即NH ⊥平面AMC ,过点O 作OPMC ⊥于P ,过H 作//HQ OP 交MC 于Q ,连NQ , 则NQH ∠即是所求二面角N MC A --的补角 在RtMAC ∆中,CM===, sin AM MCA MC ∠===,sin sin()cos2OCP MCA MCA π∠=-∠=∠==, 在Rt OPC ∆中,sin OCP ∠=,OP ∴==HQOP ∴==又112MH C O ==∴在Rt NQH ∆中,NQ ===sin NH NQH NQ ∴∠===∴所求二面角N MC A --31.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)如图甲,设正方形ABCD的边长为3,点E F 、分别在AB CD 、上,并且满足22AE EB CF FD ==,,如图乙,将直角梯形AEFD 沿EF 折到11A EFD 的位置,使点1A 在平面EBCF 上的射影G 恰好在BC 上.(1)证明:1//A E 平面1CD F ;(2)求平面BEFC 与平面11A EFD 所成二面角的余弦值.【答案】⑴证明:在图甲中,易知//AE DF ,从而在图乙中有11//A E D F ,因为1A E ⊄平面1CD F ,1D F ⊂平面1CD F ,所以1//A E 平面1CD F (条件2分) ⑵解法1、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面EBCF ,则1AG EF ⊥, 所以EF ⊥平面1AGH ,则1EF A H ⊥, BECD F图甲1A EFBC1DG图乙A 第18题图所以1A HG ∠平面BEFC 与平面11A EFD 所成二面角的平面角, 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以,1BG MF ==,AG =; (三角形全等1分) 又由ABGAHE ∆∆,得1AB AE A H AH AG ===, 于是,HG AG AH =-=在1Rt AGH ∆中,112cos 3HG AGH A H ∠==,即所求二面角的余弦值为23解法2、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面EBCF ,则1AG EF ⊥, 所以EF ⊥平面1A GH ,则1EF A H ⊥,图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以1BG MF ==,则AG =; 又由ABGAHE ∆∆,得1AB AE A H AH AG ===, A BE CDF图甲1A EFC1D图乙GMHHE 图丙于是,HG AG AH =-=在1Rt AGH ∆中,1AG ===作//GT BE 交EF 于点T ,则TG GC ⊥,以点G 为原点,分别以1GC GT GA 、、所在直线为x y z 、、轴,建立如图丙所示的空间直角坐标系,则(0,0,0)G 、(1,1,0)E -、(2,2,0)F、1A ,则1(1,3,0)(EF EA ==-,(坐标系、坐标、向量各1分) 显然,1GA =是平面BEFC 的一个法向量,设(,,)n x y z =是平面11A EFD 的一个法向量,则130,0n EF x y n EA x y ⎧=+=⎪⎨=-+=⎪⎩,即3,x y z =-⎧⎪⎨=-⎪⎩,不妨取1y =-,则(3,1,n =-,设平面BEFC 与平面11A EFD 所成二面角为θ,可以看出,θ为锐角,所以,121|032cos 3||||23(1)GA n GA n θ⨯===+-,所以,平面BEFC 与平面11A EFD 所成二面角的余弦值为2332.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)在图(4)所示的长方形ABCD 中,AD=2AB=2,E 、F 分别为AD 、BC 的中点, M 、N 两点分别在AF 和CE 上运动,且AM=EN=a (0a <<把长方形ABCD 沿EF 折成大小为θ的二面角A-EF-C,如图(5)所示,其中(0,]2πθ∈图(5)图(4)MN FDC B E(1)当045θ=时,求三棱柱BCF-ADE 的体积;G EABCDFNMN 1M 1EA BC DFNMQEABC DFNM(2)求证:不论θ怎么变化,直线MN 总与平面BCF 平行; (3)当090θ=且2a =时,求异面直线MN 与AC 所成角余弦值.【答案】解:(1)依题意得,,EF DE EF AE EF ⊥⊥∴⊥平面ADE ,DEA ∠=θ由45θ=得,12sin 4524ADE S DEEA ∆=⋅=, ∴BCF ADE ADE V S EF -∆=⋅=(2)证法一:过点M 作1MM BF ⊥交BF 于1M , 过点N 作1NN CF ⊥交BF 于1N ,连结11M N , ∵11//,//MM AB NN EF ∴11//MM NN 又∵11MM NN FM CN AB FA CE EF===∴11MM NN = ∴四边形11MNN M 为平行四边形,11//MN N M ∴,11,,MN BCF N M BCF ⊄⊂又面面//.MN BCF ∴面【法二:过点M 作MG EF ⊥交EF 于G,连结NG,则,CN FM FGNE MA GE == //NG CF ∴,,//NG BCF CF BCF NG BCF ⊄⊂∴又面面面,同理可证得//MG BCF 面,又MG NG G =, ∴平面MNG//平面BCF∵MN ⊂平面MNG, //MN BCF ∴面 】 (3)法一:取CF 的中点为Q,连结MQ 、NQ,则MQ//AC, ∴NMQ ∠或其补角为异面直线MN 与AC 所成的角,∵090θ=且2a =∴12NQ=,2MQ ==,2MN ∴=222cos 23QM MN NQ NMQ MN QM +-∴∠==⋅即MN 与AC 所成角的余弦值为3【法二:∵090θ=且a =分别以FE 、FB 、FC 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系则111111(1,1,0),(0,0,1),(,,0),(,0,),(1,1,1),(0,,),222222A C M N AC MN =--=-得cos ,AC MN ∴<>==所以与AC】 33.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))如图,在边长为4的菱形ABCD中,60DAB ∠=,点E,F 分别在边CD,CB 上,点E 与点C,点D 不重合,EF AC ⊥, EF AC O ⋂= ,沿EF 将CEF ∆折起到PEF ∆的位置,使得平面PEF ⊥ 平面ABFED(1)求证:BD ⊥平面POA (2)设AOBD=H,当O 为CH 中点时,若点Q 满足AQ QP =,求直线OQ 与平面PBD 所成角的正弦值.【答案】。

【解析版】广东省江门、佛山市2013年高考数学二模试卷(理科)

【解析版】广东省江门、佛山市2013年高考数学二模试卷(理科)

2013年广东省江门、佛山市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.B.±求解.,∴4.(5分)(2013•江门二模)为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是()5.(5分)(2013•江门二模)函数f(x)=sin,x∈[﹣1,1],则()=sin7.(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()8.(5分)(2013•江门二模)将边长为2的等边三角形PAB沿x轴滚动,某时刻P与坐标原点重合(如图),设顶点P(x,y)的轨迹方程是y=f(x),关于函数y=f(x)的有下列说法:①f(x)的值域为[0,2];②f(x)是周期函数;③f(﹣1.9)<f(π)<f(2013);④.其中正确的说法个数为()④表示函数其值为×=+2,故④二、填空题:本大共7小题,考生作答6小题,每小题5分,满分35分.(一)必做题(9~13题)9.(5分)(2013•江门二模)命题“∃x0∈R,≤0”的否定是∀x∈R,>0.,≤>,10.(5分)(2013•太原一模)已知向量,满足,(﹣)⊥,向量与的夹角为.•==0<即可求得向量与==0××=再由<,可得<>,.11.(5分)(2013•江门二模)(1+2x)n的展开式中x3的系数等于x2的系数的4倍,则n等于8.(•,.=44=2×12.(5分)(2013•江门二模)已知圆C经过点A(0,3)和B(3,2),且圆心C在直线y=x上,则圆C 的方程为(x﹣1)2+(y﹣1)2=1.=r=13.(5分)(2013•江门二模)将集合{2s+2t|0≤s<t且s,t∈Z}中的元素按上小下大,左小右大的顺序排成如图的三角形数表,将数表中位于第i行第j列的数记为b ij(i≥j>0),则b65=80.14.(5分)(2013•江门二模)(坐标系与参数方程)在极坐标系中,设曲线C1:ρ=2sinθ与C2:ρ=2cosθ的交点分别为A、B,则线段AB的垂直平分线的极坐标方程为ρsinθ+ρcosθ=1.15.(5分)(2013•江门二模)(几何证明选讲)如图,圆O的直径AB=9,直线CE与圆O相切于点C,AD⊥CE于D,若AD=1,设∠ABC=θ,则sinθ=.,∴∴.故答案为.16.(12分)(2013•江门二模)在平面直角坐标系xOy中,以Ox为始边,角α的终边与单位圆O的交点B在第一象限,已知A(﹣1,3).(1)若OA⊥OB,求tanα的值.(2)若B点横坐标为,求S△AOB.,其中,),从而得到向量、AOB=AOB=||=1、||=,∴•=0=;点横坐标为,可得=的坐标为(,|=AOB==AOB==||||sin AOB=××.17.(12分)(2013•江门二模)市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立.假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路A、B、D上下班时间往返出现拥堵的概率都是,道路C、E上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.(1)求李生小孩按时到校的概率;(2)李生是否有七成把握能够按时上班?(3)设ξ表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求ξ的均值.)的结论可得:甲到丙没有遇到拥堵的概率是;先求出:甲到乙遇到拥堵的概率,由对立事件的概率即可得到甲到乙没有遇到拥堵的概率,利和.因此从甲到丙遇到拥堵的概率是)甲到丙没有遇到拥堵的概率是,丙到甲没有遇到拥堵的概率也是甲到乙遇到拥堵的概率是甲到乙没有遇到拥堵的概率是,,=P18.(14分)(2013•江门二模)如图甲,设正方形ABCD的边长为3,点E、F分别在AB、CD上,并且满足AE=2EB,CF=2FD,如图乙,将直角梯形AEFD沿EF折到A1EFD1的位置,使点A1在平面EBCF 上的射影G恰好在BC上.(1)证明:A1E∥平面CD1F;(2)求平面BEFC与平面A1EFD1所成二面角的余弦值.AG=,得,中,=,,,∴是平面,∴.∴=.19.(14分)(2013•江门二模)在平面直角坐标系内,动圆C过定点F(1,0),且与定直线x=﹣1相切.(1)求动圆圆心C的轨迹C2的方程;(2)中心在O的椭圆C1的一个焦点为F,直线l过点M(4,0).若坐标原点O关于直线l的对称点P 在曲线C2上,且直线l与椭圆C1有公共点,求椭圆C1的长轴长取得最小值时的椭圆方程.且.将,由此即可得到椭圆中点为(,∴,即,解之得(﹣×的方程为≥长轴长的最小值为,此时椭圆的方程为20.(14分)(2013•江门二模)某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,1个单位的固体碱在水中逐渐溶化,水中的碱浓度f(x)与时间x(小时)的关系可近似地表示为:f(x)=,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用.(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?(2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为g(x),求g(x)的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)或)﹣]=﹣=;===;当且仅当x=1+3,,x=1+3时,水中碱浓度的最大值为1+3水中碱浓度的达到最大值为21.(14分)(2013•江门二模)设函数,记f0(x)的导函数f'0(x)=f1(x),f1(x)的导函数f'1(x)=f2(x),f2(x)的导函数f'2(x)=f3(x),…,f n﹣1(x)的导函数f'n﹣1(x)=f n(x),n=1,2,….(1)求f3(0);(2)用n表示f n(0);(3)设S n=f2(0)+f3(0)+…+f n+1(0),是否存在n∈N*使S n最大?证明你的结论.)由函数代入即得:(﹣)(﹣x e,x ex x e,即,即﹣)(﹣)),)))。

广东省12大市高三数学 二模文试题分类汇编6 不等式 理

广东省12大市高三数学 二模文试题分类汇编6 不等式 理

姓名____________班级___________学号____________分数______________一、选择题1 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)已知变量,x y 满足约束条件311y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =-的最优解是 ( )A .5B .7-C .(4,3)或(2,3)-D .5或7-2 .(广东省韶关市2013届高三4月第二次调研测试数学理试题)将高一(6)班52名学生分成A,B 两组参加学校组织的义务植树活动,A 组种植150棵大叶榕树苗,B 组种植200棵红枫树苗.假定A,B 两组同时开始种植.每名学生种植一棵大叶榕树苗用时25小时,种植一棵枫树苗用时12小时.完成这次植树任务需要最短时间为 ( )A .310B .1960 C .825 D .823 3 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)给出平面区域G,如图所示,其中(5,3),(2,1),(1,5)A B C ,若使目标函数(0)z ax y a =+>取得最小值的最优解有无穷多个,则a 的值为( )A .12B .23C .2D .44 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)直线0102=-+y x 与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A .0 个B .个C .2个D .无数个5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是 ( )A .8年B .10年C .12年D .15年6 .(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知实数,x y 满足11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为 ( )A .3-B .12C .5D .6二、填空题7 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)|21||5|x x +>-的解集是_________________8 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))不等式|x 2-3x+ 1|<1的解集为______.9.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知向量(1,2)a =-,M 是平面区域0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩内的动点,O 是坐标原点,则a OM ⋅ 的最小值是_____________.10.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知R x ∈∀,使不等式133)4(log 2-++≤+-x x a 成立,则实数a 的取值范围是 ________11.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)若x R ∃∈,使|||1|4x a x -+-≤成立,则实数a 的取值范围是____________.12.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)已知点(,)P x y 满足01,0 2.x x y ≤≤⎧⎨≤+≤⎩则点(,)Q x y y +构成的图形的面积为___________. 13.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))设变量x,y 满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为________. 14.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知函数()22f x x x =-,点集()()(){}M x y f x f y =+,≤2,()()(){}N x y f x f y =-,≥0,则MN 所构成平面区域的面积为________.15.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知不等式21x ->的解集与不等式20x ax b ++>的解集相同,则a b +的值为_____广东省12大市2013届高三二模数学(理)试题分类汇编6:不等式参考答案一、选择题1. C 解析:约束条件对应的三个“角点”坐标分别为:(1,0),(4,3),(2,3)A B C -,2,5,7A B C z z z ===-,所以2z x y =-的最优解为(4,3)或(2,3)- 2. C 3. D 4. B 5. B 6. C 二、填空题 7.4(,6)(,)3-∞-+∞解析:∵|21||5|x x +>-,∴22(21)(5)x x +>-,∴2314240x x +->,∴6x <-或43x >.8. (0,1)(2,3)⋃ 9. 3- 10. [2,4); 11. [3,5]-12.令,x y u y v +==,则点(,)Q u v 满足01,0 2.u v u ≤-≤⎧⎨≤≤⎩,在uov 平面内画2u=2-1v=u-1v=u 12o v u出点(,)Q u v 所构成的平面区域如图,易得其面积为2. 13. 【解析】做出不等式对应的可行域如图,由32z x y =-得322z y x =-,由图象可知当直线322z y x =-经过点(0,2)C 时,直线322z y x =-的截距最大,而此时32z x y =-最小为324z x y =-=-.14. 215. -1 .。

广东省13大市区高三数学 最新试题精选二模分类汇编16

广东省13大市区高三数学 最新试题精选二模分类汇编16

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编16:推理与证明一、选择题 1 .(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )= ( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x )【答案】解:由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).选 D . 二、填空题2 .(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)观察下列不等式:①112<;②11226+<;③11132612++<;则第5个不等式为_______________. 【答案】11111526122030++++< 3 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知1234212,21334,2135456,213575678,⨯=⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯⨯…依此类推,第n 个等式为_____________.【答案】)()3()2()1()12(5312n n n n n n n+⨯⨯+⨯+⨯+=-⨯⨯⨯⨯⨯ΛΛ;4 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________________. 【答案】14三、解答题5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))设n a 是函数()321f x x n x =+-()*n ∈N 的零点.(1)证明:01n a <<; (2)证明:1n n <+1232n a a a +++<L . 【答案】(本小题主要考查函数的零点、函数的导数和不等式的证明等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)证明:(1)因为()010f =-<,()210f n =>,且()f x 在R 上的图像是一条连续曲线,所以函数()f x 在()01,内有零点因为()2230f x x n '=+>,所以函数()f x 在R 上单调递增所以函数()f x 在R 上只有一个零点,且零点在区间()01,内. 而n a 是函数()f x 的零点, 所以01n a << (2)先证明左边的不等式: 因为3210n n a n a +-=, 由(1)知01n a <<, 所以3n n a a < 即231n n n n a a a -=<. 所以211n a n >+ 所以1222211111211n a a a n +++>++++++L L 以下证明222111112111nn n +++≥++++L . ① 方法1(放缩法):因为()21111111n a n n n n n >≥=-+++, 所以1211111111223341n a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭L L 1111nn n =-=++ 方法2(数学归纳法):1)当1n =时,2111111=++,不等式①成立. 2)假设当n k =(*k ∈N )时不等式①成立,即222111112111kk k +++≥++++L . 那么()222211111121111k k +++++++++L ()21111k k k ≥++++.以下证明()()()21111111k k k k k ++≥+++++. ② 即证()()()21111111k kk k k +≥-+++++. 即证22112232k k k k ≥++++. 由于上式显然成立,所以不等式②成立. 即当1n k =+时不等式①也成立.根据1)和2),可知不等式①对任何*n ∈N 都成立. 所以121n na a a n +++>+L 再证明右边的不等式: 当1n =时,()31f x x x =+-.由于31113102228f ⎛⎫⎛⎫=+-=-< ⎪ ⎪⎝⎭⎝⎭,3333111044464f ⎛⎫⎛⎫=+-=> ⎪ ⎪⎝⎭⎝⎭, 所以11324a << 由(1)知01n a <<,且3210n n a n a +-=,所以32211n n a a n n -=<因为当2n ≥时,()2111111n n n n n<=---, 所以当2n ≥时,12342311111114223341n a a a a a n n ⎛⎫⎛⎫⎛⎫+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L 113122n =+-<. 所以当*n ∈N 时,都有1232n a a a +++<L . 综上所述,1n n <+1232n a a a +++<L6 .(广东省广州市2013届高三调研测试数学(理)试题)若函数()f x 对任意的实数1x ,2x D ∈,均有2121()()f x f x x x -≤-,则称函数()f x 是区间D 上的“平缓函数”.(1) 判断()sin g x x =和2()h x x x =-是不是实数集R 上的“平缓函数”,并说明理由;(2) 若数列{}n x 对所有的正整数n 都有 121(21)n n x x n +-≤+,设sin n n y x =, 求证: 1114n y y +-<. 【答案】(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”; 设()sin x x x ϕ=-,则()1cos 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数, 不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-, 则2121sin sin x x x x -<-. ①又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+, 即2112sin sin x x x x ->-, ②由①、②得 212121()sin sin x x x x x x --<-<-. 因此,2121sin sin x x x x -<-,对12x x <都成立 当12x x >时,同理有2121sin sin x x x x -<-成立 ]又当12x x =时,不等式2121sin sin 0x x x x -=-=, 故对任意的实数1x ,2x ∈R,均有2121sin sin x x x x -≤-. 因此 ()sin g x x =是R 上的“平缓函数” 由于121212()()()(1)h x h x x x x x -=-+- 取13x =,22x =,则1212()()4h x h x x x -=>-, 因此, 2()h x x x =-不是区间R 的“平缓函数” (2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”, 则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤- 而121(21)n n x x n +-≤+,∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++ ∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++-L , ∴1111221n n n n n y y y y y y y y ++---≤-+-++-L ∴11111111[()()(1)]4112n y y n n n n +-≤-+-++-+-L 11141n ⎛⎫=- ⎪+⎝⎭14<7 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)设0,a >函数21()f x x a=+. (1)证明:存在唯一实数01(0,)x a∈,使00()f x x =; (2)定义数列11{}:0,(),n n n x x x f x +== *n N ∈① 对(1)中的0x ,求证:对任意正整数n 都有2102n n x x x -<<; ② 当2a =时,若10(2,3,4,)2k x k <≤=L ,证明:对任意*m N ∈都有 1134m k k k x x +--<⋅ 【答案】(1)解:有321()10f x x x ax x a==⇒+-=+令3()1g x x ax =+- 由2311()30,(0)10,()0g x x a g g a a '=+>=-<=>所以有且只有一个实数01(0,)x a∈,使00()f x x =;(1) (Ⅰ)(数学归纳法)先证: 2102n n x x x -<< 证明: ① 1201210,(,)x x x x x a==∴∈; ② 假设2102(1)k k x x x k -<<≥ 由21()f x x a=+递减性得: 2102()()(),(1)k k f x f x f x k ->>≥即2021(1)k k x x x k +>>≥又202121022()()()k k k k f x f x f x x x x +++<<∴<<所以1n k =+时命题成立 所以2102n n x x x -<<对*n N ∈成立(2)(Ⅱ)解:当2a =时, 21()2f x x =+为减函数,且123140,,29x x x === 213211,218x x x x -=-=由10(2,3,4,)2k x k <≤=L 111222211()1122(2)(2)k k k k k k k k k k x x x x x x x x x x --+--+--=-=++++ ∴1k k x x +-2213211111()()()444184k k k k k x x x x ---<-<-=⋅< 1121m k k m k m k m k m k k k x x x x x x x x +++-+-+-+-≤-+-++-L11111()()()444k k k m ++-<+++L 1134k -<⋅。

广东省12大市高三数学 二模文试题分类汇编11 概率 理

广东省12大市高三数学 二模文试题分类汇编11 概率 理

广东省12大市2013届高三二模数学文试题分类汇编概率一、填空题1、(2013广州二模)如图3,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为 . 答案:14π-2、(2013茂名二模)若在区域34000x y y x +-≤⎧⎪≥⎨⎪≥⎩内任取一点P ,则点P落在单位圆221x y +=内的概率是_______答案:3、(2013湛江二模)在圆22(2)(2)4x y -+-=内任取一点,则该点恰好在区域2502303x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩内的概率为___ 答案:12π二、解答题1、(2013潮州二模)某次运动会在我市举行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。

喜爱运动 不喜爱运动 总计 男 10 16 女 6 14 总计30(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?(3)如果从喜欢运动的女志愿者中(其中恰有4人能胜任翻译工作),抽取2名,则抽出的志愿者都能胜任翻译工作的概率是多少?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++……2分(2)假设:是否喜爱运动与性别无关,由已知数据可求得:2230(10866) 1.1575 2.706(106)(68)(106)(68)K ⨯⨯-⨯=≈<++++因此,在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关6分 (3)喜欢运动的女志愿者有6人,设分别为A 、B 、C 、D 、E 、F ,其中A 、B 、C 、D 会外语,则从这6人中任取2人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种取法,其中两人都会外语的有AB ,AC ,AD ,BC ,BD ,CD ,共6种。

广东省12大市高三数学 二模文试题分类汇编16 几何证明

广东省12大市高三数学 二模文试题分类汇编16 几何证明

广东省12大市2013届高三二模数学(理)试题分类汇编16:几何证明姓名____________班级___________学号____________分数______________一、填空题1 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)(几何证明选讲选做题)如图3,在Rt ABC ∆中,斜边12AB =,直角边6AC =,如果以C 为圆心的圆与AB 相切于D ,则C e 的半径长为___________2 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))(几何证明选讲选做题) 如图,点A 、B 、C 都在O 上,过点C 的切线 交A B 的延长线于点D ,若AB = 5, BC = 3,CD = 6,则线段AC 的长为_______3 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))如图,P 是圆O 外一点,PT 为切线,T 为切点,割线PAB 经过圆心O ,23,6PT PB ==,则PTA ∠=_________.4 .(广东省韶关市2013届高三4月第二次调研测试数学理试题)(几何证明选讲选做题)如图,AB 为圆O 的直径,C 为圆O 上一点,AP 和过C 的切线互相垂直,垂足为P ,过B 的切线交过C 的切线于T ,PB 交圆O 于Q ,若120BTC ∠=︒,4AB =,则PB PQ ⋅=________ .5 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图,已知Rt ABC ∆的两条直角边,AC BC 的长分别为3,4cm cm ,以AC 边为直径与AB 交于点D ,则三角形ACD 的面积为_________.6 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))(几何证明选讲)如图所示,AB是半径等于3的圆O 的直径,C D 是圆O 的弦,BA,DC 的延长线交于点P 若PA=4,PC=5,则∠CBD____文字说明、证明过程和演算步骤)7 .(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)(几何证明选讲选做题) 如图(3)所示,,C D 是半圆周上的两个三等分点,直径4AB =,CE AB ⊥,垂足为E ,BD 与CE 相交于点F ,则BF 的长为________.8 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)(几何证明选讲)如图,圆O 的直径9AB =,直线CE 与圆O 相切于点C , AD CE ⊥于D ,若1AD =,设ABC θ∠=,则sin θ=______. 图 3 FE D CB A o9.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(几何证明选讲选做题) 如图圆O 的直径6AB =,P 是AB 的延长线上一点,过点P 作圆O 的切线,切点为C ,连接AC ,若30CPA ∠=︒,则PC =________.10.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))(几何证明选讲选做题)在△ABC 中,D 是边AC 的中点,点E 在线段BD 上,且满足13BE BD =,延长AE 交BC 于点F ,则BF FC的值为_____. 11.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)(几何证明选讲选做题)如图3,圆O 的割线PAB 交圆O 于A 、B 两点,割线PCD 经过圆心.已知6=PA ,317=AB ,12=PO .则圆O 的半径____=R .P C AB O •图3 OBADC第15题图广东省12大市2013届高三二模数学(理)试题分类汇编16:几何证明参考答案一、填空题1. 解析:在Rt△ABC 中,∵AB=12,AC=6,即AC=21AB,∴∠B=30°,∠A =90°-∠B=60°. ∴CD=AC·sinA=6×3323=.2. 923. 30︒4. 3;5. 25425cm6. 6π7. 依题意知30DBA ∠=o ,则AD=2,过点D 作DG AB ⊥于G,则AG=BE=1,所以233BF =.8. 139. 【解析】连接BC ,设PCB α∠=,则CAP α∠=,三角形CAP 中,(90)30180αα++︒+︒=︒,所以30α=︒,所以132BP CB AB ===,而23927CP BP AP ==⨯=g ,故33CP =10. 1411. 8;。

广东省13大市区高三数学 最新试题精选二模分类汇编18 复数 理

广东省13大市区高三数学 最新试题精选二模分类汇编18 复数 理

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编18:复数一、选择题 1 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)已知复数z 的实部为,且2z =,则复数z 的虚部是 ( )A . BC .D .【答案】D2 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)计算:2(1)i i +=( ) A .2iB .-2iC .2D .-2【答案】D3 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)设1z i =-(是虚数单位),则2z z+=( )A .2B .3C .22i -D .22i +【答案】D 解析:221221z i i z i+=++=+- 4 .(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)复数411i ⎛⎫-- ⎪⎝⎭的值是( )A .4B .-4iC .4iD .-4【答案】A5 .(广东省梅州市2013届高三3月总复习质检数学(理)试题)设i 是虚数单位,复数1ii+对应的点在 A 、第一象限B .第二象限C .第三象限D .第四象限【答案】A6 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)复数212i i -=+ .A iB .i -C .43i 55-- D .43i55-+【答案】A7 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )设a ∈R ,且2()a i i +为正实数,则a =( )A .2B .1C .0D .1-【答案】D8 .(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知复数(1)z i i =+ (为虚数单位),则复数z 在复平面上所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】【解析】因为(1)1z i i i =+=-+,所以(1)1z i i i =+=-+对应的点在复平面的第二象限. 故选B .9 .(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)在复平面内,复数121iz i-=+对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】C10.(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )若复数(a 2- 4a +3)+(a -1)i是纯虚数,则实数a 的值为 ( ) A .1 B .3 C .1或3 D .-1 【答案】B 11.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)12i i+=( )A .i --2B .i +-2C .i -2D .i +2【答案】C 21222i i i i i i+-+==-.12.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版)( )A【答案】C 13.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))若1i -(是虚数单位)是关于x 的方程220x px q ++=(p q ∈R 、)的一个解,则p q +=( ) A .3-B .1-C .D .3【答案】C14.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)算数z 满足()2z i i i -=+,则z =( )A .1i --B .1i -C .13i -+D .12i -【答案】B15.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知11abi i=+-,其中a b ,是实数,i 是虚数单位,则a b +i = ( )A .12+iB .2+iC .2-iD .12-i【答案】B16.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))i 为虚数单位,则1i i+=( )A .0B .2iC .1i +D .1i -+【答案】A17.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)如图在复平面内,复数21,z z 对应的向量分别是OB OA ,,则复数12z z 的值是( )A .i 21+-B .i 22--C .i 21+D . i 21-【答案】A18.(广东省广州市2013届高三调研测试数学(理)试题)已知i 为虚数单位,则复数i 23(-i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A分析:2i(23i)=2i 3i 2i 332i --=+=+,其对应的点为(3,2),位于第一象限19.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知复数12,z z 在复平面内对应的点分别为(0,1),(1,3)A B -,则21z z = ( )A .13i -+B .3i--C .3i +D .3i -【答案】C20.(广东省东莞市2013届高三第二次模拟数学理试题)设1z i =-(是虚数单位),则2z z+= ( ) A .2 B .2i + C .2i - D .22i + 【答案】D 21.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))复数z 满足z+1=2+i(i为虚数单位),则z(1-i)= ( ) A .2 B .0 C .1+i D .i 【答案】A 22.(广东省韶关市2013届高三4月第二次调研测试数学理试题)若R b a ∈,,为虚数单位,且5()2a i i b i+=+-,则a b += A .2-.B .0C . 1D . 2【答案】A23.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)若(1)(2)a bi i i +=+-(是虚数单位,,a b是实数),则z a bi =-在复平面内对应的点是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 解析:(1)(2)33a bi i i a bi i z i +=+-⇒+=+⇒=-24.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)复数-i +1-i 1 + i= ( )A .-2iB .12iC .0D .2i【答案】解:-i +1-i1 + i =-i -i =-2i .选( ) A .25.(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)在复平面内,复数311i i+-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D26.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)若(12)1ai i bi +=-,其中a 、b ∈R,i 是虚数单位,则||a bi +=( )A .12i + B C .D .54【答案】由(12)1ai i bi +=-得1,12a b ⇒=-=-||a bi ⇒+==选 C .27.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))复数ii+-11的值是( )A .i -B .1-C .iD .1【答案】A28.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )已知复数1z i =+,则2z=( )A .i 2-B .i 2C .i -1D .i +1【答案】C29.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)设i 为虚数单位,则复数i2i+等于( )A .12i 55+ B .12i 55-+ C .12i 55- D .12i 55-- 【答案】A30.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在复平面内,O 是原点,向量OA对应的复数是i -2(其中, i 是虚数单位),如果点A 关于实轴的对称点为点B ,则向量OB 对应的复数是 ( )A .i --2B .i +-2C .i +2D .i 21- 【答案】C 二、填空题 31.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))已知复数z 满足(1+i)z=1-i,则复数z 的共轭复数为____ 【答案】i 32.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)复数ai z -=23(R a ∈),且i z 23212-=,则a 的值为__________ 【答案】21;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省12大市2013届高三二模数学(理)试题分类汇编6:不等式 姓名____________班级___________学号____________分数______________
一、选择题
1 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)已知变量,x y 满足约束条件311y x y x y ≤⎧⎪
+≥⎨⎪-≤⎩
,则
2z x y =-的最优解是
( )
A .5
B .7-
C .(4,3)或(2,3)-
D .5或7-
2 .(广东省韶关市2013届高三4月第二次调研测试数学理试题)将高一(6)班52名学生分成A,B 两组参加
学校组织的义务植树活动,A 组种植150棵大叶榕树苗,B 组种植200棵红枫树苗.假定A,B 两组同时开始种植.每名学生种植一棵大叶榕树苗用时25小时,种植一棵枫树苗用时12小时.完成这次植树任务需
要最短时间为 ( )
A .
310
B .
19
60 C .
8
25 D .
8
23 3 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)给出平面区域G,如图所示,其中
(5,3),(2,1),(1,5)A B C ,若使目标函数(0)z ax y a =+>取得最小值的最优解有无穷多个,则a 的值为
( )
A .
1
2
B .
23
C .2
D .4
4 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)直线0102=-+y x 与不
等式组0
024320
x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有
( )
A .0 个
B .个
C .2个
D .无数个
5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))某辆汽车购买时的费用是15万
元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是 ( )
A .8年
B .10年
C .12年
D .15年
6 .(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知实数,x y 满足11y x
x y y ≤⎧⎪
+≤⎨⎪≥-⎩
,则目标函数
2z x y =-的最大值为
( )
A .3-
B .
1
2
C .5
D .6
二、填空题
7 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)|21||5|x x +>-的解集是_________________ 8 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))不等式|x 2
-3x+ 1|<1的解集为
______.
9.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知向量(1,2)a =-
,M 是平
面区域0,0
10240x y x y x y ≥≥⎧⎪
-+≥⎨⎪+-≤⎩
内的动点,O 是坐标原点,则a OM ⋅ 的最小值是_____________.
10.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知
R x ∈∀,使不等式
133)4(log 2-++≤+-x x a 成立,则实数a 的取值范围是 ________.
11.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)若x R ∃∈,使
|||1|4x a x -+-≤成立,则实数a 的取值范围是____________.
12.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)已知点(,)P x y 满足01,
0 2.
x x y ≤≤⎧⎨
≤+≤⎩则点(,)Q x y y +构成的图形的面积为___________.
13.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))设变量x,y 满足约束条件22024010x y x y x +-≥⎧⎪
-+≥⎨⎪-≤⎩
,
则目标函数32z x y =-的最小值为________.
14.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知函数
()22f x x x =-,点集
()()(){}M x y f x f y =
+,≤2,()()(){}N x y f x f y =-,≥0,则M N 所构成平面区域的面
积为________.
15.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知不等式
21x ->的解集与不等式
20x ax b ++>的解集相同,则a b +的值为_____
广东省12大市2013届高三二模数学(理)试题分类汇编6:不等式参考答案
一、选择题
1. C 解析:约束条件对应的三个“角点”坐标分别为:(1,0),(4,3),(2,3)A B C -,2,5,7A
B C z z z ===-,
所以2z x y =-的最优解为(4,3)或(2,3)-
2. C
3. D
4. B
5. B
6. C 二、填空题
7. 4(,6)(,)3
-∞-+∞ 解析:∵|21||5|x x +>-,∴2
2(21)
(5)x x +>-,∴2314240x x +->,∴6
x <-或43
x >
. 8. (0,1)(2,3)⋃ 9. 3- 10. [2,4); 11. [3,5]-
12.令,x y u y v +==,则点(,)Q u v 满足01,
0 2.u v u ≤-≤⎧⎨≤≤⎩
,在uov 平面内画
出点(,)Q u v 所构成的平面区域如图,易得其面积为2.
13. 【解析】做出不等式对应的可行域如图,
由32z x y =-得322z y x =
-,由图象可知当直线322z y x =-经过点(0,2)C 时,直线322
z
y x =-的截距最大,而此时32z x y =-最小为324z x y =-=-
.
14. 2π 15. -1 .。

相关文档
最新文档