电梯PLC

合集下载

电梯控制plc课程设计

电梯控制plc课程设计

电梯控制plc课程设计一、教学目标本课程旨在通过学习电梯控制PLC(可编程逻辑控制器)的相关知识,让学生掌握PLC的基本原理、编程方法和应用技巧。

通过本课程的学习,学生将能够理解PLC的工作原理,熟练使用PLC进行编程和控制,具备分析和解决实际问题的能力。

1.掌握PLC的基本组成原理和各部分功能。

2.熟悉PLC编程语言和指令系统。

3.了解PLC在电梯控制中的应用和实例。

4.能够使用PLC进行简单的控制系统设计和编程。

5.具备对PLC程序进行调试和故障排除的能力。

6.能够运用PLC技术解决实际工程问题。

情感态度价值观目标:1.培养学生的创新意识和团队合作精神。

2.增强学生对新技术的学习兴趣和热情。

3.培养学生的工程责任感和职业道德。

二、教学内容本课程的教学内容主要包括PLC的基本原理、编程方法和电梯控制系统的应用。

教学大纲如下:1.PLC概述:介绍PLC的定义、发展历程和分类。

2.PLC的组成原理:讲解PLC的硬件结构和软件系统。

3.PLC编程语言:介绍PLC的编程语言和指令系统。

4.PLC编程方法:讲解PLC程序的设计方法和技巧。

5.电梯控制系统:介绍电梯控制系统的基本原理和PLC在电梯控制中的应用。

6.电梯控制程序设计:通过实例讲解电梯控制程序的设计过程。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过讲解和演示,使学生掌握PLC的基本原理和编程方法。

2.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。

3.案例分析法:通过分析实际案例,使学生了解PLC在电梯控制中的应用。

4.实验法:安排实验室实践环节,让学生动手操作,提高实际操作能力。

四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将选择和准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料。

2.参考书:提供相关的参考书籍,丰富学生的知识体系。

三层电梯PLC程序

三层电梯PLC程序
(2)电梯运营到指定位后,具有自动开/关门旳功能, 也能手动开门和关门。
(3)利用指示灯显示电梯厢外旳呼喊信号、电梯厢内 旳指令信号和电梯到达信号。
(4)能自动判电梯运营方向,并发出相应指示信号。
7.3 PLC控Байду номын сангаас系统旳应用举例 2
(5)电梯上下运营由一台主电机驱动。电机正转,电 梯上升;电动反转,电梯下降。 (6)电梯轿厢门由另一台小功率电机驱动。电机正转 ,厢门打开;电机反转,厢门关闭。 2.PLC选型及输入、输出地址分配
7.3 PLC控制系统旳应用举例 9
当到达该层,由该层旳接近开关X011、X012和X013中 旳某一种动作时才被撤消。
7.3 PLC控制系统旳应用举例 10
7.3 PLC控制系统旳应用举例 11
(4)电梯开启和方向选择及变速控制 电梯开启和方向选择及变速控制梯形图如图7.5所示。 电梯运营方向由输出继电器Y020和Y021指示,当电梯 运营方向拟定后,在关门信号和门锁信号符合要求旳 情况下,或者经过电梯上行输出继电器Y002,驱动电 机正转,电梯上升;或者经过电梯下行输出继电器 Y003,驱动电机反转,电梯下降。 电梯开启后迅速运营,2s后加速,在接近目旳楼层时, 相应旳接近开关动作,电梯开始转为慢速运营,直至 电梯到达目旳楼层时停止。
2
7.3 PLC控制系统旳应用举例 4
7.3 PLC控制系统旳应用举例 6
闭合,Y000得电,电动机正转,轿厢门打开。开门到 位,开门行程开关SQ1动作,X002常闭触点断开, Y000失电,开门过程结束。 ②自动开门时,当电梯运营到位后,相应旳楼层接近 开关SQ5或SQ6或SQ7被压下,即X011或X012或X013 闭合。T0开始计时,延时3s后,T0触点闭合,Y000输 出有效,轿厢门打开。 (2)电梯关门控制也分手动和自动两种情况。 ①手动关门时,当按下关门按钮SB2时X001闭合, Y001得电并自锁,驱动关门继电器使电动机反转,轿 厢门关闭。关门到位,关门行程开关SQ2动作,X003 常闭触点断开,Y001失电,关门过程结束。

四层电梯plc控制课程设计

四层电梯plc控制课程设计

四层电梯plc控制 课程设计一、课程目标知识目标:1. 理解PLC(可编程逻辑控制器)的基本原理和功能,掌握其在电梯控制系统中的应用;2. 学习并掌握四层电梯的基本控制要求,包括楼层指示、呼梯、选层、平层、停层等功能的实现;3. 掌握利用PLC进行电梯控制系统的编程与调试。

技能目标:1. 能够运用所学知识,设计并实现四层电梯的PLC控制程序;2. 培养学生动手实践能力,能够进行电梯控制系统的安装、调试与故障排查;3. 提高学生团队协作和沟通能力,能在项目实践中发挥个人特长,共同完成任务。

情感态度价值观目标:1. 激发学生对自动化控制技术的兴趣,培养其探索精神;2. 培养学生严谨的科学态度,注重实际操作与理论相结合;3. 增强学生的安全意识,使其在实践过程中养成良好的操作习惯。

分析课程性质、学生特点和教学要求,将课程目标分解为以下具体学习成果:1. 学生能够阐述PLC的基本原理和功能,并说明其在电梯控制系统中的应用;2. 学生能够编写四层电梯PLC控制程序,并进行安装、调试与故障排查;3. 学生能够在团队项目中发挥个人特长,与团队成员共同完成电梯控制系统的设计与实现;4. 学生能够遵循安全操作规程,养成良好的实践操作习惯。

二、教学内容1. PLC基本原理:介绍PLC的组成、工作原理、编程语言及常用指令;2. 电梯控制系统:分析电梯控制系统的基本要求,包括楼层指示、呼梯、选层、平层、停层等功能;3. PLC控制程序设计:以四层电梯为例,讲解控制程序的设计步骤和方法;- 梯形图编程:介绍梯形图的绘制方法,引导学生学会使用PLC编程软件;- 逻辑控制:讲解电梯运行过程中的逻辑控制关系,如楼层判断、呼梯响应等;- 程序调试:教授程序调试方法,培养学生解决实际问题的能力;4. 实践操作:组织学生进行电梯控制系统的安装、调试与故障排查,巩固所学知识;- 安装:介绍电梯控制系统的硬件连接,指导学生进行实际操作;- 调试:教授调试方法,培养学生分析问题和解决问题的能力;- 故障排查:模拟电梯故障,指导学生进行排查和修复。

PLC六层电梯控制系统

PLC六层电梯控制系统

电梯是服务于规定楼层, 运行在至少两列垂直的或倾斜角小于15°的刚性导轨之间的固定式升降设备。

广义的电梯概念包括载人(货)电梯、自动扶梯、自动人行道等, 是指动力驱动, 利用沿刚性导轨运行的箱体或者沿固定线路运动的梯级(踏步), 进行升降或者平行运送人或者货物的机电设备。

狭义的电梯是指服务于规定楼层、有轿厢的垂直升降设备, 不包括自动扶梯、自动人行道。

自动扶梯(Escalator)是带有循环运行梯级, 用于向上或向下倾斜输送乘客的固定电力驱动设备。

自动人行道(Passenger conveyor)是带有循环运行式走道, 用于水平或微倾斜的输送乘客的固定电力驱动设备。

电梯的分类按用途分类: 乘客电梯、载货电梯、病床电梯、杂物电梯、服务电梯、住宅电梯、特种电梯。

按驱动方式类:交流电梯, 直流电梯、液压电梯、齿轮齿条电梯、直线电机驱动的电梯。

按速度分类:低速电梯(速度不大于1.75m/s)中速电梯(速度大于1.75m/s小于或等于2.5m/s)高速电梯(速度大于2.5m/s小于或等于6m/s)超高速电梯(速度大于6m/s)按有无减速器分类:有减速器的电梯: 常用于梯速为2.0m/s以下的电梯无减速器的电梯: 常用于梯速为2.0m/s以上的电梯电梯的工作原理一部电梯主要由轿厢、配重、曳引机、控制柜/箱、导轨等主要部件组成。

电梯在做垂直运行的过程中, 有起点站也有终点站。

对于三层以上建筑物内的电梯, 起点站和终点站之间还设有停靠站。

起点站设在一楼, 终点站设在最高楼。

各站的厅外设有召唤箱, 箱上设置有供乘用人员召唤电梯用的召唤按钮。

一般电梯在起点站和终点站上各设置一个按钮, 中间层站的召唤箱上各设置两个按钮。

而电梯的轿厢内都设置有(杂物电梯除外)操纵箱, 操纵箱上设置有手柄开关或与层站对应的按钮, 供司机或乘用人员控制电梯上下运行。

召唤箱上的按钮称外召唤按钮, 操纵箱上的按钮称指令按钮本设计主要研究六层六站的电梯控制系统, 分述其硬件设计和软件设计过程。

plc五层电梯控制系统原理图

plc五层电梯控制系统原理图

PLC五层电梯控制系统原理图概述PLC(可编程逻辑控制器)五层电梯控制系统是一种常见的用于控制电梯运行的自动化系统。

该系统通过PLC控制器和相关传感器、执行器等设备的协作,实现了电梯的安全、高效运行。

本文将介绍PLC五层电梯控制系统的原理图及其各个部分的功能。

电梯控制系统五层结构PLC五层电梯控制系统包括:感知层、搬运层、执行层、计算层和人机交互层。

下面将分别介绍各个层次的功能及其原理图。

感知层感知层是电梯控制系统的最底层,用于感知电梯当前的状态和环境。

该层包括各类传感器,如限位开关、压力传感器、光电传感器等。

这些传感器可以实时感知电梯的位置、运行状态、载重情况等信息,以便进行后续的控制决策。

感知层的原理图如下:感知层┬─── 限位开关├─── 压力传感器├─── 光电传感器└─── ...搬运层搬运层负责将感知层获取到的信息转化为PLC控制器能够识别和处理的信号,并将控制器的输出信号传递给执行层。

搬运层包括信号转换模块和数据传输模块。

信号转换模块将传感器输出的模拟信号转换为数字信号,以便PLC控制器进行处理。

数据传输模块负责将PLC控制器的指令传递给执行层。

搬运层的原理图如下:搬运层┬─── 信号转换模块└─── 数据传输模块执行层执行层是电梯控制系统的核心部分,负责执行PLC控制器下发的指令,控制电梯的运行。

执行层包括电机、电磁铁等执行器。

电机负责控制电梯的升降运动,电磁铁负责控制电梯的门的开关。

执行层的原理图如下:执行层┬─── 电机└─── 电磁铁计算层计算层是电梯控制系统的大脑,负责对感知层获取的信息进行处理,并根据设定的电梯运行策略生成控制指令。

计算层由PLC控制器组成,包括CPU、存储器、输入/输出模块等。

PLC控制器可以根据预设的逻辑、算法等进行判断和计算,以确定电梯的运行方向、停靠楼层等。

计算层的原理图如下:计算层┬─── CPU├─── 存储器└─── 输入/输出模块人机交互层人机交互层是用户和电梯控制系统的接口,负责向用户展示电梯的状态信息,并接收用户的操作指令。

电梯自动扶梯plc课程设计

电梯自动扶梯plc课程设计

电梯自动扶梯plc课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和在电梯自动扶梯系统中的应用。

2. 学生能掌握电梯自动扶梯系统的基本工作流程及其与PLC的交互作用。

3. 学生能了解并描述电梯自动扶梯安全控制系统中的主要传感器及其功能。

技能目标:1. 学生能够运用PLC编程软件进行基础的编程操作,实现对电梯自动扶梯简单控制逻辑的设计。

2. 学生能够通过小组合作,设计并模拟一个简单的电梯自动扶梯控制系统。

3. 学生能够分析并解决电梯自动扶梯PLC控制系统中的常见问题。

情感态度价值观目标:1. 培养学生对于自动化技术的兴趣,增强其对现代智能控制系统的认识和理解。

2. 培养学生团队协作意识,提高沟通协调能力,激发创新精神和问题解决能力。

3. 增强学生的安全意识,使其认识到技术在安全控制系统中的重要性。

课程性质分析:本课程结合实际应用,以电梯自动扶梯PLC控制系统为载体,侧重实践性和工程性,强调理论知识与实践技能的结合。

学生特点分析:考虑到学生所在年级的知识深度,课程设计将结合学生的年龄特点和认知水平,采用循序渐进、由浅入深的教学方法。

教学要求:1. 确保学生掌握PLC基本原理及在电梯自动扶梯系统中的应用。

2. 注重培养学生的动手实践能力和创新思维能力。

3. 引导学生关注电梯自动扶梯安全控制技术的发展,提高其社会责任感。

二、教学内容1. PLC基本原理介绍:包括PLC的定义、结构、工作原理、编程语言等,关联教材第二章。

- PLC的发展历程与电梯自动扶梯的关系。

- PLC的输入/输出接口及信号处理。

2. 电梯自动扶梯系统概述:讲解电梯自动扶梯的基本结构、工作流程、安全控制系统,关联教材第三章。

- 电梯自动扶梯的主要部件及其功能。

- 安全控制系统中的传感器及其作用。

3. PLC编程基础:介绍PLC编程软件的使用方法,基础指令和编程技巧,关联教材第四章。

- 编程软件的安装与操作。

PLC在电梯系统中的应用

PLC在电梯系统中的应用

PLC在电梯系统中的应用在电梯系统中,PLC(可编程逻辑控制器)的应用极为重要。

PLC 是一种专门用于控制自动化过程的计算机控制系统,广泛应用于工业领域。

在电梯系统中,PLC起到了关键的角色,确保电梯的安全运行和顺畅操作。

本文将探讨PLC在电梯系统中的应用,并讨论其重要性和优势。

一、电梯控制系统概述电梯控制系统是一个复杂的系统,包括电梯门控制、楼层选择、行程控制等多个方面。

传统的电梯控制系统通常使用继电器进行逻辑控制,但其存在一些问题,如可靠性较低、维护困难等。

而PLC作为一种先进的控制技术,已经广泛应用于电梯系统中,取得了显著的效果和成果。

二、PLC在电梯门控制中的应用电梯门控制是电梯系统中最基本的控制功能之一。

PLC通过接受来自感应器的信号,监测电梯门的状态,并决定何时开启或关闭门。

基于PLC的电梯门控制系统可以实时监测门的位置和状态,从而保证电梯的安全运行和乘客的顺利出入。

三、PLC在楼层选择和行程控制中的应用除了门控制,PLC还应用于楼层选择和行程控制。

在传统的电梯系统中,楼层选择和行程控制通常通过继电器实现,操作复杂且容易出错。

而基于PLC的电梯系统采用PLC进行楼层选择和行程控制,具有更高的准确性和精度,提升了电梯的性能和运行效率。

四、PLC在故障检测和安全保护中的应用故障检测和安全保护是电梯系统中的重要环节。

传统的电梯系统通常使用继电器进行故障检测和安全保护,但其存在一些局限性。

而基于PLC的电梯系统能够更快速、准确地检测故障,并采取相应的安全措施,确保电梯和乘客的安全。

五、PLC在能耗管理中的应用随着能源问题的日益凸显,能耗管理成为了电梯系统设计的新关注点。

PLC具备灵活性和可编程性的特点,使其在能耗管理中发挥了重要作用。

通过PLC的精确控制,电梯系统可以实现能效的优化,降低能源消耗,减少运营成本。

六、总结PLC在电梯系统中的应用是不可忽视的重要技术。

通过基于PLC的电梯控制系统,可以提高电梯的安全性、可靠性和性能。

plc实训报告电梯运行

plc实训报告电梯运行

plc实训报告电梯运行1.引言1.1 概述电梯作为现代城市交通工具的重要组成部分,其安全性和可靠性一直备受关注。

在电梯的运行过程中,PLC(可编程逻辑控制器)在控制系统中起着至关重要的作用。

PLC作为一种用于工业自动化控制的计算机控制系统,能够对电梯的运行进行精准控制和监控。

本章将介绍电梯运行中的基本原理,并重点关注PLC在电梯运行中的应用。

通过对PLC在电梯运行中的控制逻辑和功能进行详细阐述,我们可以更好地理解PLC在提升电梯安全性和效率方面的作用。

在本文的后续章节中,我们将探讨PLC在电梯运行中的具体应用,包括控制电梯的起停、楼层选择、门的开关等功能。

同时,我们还将总结实训结果,并提出对电梯运行改进建议,以进一步提升电梯的可靠性和安全性。

通过本篇报告的撰写,我们旨在加深对PLC在电梯运行中的应用的理解,并为相关领域的从业人员提供一定的参考和指导。

希望读者通过本文的阅读,能够对电梯运行原理和PLC的应用有一个更全面的了解,从而为电梯行业的发展贡献自己的力量。

1.2文章结构1.2 文章结构本文旨在探讨PLC在电梯运行中的应用,并总结实训结果及提出对电梯运行的改进建议。

文章分为以下几个部分:第一部分为引言,概述了本文的主题和目的。

首先,我们将简要介绍电梯运行的基本原理,以便读者对后续内容有一个基本的了解。

而后,我们将详细描述本文的结构,以便读者在阅读过程中能够清晰地了解每个部分的内容。

最后,我们会明确本文的目的,希望通过此实训报告能够加深对PLC在电梯运行中应用的理解,并为电梯运行提出改进建议。

第二部分是正文部分,它分为两个小节。

首先,我们将详细介绍电梯运行的原理,包括电机驱动、楼层选择、控制系统等方面的内容。

此外,我们还将探讨电梯运行中可能遇到的问题以及如何使用PLC解决这些问题。

接着,我们将重点讨论PLC在电梯运行中的应用,包括PLC的选择、PLC与其他组件的连接以及PLC程序的编写等方面,以便读者对PLC的应用有更深入的了解。

电梯的PLC控制系统

电梯的PLC控制系统
再换向。 4)具有同向截车功能。 5)一个方向的任务执行完要换向时,依据最远站换向原则。
2. 4层电梯模拟的硬件支持 1)4层电梯控制实验单元模块。 2)PLC应用综合实验实训考核台。 3)各种连接导线。
1.3 PLC4层电梯控制
3. 4层电梯模拟的原理与提示 1)电梯输入信号及其意义 (1)位置信号。 (2)指令信号。 (3)呼梯信号。 2)电梯输出信号及其意义 (1)运行方向及显示信号。 (2)指令登记信号。 (3)呼梯登记信号。 (4)开门、关门信号。 (5)楼层数显信号。
1.1 PLC的输入接口
4)编码输入 将按钮、开关输入信号通过二进制数编码输入PLC,可大大减少PLC输入点。 5)ID215、ID501、MD215输入单元 为解决用户自己设计制作I/O矩阵扫描电路的困难,一些厂家对PLC软件硬件进行了改进,生产了专用 的矩阵扫描I/O模块。如采用C200H的ID215、ID501、MD215三个专用模块,可实现矩阵扫描输入。 6)串行输入 将按钮信号通过串行扫描控制器处理为串行脉冲序列信号送入PLC,以脉冲的高低电平表示按钮的通断 状态。 7)安全保护触点的输入 为设计梯形图方便,有时常闭触点可改为常开触点输入PLC。但对于安全保护触点,仍应使用常闭触 点输入,以保证电梯安全运行。
1.1 PLC的输入接口
3.信号输入方式 信号输入PLC的方法很多,下面简要介绍常用的几种方法。 1)信号的直接输入 每个输入信号直接接PLC的输入点,不附加任何电路,这是目前电梯PLC控制系统用得较多的I/O接线 方法,其特点如下: (1)原理简单,接线方便。 (2)不易出错,可靠性高。 (3)维护保养简便,检查故障直观。 2)矩阵扫描输入 在电梯的PLC控制系统中,I/O点数最多的是呼梯信号,为减少PLC输入点数,可对呼梯信号采用矩阵 扫描输入。 3)信号合并输入 (1)多个串联开关、联动开关等分别只用一个PLC输入点。例如,各层厅门联锁开关、轿顶和控制 柜检修开关,可分别串联输入PLC。 (2)作用相同的开关信号并联输入PLC。例如,开门按钮与安全触板(或光电)开关。 (3)按钮组合输入。

两层电梯plc课程设计

两层电梯plc课程设计

两层电梯plc课程设计一、课程目标知识目标:1. 学生能够理解PLC(可编程逻辑控制器)的基本原理和在电梯控制系统中的应用。

2. 学生能够掌握两层电梯控制系统的电路图识别及设计基础。

3. 学生能够描述并解释PLC编程语言中的梯形图逻辑。

技能目标:1. 学生能够运用PLC进行简单的电梯控制程序编写。

2. 学生通过小组合作,能够设计并模拟一个两层电梯的运行程序。

3. 学生能够利用PLC故障诊断技能,解决两层电梯控制中的常见问题。

情感态度价值观目标:1. 学生培养对自动化控制技术的兴趣和好奇心,增强对工程技术职业的认识和向往。

2. 学生通过团队协作,增强沟通、协调和解决问题的能力,培养合作精神。

3. 学生在学习过程中,树立安全意识,理解并尊重技术规范,形成正确的工程伦理观。

课程性质分析:本课程属于应用技术类课程,结合理论与实践,注重培养学生的动手能力和实际操作技能。

学生特点分析:考虑到学生年级特点,他们具备了一定的逻辑思维能力和基础电路知识,但对PLC技术可能较为陌生,需从基础做起,逐步提高。

教学要求:1. 教学内容需紧密结合教材,注重理论与实践的紧密结合。

2. 教学过程中,注重启发式教学,引导学生主动探究。

3. 教学评估应关注学生在知识掌握、技能应用和情感态度价值观方面的全面发展。

二、教学内容1. PLC基础原理介绍:包括PLC的组成、工作原理、常用模块功能。

- 教材章节:第一章 PLC概述2. 电梯控制系统基础知识:介绍电梯控制系统的构成、功能及运行原理。

- 教材章节:第二章 电梯控制系统3. PLC编程语言及梯形图逻辑:讲解梯形图编程的基本符号、逻辑运算及指令。

- 教材章节:第三章 PLC编程语言4. 两层电梯PLC控制程序设计:- 教材章节:第四章 PLC控制系统设计及应用- 内容:控制要求分析、I/O端口分配、梯形图设计、程序编写及调试5. PLC故障诊断与维护:- 教材章节:第五章 PLC故障诊断与维护- 内容:故障分析方法、常见故障处理、维护与保养措施6. 实践操作:- 内容:小组合作完成两层电梯PLC控制系统的设计与模拟运行,包括程序编写、调试及故障诊断。

电梯的PLC控制

电梯的PLC控制

可编程序控制器为(Programmable Logic Controller,简称PLC),是在继电顺序控制基础上发展起来的以微处理器为核心的通用自动控制装置。

国际电工委员会(IEC)对PLC的定义是:可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

它采用可编程序的存贮器,用来在其内部存贮执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字的、模拟的输入和输出,控制各种类型的机械或生产过程。

可编程序控制器及其有关设备,都应按易于与工业控制系统形成一个整体,易于扩充其功能的原则设计。

PLC具有可靠性高、适应面广、抗干扰能力强、编程方便、对环境要求低、与其他装置配置连接方便等特点。

在工业自动化控制系统中占有极其重要的地位。

·技术参数:(1)曳引电机:单相15W 10N/min(2)曳引方式:双向1:1吊索法(3)门电机:单相5W 10N/min(4)额定速度:0.05米/秒PLC是采用“顺序扫描,不断循环”的方式进行工作的。

即在PLC运行时,CPU 根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。

然后重新返回第一条指令,开始下一轮新的扫描。

在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。

PLC的一个扫描周期必经输入采样、程序执行和输出刷新三个阶段。

PLC在输入采样阶段:首先以扫描方式按顺序将所有暂存在输入锁存器中的输入端子的通断状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入。

随即关闭输入端口,进入程序执行阶段。

PLC在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,经相应的运算和处理后,其结果再写入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。

输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出锁存器中,并通过一定的方式(继电器、晶体管或晶闸管)输出,驱动相应输出设备工作。

可编程控制(PLC)电梯的程序以及梯形图、详细解释

可编程控制(PLC)电梯的程序以及梯形图、详细解释

可编程控制(PLC)电梯的程序以及梯形图、详细解释PLC的工作原理是通过输入模块将外部信号转换为数字信号,经过CPU处理后输出至输出模块,控制外部设备的运行。

CPU是PLC的核心部件,负责接收输入信号、处理逻辑运算、控制输出信号等。

PLC还具有存储程序和数据的内存模块,以及供电模块等。

4、电梯控制构成电梯控制系统由电气控制部分和机械部分组成。

电气控制部分包括PLC控制器、输入输出模块、按钮、指示灯等,机械部分包括电机、减速器、曳引轮、钢丝绳等。

电梯控制系统通过PLC控制器控制电机的运行,从而实现电梯的上下运动。

5、输入输出(I/O)端口功能分配表输入输出端口功能分配表是指将输入输出端口与具体的功能进行对应,以便于程序的编写和调试。

在本实验中,输入端口包括楼层请求信号和开关门信号,输出端口包括电机运行信号和指示灯信号。

6、程序执行流程图程序执行流程图是指将程序的执行过程以图形化的形式展示出来,便于程序员进行编写和调试。

在本实验中,程序执行流程图包括电梯上行程序和电梯下行程序,分别对应电梯向上和向下运动的控制。

7、梯形图梯形图是PLC程序编写中常用的图形化编程方法,以梯形图的形式展示程序的执行逻辑。

在本实验中,梯形图包括定时器T0、一楼的控制、二楼的控制、三楼的控制、四楼的控制、确定电梯楼层位置、电梯趋势确定等部分。

8、指令表指令表是指PLC程序编写中常用的指令及其功能的对照表,便于程序员进行编写和调试。

在本实验中,指令表包括常用的输入输出指令、比较指令、逻辑指令、数学指令等。

五、问题与解决方案在实验过程中可能会遇到各种问题,如PLC控制器无法正常运行、输入输出信号异常等。

针对这些问题,可以通过检查电路连接、更换设备、重新编写程序等方法进行解决。

六、实验总结与心得体会通过本次实验,我深入了解了PLC的基本原理和应用,掌握了电梯控制系统的设计方法和实现过程。

同时,也发现了实验中存在的问题和不足之处,为今后的研究和工作提供了宝贵的经验。

基于PLC的智能电梯控制系统设计

基于PLC的智能电梯控制系统设计

基于PLC的智能电梯控制系统设计智能电梯控制系统是现代城市中不可或缺的一部分。

本文将介绍基于可编程逻辑控制器(PLC)的智能电梯控制系统设计。

1. 系统概述及需求分析智能电梯控制系统的主要功能是根据用户的需求和楼层的情况,实现电梯的安全、高效地运行。

该系统应具备以下特点:- 自动调度:根据乘客分布和楼层需求,合理分配电梯资源,降低等待时间和能源消耗。

-故障检测与报警:及时监测电梯的故障情况,并通过声音或显示屏等方式向用户发出警报。

- 安全保护:通过检测电梯内外的重量和限制人数,确保电梯的安全运行。

- 软启动和软停止:通过控制电梯的加速度和减速度,实现舒适的乘坐体验。

2. 硬件设计基于PLC的智能电梯控制系统的硬件设计需要包括以下部分:- PLC:作为控制系统的核心,负责接收和处理传感器和按钮的输入信号,并控制电梯的运行。

- 传感器:包括电梯内外的按钮、楼层传感器、重量传感器等,用于获取电梯和乘客的状态信息。

- 电梯主机:电梯的驱动设备,包括电机和减速器等,负责实现电梯的移动。

- 显示屏和声音设备:用于向用户显示当前楼层、电梯状态和发出报警声音等。

- 通信设备:可选的设备,用于与外部系统进行通信,如远程监控和管理系统。

3. 软件设计基于PLC的智能电梯控制系统的软件设计包括以下方面:- 输入信号处理:PLC需要接收来自各个传感器和按钮的输入信号,并根据信号类型进行处理。

- 运行调度算法:根据乘客分布和楼层需求,采用合适的调度算法来实现电梯的自动调度功能。

- 运动控制:根据输入信号和调度算法,控制电梯主机的运动,实现电梯的平稳启动、停止和运行。

- 状态监测和故障检测:监测电梯的状态,包括位置、速度、载荷等,及时检测故障并发出警报。

- 用户接口设计:通过显示屏和声音设备,向用户显示当前楼层、电梯状态以及发出报警声音等。

4. 系统测试与调试设计完智能电梯控制系统后,需要进行系统的测试和调试。

包括以下步骤:- 验证输入信号的传输和处理是否正确,如按钮的响应、传感器的准确性等。

电梯plc原理

电梯plc原理

电梯plc原理
电梯PLC原理是基于可编程逻辑控制器(PLC)技术,通过
编程控制来实现对电梯操作的自动化控制。

PLC是一种专门
用于工业过程控制的电子设备,其工作原理是基于输入输出信号的感知和逻辑运算,以及对外部设备的控制。

在电梯PLC系统中,输入信号来自于电梯的各种传感器,如
电梯位置传感器、门开关传感器、重载传感器等。

这些传感器将电梯当前状态转化为数字信号输入给PLC。

PLC通过编程
将这些输入信号进行逻辑运算和判断,根据编程逻辑输出控制信号给电梯驱动器和各个执行元件,如电机、门的开闭装置等。

PLC编程的逻辑运算包括判断电梯当前位置、判断是否超载、判断门的开关状态等。

在运行状态下,PLC还需要对输入信
号进行实时监测和处理,以确保电梯的安全性和稳定性。

例如,当电梯超载时,PLC将产生相应的警报信号,并通过控制电
梯停止运行以确保安全。

此外,PLC还可以根据电梯运行状态进行自动控制,如电梯
的上下行控制、楼层到达后的门控制等。

通过编程,可以实现电梯的各种运行逻辑和功能,提高电梯运行的效率和安全性。

总而言之,电梯PLC原理是通过编程控制电梯的自动化运行,通过感知和判断输入信号,输出控制信号来实现对电梯各个元件的控制,从而实现电梯的安全运行和功能实现。

plc课程设计-电梯

plc课程设计-电梯

plc课程设计-电梯一、教学目标本章节的教学目标是让学生掌握PLC(可编程逻辑控制器)在电梯控制系统中的应用。

具体目标如下:1.知识目标:–了解电梯的基本工作原理和结构。

–掌握PLC的基本原理和功能。

–熟悉PLC在电梯控制系统中的应用。

2.技能目标:–能够分析电梯控制系统的需求,并设计相应的PLC程序。

–能够使用PLC编程软件进行编程和调试。

–能够进行PLC系统的安装和维护。

3.情感态度价值观目标:–培养学生对技术的兴趣和好奇心,提高学生的创新意识。

–培养学生团队合作精神和解决问题的能力。

二、教学内容本章节的教学内容主要包括以下几个方面:1.电梯的基本工作原理和结构:介绍电梯的基本组成部分,如电动机、控制器、传感器等,以及它们的作用和相互之间的关系。

2.PLC的基本原理和功能:介绍PLC的基本工作原理、编程语言和功能特点,以及PLC在电梯控制系统中的应用。

3.PLC编程和调试:通过实际案例,教授如何使用PLC编程软件进行编程和调试,以及如何分析电梯控制系统的需求并进行相应的PLC程序设计。

4.PLC系统的安装和维护:介绍PLC系统的安装步骤和注意事项,以及如何进行日常维护和故障排除。

三、教学方法本章节的教学方法将采用多种教学手段相结合的方式,以激发学生的学习兴趣和主动性:1.讲授法:通过讲解和演示,向学生传授电梯的基本工作原理和结构,以及PLC的基本原理和功能。

2.案例分析法:通过分析实际案例,让学生了解PLC在电梯控制系统中的应用,并进行相应的PLC程序设计和调试。

3.实验法:学生进行实验操作,让学生亲身体验PLC系统的安装和维护过程,提高学生的实际操作能力。

四、教学资源本章节的教学资源包括以下几个方面:1.教材:选用与PLC课程相关的教材,如《可编程逻辑控制器原理与应用》等,提供学生系统的理论知识学习。

2.参考书:提供相关的参考书籍,如《电梯原理与维修》等,供学生进行深入学习。

3.多媒体资料:制作PPT、视频等多媒体资料,通过图像、动画等形式,帮助学生更直观地理解电梯和PLC的相关知识。

plc电梯控制系统设计梯形图

plc电梯控制系统设计梯形图

PLC电梯控制系统设计梯形图引言PLC(可编程逻辑控制器)电梯控制系统是现代建筑领域中常见的重要设备。

它可以实现电梯的安全控制、运行状态监测和故障诊断等功能。

在设计和安装电梯控制系统时,梯形图是一个非常重要的工具。

本文将介绍PLC电梯控制系统的设计,并示范如何使用梯形图来描述和实现电梯控制功能。

设计原则在PLC电梯控制系统的设计过程中,应遵循以下原则:1.安全性:电梯控制系统必须确保乘客和设备的安全。

在设计中应考虑到各种可能的故障和紧急情况,并采取相应的措施来保护乘客的生命和财产安全。

2.灵活性:电梯控制系统应具有良好的适应性和扩展性,能够适应不同楼层、不同负载和不同控制需求的变化。

3.故障诊断:电梯控制系统应具备故障自诊断功能,能够及时发现和定位故障,以便进行及时的维修和维护。

梯形图设计梯形图是用于描述PLC程序的一种图形化编程语言。

在电梯控制系统中,可以使用梯形图来描述电梯的运行逻辑和控制流程。

以下是一个梯形图的示例,用于描述电梯的基本运行逻辑:----[ ]----[ ]----[ ]----[ ]----[ ]----| | | | || C1 | C2 | C3 | C4 || | | | |----|_|-------|_|-------|_|-------|_|----在上述示例中,梯形图由多个竖直排列的联系和水平排列的条件组成。

条件是通过接线圈(Coil)和触点(Contact)来实现的。

接线圈表示动作元件的输出,触点表示其他元件或输出的输入。

在电梯控制系统中,接线圈可以表示电梯电机的启动、停止和方向控制,触点可以表示按钮输入或传感器状态。

电梯控制逻辑基于上述示例梯形图,我们可以描述电梯的基本控制逻辑。

以下是一个简化的描述:•C1触点表示电梯内部的上行和下行按钮。

当触发上行按钮时,C1接线圈闭合,电梯向上运行;当触发下行按钮时,C1接线圈闭合,电梯向下运行。

•C2触点表示电梯外部的楼层按钮。

《2024年基于PLC的电梯控制系统》范文

《2024年基于PLC的电梯控制系统》范文

《基于PLC的电梯控制系统》篇一一、引言随着现代城市化的快速发展,电梯作为建筑物垂直运输的重要设备,其安全性和效率性显得尤为重要。

传统的电梯控制系统已经无法满足现代建筑的需求,因此,基于可编程逻辑控制器(PLC)的电梯控制系统应运而生。

本文将详细介绍基于PLC的电梯控制系统的基本原理、设计、实现及其优势。

二、PLC电梯控制系统的基本原理PLC电梯控制系统是一种以PLC为核心,通过传感器、执行器等设备实现电梯运行控制的系统。

其基本原理是通过PLC对电梯的请求信号、位置信号、安全信号等进行逻辑处理,控制电梯的启动、加速、平稳运行、减速、停止等过程,保证电梯的平稳运行和乘客的安全。

三、PLC电梯控制系统的设计1. 硬件设计PLC电梯控制系统的硬件设计主要包括PLC、输入输出设备、传感器、执行器等。

其中,PLC是核心部件,负责接收和处理各种信号,控制电梯的运行。

输入设备包括按钮、呼叫箱等,用于接收乘客的请求信号。

输出设备包括指示器、门机等,用于显示电梯的状态和控制门的开关。

传感器用于检测电梯的位置、速度、负载等状态信息。

执行器则根据PLC的指令控制电梯的运行。

2. 软件设计PLC电梯控制系统的软件设计主要包括梯形图程序、指令表程序等。

梯形图程序是PLC程序的主要表现形式,通过梯形图描述电梯的各种运行状态和逻辑关系。

指令表程序则是梯形图程序的另一种表现形式,便于编程和调试。

在软件设计中,需要根据电梯的具体需求和场景进行合理的程序设计和优化。

四、PLC电梯控制系统的实现在实现基于PLC的电梯控制系统中,首先需要对现场进行布线,连接PLC、传感器、执行器等设备。

然后,根据梯形图程序和指令表程序进行编程和调试,确保各个设备能够正常工作。

在调试过程中,需要对电梯的各种运行状态进行测试,确保电梯的平稳运行和乘客的安全。

最后,对系统进行优化和改进,提高电梯的运行效率和安全性。

五、PLC电梯控制系统的优势基于PLC的电梯控制系统具有以下优势:1. 可靠性高:PLC具有较高的可靠性和稳定性,能够保证电梯的稳定运行。

基于plc的电梯控制系统

基于plc的电梯控制系统

基于PLC的电梯控制系统电梯控制系统是现代建筑中不可或缺的一部分。

它们使人们能够快速、安全地达到目的地,提供了便利性和舒适性。

电梯控制系统包括多个组成部分,其中的一项关键技术是基于可编程逻辑控制器(PLC)的控制系统。

PLC的基本概念PLC是一种用于自动化控制的计算机控制系统。

它由硬件和软件组成,用于监测输入信号并根据预先编程的逻辑和规则来控制输出信号。

PLC具有高度可靠性和稳定性,适用于工业领域以及其他应用场景。

PLC的基本组成部分包括中央处理器(CPU)、输入模块、输出模块和通信模块。

输入模块用于接收传感器信号,输出模块用于控制执行器操作,通信模块用于与其他设备进行通信。

电梯控制系统的工作原理电梯控制系统的主要目标是根据乘客的请求和楼层情况,以最有效和安全的方式将乘客送至目的地。

这个过程涉及到多个方面,包括电梯的调度、楼层按钮的输入和电梯运行状态的监测。

PLC在电梯控制系统中起着关键的作用。

它接收来自楼层按钮的输入信号,并根据预定的算法和逻辑进行决策。

PLC还与电梯驱动器和电机控制器通信,控制电梯的移动和停止。

电梯控制系统的实现步骤输入信号的获取电梯控制系统的首要任务是获取输入信号。

这些信号来自于电梯内部的按钮和楼层上的按钮。

电梯内部按钮用于乘客选择目标楼层,而楼层上的按钮用于乘客请求电梯。

PLC通过连接到电梯内部和外部按钮的传感器,监测这些输入信号。

一旦有按钮按下,PLC将接收到相应的输入信号。

运行状态监测PLC还需要监测电梯的运行状态,包括当前楼层、电梯运行方向、是否有乘客等。

这些信息可以通过传感器获得,例如楼层位置传感器和门开关传感器。

监测运行状态对于控制电梯的移动和停止非常重要。

PLC根据这些信息决定是否继续运行、停止或改变方向。

控制策略的实现控制策略是电梯控制系统中的核心部分。

PLC使用预定的算法和逻辑来执行控制策略。

它根据乘客的请求、当前楼层和运行状态等信息来确定最佳的电梯调度方案。

电梯调度系统的PLC控制

电梯调度系统的PLC控制

电梯调度系统的PLC控制1. 简介本文档旨在介绍电梯调度系统中使用可编程逻辑控制器(PLC)进行控制的原理和流程。

电梯调度系统是一种用于自动控制电梯运行的系统,通过使用PLC作为控制器,可以实现灵活的电梯调度和优化。

2. PLC的基本原理PLC是一种专用的计算机控制设备,用于监测和控制机械设备的运行。

它可以通过接收输入信号、执行逻辑计算和输出控制信号来实现对电梯运行的控制。

PLC具有高效稳定的性能,可以实时响应输入信号并进行相应的逻辑判断和控制输出。

3. 电梯调度系统的构成电梯调度系统由电梯、传感器、PLC和控制端组成。

传感器用于检测电梯楼层、乘客需求等信息,并将其作为输入信号传输给PLC。

PLC根据输入信号进行逻辑判断和计算,然后控制电梯的运行状态和方向。

控制端用于接收用户的操作指令,并向PLC发送相应的控制信号。

4. 电梯调度系统的PLC控制流程4.1 初始化:当电梯调度系统启动时,PLC进行初始化设置,并将电梯置于初始楼层。

4.2 输入信号获取:PLC通过传感器获取电梯当前所在楼层、目标楼层和乘客需求等输入信号。

4.3 逻辑判断:PLC根据输入信号进行逻辑判断,包括判断电梯是否空闲、是否有乘客需求以及目标楼层的选择等。

4.4 控制信号输出:PLC根据逻辑判断的结果,生成相应的控制信号,包括电梯的运行方向、运行速度等,并将其发送给电梯。

4.5 电梯控制:电梯根据PLC发送的控制信号进行相应的运行操作,包括开关门、上下运行等。

4.6 反馈信号获取:电梯在运行过程中,不断向PLC发送反馈信号,包括当前楼层、运行状态等信息。

4.7 更新状态:PLC根据反馈信号更新电梯的运行状态和位置等信息,并持续进行逻辑判断和控制信号输出,以实现电梯的自动运行和调度。

5. 总结通过使用PLC作为电梯调度系统的控制器,可以实现电梯的智能化调度和优化。

PLC通过获取输入信号、进行逻辑判断和控制信号输出,实现对电梯的自动控制。

plc接增量编码器控制电梯自动平层原理

plc接增量编码器控制电梯自动平层原理

PLC(可编程逻辑控制器)接增量编码器控制电梯自动平层的原理如下:
1. 安装增量编码器:在电梯的驱动轴上安装一个增量编码器,用于检测电梯运行时的实时位置和速度。

2. PLC 接收编码器信号:将增量编码器的信号传输到 PLC 中,通过编程实现对电梯运行状态进行监测和控制。

3. 编写程序:编写 PLC 程序,对电梯进行控制。

程序中需要实现以下功能:
- 监测当前电梯的位置和速度;
- 判断电梯是否到达目标楼层;
- 控制电梯停止在目标楼层;
- 自动调整电梯的位置和速度,以达到平层的效果。

4. 实现自动平层:当电梯到达目标楼层时,PLC 会根据当前的位置和速度计算电梯还需要移动的距离和时间,并进行调整,以实现平层的效果。

总的来说,PLC 接入增量编码器可以监测电梯的位置和速度,通过编程实现对电梯的控制,从而实现电梯的自动平层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章引言自1889年美国奥梯斯升降机公司推出世界第一部以电动机为动力的升降机以来,电梯在驱动方式上经历了卷筒式驱动、牵引式驱动等历程,逐渐形成了直流电机拖动和交流电机拖动两种不同的拖动方式。

如今电梯已成为人们进出高层建筑不可或缺的代步工具;而且作为载人工具,人们在运行的平滑性、高速性、准确性、高效性等一系列静、动态性能方面对它提出了更高的要求。

由于早期的电梯继电器控制方式存在故障率较高、可靠性差、接线复杂、一旦接收完成不易更改等缺点,所以需要开发一种安全、高效的控制方式。

可编程控制器(PLC)既保留了继电器控制系统的简单易懂、控制精度高、可靠性好、控制程序可随工艺改变、易于与计算机接口、维修方便等诸多高品质性能。

因此,PLC在电梯控制领域得到了广泛而深入的应用。

随着微电子技术和计算机技术的迅速发展,PLC(即可编程控制器)在工业控制领域内得到十分广泛地应用。

PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。

电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。

多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯......。

在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。

据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。

当今世界,电梯的使用量已成为衡量现代化程度的标志之一。

追溯电梯这种升降设备的历史,据说它起源于公元前236年的古希腊。

当时有个叫阿基米德的人设计出-----人力驱动的卷筒式卷扬机。

1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。

1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。

1900年还出现了第一台自动扶梯。

1949年出现了群控电梯,首批4~6台群控电梯在纽约的联合国大厦被使用。

1955年出现了小型计算机(真空管)控制电梯。

1962年美国出现了速度达8米/秒的超高速电梯。

1963年一些先进工业国只成了无触点半导体逻辑控制电梯。

1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。

1971年集成电路被应用于电梯。

第二年又出现了数控电梯。

1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。

第二章概述2.1电梯硬件的分析2.1.1 电梯的组成(1)曳引系统曳引系统的主要功能是输出与传递动力,使电梯运行。

曳引系统主要由曳引机、曳引钢丝绳,导向轮,反绳轮组成。

(2)导向系统导向系统的主要功能是限制轿厢和对重的活动自由度,使轿厢和对重只能沿着导轨作升降运动。

导向系统主要由导轨,导靴和导轨架组成。

(3)轿厢轿厢是运送乘客和货物的电梯组件,是电梯的工作部分。

轿厢由轿厢架和轿厢体组成。

(4)门系统门系统的主要功能是封住层站入口和轿厢入口。

门系统由轿厢门,层门,开门机,门锁装置组成。

(5)重量平衡系统系统的主要功能是相对平衡轿厢重量,在电梯工作中能使轿厢与对重间的重量差保持在限额之内,保证电梯的曳引传动正常。

系统主要由对重和重量补偿装置组成。

(6)电力拖动系统电力拖动系统的功能是提供动力,实行电梯速度控制。

电力拖动系统由曳引电动机,供电系统,速度反馈装置,电动机调速装置等组成。

(7)电气控制系统电气控制系统的主要功能是对电梯的运行实行操纵和控制。

电气控制系统主要由操纵装置,位置显示装置,控制屏(柜),平层装置,选层器等组成。

(8)安全保护系统保证电梯安全使用,防止一切危及人身安全的事故发生。

由限速器,安全钳,缓冲器,端站保护装置组成。

2.1.2电梯的工作原理曳引绳两端分别连着轿厢和对重,缠绕在曳引轮和导向轮上,曳引电动机通过减速器变速后带动曳引轮转动,靠曳引绳与曳引轮摩擦产生的牵引力,实现轿厢和对重的升降运动,达到运输目的。

固定在轿厢上的导靴可以沿着安装在建筑物井道墙体上的固定导轨往复升降运动,防止轿厢在运行中偏斜或摆动。

常闭块式制动器在电动机工作时松闸,使电梯运转,在失电情况下制动,使轿厢停止升降,并在指定层站上维持其静止状态,供人员和货物出入。

轿厢是运载乘客或其他载荷的箱体部件,对重用来平衡轿厢载荷、减少电动机功率。

补偿装置用来补偿曳引绳运动中的张力和重量变化,使曳引电动机负载稳定,轿厢得以准确停靠。

电气系统实现对电梯运动的控制,同时完成选层、平层、测速、照明工作。

指示呼叫系统随时显示轿厢的运动方向和所在楼层位置。

安全装置保证电梯运行安全。

2. 2可编程控制器的介绍2.2.1可编程控制器的发展第一台可编程控制器的设计规范是美国通用公司提出的。

当时的目的是要求设计一种新的控制装置以取代继电器盘,在保留了继电器控制系统的简单易懂、操作方便、价格便宜等优点的基础上,同时具有现代化生产线所要求的时间响应快、控制精度高、可靠性好、控制程序、可随工艺改变、易于与计算机接口、维修方便等诸多高品质与功能。

这一设想提出后,美国数字设备公司(DEC)于1969年研制成第一台PLC,型号为PDP-14,投入通用汽车公司的生产线控制中,取得了令人满意的效果,从此开创了PLC的新纪元。

第一台PLC具有模块化、可扩充、可重编程及用于工业环境的特性。

这些控制器易于安装,占用空间小,可重复使用。

尽管控制器编程有些琐碎,但它具有公共的工厂标准—梯形图编程语言,这样使得不熟悉计算机的人也能方便的使用它。

在短时间内,PLC在其他工业部门也得到应用。

到70年代初,食品、金属和制造等工业部门相继使用PLC代替继电器控制设备,迈出了其实用化阶段的第一步。

70年代中期,由于大规模集成电路的出现,使8位微处理器和位片处理器相继问世,使可编程控制技术产生了飞跃。

在逻辑运算功能的基础上,增加了数值运算、闭环控制、提高了运算速度,扩大了输入输出规模。

在这个时期,日本、西德(原)和法国相继研制出了自己的PLC,我国在1974年也开始研制。

70年代由于超大规模集成电路的出现,使PLC向大规模、高速性能方向发展,形成了多种系列化产品。

这是面向工程技术人员的编程语言发展成熟,出现了工艺人员使用的图形语言。

在功能上,PLC可以代替某些模拟控制装置和小型机DDC系统。

进入八九十年代后,PLC的软硬件功能进一步得到加强,PLC已发展成为一种可提供诸多功能的成熟的控制系统,能与其他设备通信,生成报表,调度产生,可诊断自身故障及机器故障。

这些改进使PLC符合今天对高质量高产出的要求。

尽管PLC功能越来越强,但他仍然保留了先前的简单与易于使用的特点(PLC实物图2-1)图2-1 三种常见的PLC2.2.2PLC的用途PLC的初期由于其价格高于继电器控制装置,使其应用受到限制。

但近年来由于微处理器芯片及有关元件价格大大下降,使PLC的成本下降,同时又由于PLC的功能大大增强,使PLC 的应用越来越广泛,广泛应用于钢铁、水泥、石油、化工、采矿、电力、机械制造、汽车、造纸、纺织、环保等行业。

PLC的应用通常可分为五种类型:(1)顺序控制这是PLC应用最广泛的领域,用以取代传统的继电器顺序控制。

PLC可应用于单机控制、多机群控、生产自动线控制等。

如注塑机、印刷机械、订书机械、切纸机械、组合机床、磨床、装配生产线、电镀流水线及电梯控制等。

(2)运动控制 PLC制造商目前已提供了拖动步进电动机或伺服电动机的单轴或多轴位置控制模版。

在多数情况下,PLC把扫描目标位置的数据送给模版块,其输出移动一轴或数轴到目标位置。

每个轴移动时,位置控制模块保持适当的速度和加速度,确保运动平滑。

相对来说,位置控制模块比计算机数值控制(CNC)装置体积更小,价格更低,速度更快,操作方便。

(3)闭环过程控制 PLC能控制大量的物理参数,如温度、压力、速度和流量等。

PID (Proportional Intergral Derivative)模块的提供使PLC具有闭环控制功能,即一个具有PID控制能力的PLC可用于过程控制。

当过程控制中某一个变量出现偏差时,PID控制算法会计算出正确的输出,把变量保持在设定值上。

(4)数据处理在机械加工中,出现了把支持顺序控制的PLC和计算机数值控制(CNC)设备紧密结合的趋向。

著名的日本FANUC公司推出的Systen10、11、12系列,已将CNC控制功能作为PLC的一部分。

为了实现PLC和CNC设备之间内部数据自由传递,该公司采用了窗口软件。

通过窗口软件,用户可以独自编程,由PLC送至CNC设备使用。

美国GE公司的CNC 设备新机种也同样使用了具有数据处理的PLC。

预计今后几年CNC系统将变成以PLC为主体的控制和管理系统。

(5)通信和联网为了适应国外近几年来兴起的工厂自动化(FA)系统、柔性制造系统(FMS)及集散控制系统(DCS)等发展的需要,必须发展PLC之间,PLC和上级计算机之间的通信功能。

作为实时控制系统,不仅PLC数据通信速率要求高,而且要考虑出现停电故障时的对策。

2.2.3可编程控制器(PLC)的特点2.2.31 PLC的性能特点(1)硬件的可靠性PLC是在工业环境的恶劣条件下应用而设计的,一个设计良好的PLC能置于有很强的电噪声、电磁干扰、机械振动、极端温度和湿度很大的环境中。

在硬件设计方面,首先是选用优质器件,再就是采用合理的系统结构,加固,简化安装,使它易于抗振动冲击,对印制电路板的设计、加工及焊接都采取了极为严格的工艺措施,而且在电路、结构及工艺上采取了一些独特的方式。

例如,在输入/输出电路中都采用了光电隔离措施,做到电浮空,既方便接地,用提高了抗干扰性能;各个I/O端口都除采用了常规模拟器滤波以外,还加上了数字滤波;内部采用了电磁屏蔽措施,防止辐射干扰;采用了较先进的电源电路,以防止由电源回路串入的干扰信号;采用了较合理的电路程序,一旦某模块出现故障,进行在线插拔、调试时不会影响各机的正常运行。

由于PLC本身具有很高的可靠性,所以发生故障的部位大多集中在输入/输出的部件上,以及如传感器件、限位开关、光电开关、电磁电机等外围装置上。

(2) 编程简单,使用方便用微机实现自动控制,常使用汇编语言编程,难于掌握,要求使用者具有一定水平的计算机硬件和软件知识。

PLC采用面向控制过程、面向问题的“自然语言”编程,容易掌握。

例如,目前打多数PLC均采用的梯形图语言编程方式,既继承了传统控制线路的清晰直观感,又顾及了大多数电气技术人员的读图习惯及应用微机的水平很容易被电气技术人员所接受,易于编程,程序改变时也容易修改,很灵活方便。

这种面向控制过程、面向问题的编程方式,与目前微机控制常用的汇编语言相比,虽然在PLC内部增加了解释程序,增加了程序执行时间,但对大多数的机电控制设备来说,这是微不足道的。

相关文档
最新文档