强化训练7平行线、相交线、三角形

合集下载

第7章相交线与平行线 提优训练

第7章相交线与平行线 提优训练

7.1 两条直线的位置关系(1) 2014.5.261.若∠α=48°36′,则∠α的余角等于________,∠α的补角等于________.2. 若∠α,∠β互为补角,且∠α=3∠β,则∠α=________.3. 若∠1和∠2互余,∠2和∠3互补,∠1=37°,则∠3=________.4. 如图,直线AB、CD相交于点O,∠AOE=90°,若∠1=20°,则∠2=________;∠3=________;∠4=________.5. 若∠A+∠B=90°,∠B+∠C=90°,则∠A________∠C,理由是__________________________;若∠1+∠3=180°,∠2+∠4=180°,且∠1=∠4,则∠2________∠3,理由是________.6. 下列说法:①互补的两角若相等,则这两角都是直角;②对顶角的平分线在同一直线上;③同一个角的两个邻补角是对顶角;④和为180°的两个角叫做邻补角.其中正确的是________.7. 如图,∠AOC=90°,∠BOD=90°,则下列结论:①∠COD与∠BOC互余;②∠AOB与∠BOC互余;③∠AOB与∠COD互余;④∠AOB=∠COD中,正确的有().A. 1个B.2个C.3个D.4个8. 一个锐角的补角与这个锐角的余角的差是( ).A.锐角 B.直角 C.钝角 D.不能确定9. 对于钟面角,下列说法正确的是().A.在4点整,时针和分针的夹角为40°B.在4点半,时针和分针的夹角为45°C.在9点半,时针和分针的夹角为95°D.在10点整,时针和分针的夹角为100°10. (1)一个角等于它的补角的14,求这个角的余角;(2)一个角的余角的补角比这个角的补角的一半大90°,求这个角.11. 若一个角的补角是这个角的余角的4倍,则这个角是( ).A. 30° B.45° C.60° D.75°12. 如图,∠1>∠2,那么∠2与12(∠1−∠2)之间的关系是( ).A.互余B.互补C.和为45°D.和为22.5°13. 如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.如果击打小球A,经过球台边的反弹后,恰好击中小球B,那么击打小球A时,应瞄准球台边上的点()A.P1B.P2C.P3D.P414. 下列说法中正确的是( ).A.一个锐角的余角比这个角的补角少90°B.如果一个角有补角,那么这个角必是钝角C.如果∠1+∠2+∠3=180°,那么∠1,∠2,∠3互补D.如果∠α和∠β互为余角,∠β与∠γ互为余角,那么∠α与∠γ也互为余角15. 如果∠1和∠2互为补角,且∠1>∠2,那么∠2的余角是( ).A.12(∠1+∠2) B. 12∠1C.12(∠1−∠2) D.12∠27.1两条直线的位置关系(2) 2014.5.271.如图,O是直线AB上一点,OC为任一条射线,OD、OE分别是∠AOC和∠COB 的角平分线.(1)∠AOD的补角是________,∠BOE的补角是________;(2)若∠BOC=72°,则∠COD=________,∠EOC=________;(3)∠COD与∠EOC的关系是________;(4)当OC绕点O旋转到其他位置时,∠COD与∠EOC是否还具备(3)中的关系?________.理由是________.2.如图,直线AB、CD相交于点O,OE是∠COB的平分线,FO⊥OE,若∠AOD=70°.(1)求∠BOE的度数;(2)OF平分∠AOC吗?为什么?3.如图,直线AB、CD相交于点O,OE⊥OF,∠BOF=2∠BOE,∠AOE=2∠AOC.求∠DOE的度数.4.如图,直线CD和∠AOB的两边相交于点M、N,已知∠α+∠β=180°.(1)试找出图中所有与∠α,∠β相等的角;(2)写出图中所有互补的角.5.若∠α=30°,则∠α的补角是( ).A.30° B.60° C.120° D.150°6.如图,OA⊥OB,若∠1=40°,则∠2的度数是( ).A.20°B.40°C.50°D.60°7.下面各图中∠1与∠2是对顶角是( ).8.如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=________.9.如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是________.10.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是_________度.7.2 探索直线平行的条件2014.5.281. 如图.(1)∠D的同位角是________;(2)∠D的内错角是________;(3)∠D的同旁内角是________.2.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)):从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.()A.①②B.②③C.③④D.①④3.如图,下列条件能判断AB∥CD的是().A.∠1=∠2 B.∠3=∠4C.∠3=∠1 D.∠B+∠BAD=180°4.如图所示,已知∠1=∠2,AC平分∠DAB,你能判断哪两条直线平行?请说明理由.5.如图,∠ABC=∠ADC,BF、DE分别是∠ABC,∠ADC的角平分线,且∠1=∠2.问DC与AB平行吗?若平行,请说明理由;若不平行,请说明为什么?6.如图,AB∥CD,MG平分∠AMN,NH平分∠MND,试猜想MG与HN的位置关系,并说明理由.7.如图,下列条件中能判定直线l1// l2的是()A.∠1=∠2 B.∠1=∠5C.∠1+∠3=180°D.∠3=∠58.如图,下列条件中,能判断AB∥CD的是()A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠4D.∠BAC=∠ACD7.2 探索直线平行的条件2014.5.291.如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么________.(________,________)(2)如果∠2=∠5,那么________.(________,________)(3)如果∠2+∠1=180°,那么________.(________,________)(4)如果∠5=∠3,那么________.(________,________)(5)如果∠4+∠6=180°,那么________.(________,________)(6)如果∠6=∠3,那么________.(________,________)2. 如图,若∠1=________,则AB∥DE;若∠2=________,则AC∥DF;若∠B+________=180°,则BC∥EF.3. 如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在OB上有一点P,从点P射出一束光线经OA上的点Q反射后,反射光QR恰好与OB平行,则∠QPB=________.4.如图,如果∠1=∠2,那么AB∥CD吗?说出你的理由.5.一条公路修到湖边时需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C是多少度?6.如图,已知∠DAC=∠B+∠C,AE平分∠DAC,∠B=∠C,求证:AE∥BC.7.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是().A.2 B.3 C.4 D.57.2平行线的性质(1)2014.5.301.两直线被第三条直线所截,如果同位角相等,那么内错角________.2.如图,若∠1=∠2,∠3=73°,则∠4=________.3.如图,AB平行CD,如果∠B=20°,那么∠C为( )A.40°B.20°C.60°D.70°4. 如图,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( ).A.10°B.20°C.25°D.30°5.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°6. 如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( ).A.15°B.20°C.25°D.30°7.小刚在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业搞错如下:(涂黑部分即污损部分)已知:如图,OP平分∠AOB,MN∥OB.试证明∠1=∠3.证明:∵OP平分∠AOB,∴■■■■■.又MN∥OB,∴■■■■■.∴∠1=∠3.小刚思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么补出来的结果依次是________.(填序号)第7题图第8题图8.如图,∠A=50°,DF⊥AB,垂足为F,DG∥AC交AB于点G,DE∥AB交AC 于点E.求∠GDF的度数.解:∵DF⊥AB(),∴∠DFA90°().∵DE∥AB(),∴∠1=________=________( ),∠EDF+∠DFA=________( ).∴∠EDF=180°-∠DFA=180°-90°=90°().∵DG∥AC(),∴∠2=________=________.∴∠GDF=________.9.如图,已知MN⊥AB,垂足为点G,MN⊥CD,垂足为点H,直线EF分别交AB、CD于点G、Q,∠GQC=120°.求∠EGB和∠HGQ的度数.7.3平行线的性质(2)2014.6.31.小威同学平时学习时善于自己动手操作,以加深对知识的理解和掌握.这不,学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两个角,并使∠1=120°,AB⊥BC,那么∠2的度数是多少呢?2.如图,一只蚂蚁从点A出发按北偏东60°的方向爬行5厘米到达点B,再从点B按西北方向爬行3厘米到达点C,再从点C按南偏西60°的方向爬行8厘米到达点D,连接AD.(1)请将图形补充完整(提示:CD=AB+BC);(2)求∠ABC与∠BCD的度数;(3)此时AB和CD的位置关系如何?说出你的理由.3.如图.已知∠1=∠2,…(如果省略号的部分是一段被墨水污染了的无法辨认的文字),则AB∥CD.小雨刚想到同学家去看被污染的文字,姐姐阻止说:“我有办法.”假如你是小雨的姐姐,你能找出条件吗?4.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是( ).A.15°B.25°C.35°D.45°5.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB=________.6.如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上.若∠1=70°,∠2=50°,则∠ABC=________度.7.4平行线的性质(3)2014.6.41.如图,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有________个.第1题图第2题图2.如图,已知AB∥EF,CD⊥BC,∠B=x°,∠D=y°,∠E=z°,则().A.x+y-z=90 B.x-y+z=0 C.x+y+z=180 D.y+z-x=903.下列图形中,由AB∥CD,能使∠1=∠2成立的是( )A. B. C. D.4.如图,∠1=∠2,∠C=∠D,那么∠A=∠F,为什么?5.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系.6.如图,∠1=∠2,∠3=40°.则∠4等于( ).A.120°B.130°C.140°D.40°7.如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是________.8.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=________°.9.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为________.7.4 用尺规作角2014.6.51. 用尺规画直角,正确的方法是().A.用量角器 B.用三角板 C.平分平角 D.作两个锐角互余2. 一只海轮,先从A点出发向西北方向航行2海里到达B,再由B向正北方向航行3海里到达C,最后由C向东南方向航行2海里到达D,这时,D点在A 点的( ).A.正北 B.北偏东 C.北偏西 D.正东3.下列作图语句正确的是()A.作线段AB,使α=AB B.延长线段AB到C,使AC=BC C.作∠AOB,使∠AOB=∠αD.以O为圆心作弧4.下列各作法中,准确的是().A.以点O为圆心,以任意长为半径画弧,交线段OA于点CB.以∠AOB的边OB为一边作∠BOCC.以点O为圆心作弧,交射线OA于点BD.在线段AB的延长线上截取线段BC=3cm5.下列作图中,属于尺规作图的是()A.用量角器画出∠AOB的平分线OCB. 借助圆规作∠AOB,使∠AOB=2∠αC. 画线段AB=3 cmD.用三角板过点P作AB的垂线6.如图,已知线段a,b(a>b).求作:线段AB,使AB=2(a-b).(不写作法,保留痕迹)7.如图,已知∠1,∠2,求作一个角,使它等于2∠1-∠2.8.如图,已知直线AB和AB外一点P,作一条经过点P的直线CD,使CD∥AB.9.利用下面的方法,可以折出0°~180°之间的任意角.①用直尺和笔在一张透明纸上画一条直线,并在直线上取一个点A;②过点A将这张纸折叠,就可以得到由黑线构成的角(如图(2)所示).(1)用量角器量出这个角的度数,它是什么角?(2)用这种方法如何得到一个直角?10.如图所示,已知∠AOB=α,以P为顶点,PC为一边作∠CPD=α,并用移动三角板的方法验证PC与OB,PD与OA是否平行.第7章练习题 2014.6.61. 如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5十∠6等于().A.630°B.720°C.800°D.900°2.如图,直线MN∥PQ.点O在PQ上.射线OA⊥OB,分别交MN于点C和点D,∠BOQ=30°.若将射线OB绕点O逆时针旋转30°,则图中60°的角共有().A.4个B.5个C.6个D.7个3.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于( ).A.585°B.540°C.270°D.315°4.如图所示,AB∥CD,∠BAE=30°,∠DCE=60°,EF、EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?5. 给出下列说法:①两条直线被第三条直线所截,则内错角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③平面内的三条直线任意两条都不平行,则它们一定有三个交点;④若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.其中正确的个数是().A.1 B.2 C.3 D.46.如图,已知AB∥CD∥EF,EH⊥CD,垂足为H,则∠A+∠ACE+∠CEH等于().A.180°B.270°C.360°D.540°7.将一直角三角板与两边平行的纸条按如图所示的方式放置,有下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正确的个数是()A.1 B.2C.3 D.48.小明从家出来骑自行车上学,先沿着一笔直的街道向正北方向骑2000米后,第一次向右拐45°,大约骑500米后,又再向右拐45°,此时小明骑车的方向是().A.正北 B.北偏东45° C.正东 D.北偏西45°9. 如图,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是( ).A.①② B.②④C.①③④ D.①②③④10. 如图,已知直线FA⊥AC于A,HC⊥AC于C,则下列判断错误的是( ).A.由∠1=∠2,得AB∥CDB.由∠3=∠4,得AB∥CDC.由∠5=∠6,∠3=∠4,得AB∥CDD.由∠SAB=∠SCD,得AB∥CD11.如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,则与∠FCD相等的角有()A.1个B.2个C.3个D.4个12.下列四个图形中,若∠1=∠2,能判定AB∥CD的是( )A. B. C. D.13.如图,在正方形网格中,∠1、∠2、∠3的大小关系是( ).A.∠1=∠2>∠3B.∠1<∠2<∠3C.∠1>∠2>∠3D.∠1=∠2=∠314.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°15.如图,已知l1∥l2,AC、BC、AD为三条角平分线,则与∠1互为余角的角有________个.16.如图,已知直线AB、CD相交于点O,OE⊥AB,∠1=25°,则∠2=________,∠3=________,∠4=________.17. 如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=_______18.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=________.19.如图,若AB∥CD,则∠α,∠β,∠γ之间的关系为_______________.21。

(完整版)平行线与相交线提高训练

(完整版)平行线与相交线提高训练

平行线与相交线提高训练1.如图,直线a∥b,那么∠x的度数是.2.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.3.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.6.已知,如图,AE∥BD,∠1=3∠2,∠2=26°,求∠C.7.直线l1∥l2,∠A=125°,∠B=105°,求∠1+∠2的度数(提示:要作辅助线哟!)8.已知:射线OP∥AE(1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP交AE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.(3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠B n﹣1OP的角平分线OB n,其中点B,B1,B2,…,B n﹣1,B n都在射线AE上,试求∠AB n O 的度数.9.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠P AB、∠PCD的关系,并证明你的结论推广延伸:(2)①如图2,已知AA1∥BA1,请你猜想∠A1,∠B1,∠B2,∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BA n,直接写出∠A1,∠B1,∠B2,∠A2、…∠B n﹣1、∠A n的关系拓展应用:(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为A.180°+α+β﹣γB.180°﹣α﹣γ+βC.β+γ﹣αD.α+β+γ②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是.10.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.11.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP 和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.12.如图1,AB∥CD,直线EF交AB于点E,交CD于点F,点G在CD上,点P在直线EF左侧、且在直线AB和CD之间,连接PE、PG.(1)求证:∠EPG=∠AEP+∠PGC;(2)连接EG,若EG平分∠PEF,∠AEP+∠PGE=110°,∠PGC=∠EFC,求∠AEP的度数;(3)如图2,若EF平分∠PEB,∠PGC的平分线所在的直线与EF相交于点H,则∠EPG与∠EHG 之间的数量关系为.13.已知E、D分别在∠AOB的边OA、OB上,C为平面内一点,DE、DF分别是∠CDO、∠CDB的平分线.(1)如图1,若点C在OA上,且FD∥AO,求证:DE⊥AO;(2)如图2,若点C在∠AOB的内部,且∠DEO=∠DEC,请猜想∠DCE、∠AEC、∠CDB之间的数量关系,并证明;(3)若点C在∠AOB的外部,且∠DEO=∠DEC,请根据图3、图4分别写出∠DCE、∠AEC、∠CDB 之间的数量关系(不需证明).14.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.15.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ 于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.16.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=;(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA=;(3)将(2)中的“∠OBA=42°”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度数.(用含α的代数式表示)17.已知直线AB∥CD,E是直线AB的上方一点,连接AE、EC(1)如图1,求证:∠AEC+∠EAB=∠ECD(2)如图2,AF平分∠BAE,CF平分∠DCE,且∠AFC比∠AEC的倍少40°,直接写出∠AEC的度数18.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=;DE、CE又分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=.20.如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC 于F点.(1)求证:∠DBF+∠DFB=90°;(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.。

中考数学相交线与平行线专题训练50题-含答案

中考数学相交线与平行线专题训练50题-含答案

中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.一副直角三角板如图所示摆放,它们的直角顶点重合于点O,//CO AB,则∠=()BODA.30︒B.45︒C.60︒D.90︒2.∠1与∠2是一组平行线被第三条直线所截的同旁内角,若∠1=50°,则()A.∠2=50°B.∠2=130°C.∠2=50°或∠2=130°D.∠2的大小不一定3.如图,AB//CD,如果∠B=30°,那么∠C为()A.40°B.30°C.50°D.60°4.如图,已知∠1=50°,要使a∠b,那么∠2等于()A.40°B.130°C.50°D.120°5.在同一平面内不重合的三条直线的交点个数()A.可能是0个,1个,2个B.可能是0个,1个,3个C.可能是0个,1个,2个,3个D.可能是0个,2个,3个6.在下图中,1∠是同位角的是()∠和2A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 7.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .6,(3,2)C .3,(3,0)D .3,(3,2) 8.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D .9.如图,直线l ∠m ,将Rt △ABC (∠ABC =45°)的直角顶点C 放在直线m 上,若∠2=24°,则∠1 的度数为( )A .23︒B .22︒C .21︒D .24︒ 10.如图,已知1130∠=︒,250∠=︒,3115∠=︒,则4∠的度数为( )A .65︒B .60︒C .55︒D .50︒11.如图,直线AB ,CD 被直线EF 所截,则∠AGE 的同位角是( )A .∠BGEB .∠BGFC .∠CHED .∠CHF 12.下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =13.如图,直线AB 、直线CD 交于点E ,EF AB ⊥,则CEF ∠与BED ∠的关系是( )A .互余B .相等C .对顶角D .互补 14.下列命题是真命题的是()A .过一点有且只有一条直线与已知直线垂直B .经过一点有且只有一条直线与已知直线平行C .同旁内角互补,两直线平行D .同位角相等15.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )A .150°B .40°C .80°D .90° 16.如图,直线a //b ,∠1=85°,∠2=35°,则∠3的度数为( )A .40°B .45°C .50°D .55° 17.如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A .15°B .25°C .35°D .45° 18.如图,∠1=∠2=22°,∠C=130°,则∠DAC = ( )A .28°B .25°C .23°D .22° 19.如图,∠ADB =∠ACB =90°,AC 与BD 相交于点O ,且OA =OB ,下列结论:∠AD =BC ;∠AC =BD ;∠∠CDA =∠DCB ;∠CD ∠AB ,其中正确的有( )A .1个B .2个C .3个D .4个 20.一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为( )A .第一次向右拐38°,第二次向左拐142°B .第一次向左拐38°,第二次向右拐38°C .第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°二、填空题a b∠=︒,则∠2=_________.21.如图,已知直线//,17022.如图,AB∠CD,CE∠GF,若∠1=60°,则∠2=_____°.23.如图,直线AC和FD相交于点B,下列判断:∠∠GBD和∠HCE是同位角;∠∠ABD和∠ACH是同位角;∠∠FBC和∠ACE是内错角;∠∠FBC和∠HCE是内错角;∠∠GBC和∠BCE是同旁内角.其中正确的是____.(填序号)24.如图,直线a,b交于点O,若138∠=︒,则2∠=__°.25.如图,四边形ABCD,点E是AB的延长线上的一点.请你添加一个条件,能判定∥.这个条件是______.AD BC26.如图,AB 、BC 是∠O 的弦,OM ∥BC 交AB 于点M ,若∠AOC =100°,则∠AMO =___.27.检验直线与平面平行的方法:(1)______________只能检验直线与水平面是否平行;(2)______________可以检验一般的直线与平面是否垂直;28.如图,AB//CD ,点E 在线段BC 上,若140∠=,230∠=,则3∠的度数是______.29.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)30.如图,AB∠CD .EF∠AB 于E ,EF 交CD 于F ,已知∠1=58°12',则∠2=______.31.如图,直线AB 、CD 相交于点O ,∠AOC=80°,∠1=30°,求∠2的度数解:因为∠DOB=∠______ ( )_________=80° (已知)所以,∠DOB=____°(等量代换)又因为∠1=30°( )所以∠2=∠____- ∠_____ = _____ - _____=_____ °32.把一张宽度相等的纸条按如图所示的方式折叠.图中∠1=100°,则∠2=____°.33.已知,如图,在△ABC 中,BO 和CO 分别平分△ABC 和△ACB ,过O 作DE△BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为________.34.如图,在四边形ABCD 中,AB ∠CD ,连接AC ,BD .若∠ACB =90°,AC =BC ,AB =BD ,AD =AE 则∠ADC =_____°.35.如图,BE 平分ABC ∠,DE BC ∥,若1=25∠.,则2∠的度数为______.36.在四边形ABCD 中,AD BC ∥,AD BC <,90A ∠=︒,4AB =,3BC =,点E 为BCD ∠的平分线上一点,连接BE ,且3BE =,连接DE ,则CDE 的面积为________.37.如图,将矩形纸片ABCD 沿EF 折叠后,点C 、D 分别落在点C ′、D ′处,若∠AFE=65°,则∠C ′EB =________度.38.已知 ∠1 的两边分别平行于 ∠2 的两边,若 ∠1 = 40°,则 ∠2 的度数为__. 39.如图,在∠ABC 中,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF∠BC 交AB 于E ,交AC 于F.若BE=2,CF=3,则线段EF 的长为________.40.如图,在t R ABC ∆中,90︒∠=C ,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是________.三、解答题41.如图,∠A=∠1,∠1=∠2,CD 平分∠ADE ,试说明∠C=∠ADC .42.如图.BA DE ∥,30B ∠=︒,40D ∠=︒,求∠C 的度数.43.如图所示,已知12180,3,B DE ∠+∠=︒∠=∠和BC 平行吗?如果平行,请说明理由.44.如图,点E 、F 分别在AB 、CD 上,AF ∠CE 于点O ,∠1=∠B ,∠A +∠2=90°,求证∠AB ∥CD .请填空.证明∠∠AF ∠CE (已知),∠∠AOE =90°(___)又∠∠1=∠B (已知)∠CE ∥BF (_____),∠∠AFB =∠AOE (___)∠∠AFB =90°(_)又∠∠AFC +∠AFB +∠2=180°(平角的定义)∠∠AFC +∠2=(________)又∠∠A +∠2=90°(已知)∠∠A =∠AFC (_____)∠AB ∥CD (_____)45.如图,在∠ABC 中,AB =BC ,点D 、E 分别在边AB 、BC 上,且DE ∠AC ,AD =DE ,点F 在边AC 上,且CE =CF ,连接FD .(1)求证:四边形DECF是菱形;(2)如果∠A=30°,CE=4,求四边形DECF的面积.46.已知:如图,B、D分别在AC、CE上,AD是∠CAE的平分线,BD∠AE,AB=BC.求证:AC=AE.47.如图,直线AB与CD交于点F,锐角∠CDE=α,∠AFC+α=180°.(1)求证:AB∠DE;(2)若G为直线AB(不与点F重合)上一点,∠FDG与∠DGB的角平分线所在的直线交于点P.∠如图2,α=50°,G为FB上一点,请补齐图形并求∠DPG的度数;∠直接写出∠DPG的度数为(结果用含α的式子表示).48.完成下面的证明.已知:如图,BC∠DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∠BC∠DE,∠∠ABC=∠ADE().∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4.∠∠().∠∠1=∠2().49.如图所示,∠ABC∠∠DEF,试说明AB∠DE,BC∠EF.50.(1)填空:如图∠,AB∠CD,猜想∠BPD与∠B,∠D的关系,并说明理由.解:过点P作EF∠AB,如图所示∠∠B+∠BPE=180°(______________________________).∠AB∠CD,AB∠EF∠EF∠CD(如果两条直线都和第三条直线平行,那么(_____________________).∠∠EPD+∠D=180°∠∠B+∠BPE+∠EPD+∠D=________,即∠BPD+∠B+∠D=360°(2)仿照上面的解题方法,观查图∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,并说明理由.(3)观查图∠和∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,不需要说明理由.参考答案:1.C【分析】由AB //CO 得出∠BAO =∠AOC ,即可得出∠BOD .【详解】解://AB CO ,60OAB AOC ∴∠=∠=︒6090150BOC ∴∠=︒+︒=︒90AOC DOA DOA BOD ∠+∠=∠+∠=︒60AOC BOD ∴∠=∠=︒故选:C .【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题. 2.B【分析】根据两直线平行,同旁内角互补即可得.【详解】根据题意有:∠1+∠2=180°,∠∠1=50°,∠∠2=130°,故选:B .【点睛】本题主要考查了平行线的性质的知识,掌握两直线平行,同旁内角互补是解答本题的关键.3.B【分析】根据两直线平行内错角相等即可解决.【详解】解://30AB CD B ∠=︒,,30C ∴∠=︒, 故选:B .【点睛】本题主要考查平行线的性质,平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;题目较简单,能正确识别角的类型是解题的关键.4.C【分析】先假设a ∠b ,由平行线的性质即可得出∠2的值.【详解】解:假设a ∠b ,∠∠1=∠2,∠∠1=50°,∠∠2=50°.故选:C.【点睛】本题考查的是平行线的判定定理,即同位角相等,两直线平行.5.C【分析】在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.【详解】解:由题意画出图形,如图所示:故选C.【点睛】本题考查了直线的交点个数问题,此类题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F “形.7.D【分析】由AC x ∥轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ∠AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】解:∠AC x ∥轴,A (-3,2),(),C x y ,()3,5B ,∠y =2,当BC ∠AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值为:5−2=3, ∠此时点C 的坐标为(3,2),故D 正确.故选:D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.8.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A 、不是同位角,故本选项错误;B 、不是同位角,故本选项错误;C 、不是同位角,故本选项错误;D 、是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.9.C【分析】过点B 作直线b∠l ,再由直线m∠l 可知m∠l∠b ,得出∠3=∠1,∠2=∠4,由此可得出结论.【详解】解:过点B 作直线b∠l ,如图所示:∠直线m∠l ,∠m∠l∠b ,∠∠3=∠1,∠2=∠4.∠∠2=24°,∠∠4=24°,∠∠3=45°-24°=21°,∠∠1=∠3=21°;故选择:C.【点睛】本题考查的是平行线的性质;熟练掌握平行线的性质,并能进行推理论证与计算是解决问题的关键.10.A【分析】如图,由题意易得a ∠b ,则有∠3+∠5=180°,∠4=∠5,然后问题可求解.【详解】解:如图,∠1130∠=︒,250∠=︒,∠12180∠+∠=︒,∠a ∠b ,∠∠3+∠5=180°,∠3115∠=︒,∠4565∠=∠=︒;故选A .【点睛】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.11.C【分析】根据同位角的定义进行分析解答即可,两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角.【详解】解:∠直线AB 、CD 被直线EF 所截,∠只有∠CHE 与∠AGE 在截线EF 的同侧,且在AB 和CD 的同旁,即∠AGE 的同位角是∠CHE .故选:C .【点睛】本题考查同位角概念,解题的关键在于运用同位角的定义正确地进行分析. 12.B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.13.A【分析】根据邻补角的定义由90BEF ∠=︒得到90FEA ∠=︒,即90CEA AEF ∠+∠=︒,再根据对顶角相等得到CEA BED ∠=∠,所以90CEF BED ∠+∠=︒.【详解】解:90BEF ∠=︒,90FEA ∴∠=︒,即90CEA CEF ∠+∠=︒,CEA BED ∠=∠,90CEF BED ∴∠+∠=︒,即CEF ∠与BED ∠互余.故选:A .【点睛】本题考查了对顶角、邻补角:解题的关键是:知道有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.14.C【分析】根据两直线的位置关系、平行线的性质与判定分别进行判断即可.【详解】A:同一平面内,过一点有且只有一条直线与已知直线垂直,错误;B:过直线外一点有且只有一条直线与已知直线平行,错误;C:平行线的判定:同旁内角互补,两直线平行,正确;D:平行线的性质:两直线平行,同位角相等,错误.故答案选:C【点睛】本题考查两直线的位置关系以及平行线的性质与判定,掌握两直线的位置关系以及平行线的性质与判定是解题关键.15.D【详解】解:∠AB=DC,AD=BC,∠四边形ABCD为平行四边形,∠∠ADE=∠CBF,∠BF=DE,∠∠ADE∠∠CBF,∠∠BCF=∠DAE,∠∠DAE+∠ADB=∠AEB∠∠BCF=∠DAE=∠AEB-∠ADB=90°故选D.16.C【分析】根据平行线的性质可得同位角相等,再根据三角形的外角性质可求出∠3,即可求出结果.a b【详解】解://∴∠=∠︒14=85∠=∠∠,由三角形外角性质知,42+3∠=︒又235∴∠=∠-∠=︒-︒=︒,342853550故选:C.【点睛】本题考查平行线的性质、三角形的外角等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.C【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【详解】解:∠AB∠CD,∠∠DNM=∠BME=80°,∠∠PND=45°,∠∠PNM=∠DNM-∠DNP=35°,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.18.A【详解】因为∠1=∠2=22°,所以AB//CD,所以∠DAC+∠CAB=180°.由于∠C=130°,则︒-︒-︒=︒.故选A.∠DAC=180130222819.D【分析】由△ABC∠∠BAD(AAS),推出AD=BC,AC=BD,故∠∠正确,再证明CO=OD,可得∠CDA=∠DCB,故∠正确,由∠CDO=∠OAB,可得CD∠AB,故∠正确;【详解】解:∠OA=OB,∠∠DAB=∠CBA,∠∠ACB=∠BDA=90°,AB=BA,∠∠ABC∠△BAD(AAS),∠AD=BC,AC=BD,故∠∠正确,∠BC=AD,BO=AO,∠CO=OD,∠∠CDA=∠DCB,故∠正确,∠∠COD=∠AOB,∠∠CDO=∠OAB,∠CD∠AB,故∠正确,故选:D.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、平行线的判定等知识,解题的关键是灵活的选择判定方法证明三角形全等.20.B【详解】A. 如图:∠∠1=38°,∠2=142°,∠∠3=180°−∠2=38°,∠∠4=∠1+∠3=76°≠∠1,∠AB与CD不平行;故本选项错误;B. 如图:∠∠1=∠2=38°,∠AB∠CD,且方向相同;故本选项正确;C. 如图:∠∠2=142°,∠∠3=180°−∠2=38°,∠∠1=38°,∠∠1=∠2,∠AB∠CD,但方向相反;故本选项错误;D. 如图:∠∠2=40°,∠∠3=180°−∠2=140°≠∠1,∠AB与CD不平行,故本选项错误.故选:B.21.110°【详解】解:根据a∠b得∠1=∠3=70°,∠∠2+∠3=180°,∠∠2=180°-70°=110°.故答案为110°.22.60【分析】根据AB∠CD得出:∠1=∠CEF,又CE∠GF得出:∠2=∠CEF,根据等量代换∠=∠=︒.即可得出:1260【详解】解:∠AB∠CD,∠∠1=∠CEF,∠CE∠GF,∠∠2=∠CEF,∠∠2=∠1,∠∠1=60°,∠∠2=60°,故答案为:60.【点睛】本题考查平行线的性质,注意两直线平行,内错角相等、同位角相等. 23.∠∠∠【分析】根据同位角、内错角、同旁内角的定义判断即可.【详解】∠中∠GBD 和∠HCE 没有任何关系,故∠错;∠中∠ABD 和∠ACH 是直线FD 与直线CH 被直线AC 所截形成的同位角,故∠对; ∠中∠FBC 和∠ACE 是直线FD 与直线CE 被直线AC 所截形成的内错角,故∠对; ∠中∠FBC 和∠HCE 没有任何关系,故∠错;∠中∠GBC 和∠BCE 是直线BG 与直线CE 被直线AC 所截形成的同旁内角,故∠对; 综上正确的有:∠∠∠.【点睛】本题主要考查同位角、内错角、同旁内角的定义,解题的关键是能够熟练地掌握同位角、内错角、同旁内角的定义即可.24.38【分析】根据对顶角相等进行解答即可.【详解】解:∠图中1∠和2∠是对顶角,138∠=︒,∠2138∠=∠=︒.故答案为:38.【点睛】本题主要考查了对顶角的性质,熟练掌握对顶角相等,是解题的关键. 25.A CBE ∠=∠(答案不唯一)【分析】根据平行线的判定方法结合图形进行补充条件即可.【详解】解:补充:,A CBE由同位角相等,两直线平行可得,AD BC ∥补充:180,A ABC根据同旁内角互补,两直线平行可得,AD BC ∥故答案为:A CBE ∠=∠或180A ABC ∠+∠=︒(任写一个即可)【点睛】本题考查的是平行线的判定,掌握“同位角相等,两直线平行或同旁内角互补,两直线平行”是解本题的关键.26.50°##50度【分析】先由圆周角定理求出∠B 的度数,再根据平行线的性质即可求出∠AMO 的度数【详解】∠∠AOC =2∠B ,∠AOC =100°,∠∠B =50°,∠OM ∥BC ,∠∠AMO =∠B =50°,故答案为50°.【点睛】本题考查了圆周角定理,平行线的性质,熟练掌握圆周角定理,并找到∠AMO 与∠B 的关系,已知角与∠B 的关系,从而求出角的度数.27. 铅垂线 合页型折纸【分析】根据平行线的判定,以及“铅垂线”、“合页型折纸法”、“长方形纸片法”的方法分析判断即可得解.【详解】(1)根据重力学原理,铅垂线垂直于水平面,与铅垂线垂直的直线则与平面平行,故填:铅垂线;(2)合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把折断的两边放到水平面上,可判断折痕与水平面垂直,故填:合页型折纸.【点睛】本题考查了平行线的判定与垂线,利用物理力学原理是最好的检验方法. 28.70【分析】先根据平行线的性质求出C ∠的度数,再由三角形外角的性质即可得出结论.【详解】解:AB//CD ,140∠=,230∠=,C 40∠∴=,3∠是CDE 的外角,3C 2403070∠∠∠∴=+=+=.故答案为70.【点睛】本题考查了平行线的性质,三角形外角的性质,用到的知识点为:两直线平行,内错角相等.29.假.【分析】根据邻补角的定义来分析:既要其和是个平角(或180°),也要满足位置关系.【详解】解:根据邻补角的定义可知,两个角的度数和是180度,且有一条公共边称这两个角互为邻补角,∴如果两个角的和是平角时,那么这两个角不一定是邻补角.故答案为:假.【点睛】本题主要考查了邻补角的概念,比较简单.30.31°48′【分析】先由平行线的性质求出∠3的度数,再由∠AEF=90°,即可求出∠2.【详解】∠AB ∠ CD,∠1=58°12',∠∠3=∠1=58°12',∠EF∠AB,∠∠AEF=90°,∠∠2=90°-∠3=90°-58°12'=31°48′,故答案为31°48′.【点睛】本题考查了平行线的性质、垂线的定义,熟练掌握相关内容是解题的关键. 31.∠AOC,对顶角相等,∠AOC, 80°,已知BOD,1,80°,30°,50【详解】解:因为∠DOB=∠AOC (对顶角相等),∠AOC=80° (已知),所以,∠DOB=80°(等量代换),又因为∠1=30°(已知),所以∠2=∠BOD- ∠1 = 80°-50°=30°,故答案为:∠AOC,对顶角相等,∠AOC,80°,已知,BOD,1,80°,30°,50. 32.50.【详解】试题解析:如图:∠FED,根据折叠得出∠2=∠DEM=12∠是一张宽度相等的纸条,∠AE∠BM,∠1=100°,∠∠FED=∠1=100°,∠∠2=50°考点:1.平行线的性质;2.翻折变换(折叠问题).33.5【详解】∠在△ABC 中,BO 和CO 分别平分∠ABC 和∠ACB , ∠∠DBO=∠OBC ,∠ECO=∠OCB ,∠DE∠BC ,∠∠DOB=∠OBC=∠DBO ,∠EOC=∠OCB=∠ECO ,∠DB=DO ,OE=EC ,∠DE=DO+OE ,∠DE=BD+CE=5.故答案为5.34.105【分析】先根据90,ACB AC BC ∠=︒=判断出ACB ∆是等腰直角三角形,再根据AB BD =,AD DE =利用等腰三角形两底角相等的性质求算.【详解】∠90,ACB AC BC ∠=︒=∠45CAB ∠=︒又∠,AB BD AD AE ==∠,ADE AED BAD BDA ∠=∠∠=∠设=ADE AED x ∠=∠︒∠1802DAE x DAB ADB x ∠=︒-︒∠=∠=︒,∠180245x x ︒-︒+︒=︒∠75x =︒∠75DAB x ∠=︒=︒又∠//AB CD∠18075105ADC ∠=︒-︒=︒故答案为:105【点睛】本题考查平行线、等腰三角形、等腰直角三角形的性质,转化相关的角度是解题关键.35.50.【分析】先由角平分线的定义即可得出∠ABC 的度数,再根据平行线的性质求出∠1的度数.【详解】∠BE 平分∠ABC ,∠∠ABC=2∠1=50°.∠DE∠BC,∠∠ABC=∠2=50°.故答案为50°.【点睛】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.36.6【分析】过点D作DF∠BC,连接BD,根据平行线的判定和性质得出DF=AB=4,再由等边对等角确定∠BEC=∠BCE,利用各角之间的关系及平行线的判定及性质得出BE∠DC,∆CED与∆CDB的边CD上的高相等,结合图形求解即可.【详解】解:过点D作DF∠BC,连接BD,如图所示,∠AD∠BC,∠A=90,∠∠ABC=90,∠DF∠BC,∠∠DFB=90,∠DF∠AB,∠四边形ABFD为平行四边形,∠DF=AB=4,∠BE=BC=3,∠∠BEC=∠BCE,∠CE平分∠BCD,∠∠DCE=∠BEC,∠BE∠DC,∠∆CED与∆CDB的边CD上的高相等,∠1·62CDE BCDS S BC DF===,故答案为:6.【点睛】题目主要考查平行四边形的判定和性质,平行线的判定,角平分线的计算,等边对等角等,理解题意,综合运用这些知识点是解题关键.37.50【详解】试题解析:∠AD∠BC∠∠FEC=∠AFE=65°又∠沿EF折叠∠∠C′EF=∠FEC=65°,∠∠C'EB=180°-65°-65°=50°.【点睛】本题考查了翻折变换的知识,解答本题关键是掌握折叠前后图形的对应边和对应角相等,另外要熟练运用平行线的性质,难度一般.38.40°或140°【分析】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. 根据题意, ∠1=∠2或∠1和∠2互补.【详解】解:根据题意,得∠1=∠2=40°或∠2=180°-∠1=180°-40°=140°故答案为40°或140°.【点睛】本题考查了平行线的性质,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.39.5【分析】利用角平分线和平行可证得∠EBD=∠EDB,∠FDC=∠FCD,可得到DE=BE,DF=FC,可得到EF=BE+FC.【详解】∠BD平分∠ABC,∠∠EBD=∠DBC,∠EF∠BC,∠∠EDB=∠DBC,∠∠EBD=∠EDB,∠DE=BE=2,同理DF=3,∠EF=DE+DF=2+3=5.【点睛】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,解答此题的关键是熟练掌握等腰三角形的两角相等或两边相等.40.1.2【分析】过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,利用相似求解即可.【详解】∠90︒∠=C ,6AC =,8BC =,∠AB =10,∠2CF =,将CEF ∆沿直线EF 翻折,点C 落在点P 处,∠CF =PF =2,AF =AC -CF =6-2=4,过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,∠∠A =∠A ,∠AGF =∠ACB ,∠△AGF ∠△ACB , ∠AF GF AB CB =, ∠4108GF =, ∠FG =3.2,∠PD =FG -PF =3.2-2=1.2,故答案为:1.2.【点睛】本题考查了勾股定理,折叠的性质,三角形相似,垂线段最短,准确找到最短位置,并利用相似求解是解题的关键.41.见解析.【分析】根据平行线的判定可得AD∠BE ,然后求出∠2=∠E ,结合已知条件可证明AC∠DE ,进而得到∠C=∠CDE ,再根据角平分线的定义求出∠ADC=∠CDE ,等量代换即可证明结论.【详解】证明:∠∠A=∠1,∠AD∠BE ,∠∠2=∠E ,∠∠1=∠2,∠∠1=∠E ,∠AC∠DE ,∠∠C=∠CDE ,∠CD 平分∠ADE ,∠∠ADC=∠CDE ,∠∠C=∠ADC.【点睛】本题考查了角平分线的定义以及平行线的判定和性质,灵活运用平行线的判定定理和性质定理是解题的关键.42.70°【分析】过点C 作//CF BA ,根据平行线的性质及可求解;【详解】解:过点C 作//CF BA ,∠30BCF B ∠=∠=︒,∠//BA DE ,∠//CF DE ,∠40FCD D ∠=∠=︒,∠70BCD BCF FCD ∠=∠+∠=︒.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.43.DE ∠BC ,理由见解析【分析】由条件可得到∠2+∠DFH =180°,可证得AB//EH ,可得到∠3+∠BDE=180°,结合条件可证明DE//BC【详解】DE ∠BC ,理由如下:∠∠1+∠2=180°,∠1=∠DFH ,∠∠2+∠DFH =180°,∠AB ∠EH ,∠∠3+∠BDE =180°,∠∠B =∠3,∠∠B +∠BDE =180°,∠DE ∠B C .【点睛】本题主要考查平行线的判定,用到的知识点为:同旁内角互补,两直线平行. 44.垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【分析】根据垂直的定义,平行线的判定与性质即可得.【详解】证明∠∠AF ∠CE (已知),∠∠AOE =90°(垂直的定义),又∠∠1=∠B (已知),∠CE BF ∥ (内错角相等,两直线平行),∠∠AFB =∠AOE (两直线平行,同位角相等),∠∠AFB =90°(等量代换),又∠∠AFC +∠AFB +∠2=180°(平角的定义),∠∠AFC +∠2=(90°),又∠∠A +∠2=90°(已知),∠∠A =∠AFC (同角的余角相等),∠AB CD ∥ (内错角相等,两直线平行),故答案为:垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【点睛】本题考查了垂直的定义,平行线的判定与性质,解题的关键是掌握这些知识点. 45.(1)证明见解析;(2)四边形DECF 的面积=8【分析】(1)根据等腰三角形的性质和平行线的性质得到BDE BED ∠=∠,求得BD BE =,推出四边形DECF 是平行四边形,于是得到结论;(2)过点F 作FG BC ⊥交BC 于G ,根据菱形的性质得到4CF =,根据等腰三角形的性质得到A C ∠=∠,根据直角三角形的性质得到122FG FC ==,于是得到结论.【详解】(1)解:AB BC =,A C ∴∠=∠,//DE AC ,BDE A ∴∠=∠,BED C ∠=∠,BDE BED ∴∠=∠,BD BE ∴=,BA BD BC BE ∴-=-,AD CE ∴=,AD DE =,DE EC ∴=,CE CF =,DE CF ∴=,//DE FC ,∴四边形DECF 是平行四边形,CE CF =,∴四边形DECF 是菱形;(2)解:过点F 作FG BC ⊥交BC 于G ,四边形DECF 是菱形,4CE =,4CF ∴=,AB BC =,A C ∴∠=∠,30A ∠=︒,30C ∴∠=︒,90FGC ∠=︒,30C ∠=︒,122FG FC ∴==, ∴四边形DECF 的面积428EC FG ==⨯=.【点睛】本题考查了菱形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,直角三角形的性质,解题的关键是正确的识别图形.46.见解析【分析】根据角平分线和平行线的性质以及等腰三角形的判定解答即可.【详解】证明:∠AD 是∠CAE 的平分线,∠∠BAD =∠DAE ,∠BD ∠AE ,∠∠BDA =∠DAE ,∠∠BAD =∠BDA ,∠AB =BD ,∠AB =BC ,∠BC =BD ,∠∠C =∠CDB ,∠BD ∠AE ,∠∠E =∠CDB ,∠∠C =∠E ,∠AC =AE .【点睛】此题考查等腰三角形的性质与判定,关键是根据角平分线和平行线的性质得出BC=BD .47.(1)见解析;(2)∠见解析,∠DPG =65°;∠(90°﹣12a )或(90°+12a ) 【分析】(1)利用邻补角的意义,得出∠D =∠AFD ,根据内错角相等,两直线平行即可得结论;(2)∠根据题意画出图形结合(1)即可求出∠DPG 的度数;∠结合∠即可写出∠DPG 的度数.【详解】(1)证明:∠∠AFC +∠AFD =180°,∠AFC +α=180°,∠∠AFD =α=∠CDE ,∠AB∠DE;(2)解:∠如图即为补齐的图形,∠∠FDG与∠DGB的角平分线所在的直线交于点P,∠∠FDG=2∠FDP=2∠GDP,∠DGB=2∠DGQ=2∠BGQ,由(1)知AB∠DE,∠∠DFB=180°﹣α=180°﹣50°=130°,∠∠DGB=∠FDG+∠DFG,∠2∠DGQ=2∠GDP+130°,∠∠DGQ=∠GDP+65°,∠∠DGQ=∠GDP+∠DPG,∠∠DPG=65°;∠由∠知∠DPG=12∠DFB=12(180°﹣α)=90°﹣12a.当点G在AF上时,∠DPG=180°﹣(∠GDP+∠DGP)=180°﹣12(∠GDC+∠DGB)=180°﹣12∠DFB=180°﹣12(180°﹣α)=90°+12 a.故答案为:(90°﹣12a)或(90°+12a).【点晴】考查了平行线的判定与性质,解题关键是灵活运用其性质.48.两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的性质得出∠ABC=∠ADE,根据角平分线定义得出∠3=12∠ABC,∠4=12∠ADE,求出∠3=∠4,根据平行线的判定得出DF∠BE,根据平行线的性质得出即可.【详解】证明:∠BC∠DE,∠∠ABC=∠ADE(两直线平行,同位角相等).∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4,∠DF∠BE(同位角相等,两直线平行),∠∠1=∠2(两直线平行,内错角相等),故答案是:两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能综合运用平行线的性质和判定进行推理是解此题的关键.49.见解析.【分析】根据∠ABC∠∠DEF,得到∠A=∠D,∠1=∠2,根据内错角相等,两直线平行即可判定.【详解】解:证明:∠∠ABC∠∠DEF∠∠A=∠D,∠AB//DE;∠∠ABC∠∠DEF,∠∠1=∠2,∠BC//EF.【点睛】考查全等三角形的性质以及平行线的判定,掌握全等三角形的性质是解题的关键.50.(1)两直线平行,同旁内角互补;这两条直线互相平行;360°(2)∠BPD=∠B+∠D;理由见解析(3)图∠:∠D=∠B+∠BPD;图∠:∠B=∠BPD+∠D【分析】(1)利用平行线的性质解答;(2)作平行线,根据内错角相等可证∠BPD=∠B+∠D;(3)同样作平行线,根据内错角相等可证∠B=∠BPD+∠D.【详解】(1)过点P作EF∥AB,如图所示:∠∠B+∠BPE=180°(两直线平行,同旁内角互补),∠AB∥CD,EF∥AB,∠CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD+∠D=180°,∠∠B+∠BPE+∠EPD+∠D=360°,∠∠B+∠BPD+∠D=360°.故答案为:两直线平行,同旁内角互补;这两条直线互相平行;360°.(2)猜想∠BPD=∠B+∠D;理由:过点P作EP∥AB,如图所示:∠EP∥AB,∠∠B=∠BPE(两直线平行,内错角相等),∠AB∥CD,EP∥AB,∠CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD=∠D,∠∠BPD=∠B+∠D.(3)图∠结论:∠D=∠BPD+∠B,。

七年级相交线与平行线、全等三角形复习整理资料

七年级相交线与平行线、全等三角形复习整理资料

相交线与平行线复习一、对顶角、邻补角、邻余角、互补、互余、垂线1. 相关概念(1) 对顶角:公共顶点+反向边,对顶角相等。

(2) 邻补角:公共边+两侧边反向,邻补角和为180° (3) 邻余角:公共边+两侧边互相垂直。

(4) 互补与邻补的区别、互余和邻余的区别。

(5) 平面内的直线位置关系有:重合、相交(垂直、斜交)、平行 (6) 两条直线相交所成的角的角度x 取值范围(0< x <180°)两直线的夹角的角度y 的取值范围 (0< y ≤90°) ,当y=90°时,两直线垂直(7) 平面内,过任意一点有且只有一条直线与已知直线垂直(作图)平面内,过已知直线外...一点有且只有一条直线与已知直线平行(作图) (8) 点到直线的距离——直线外一点到这条直线的垂线段...的长度..(作图) 对顶角、邻补角的区分:下面四个图形中,∠1与∠2是对顶角的图形的个数是( )12121212例题:如果两个角的两条分别互相平行,则这两个角的数量关系是_________________ 如果两个角的两条边分别互相垂直,则这两个角的数量关系是_______________ 若两条直线相交所成的四个角中,其中一个比另一个的2倍少20度,则这两直线的夹角是______ 2. 几个基本图形中的角的关系 (图1)可得OE ⊥OD ,从而可得互余关系的角__________________________ 可得互补关系的角__________________ (图2)已知OA ⊥OB ,OC ⊥OD可得相等的角_______________________________ 可得∠BOC 与 ∠____________互补 (图3)OE ⊥AB ,OB 平分∠DOF ,若∠EOC =115°,则∠BOF = ,∠COF = 。

(图1) (图2)二、同位角、内错角、同旁内角1. 相关概念: “三线八角”图2. 能利用概念找清角的关系 以下概念必须具有公共边(截线): (1)描出要判定的两个角,看清公共边(截线)同位角F 、内错角Z 、同旁内角C(2三、平行线的判定与性质1.判定与性质、相关结论(1).⎫−−−→⎪⎬←−−−⎪⎭判定性质同位角相等内错角相等(两直线平行)同旁内角互补(数量关系与位置关系的转化)(2).平行线的传递性——同平行于一条直线的两直线平行(性质)(3).平面内同垂直于一直线的两直线平行(不可直接利用,可由同位角等证明)(4).平行线间的距离处处相等。

七年级数学-相交线与平行线专项习题(含答案解析)

七年级数学-相交线与平行线专项习题(含答案解析)

1. 已知多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,则常数a(含答案解析)的值是 .2. 观察如图图形,并阅读相关文字:那么5条直线相交,最多交点的个数是()A .10B .14C .21D .153. 已知x -x 1=3,则x 4+x 14= .4. 已知(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,则(a +b )2= .5.6. 如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数;(2)若OE,OF分别平分∠BOD,∠BOC,求∠EOF的度数.=x 3+(1-2a )x 2-(1+2a )x +2a 1.解:(x -2a )•(x 2+x -1)=x 3+x 2-x -2ax 2-2ax +2a ,∵多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,∴1-2a =0,解得:a =0.5,故答案为:0.5.2. 解:两条直线相交,最多交点数为1个;三条直线相交,最多交点数为1+2=3(个);四条直线相交,最多交点数为1+2+3=6(个);五条直线相交,最多交点数为1+2+3+4=10(个).故选:A .3. 解:1194. 解:∵(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,即(a 2+b 2)2-32=7,∴(a 2+b 2)2=7+9=16,∴a 2+b 2=4,∴(a +b )2=a 2+b 2+2ab=4+2×3=4+6=10.故答案为:10.5.6. 解:(1)设∠BOD =x °,∵∠AOC 的度数比∠BOD 的度数的3倍多10度,且∠COD =90°, ∴x +(3x +10)+90=180,解得:x =20,∴∠BOD =20°;(2)∵OE 、OF 分别平分∠BOD 、∠BOC ,。

强化训练鲁教版(五四)六年级数学下册第七章相交线与平行线综合训练试题(含详细解析)

强化训练鲁教版(五四)六年级数学下册第七章相交线与平行线综合训练试题(含详细解析)

六年级数学下册第七章相交线与平行线综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若要使1l与2l平行,则1l绕点O至少旋转的度数是()A.38︒B.42︒C.80︒D.138︒2、如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°3、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是()A.∠BOC B.∠BOD C.∠DOE D.∠AOE4、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是()A.相等B.互余或互补C.互补D.相等或互补5、下列各图中,∠1与∠2是对顶角的是()A.B.C.D.6、如图,四边形中,AD∥BC,AC与BD相交于点O,若S△ABO=5cm2,S△DCO为()A.5cm2B.4cm2C.3cm2D.2cm27、下列四幅图中,1∠和2∠是同位角的是()A .(1)(2)B .(3)(4)C .(1)(2)(3)D .(1)(3)(4)8、如果同一平面内有三条直线,那么它们交点个数是( )个.A .3个 B .1或3个 C .1或2或3个 D .0或1或2或3个9、体育课上老师按照如图所示的方式测量同学的跳远成绩,这里面蕴含的数学原理是( )A .垂线段最短B .两点之间,线段最短C .平面内,过一点有且只有一条直线与已知直线垂直D .两点确定一条直线10、如图,4∠的内错角是( )A .1∠B .2∠C .3∠D .5∠第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,用数字表示的8个角中,若同位角有a 对,内错角有b 对,同旁内角有c 对,则ab ﹣c =___.2、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.3、如图,直线AB 、CD 相交于点O ,∠AOD =100°,那么∠BOD =______.4、已知,线段AB 垂直于线段CD ,垂足为O ,OE 平分∠AOC ,∠BOF =28°,则∠EOF =____°.5、如图所示,直线AB 与直线CD 交于点O .OE AB ⊥于点O ,若20BOD ∠=︒,则COE ∠的度数为________.三、解答题(5小题,每小题10分,共计50分)1、如图,107国道a 上有一个出口M ,想在附近公路b 旁建一个加油站,欲使通道最短,应沿怎样的线路施工?2、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.(1)试说明∠1=∠2;(2)若∠BOC=4∠2,求∠AOC的大小.3、如图所示,从标有数字的角中找出:(1)直线CD和AB被直线AC所截构成的内错角.(2)直线CD和AC被直线AD所截构成的同位角.(3)直线AC和AB被直线BC所截构成的同旁内角.4、按下面的要求画图,并回答问题:(1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东°方向上(精确到1°),O、M两点的距离是cm.(2)根据以下语句,在“图②”上边的空白处画出图形.画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点P 到AB的距离是cm.5、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.-参考答案-一、单选题1、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,∵l1∥l2,∴∠AOB=∠OBC=42°,∴80°-42°=38°,即l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.2、A【解析】【分析】根据对顶角相等可得∠AOC=∠BOD=42°,由于OA平分∠COE,可得∠AOE的度数,再由平角的定义可求出∠EOD的度数.解:∵∠AOC =∠BOD ,∠BOD =42°,∴∠AOC =42°,∵OA 平分∠EOC ,∴∠AOE =∠AOC =42°,∴∠EOD =180°−(∠AOE +∠BOD )=180°−(42°+42°)=96°.故选:A .【点睛】本题考查了角平分线的定义和对顶角的性质.解决本题的关键是熟记对顶角相等.3、A【解析】【详解】解:图中与AOC ∠互为邻补角的是BOC ∠和AOD ∠,故选:A .【点睛】本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.4、D【解析】【分析】由题意直接根据∠A 的两边分别垂直于∠B 的两边画出符合条件的图形进行判断即可.【详解】解:BD ⊥AD ,CE ⊥AB ,如图:∵∠A =90°﹣∠ABD =∠DBC ,∴∠A 与∠DBC 两边分别垂直,它们相等,而∠DBE =180°﹣∠DBC =180°﹣∠A ,∴∠A 与∠DBE 两边分别垂直,它们互补,故选:D .【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.5、D【解析】略6、A【解析】【分析】分别过点A 、D 作AE BC ⊥、DF BC ⊥,根据平行线的性质可得AE DF =,根据三角形的面积求得ABO DCO S S =△△,即可求解.【详解】解:分别过点A 、D 作AE BC ⊥、DF BC ⊥,如下图:∵//AD BC∴AE DF = 又∵12ABC S BC AE =⨯△,12DCB S BC DF =⨯△ ∴ABC DCB S S =△△∵ABO ABC CBO S S S =-△△△,DCO DCB CBO S S S =-△△△∴2=5ABO DCO S S cm =△△故选A【点睛】此题考查了平行线的性质以及三角形的面积公式,解题的关键是根据平行线的性质及三角形的面积公式推出ABO DCO S S =△△.7、A【解析】【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.8、D【解析】【分析】根据三条直线是否有平行线分类讨论即可.【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形.故选:D.【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.9、A【解析】【分析】由实际出发,老师测量跳远成绩的依据是垂线段最短.【详解】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:A.【点睛】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.10、D【解析】【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成” Z“形作答.【详解】∠,∠4的同旁内角是∠3,∠4的同位角是∠2,∠4与∠1不具有特殊位解:如图,4∠的内错角是5置关系.故选:D.【点睛】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.二、填空题1、9【解析】【分析】位于两条被截直线的同侧,截线的同旁的角是同位角,位于两条被截直线的内部,截线的两旁的角是内错角,位于两条被截直线的内部,截线的同旁的角是同旁内角,根据同位角,内错角,同旁内角概念结合图形找出各对角类型的角得出a, b, c的值,然后代入计算即可.解:同位角有∠1与∠6,2与∠5,∠3与∠7,∠4与∠8,同位角有4对,∴a=4,内错角有∠1与∠4,2与∠7,3与∠5,∠8与∠6,内错角4对,∴b=4,同旁内角有∠1与∠8,∠1与∠7,∠7与∠8,∠2与∠4,∠2与∠3,∠3与∠4,∠3与∠8,同旁内角有7对,∴c=7,∴ab﹣c=4×4-7=16-7=9,故答案为9.【点睛】本题考查同位角,内错角,同旁内角,以及代数式求值,掌握同位角,内错角,同旁内角概念,得出a=4,b=4,c=7是解题关键.2、110【解析】【分析】∠=︒即可求出∠EOB.先根据对顶角相等求出∠DOB,进而结合275【详解】解:∵∠1=35°,∴∠DOB=∠1=35°,又∵∠2=75°,∴∠EOB=∠2+∠DOB=110°.故答案为:110.本题考查了角的计算以及对顶角相等的性质,比较简单.3、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD+∠BOD=180°,∴∠BOD=180°-∠AOD=180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.4、107或163##163或107【解析】【分析】分两种情况:①射线OF在∠BOC内部;②射线OF在∠BOD内部.【详解】解:∵AB⊥CD,垂足为O,∴∠AOC=∠COB=90°,∵OE平分∠AOC,∠AOC=45°.∴∠AOE=∠COE=12分两种情况:①如图1,射线OF在∠BOC内部时,∵∠AOE=45°,∠BOF=28°,∴∠EOF=180°-∠AOE-∠BOF=107°;②如图2,射线OF在∠BOD内部时,∵∠COE=45°,∠COB=90°,∠BOF=28°,∴∠EOF=∠COE+∠COB+∠BOF=163°.故答案为107或163.【点睛】本题考查了垂直的定义,角平分线定义以及角的计算,进行分类讨论是解题的关键.5、70°##70度【解析】【分析】根据垂直定义和对顶角相等解答即可.【详解】解:∵OE⊥AB,∴∠AOE=90°,∵∠BOD=20°,∴∠AOC=∠BOD=20°,∴∠COE=∠AOE-∠AOC=90°-20°=70°,故答案为:70°.【点睛】本题考查垂直定义、对顶角相等、角的运算,熟练掌握角的运算是解答的关键.三、解答题1、作图见解析【解析】【分析】根据垂线段最短作图即可;【详解】解:如图,过点M作MN⊥b,垂足为N,欲使通道最短,应沿线路MN施工.【点睛】本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.2、(1)见解析;(2)60°【解析】【分析】(1)利用同角的余角相等解答即可得出结论;(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.【详解】解:(1)∵OM⊥AB,ON⊥CD,∴∠AOM=∠CON=90°,∴∠AOC+∠1=90°,∠AOC+∠2=90°,∴∠1=∠2.(2)∵OM⊥AB,∴∠BOM=90°.∵∠1=∠2,∠BOC=4∠2,∴∠BOC=4∠1.∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,即3∠1=90°,∴∠1=30°.∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.【点睛】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.3、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4【解析】【分析】根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.4、(1)图见解析,53,5;(2)图见解析,3.【解析】【分析】(1)先根据点的移动得到点M,再连接点,O M可得线段OM,然后测量角的度数和线段OM的长度即可得;(2)先画出线段AB,再根据垂线的尺规作图画出垂线PD,然后测量PD的长即可得.【详解】解:(1)如图,线段OM即为所求.此时M点在点O的北偏东53 方向上,O、M两点的距离是5cm,故答案为:53,5;(2)如图,线段AB和垂线PD即为所求.测得点P到AB的距离是3cm,故答案为:3.【点睛】本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.5、(1)150°;(2)12或24;(3)存在,9秒、27秒【解析】【分析】(1)根据∠AOB =180°−∠AOM −∠BON 计算即可.(2)先求解,OA OB 重合时,=18,t 再分两种情况讨论:当0≤t ≤18时;当18≤t ≤30时;再构建方程求解即可.(3)分两种情形,当0≤t ≤18时;当18≤t ≤30时;分别构建方程求解即可.【详解】解:(1)当t =3时,∠AOB =180°−4°×3−6°×3=150°.(2)当,OA OB 重合时,46180,t t解得:18,t当0≤t ≤18时:60,AOB ∠=︒18060120,AOM BON∴ 4t +6t =120解得:12,t =当18≤t ≤30时:则18060,AOM BON∴ 4t +6t =180+60, 解得 t =24,答:当∠AOB 达到60°时,t 的值为6或24秒.(3) 当0≤t ≤18时,由,OA OB ⊥90,AOB ∴∠=︒∴ 180−4t −6t =90,解得t =9,当18≤t ≤30时,同理可得:18090,AOM BON∴ 4t +6t =180+90 解得t =27.030,t 所以大于30的答案不予讨论,答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.。

初一数学下册相交线与平行线专项提升训练(含答案详解)

初一数学下册相交线与平行线专项提升训练(含答案详解)

一.选择题(共20 小题)相交线与平行线专题提升训练1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.169.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°11.如图,能够证明a∥b 的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF 13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L514.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是,依据是.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是,你的依据是和.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有组不同对顶角.(如图所示)25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有对.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有对对顶角;有对同位角;有对内错角;有对同旁内角.27.图中,与∠1 成同位角的角的个数是.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成组同位角,这个图形中共有组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有对同旁内角.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=°.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=.(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=.(用含x的代数式表示).三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为;图2 中∠ABC 与∠DEF 数量关系为.选择一种情况说明理由:(2)由(1)你得出的结论是.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.40.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.41.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB 与∠DEB 的大小关系,并证明.42.如图,在△ABC 中,CD⊥AB,垂足为D,点E 在BC 上,EF⊥AB,垂足为F.∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.43.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD 别平分∠ABP 和∠PBN,分别交射线AM 于点C,D.(1)求∠ABN、∠CBD 的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC 平分∠ABP,BD 平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,直接写出∠ABC 的度数.相交线与平行线必备参考答案与试卷解析一.选择题(共20 小题)1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°【分析】依据∠BOC=70°,OE 平分∠BOC,即可得到∠COE=35°,∠AOC=180°﹣70°=110°,进而得出∠AOE 的度数.【解答】解:∵∠BOC=70°,OE 平分∠BOC,∴∠COE=35°,∠AOC=180°﹣70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.【点评】本题主要考查了对顶角与邻补角,解题时注意:对顶角相等,邻补角互补,即和为180°.2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°【分析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD =∠AOC 联立,求出∠AOC,利用互补关系求∠BOC.【解答】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=67.5°,∵∠BOC 与∠AOC 是邻补角,∴∠BOC=180°﹣∠AOC=112.5°.故选:A.【点评】此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对【分析】据对顶角的定义对各图形判断即可.【解答】解:图中的对顶角有:∠AOC 与∠BOD,∠AOD 与∠BOC 共2对.故选:B.【点评】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【解答】解:图中对顶角有:∠AOF 与∠BOE、∠AOD 与∠BOC、∠FOD 与∠EOC、∠FOB 与∠AOE、∠DOB 与∠AOC、∠DOE 与∠COF,共6对.故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对【分析】每两条直线交于一点,形成两对对顶角,4 条直线交于一点,则有6 条直线形成两对对顶角,那么对顶角的个数有12 对.【解答】解:根据对顶角的定义可知:4 条直线交于一点,则对顶角有12 对.故选D.【点评】本题考查对顶角的概念,两直线相交形成两对对顶角.6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对【分析】n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,依据规律可得结果.【解答】解:2 条直线交于一点,对顶角有 2 对,2=2×1;3条直线交于一点,对顶角有6 对,6=3×2;4条直线交于一点,对顶角有12 对,12=4×3;由规律可得,n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,∴直线AB,CD,EF,MN,GH 相交于点O,对顶角共有5×4=20 对,故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对【分析】根据邻补角定义,两个角的和等于180°,并且有一条边是公共边的两个角互为邻补角,进行解答.【解答】解:如图,邻补角有:∠AOC 与∠AOD,∠AOD 与∠BOD,∠BOD 与∠BOC,∠BOE 与∠AOE,∠BOC 与∠AOC,∠COE 与∠DOE.所以共 6 对.故选:B.【点评】本题主要考查邻补角的定义,注意按一定顺序寻找方能做到不重不漏.8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.16【分析】观察图形,确定不同的截线分类讨论,如分l1、l2 被l3 所截,l1、l2 被l4 所截,l1、l3 被l4 所截,l2、l3 被l4 所截,l3、l4 被l1 所截,l3、l4 被l2 所截l1、l4 被l3 所截、l2、l4 被l3 所截来讨论.【解答】解:l1、l2 被l3 所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16 对.故选:D.【点评】在较复杂图形中确定“三线八角”可从截线入手,分类讨论,做到不重复不遗漏.9.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C 【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠3=∠4,∴DE∥AC,故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°【分析】利用平行线的判定方法一一判断即可.【解答】解:A、由∠1=∠2,∠3=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.B、由∠1=∠3,∠2=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.C、由∠1+∠3=90°,∠2+∠4=90°,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.D、由∠1+∠2=90°无法推出∠ABC=∠DCB,故本选项符合题意.故选:D.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,能够证明a∥b 的是()第18 页(共41 页)A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF【分析】证明∠BAD=∠CDA 即可判断.【解答】解:∵∠1=∠2,∠3=∠4,∴∠BAD=∠CDA,∴AB∥CD,故选:C.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L5【分析】因为∠1 与∠2 互补,∠2 与∠3 互补,根据同一个角的补角相等,得∠1=∠3;所以根据内错角相等,两直线平行,可知L3∥L5.【解答】解:∵∠1 与∠2 互补,∠2 与∠3 互补,∴∠1=∠3(同角的补角相等).∴L3∥L5(内错角相等,两直线平行).故选:D.【点评】本题要会运用补角的性质:“同一个角的补角相等”,找到内错角的相等关系,从而证明出两直线平行.14.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°【分析】根据折叠的性质得出∠C'EF=62°,利用平行线的性质进行解答即可.【解答】解:∵一张长方形纸条ABCD 折叠,∴∠C'EF=∠FEC=62°,∵AD∥BC,∴∠1=∠C'FB=180°﹣62°﹣62°=56°,故选:C.【点评】本题考查了平行线的性质、翻折变换(折叠问题).正确观察图形,熟练掌握平行线的性质是解题的关键.15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°【分析】因直尺和三角板得AD∥FE,∠BAC=90°;再由AD∥FE 得∠2=∠3;平角构建∠1+∠BAC+∠3=180°得∠1+∠3=90°,已知∠1=32°可求出∠3=58°,即∠2=58°.【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.【点评】本题综合考查了平行线的性质,直角,平角和角的和差相关知识的应用,重点是平行线的性质.16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠AED′的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【解答】解:由翻折的性质得:∠DED′=2∠DEF,∵∠AED′=40°,∴∠DED′=180°﹣∠AED′=140°,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=∠DEF=70°.故选:D.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°【分析】求出∠DEF,根据∠AED=180°﹣2∠AED 即可解决问题.【解答】解:∵DE∥CF,∴∠EFC+∠DEF=180°,∵∠EFC=130°,∴∠DEF=50°,∴∠AED=180°﹣2×50°=80°,故选:D.【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【解答】解:①∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;②∵AE∥BG,∠EFB=32°,∴∠AEF=180°﹣∠EFB=180°﹣32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;③∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;④∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°﹣∠CGF=180°﹣64°=116°,故本小题正确.故选:C.【点评】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°【分析】利用翻折变换的性质求出∠DEF,再利用平行线的性质解决问题即可.【解答】解:∵∠AEG=30°,∴∠DEG=150°,由翻折的性质可知:∠DEF=∠FEG=∠DEG=75°,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=105°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是PA ,依据是垂线段最短.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:直线外一点与直线上各点连接的所有线段中,最短的是PA,依据是垂线段最短,故答案为:PA,垂线段最短.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:过D 点引CD⊥AB 于D,然后沿CD 开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,属于基础题.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是OB ,你的依据是垂线段最短和平行线的性质.【分析】依据垂线段最短,即可得到图中线段OA,OB、OC 中最短的线段;依据平行线的性质,即可得到∠OBC=90°,进而得出OB⊥AC.【解答】解:由题可得,图中线段OA,OB、OC 中最短的线段是OB,依据为垂线段最短和平行线的性质.故答案为:OB,垂线段最短,平行线的性质.【点评】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有n(n﹣1)组不同对顶角.(如图所示)【分析】根据(1)(2)(3)得出规律,可求n条直线相交于同一点有多少组不同对顶角.【解答】解:观察图形可知,n 条直线相交于同一点有(1+2+…+n﹣1)×2=×2=n(n﹣1)组不同对顶角.故答案为:n(n﹣1).【点评】考查了对顶角的定义,关键是熟悉对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有6 对.【分析】识别图中的对顶角应从这个较复杂的图形中分解出三个基本图形(即定义图形)即直线AB、CD 相交于O;直线AB,EF 相交于O;直线CD,EF 相交于O.由于两条直线相交组成对顶角,所以上述图中共有6 对对顶角.【解答】解:如图,图中共有 6 对对顶角:∠AOC 和∠BOD,∠AOD 和∠BOC;∠AOF 和∠BOE,∠AOE 和∠BOF;∠COF 和∠DOE,∠COE 和∠DOF.故答案为:6【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有 6 对对顶角;有12 对同位角;有6 对内错角;有6 对同旁内角.【分析】根据3 条直线两两相交,共有3 个点,每个点有两对对顶角,得出对顶角、内错角、同旁内角的对数.【解答】解:3 条直线两两相交,共有3 个点,每个点有两对对顶角,任意两条直接被第三条截有12 对同位角,6 对内错角,6 对同旁内角,所以对顶角有6 对,12 对同位角,6 对内错角,6 对同旁内角;故答案为:6 12 6 6【点评】本题考查了同位角、内错角、同旁内角的定义.注意在截线的同旁找同位角,在被截直线之间找内错角、同旁内角.要结合图形,熟记同位角、内错角、同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.27.图中,与∠1 成同位角的角的个数是3 .【分析】据五条直线相交关系分别讨论:l1、l2 被b 所截,与∠1 成同位角的角的有1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.共计3 个.【解答】解:据同位角定义,l1l2 被 b 所截,与∠1 成同位角的角的有 1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.一共有3 个,故填3.【点评】本题考查了同位角的定义,注意不要漏解.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成4 组同位角,这个图形中共有48 组同位角.【分析】每条直线都与另3 条直线相交,有3 个交点.每2 个交点决定一条线段,共有3条线段.4 条直线两两相交且无三线共点,共有3×4=12 条线段.每条线段各有4 组同位角,可知同位角的总组数.【解答】解:∵平面上4 条直线两两相交且无三线共点,∴共有3×4=12 条线段.又∵每条线段各有 4 组同位角,∴共有同位角12×4=48 组.故每条直线交另外两条直线,都能组成4 组同位角.这个图形中共有48 组同位角.故答案为:4,48.【点评】本题考查了同位角的定义.注意在截线的同旁找同位角.要结合图形,熟记同位角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有60 对同旁内角.【分析】每条直线都与另4 条直线相交,且没有3 条直线交于一点,共有30 条线段.每条线段两侧各有一对同旁内角内角,可知同旁内角的总对数.【解答】解:如图所示:∵平面上5 条直线两两相交且无三线共点,∴共有30 条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角30×2=60对.故答案为:60.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.注意按顺序一个点一个点的数,不要重复也不要遗漏.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于58°.【分析】依据平行线的性质以及折叠的性质,即可得到∠2 的度数.【解答】解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD=∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.【点评】本题考查平行线的性质,翻折变换知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=70 °.【分析】可利用平行线的性质求出∠FAC 的大小,进而可求∠CAB 的大小.【解答】解:∵长方形纸带,∴BE∥AF,∴∠1=∠CAF=40°,由于折叠可得:∠CAB=,故答案为:70【点评】此题考查平行线的性质,熟练掌握平行线的性质,会求解一些简单的计算问题.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【分析】先根据平行线的性质得出∠DEF=∠EFB,根据图形折叠的性质得出∠EFC 的度数,进而得出∠CFG 即可.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.【点评】本题考查了平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=90°﹣x° .(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=﹣90° .(用含x的代数式表示).【分析】(1)由平行线的性质得∠DEF=∠EFB,∠AEH+∠EHB=180°,折叠和三角形的外角得∠D'EF=∠EFB,∠EFB=∠EHB,最后计算出∠EFB=90°﹣x°;(2)由折叠和平角的定义求出∠EFC'=90°+ ,再次折叠经计算求出∠EFC''=.【解答】解:(1)如图1所示:∵AD∥BC,∴∠DEF=∠EFB,∠AEH+∠EHB=180°,又∵∠DEF=∠D'EF,∴∠D'EF=∠EFB,又∵∠EHB=∠D'EF+∠EFB,∴∠EFB=∠EHB,又∵∠AED'=x°,∴∠EHB=180°﹣x°∴∠EFB==90°﹣x°(2)如图2 所示:∵∠EFB+∠EFC'=180°,∴∠EFC'=180°﹣(90°﹣°)=90°+ ,又∵∠EFC'=2∠EFB+∠EFC'',∴∠EFC''=∠EFC'﹣2∠EFB=90°+ ﹣2(90°﹣°)=,故答案为.【点评】本题综合考查了平行线的性质,折叠问题,等腰三角形的性质,三角形的外角定理,平角的定义和角的和差等相关知识,重点掌握平行线的性质,难点是折叠前后的变及不变的问题,二次折叠角的前后大小等量关系.三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.【分析】(1)根据∠BOD+∠AOD=180°和∠BOD=5∠AOD 求出即可;(2)求出∠BOC,∠EOC,代入∠BOE=∠EOC﹣∠BOC 求出即可.【解答】解:(1)∵AB是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD 的度数是∠AOD 的 5 倍,∴∠AOD=×180°=30°,∠BOD=×180°=150°.(2)∵∠BOC=∠AOD=30°,OE⊥DC,∴∠EOC=90°,∴∠BOE=∠EOC﹣∠BOC=90°﹣30°=60°.【点评】本题考查了垂直定义,邻补角,对顶角,角的有关计算的应用,主要考查学生的计算能力.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.【分析】(1)依据对顶角相等以及邻补角,即可得到∠AOC=70°,∠BOC=110°,再根据∠AOE:∠EOC=2:5,即可得到∠COE 的度数,进而得出∠BOE 的度数;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),根据7α+10°=(180°﹣2α),即可得到α的值,进而得到∠EOF 的度数.【解答】解:(1)∵∠BOD=70°,直线AB和CD相交于点O,∴∠AOC=70°,∠BOC=110°,又∵∠AOE:∠EOC=2:5,∴∠COE=70°×=50°,∴∠BOE=50°+110°=160°;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∵OF 平分∠BOE,∴∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),∴7α+10°=(180°﹣2α),解得α=10°,∴∠EOF=∠BOF=70°+10°=80°.【点评】本题考查了对顶角、邻补角以及角平分线的定义,解决问题的关键是利用了对顶角相等,邻补角互补的关系.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.【分析】(1)先根据余角的概念求出∠AOC 的度数,再根据邻补角的性质求出∠BOC 的度数,最后根据角平分线的定义计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【解答】解:(1)∵∠COF=90°,∠AOF=70°,∴∠AOC=90°﹣70°=20°,∴∠BOC=180°﹣20°=160°,∵OE 平分∠BOC,∴∠BOE=∠BOC=80°;(2)∵∠BOE:∠BOD=3:2,OE 平分∠BOC,∴∠EOC:∠BOE:∠BOD=3:3:2,∵∠EOC+∠BOE+∠BOD=180°,∴∠BOD=45°,∴∠AOC=∠BOD=45°,又∵∠COF=90°,∴∠AOF=90°﹣45°=45°.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.【分析】由∠1+∠2=180°可证得AD∥BC,得∠ADE=∠C,已知∠A=∠C,等量代换后可得∠ADE=∠A,即AB、CD 被直线AD 所截形成的内错角相等,由此可证得AB 与CD 平行.【解答】证明:AB∥CD,理由如下:∵∠1+∠2=180°(已知)∴AD∥BC(同旁内角互补,两直线平行)(2分)∴∠EDA=∠C(两直线平行,同位角相等)(3分)又∵∠A=∠C(已知)∴∠A=∠EDA(等量代换)(5分)∴AB∥CD.(内错角相等,两直线平行)(6分)【点评】此题主要考查平行线的判定和性质.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为∠ABC+∠DEF=180°;图2 中∠ABC 与∠DEF 数量关系为∠ABC=∠DEF .选择一种情况说明理由:(2)由(1)你得出的结论是如果两个角的两边互相平行,那么这两个角相等或互补.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.【分析】(1)利用平行线的性质即可判断.(2)根据平行线的性质解决问题即可.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解方程即可解决问题.【解答】解:(1)如图1中,∠ABC+∠DEF=180°.如图2中,∠ABC=∠DEF,故答案为∠ABC+∠DEF=180°,∠ABC=∠DEF.理由:①如图1 中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.②如图2 中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.(2)结论:如果两个角的两边互相平行,那么这两个角相等或互补.故答案为如果两个角的两边互相平行,那么这两个角相等或互补.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°,30°或70°和110°.【点评】本题考查平行线的判定和性质,一元一次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.。

相交线与平行线专项训练及解析答案

相交线与平行线专项训练及解析答案

相交线与平行线专项训练及解析答案一、选择题1.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.4.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.5.下列结论中:①若a=b a b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥a b②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离 33正确的个数有②④两个6.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.7.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D .如果点P 的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A 、C 进行判断;利用对顶角的性质对B 进行判断;根据直角坐标系下点坐标特点对D 进行判断.【详解】A .两直线平行,同位角相等,故A 是假命题;B .对顶角相等,故B 是假命题;C .如果两个角的两边互相平行,那么这两个角相等或互补,故C 是假命题;D .如果点的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上,故D 是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.11.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.13.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°【答案】D【解析】【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C 作CF ∥AB∵AB ∥DE ,CF ∥AB∴AB ∥DE ∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD =∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.14.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个 【答案】A【解析】【分析】根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.【详解】∵∠1=∠B∴AD∥BC,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB∥CD,③正确∴∠1=∠D,∴∠D=∠B,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC 作准备.16.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.17.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.18.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.。

第5章《相交线与平行线》 大题专项提升训练:平行线的判定和性质(含答案)

第5章《相交线与平行线》 大题专项提升训练:平行线的判定和性质(含答案)

人教版七年级下册第5章《相交线与平行线》大题专项提升训练平行线的判定和性质1.如图,AE平分∠BAD,DF平分∠CDA,且AE∥DF,求证:AB∥CD.2.如图,AD⊥CB于D,EF⊥CB于F,∠1=∠2,∠BAC=70°,求∠AGD的度数.3.如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.4.如图,已知AB=CD,∠1=∠2.求证:BC=DA.5.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.6.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.7.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB,(1)求证:CE∥DF;(2)若∠DCE=130°,求∠DEF的度数.8.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.9.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.10.如图,在三角形ABC中,AD⊥BC于点D,点E是AB上一点,EF⊥BC于点F,点G是AC上一点,连接DG,且∠1=∠2.求证:AB∥DG.11.如图,在三角形ABC中,AD⊥BC,EF⊥BC,垂足分别为D、F.G为AC上一点,E为AB上一点,∠1=∠2.求证:DG∥AB.12.如图,在三角形ABC中,EF⊥AB,∠ADG=∠B,若点G在AC边上,∠1=∠2,判断CD与AB的位置关系,并说明理由.13.如图,在三角形ABC中,∠1=∠2,点E,F,G分别在BC,AB,AC上,且EF⊥AB,GD∥BC交AB于点D.请判断CD与AB的位置关系,并说明理由.14.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.15.如图,在三角形ABC中,CD⊥AB,垂足为点D,F为BC上的点,FG⊥AB,垂足为点G,点E在AC上,连接DE,若∠EDC=∠BFG.求证:∠B=∠ADE.16.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.(1)EH与AD平行吗?请说明理由;(2)若∠BAD=30°,求∠H的度数.17.如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.参考答案1.【解答】证明:∵AE平分∠BAD,DF平分∠CDA,∴∠DAE=∠BAD,∠ADF=∠CDA又∵AE∥DF,∴∠DAE=∠ADF,∴∠BAD=∠CDA,∴AB∥CD.2.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.3.【解答】解:给图中各角标上序号,如图所示.∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠3=∠6.∵∠4+∠6=180°,∠3=108°,∴∠4=180°﹣108°=72°.4.【解答】证明:在△ABC与△CDA中,,∴△ABC≌△CDA(SAS),∴BC=DA.5.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D=∠ABD.∴DF∥AC.∴∠A=∠F.6.【解答】解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).7.【解答】(1)证明:∵∠1+∠2=180°,C,D是直线AB上两点,∴∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)解:∵CE∥DF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°,∵DE平分∠CDF,∴∠CDE=∠CDF=25°,∵EF∥AB,∴∠DEF=∠CDE=25°.8.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.9.【解答】证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.10.【解答】证明:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.11.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴AD∥EF,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB.12.【解答】解:CD⊥AB.理由如下:∵∠ADG=∠B,∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.13.【解答】解:CD⊥AB.理由如下:∵DG∥BC,∴∠1=∠DCB.∵∠1=∠2,∴∠2=∠DCB.∴CD∥EF.∴∠CDB=∠EFB.∵EF⊥AB,∴∠EFB=90°.∴∠CDB=90°.∴CD⊥AB.14.【解答】证明:∵AD∥EF,(已知),∴∠2=∠3,(两直线平行,同位角相等),∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2(同角的补角相等),∴∠1=∠3(等量代换),∴DG∥AB(内错角相等,两直线平行),∴∠CDG=∠B.(两直线平行,同位角相等).15.【解答】证明:如图所示:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠BFG=∠BCD,又∵∠EDC=∠BFG,∴∠BCD=∠EDC,∴DE∥BC,∴∠B=∠ADE.16.【解答】解:(1)平行,理由如下:∵∠CDG=∠B,∴AB∥DG,∴∠BAD=∠1,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH//AD;(2)由(1)得EH//AD,∠1=∠BAD,∴∠H=∠1,∴∠BAD=∠H,∵∠BAD=30°,∴∠H=30°.17.【解答】解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.。

(完整版)初一平行线与相交线经典试题

(完整版)初一平行线与相交线经典试题

第一章:平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B 互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】(2004、厦门,2分)已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】(2004、青海,3分)如图l-2-1,直线AB,CD相交于点O,OE⊥AB 于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:(30 分钟) (答案:220 ) 1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是____________10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1―2―3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识另:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】(2004贵阳,3分)如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:( 40分钟) (答案:220 ) 1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。

七年级下册相交线与平行线易错知识点专练(人教版)培优试题

七年级下册相交线与平行线易错知识点专练(人教版)培优试题

一、选择题1.若A ∠的两边与B 的两边分别平行,且20B A ∠=∠+︒,那么A ∠的度数为( ) A .80︒ B .60︒ C .80︒或100︒ D .60︒或100︒ 2.如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .102°B .108°C .124°D .128°3.如图,直线//a b ,三角板的直角顶点在直线b 上,已知125∠=︒,则2∠等于( ).A .25°B .55°C .65°D .75°4.下列命题是真命题的有( )(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)在同一平面内,过两点有且只有一条直线与已知直线垂直;(4)经过直线外一点,有且只有一条直线与已知直线平行;(5)一个角的余角一定大于这个角.A .0个B .1个C .2个D .3个5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒7.如图,长方形ABCD 中,7AB =,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形1111D C B A ,第3次平移将长方形1111D C B A 沿11A B 的方向向右平移5个单位,得到长方形2222A B C D ,…第n 次平移将长方形1111n n n n A B C D ----的方向平移5个单位,得到长方形(2)n n n n A B C D n >,若n AB 的长度为2022,则n 的值为( )A .403B .404C .405D .4068.如图,△OAB 为等腰直角三角形(∠A =∠B =45°,∠AOB =90°),△OCD 为等边三角形(∠C =∠D =∠COD =60°),满足OC >OA ,△OCD 绕点O 从射线OC 与射线OA 重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是( )A .当α=15°时,DC ∥ABB .当OC ⊥AB 时,α=45°C .当边OB 与边OD 在同一直线上时,直线DC 与直线AB 相交形成的锐角为15° D .整个旋转过程,共有10个位置使得△OAB 与△OCD 有一条边平行9.已知AB CD ∥,点E F ,分别在直线AB CD ,上,点P 在AB CD ,之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则EPF ∠的度数为( )A .120︒B .135︒C .45︒或135︒D .60︒或120︒ 10.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y二、填空题11.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).12.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).13.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .15.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________16.如图,AB ∥EF ,设∠C =90°,那么x ,y ,z 的关系式为______.17.如图,△ABC 沿AB 方向平移3个单位长度后到达△DEF 的位置,BC 与DF 相交于点O ,连接CF ,已知△ABC 的面积为14,AB =7,S △BDO ﹣S △COF =___.18.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.19.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.20.将一副三角板中的两块直角三角板的顶点C 按如图方式放在一起,其中30A ∠=︒,45E ECD ∠=∠=︒,且B 、C 、D 三点在同一直线上.现将三角板CDE 绕点C 顺时针转动α度(0180α︒<<︒),在转动过程中,若三角板CDE 和三角板ABC 有一组边互相平行,则转动的角度α为__________.三、解答题21.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.22.如图,已知//AB CD ,CN 是BCE ∠的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.24.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足30a+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).25.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.【详解】解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,又∵∠B=∠A+20°,∴∠A+20°=∠A,∵此方程无解,∴此种情况不符合题意,舍去;当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;又∵∠B=∠A+20°,∴∠A+20°+∠A=180°,解得:∠A=80°;综上所述,A的度数为80°,故选:A.【点睛】本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.2.A解析:A【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.3.C解析:C【分析】利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.【详解】解:如图∵a//b∴∠2=∠3,∵∠1+∠3=180°-90°=90°∴∠3=90°-∠1=90°-25°=65°∴∠2=65°.故选C .【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键. 4.B解析:B【分析】根据对顶角与同位角的定义、垂线的性质、平行公理、余角的定义逐个判断即可得.【详解】解:(1)相等的角不一定是对顶角,则原命题是假命题;(2)两条平行线被第三条直线所截,同位角相等,则原命题是假命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题; (4)经过直线外一点,有且只有一条直线与已知直线平行,则原命题是真命题;(5)一个角的余角不一定大于这个角,如70︒角的余角等于20︒,则原命题是假命题; 综上,是真命题的有1个,故选:B .【点睛】本题考查了对顶角与同位角的定义、垂线的性质、平行公理、余角,熟练掌握各定理与性质是解题关键.5.D解析:D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒;当BC ∥AD 时,60DAB B ∠=∠=︒;当BC ∥ AE 时,∵60EAB B ∠=∠=︒,∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒;当AB ∥DE 时,∵ 90E EAB ∠=∠=︒,∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.6.C解析:C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A解析:A【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=7-5=2,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+2求出n即可.【详解】解:∵AB=7,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=7-5=2,∴AB1=AA1+A1A2+A2B1=5+5+2=12,∴AB2的长为:5+5+7=17;∵AB1=2×5+2=12,AB2=3×5+2=17,∴AB n=(n+1)×5+2=2022,解得:n=403.故选:A.【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.8.A解析:A【分析】设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∥AB;当OC⊥AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行.【详解】解:设OC与AB交点为M,OD与AB交点为N,当α=15°时,∠OMN=α+∠A=60°,∴∠OMN=∠C,∴DC∥AB,故A正确;当OC⊥AB时,α+∠A=90°或α﹣180°=90°﹣∠A,∴α=45°或225°,故B错误;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况,故C错误;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行,故D错误;故选A.【点睛】本题主要考查了平行线的性质与判定,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.9.C解析:C【分析】根据题意画出示意图,延长FP交AB于点Q,根据折叠的性质和四边形的内角和进行分析解答.【详解】解:根据题意,延长FP 交AB 于点Q ,可画图如下:∵AB CD ∥∴CFQ PQE ∠=∠∵将射线EA 沿EP 折叠,射线FC 沿FP 折叠,∴,CFP PFM MEP PEQ ∠=∠∠=∠,∵,FPE PQE PEQ EM FM ∠=∠+∠⊥,如第一个图所示,在四边形FPEM 中,36090PFM MEP FPE ∠+∠+∠=︒-︒,得:2270FPE ∠=︒,∴135FPE ∠=︒.如第二个图所示,在四边形FPEM 中,360(36090)90PFM MEP FPE ∠+∠+∠=︒-︒-︒=︒, 得:290FPE ∠=︒,∴45FPE ∠=︒.故选:C .【点睛】本题考查的知识点是平行线的性质、折叠的性质、三角形的外角、四边形的内角和等知识.关键是利用平行线的性质以及四边形内角和进行解答.10.B解析:B【分析】根据平行线的性质可得∠CEF=180°-y ,x=z+∠CEF ,利用等量代换可得x=z+180°-y ,再变形即可.【详解】解:∵CD ∥EF ,∴∠C+∠CEF=180°,∴∠CEF=180°-y ,∵AB ∥CD ,∴x=z+∠CEF ,∴x=z+180°-y ,∴x+y-z=180°,故选:B .二、填空题11.或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据 解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=,解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=, 1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 12.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED解析:7513【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.15.【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.16.y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90解析:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB∥CG∥HD∥EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.17.2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =求解即可.【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于解析:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1122DB CG CF CG ⋅⋅-⋅⋅求解即可. 【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于G .∵S △ABC =12•AB •CG ,∴CG =2147⨯=4, ∵AD =CF =3,AB =7,∴BD =AB ﹣AD =7﹣3=4,∴S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1111443422222DB CG CF CG ⋅-⋅⋅=⨯⨯-⨯⨯=, 故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题. 18.3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF ,可得∠AEC <148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF =180°-∠EFB =180°-32°=148°,又因为∠AEF =∠AEC +∠GEF ,可得∠AEC <148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF =∠C ′EF ,又因为∠C′EG =64°,根据平行线性质即可得到∠BGE =∠C′EG =64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF =∠BGE =64°,根据平行线得性质即可得:∠BFD =180°-∠CGF 即可得到结果.【详解】解:(1)∵//AE BG ,∠EFB=32°,∴∠C ′EF =∠EFB =32°,故本小题正确;(2)∵AE ∥BG ,∠EFB =32°,∴∠AEF =180°-∠EFB =180°-32°=148°,∵∠AEF =∠AEC +∠GEF ,∴∠AEC <148°,故本小题错误;(3)∵∠C′EF =32°,∴∠GEF =∠C ′EF =32°,∴∠C′EG =∠C′EF +∠GEF =32°+32°=64°,∵AC′∥BD′,∴∠BGE =∠C′EG =64°,故本小题正确;(4)∵∠BGE =64°,∴∠CGF =∠BGE =64°,∵//DF CG ,∴∠BFD =180°-∠CGF =180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.19.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n ︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.20.或或【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若和只有一组边互相平行,分三种情况:①若,则;②若,则;③当时,,故答案为:或或.【点睛】本题考查了三角板的角度解析:30或45︒或90︒【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若CDE ∆和ABC ∆只有一组边互相平行,分三种情况:①若//DE AC ,则180********α=︒-︒-︒-︒=︒;②若//CE AB ,则180********α=︒-︒-︒-︒=︒;③当//DE BC 时,90α=︒,故答案为:30或45︒或90︒.【点睛】本题考查了三角板的角度运算,平行线的性质,掌握旋转的性质是本题的关键.三、解答题21.(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =α,∠CPE =β,∴CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.22.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒, CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 23.(1)120,90;(2)①∠1=120°-n °,∠2=90°+n °;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE ,再根据两直线平行,同位角相等可得∠1=∠ABE ,根据两直线平行,同旁内角互补求出∠BCG ,然后根据周角等于360°计算即可得到∠2; ②结合图形,分A B 、B C 、AC 三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC =60°,∴∠ABE =180°-60°-n °=120°-n °,∵DG ∥EF ,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.24.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵30α-+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为12,故答案为:12.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.25.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.。

相交线与平行线(常考考点专题)(巩固篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

相交线与平行线(常考考点专题)(巩固篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

专题5.20 相交线与平行线(常考考点专题)(巩固篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .2.下列说法中,正确的是( )A .相等的两个角是对顶角B .有一条公共边的两个角是邻补角C .有公共顶点的两个角是对顶角D .一条直线与端点在这条直线上的一条射线组成的两个角是邻补角【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB ,CD 相交于点O ,OE AB ⊥于点O ,OF 平分AOE ∠,12530'∠=︒,则下列结论中不正确的是( )A .13∠=∠B .245∠=︒C .AOD ∠与1∠互为补角D .1∠的余角等于6530'︒ 4.下列说法中,正确的是( )A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.平面内,互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角5.如图,下列判断中正确的个数是()(1)∠A与∠1是同位角;(2)∠A和∠B是同旁内角;(3)∠4和∠1是内错角;(4)∠3和∠1是同位角.A.1个B.2个C.3个D.4个6.如图,同位角共有()对.A.6B.5C.8D.7【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4,b与c 的距离为1,则a与c的距离为()A.3或4B.5C.3或5D.4或58.如图所示,∠BAC=90°,AD∠BC,则下列结论中,正确的个数为()∠AB∠AC;∠AD与AC互相垂直;∠点C到AB的垂线段是线段AB;∠点A到BC的距离是线段AD的长度;∠线段AB的长度是点B到AC的距离;∠AD+BD>AB.A.2个B.3个C.4个D.5个【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,正确的是()A.B.C.D.10.如图,P是直线l外一点,A,B,C三点在直线l上,且PB l⊥于点B,90∠=︒,APC则下列结论:∠线段AP是点A到直线PC的距离;∠线段BP的长是点P到直线l的距离;∠PA,PB,PC三条线段中,PB最短;∠线段PC的长是点P到直线l的距离.其中正确的是()A.∠∠B.∠∠∠C.∠∠D.∠∠∠∠【考点六】相交线与平行线➽➼➵作图➻➼平移11.下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是()A.7步B.8步C.9步D.10步12.如图所示,下列关于∠ABC与∠A′B′C′的说法不正确的是()A.将∠ABC先向右平移4格,再向上平移1格后可得到∠A′B′C′B.将∠ABC先向上平移1格,再向右平移4格后可得到∠A′B′C′C.将∠A′B′C′先向下平移1格,再向左平移4格后可得到∠ABCD.将∠A′B′C′向左平移6格后就可得到∠ABC【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,l是一条水平线,把一头系着小球的线一端固定在点A,小球从B到C从左向右摆动,在这一过程中,系小球的线在水平线下方部分的线段长度的变化是()A.从大变小B.从小变大C.从小变大再变小D.从大变小再变大14.下列说法中是真命题正确的个数有()个(1)若a∥b,b∥d,则a∥d;(2)过一点有且只有一条直线与已知直线平行;(3)两条直线不相交就平行;(4)过一点有且只有一条直线与已知直线垂直.A.1个B.2个C.3个D.4个15.在下列说法中,正确的有( )个.∠过一点有且只有一条直线与已知直线平行;∠已知α∠、∠β的两边分别平行,那么αβ∠=∠;∠垂直于同一条直线的两条直线平行;∠从直线外一点到这条直线的垂线段,叫做这点到直线的距离.A .3B .2C .1D .016.如图,有下列条件:∠12∠=∠;∠34180∠+∠=︒;∠56180∠+∠=︒;∠23∠∠=.其中,能判断直线a b ∥的有( )A .4个B .3个C .2个D .1个17.如图,在下列给出的条件中,不能判定DE BC ∥的是( )A .12∠=∠B .3=4∠∠C .5C =∠∠D .180B BDE ∠+∠=︒ 18.如图,要得到AB CD ,只需要添加一个条件,这个条件不可以是( )A .180D BAD =∠+∠B .180B BCD ∠+∠=C .24∠∠=D .13∠=∠19.如图,45,AOB CD OB ∠=︒∥交OA 于E ,则AEC ∠的度数为( )A .130︒B .135︒C .140︒D .145︒20.如图,∠BAC =40°,AD 平分∠BAC ,BD ∠AC ,则∠D 的度数为( )A .20°B .30°C .40°D .50°【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系21.如图,AD ∠BC ,DE AB ∥,则∠CDE 与∠BAD 的关系是( )A .互为余角B .互为补角C .相等D .不能确定22.如图,若AB ∠CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小23.一张长方形纸条按如图所示折叠,EF 是折痕,若∠EFB =35°,则:∠∠GEF =35°;∠∠EGB =70°;∠∠AEG =110°;∠CFC '∠=70°.以上结论正确的有( )A .∠ ∠ ∠ ∠B .∠ ∠ ∠C .∠ ∠ ∠D .∠ ∠24.如图,AB //CD ,∠1=13∠ABF ,CE 平分∠DCF ,设∠ABE =∠1,∠E =∠2,∠F =∠3,则∠1、∠2、∠3的数量关系是( )A .∠1+2∠2+∠3=360°B .2∠2+∠3—∠1=360°C .∠1+2∠2—∠3=90°D .3∠1+∠2+∠3=360°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,已知A ADE ∠=∠,若54EDC C ∠=∠,则C ∠=( )A .80︒B .90︒C .100︒D .110︒26.如图,AB //CD ,一副三角尺按如图所示放置,∠AEG =20°,则∠HFD 的度数为( )A .20°B .70°C .45°D .35°【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,下列判断中错误的是( )A .∠A +∠ADC = 180° 所以AB ∥CDB .∠l=∠2,所以AD ∥BC C .AB ∥CD ,所以∠ABC +∠C = 180° D .AD ∥BC ,所以∠3=∠428.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ∠BC ,下列结论:∠BC 平分∠ABG ;∠AC ∥BG ;∠与∠DBE 互余的角有2个;∠若∠A =α,则∠BDF =180°−2α.其中正确的有( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.一辆汽车在笔直的公路上行驶,两次拐弯后,还在原来的方向上平行前进,那么这两次拐弯的角度应是( )A .第一次右拐50︒,第二次左拐130︒B .第一次左拐50︒,第二次右拐50︒C .第一次左拐50︒,第二次左拐50︒D .第一次右拐50︒,第二次右拐50︒ 30.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128°【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.以下命题的逆命题为真命题的是( )A .若a b >,则22a b >B .对顶角相等C .直角三角形两锐角互余D .若a b =,则22a b =32.命题“如果x y =,那么22x y =”的逆命题是( )A .如果x y ≠,那么22x y ≠B .如果x y =,那么22x y ≠C .如果22x y =,那么x y =D .如果22x y ≠,那么x y ≠【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.有下列描述:∠过点 A 作直线 AF // BC ;∠连接三角形两边中点的线段叫做三角形的中位线;∠两直线平行,同旁内角互补;∠垂直于同一直线的两条直线互相垂直.其中是定理 的有( )A .0 个B .1 个C .2 个D .3 个34.下列定理中,没有逆定理的是( )A .两直线平行,同旁内角互补;B .两个全等三角形的对应角相等C .直角三角形的两个锐角互余;D .两内角相等的三角形是等腰三角形【考点十七】平移➽➼➵性质35.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,连接CD 、CE ,若△ACD 的面积为6,则△BCE 的面积为( )A .5B .6C .10D .336.如图,在直角三角形ABC 中,90BAC ∠=︒,将三角形ABC 沿直线BC 向右平移2cm 得到三角形DEF ,连接AE ,有以下结论:∠BE AD ∥;∠B ADE ∠=∠;∠DE AC ⊥;∠BE AD =,其中正确的有( )A.1个B.2个C.3个D.4个【考点十八】平移➽➼➵应用37.如图是从一块边长为50cm的正方形材料中裁出的垫片,现测得FG=9cm,则这块垫片的周长为()A.182cm B.191cm C.209cm D.218cm38.如图,是两个有重叠的直角三角形,可以看作是将其中的一个直角三角形ABC沿着BC方向平移5个单位长度就得到了另一直角三角形DEF,其中AB=8,BE=5,DH=3,则下列结论正确的有()∠AC∠DF;∠HE=5;∠CF=5;∠四边形DHCF的面积为32.5.A.1个B.2个C.3个D.4个二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=_____.40.如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=138°,则∠COE的度数为_____度.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图:∠BAC=90°,AD⊥BC,垂足为D,则点A到直线BC的距离是线段_____的长度.42.已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它的两边垂直,则另一个角的度数是___________.【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a b c+-的值是____________44.如图,∠1和∠3是直线______ 和______ 被直线______ 所截而成的______ 角;图中与∠2是同旁内角的角有______ 个.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图所示,已知90ACB ∠=︒,若3cm BC =,4cm AC =,5cm AB =,则点A 到BC 的距离是______,点C 到AB 的距离是______.46.如图,直线AB //CD ,GH 平分∠CGF ,GI 平分∠DGF ,且HG =15cm ,GI =20cm ,HI =25cm ,则直线AB 与直线CD 之间的距离是_____cm .【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.已知直线 AB ,CB , l 在同一平面内,若 AB ∠ l ,垂足为 B ,CB ∠ l ,垂足也为 B ,则符合题意的图形可以是如图中的图___(填甲或乙), 你选择的依据是_____(写出你学过的一条公理).48.如图,AD BC ∥,E 是线段AD 上任意一点,BE 与AC 相交于点O ,若ABC ∆的面积是5,EOC ∆的面积是1,则BOC ∆的面积是______.【考点六】相交线与平行线➽➼➵作图➻➼平移49.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______50.如图,如果把∠ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的位置关系是_______________.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.52.下列说法正确的有(填序号):_____.∠同位角相等;∠在同一平面内,两条不相交的线段是平行线;∠在同一平面内,如果a//b,b//c,则a//c;∠在同一平面内,过直线外一点有且只有一条直线与已知直线平行.【考点八】相交线与平行线➽➼➵平行线的判定53.如图,不添加辅助线,请写出一个能判定AB ∥CD 的条件__54.在同一平面内有2022条直线122022,a a a ,如果12a a ⊥,2a ∥3a ,34a a ⊥,4a ∥5a ……那么1a 与2022a 的位置关系是_____________.55.将一块三角板ABC (∠BAC =90°,∠ABC =30°)按如图方式放置,使A ,B 两点分别落在直线m ,n 上,对于给出的五个条件:∠∠1=25.5°,∠2=55°30';∠∠1+∠2=90°;∠∠2=2∠1;∠∠ACB =∠1+∠3;∠∠ABC =∠2-∠1.能判断直线m ∥n 的有__.(填序号)56.如图,a 、b 、c 三根木棒钉在一起,170,2100∠=︒∠=︒,现将木棒a 、b 同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a ,b 平行.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,把一张长方形纸条ABCD 沿EF 折叠,若150∠=︒,则AEG ∠= ______ .58.如图,已知BC DE ∥,BF 平分∠ABC ,DC 平分∠ADE ,则下列结论中:∠ACB E ∠=∠;∠180FBD CDE ∠+∠=︒;∠BFD BCD ∠=∠;∠ABF BCD ∠=∠.正确的有( )(填序号)【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的2倍少18°,则∠A 的度数是__________. 60.∠如图1,AB ∥CD ,则∠A +∠E +∠C =180°;∠如图2,AB ∥CD ,则∠E =∠A +∠C ;∠如图3,若AB ∥EF ,则∠x =180°-∠α-∠γ+∠β;∠如图4,AB ∥CD ,则∠A =∠C +∠P .以上结论正确的是_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,已知2375AB CD PAQ BAQ PCD QCD P ∠=∠∠=∠∠=︒∥,,,,则AQC ∠=___________.62.有一条长方形纸带,按如图方式折叠,形成的锐角α∠的度数为______.【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小63.如图,已知∠1=72°,∠4=110°,∠3=70°,则∠2=____________.64.如图,直线MN 分别与直线AB ,CD 相交于点E ,F ,EG 平分∠BEF ,交直线CD 于点G ,若∠MFD =∠BEF =56°,射线GP ∠EG 于点G ,则∠PGF =____________________.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.一副直角三角板中,60A ∠=︒,30D ∠=︒,45E B ∠=∠=︒,现将直角顶点C 按照如图方式叠放,点E 在直线AC 上方,且0180ACE ︒<∠<︒,能使三角形ADC 有一条边与EB 平行的所有ACE ∠的度数的和为_______.66.如图,AB BC ⊥于点B ,DC BC ⊥于点C ,连接AD ,DE 平分ADC ∠交BC 于点E ,点F 为CD 延长线上一点,连接AF ,BAF EDF ∠=∠,下列结论:∠180BAD ADC ∠+∠=︒;∠AF DE ∥;∠DAF F ∠=∠.正确的有______.(填序号)【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.《七彩云南》少数民族传统艺术表演,是七彩云南欢乐世界的王牌演艺节目,它荟萃云南人文之美,深受观众喜爱.在展演中,舞台上的灯光由灯带上位于点A 和点C 的两盏激光灯控制.如图,光线AB 与灯带AC 的夹角40A ∠=︒,当光线CB '与灯带AC 的夹角ACB '∠=______时,CB AB '∥.68.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为_____.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若33a b ->-,则a b <”的逆命题是________.70.已知:在同一平面内,三条直线a ,b ,c .下列四个命题为真命题的是_____________.(填写所有真命题的序号)∠如果a ∥b ,a c ⊥,那么b c ⊥; ∠如果b a ⊥,c a ⊥,那么b c ⊥;∠如果a ∥b ,c ∥b ,那么a ∥c ; ∠如果b a ⊥,c a ⊥,那么b ∥c .【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.用推理的方法判断为正确的命题叫做 .72.请写出一个存在逆定理的定理:______.【考点十七】平移➽➼➵性质73.如图,将ABC ∆沿AC 所在的直线平移到DEF ∆的位置,若图中10AC =,3DC =,则CF =____.74.如图,338∠=︒,直线b 平移后得到直线a ,则12∠+∠=_________︒.【考点十八】平移➽➼➵应用75.在一块长m a ,宽102m 的草坪上修筑宽2m 的小路(如图),则种草地面的面积是______2m .76.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.三、解答题77.如图,已知O为直线AC上一点,过点O向直线AC上引三条射线,,OB OD OE,且OD平分AOB∠.(1)若OE平分BOC∠,求DOE∠的度数;(2)若13BOE EOC∠=∠,50DOE∠=,求EOC∠的度数.78.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1) 求BOF ∠的度数;(2) 试说明AB CD ∥的理由.79.请在括号内完成证明过程和填写上推理依据. 如图,已知12180∠+∠=︒,DEF A ∠=∠,试判断ACB ∠与DEB ∠的大小关系,并说明理由.解:ACB DEB ∠=∠,理由如下:∠12180∠+∠=︒2180BDC ∠+∠=︒( )∠( )BDC =∠( )∠( )EF ∥( ) ∠DEF ∠=( )∠DEF A∠=∠∠()A=∠()∠DE AC∥()∠ACB DEB∠=∠()80.已知AB CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥ GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数?参考答案1.C【分析】根据对顶角的概念逐一判断即可.解:A 、∠1与∠2的顶点不相同,故不是对顶角,此选项不符合题意;B 、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意;C 、∠1与∠2是对顶角,故此选项符合题意;D 、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意.故选:C .【点拨】本题考查的是对顶角的判断,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,解题关键是熟练掌握定义,正确判断.2.D解:A 选项,因为对顶角是一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.两条直线相交,构成两对对顶角.互为对顶角的两个角相等.但相等的两个角不一定是对顶角,所以A 选项错误,B 选项, 因为邻补角是有一条公共边,且一个角的一边是另一个角一边的反向延长线组成的2个角, 有一条公共边,但是没有保证另一条边在一条直线上那么就不一定是邻补角,所以B 选项错误,C 选项, ,因为对顶角是一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角,所以C 选项错误,D 选项,一条直线与端点在这条直线上的一条射线组成的两个角是邻补角,所以D 选项正确,故选D.3.D【分析】根据垂线的性质,角平分线的定义及对顶角、邻补角的性质,逐一判断. 解:∠13∠∠、为对顶角,∠13∠=∠,故选项A 正确;∠OE AB ⊥,∠90AOE ∠=︒,∠OF 平分AOE ∠,∠245∠=︒,故选项B 正确;∠1180AOD ∠+∠=︒,∠AOD ∠与1∠互为补角,故选项C 正确;∠12530'∠=︒,9016430'︒-∠=︒,∠1∠的余角等于6430'︒,故选项D 错误;故选:D .【点拨】本题考查对顶角的性质以及邻补角的定义,解题的关键熟练掌握角平分线的定义和垂线的性质.4.C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.解:从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B 错误;直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cm ,即选项C 正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D 错误;故选:C .【点拨】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.5.C【分析】准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:(1)∠A 与∠1是同位角,正确,符合题意;(2)∠A 与∠B 是同旁内角.正确,符合题意;(3)∠4与∠1是内错角,正确,符合题意;(4)∠1与∠3不是同位角,错误,不符合题意.故选:C .【点拨】此题主要考查了三线八角,在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.6.A【分析】根据同位角的概念解答即可.解:同位角有6对,∠4与∠7,∠3与∠8,∠1与∠7,∠5与∠6,∠2与∠9,∠1与∠3,故选:A.【点拨】此题考查同位角,关键是根据同位角解答.7.C【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.解:当直线c在a、b之间时,∠a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∠a与c的距离=4−1=3(cm);当直线c不在a、b之间时,∠a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∠a与c的距离=4+1=5(cm),综上所述,a与c的距离为5cm或3cm.故选C.【点拨】此题考查平行线的性质,解题关键在于分类讨论两种情况.8.C【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.解:由∠BAC=90°,AD∠BC,得AB∠AC,故∠正确;AD与AC不垂直,故∠错误;点C到AB的垂线段是线段AC的长,故∠错误;点A到BC的距离是线段AD的长度,故∠正确;线段AB的长度是点B到AC的距离,故∠正确;AD+BD>AB,故∠正确;故选:C.【点拨】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.9.A【分析】满足两个条件:∠经过点B.∠垂直AC;由此即可判断.解:根据垂线段的定义可知,图∠线段BE,是点B作线段AC所在直线的垂线段,故选A.【点拨】本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.解:∠线段AP是点A到直线PC的距离,错误;∠线段BP的长是点P到直线l的距离,正确;∠PA,PB,PC三条线段中,PB最短,正确;∠线段PC的长是点P到直线l的距离,错误,故选:A.【点拨】此题主要考查了垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.11.B【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.解:所画图形如下图所示:其中移动方案为: AB向下移动2格,EF向右1格再向.上2格,CD向左3格,共应8格.共走了8步.故选B.【点拨】本题考查图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.12.D解:根据平移变换的概念及平移的性质进行判断.13.C【分析】根据题意可知:小球在以点A为圆心,以AB长为半径的圆弧上运动,据此即可解答.解:根据题意可知:小球在以点A为圆心,以AB长为半径的圆弧上运动,⊥与点E,交弧BC于点G,如图:过点A作AE l∴,AB=AG=AC,AD AF AE=>BD CF EG,<∴-=--,即=<AB AD AC AF AG AE故系小球的线在水平线下方部分的线段长度的变化是从小变大再变小,故选:C.【点拨】本题考查了垂线段最短,圆的相关概念,理解垂线段的性质是解决本题的关键.14.B【分析】根据平行线的定义与判定、垂线的性质、平行公理对各小题分析判断后即可得解.解:(1)若a b,b d,则a d,故此说法正确;(2)过直线外一点有且只有一条直线与已知直线平行,故此说法错误;(3)在同一平面内,两条直线不相交就平行,故此说法错误;(4)过一点有且只有一条直线与已知直线垂直,故此说法正确.故选:B.【点拨】此题主要考查了平行公理,平行线的性质定义,垂线的性质,关键是熟练掌握课本内容.15.D【分析】利用平行公理,平行线的性质定理,点到直线的距离的定义逐项判断即可.解:同一平面内,过直线外一点有且只有一条直线与已知直线平行,因此∠错误;α∠、∠β的两边分别平行时,αβ∠=∠或180αβ∠+∠=︒,因此∠错误;同一平面内,垂直于同一条直线的两条直线平行,因此∠错误;从直线外一点到这条直线所画的垂线段的长度叫做这点到直线的距离,故∠错误; 故选:D .【点拨】本题考查平行公理,平行线的性质定理,点到直线的距离的定义等,解题的关键是熟练掌握上述基本知识,不要漏掉前置条件.16.B【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论. 解:∠由∠1=∠2,可得a b ;∠由∠3+∠4=180°,可得a b ;∠由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a b ;∠由∠2=∠3,不能得到a b ;故能判断直线a b 的有3个,故选:B .【点拨】本题主要考查平行线的判定,掌握平行线的判定方法是解决问题的关键.17.B【分析】根据平行线的判定定理逐一判断即可.解:因为12∠=∠,所以DE BC ∥,故A 不符合题意;因为3=4∠∠,不能判断DE BC ∥,故B 符合题意;因为5C =∠∠,所以DE BC ∥,故C 不符合题意;因为180B BDE ∠+∠=︒,所以DE BC ∥,故D 不符合题意;故选B .【点拨】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.D【分析】根据A 、B 中条件结合“同旁内角互补,两直线平行”可以得出AB //CD ,根据C 中条件结合“内错角相等,两直线平行”可得出AB //CD ,而根据D 中条件结合“内错角相等,两直线平行”可得出AD //BC .由此即可得出结论.解:A 、∠D +∠BAD =180°,∠AB //CD (同旁内角互补,两直线平行),不符合题意;B 、∠∠B +∠BCD =180°,∠AB //CD (同旁内角互补,两直线平行),不符合题意;C 、∠2=∠4,∠AB //CD (内错角相等,两直线平行),不符合题意;D 、∠∠1=∠3,∠AD //BC (内错角相等,两直线平行),符合题意;故选D .【点拨】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.19.B【分析】由∥45,CD OB AOB ∠=︒,根据平行线的性质得到45AED ∠=︒,根据平角的意义即可求出答案.解:∥45,CD OB AOB ∠=︒,45AOB AED ∴∠=∠=︒, 180AEC AED ∠+∠=︒,18045135AEC ∴∠=︒-︒=︒,故选:B .【点拨】本题考查了平行线的性质、邻补角的意义,解题的关键是求出AED ∠的度数.20.A【分析】由角平分线的定义和平行线的性质结合即可求解.解:∠AD 平分∠BAC ,∠BAC =40°,∠∠CAD =12BAC ∠=20°, ∠BD ∠AC ,∠∠D=∠CAD =20°.故选:A【点拨】此题考查角平分线的定义和平行线的性质,掌握相应的性质是解答此题的关键.21.A【分析】先根据垂直的定义可得90CDE ADE ∠+∠=︒,再根据平行线的性质可得BAD ADE ∠=∠,然后根据余角的定义即可得.解:AD BC ⊥,90CDE ADE ADC ∴∠+∠=∠=︒,DE AB ∥,BAD ADE ∴∠=∠,90CDE BAD ∴∠+∠=︒,则CDE ∠与BAD ∠的关系是互为余角,故选:A .【点拨】本题考查了垂直、平行线的性质、余角,熟练掌握平行线的性质是解题关键.22.C【分析】过E 作EF ∥AB ∥CD ,由平行线的质可得∠α+∠AEF =180°,∠ECD =∠γ,由∠β=∠AEF +∠FED 即可得∠α、∠β、∠γ之间的关系.解:过点E 作EF ∥AB ,∠∠α+∠AEF =180°,∠AB ∥CD ,∠EF ∥CD ,∠∠FEC =∠ECD ,∠∠β=∠AEF +∠FED ,又∠γ=∠ECD ,∠∠α+∠β-∠γ=180°.故选:C .【点拨】本题考查了平行线的性质,根据题意正确作出辅助线是解题的关键.23.A【分析】先根据平行线的性质可得DEF ∠的度数,根据折叠的性质可得GEF ∠,进而可得,DEG AEG ∠∠,即可判断∠ ∠ ;再利用平行线的性质可得EGB ∠、EFC ∠的度数,即可判断∠ ;再根据折叠的性质可得EFC '∠的度数,进而可得CFC '∠的度数,即可判断∠解:∠ 四边形ABCD 是长方形∠AD BC ∥35DEF EFB ∴∠=∠=︒由折叠的性质可得35GEF DEF ∠=∠=︒故 ∠ 正确35270DEG ∴∠=︒⨯=︒18070110AEG ∴∠=︒-︒=︒ 故 ∠ 正确AD BC ∥70EGB DEG ∴∠=∠=︒故 ∠ 正确又180********EFC EFB ∠=︒-∠=︒-︒=︒由折叠的性质可得:145EFC EFC '∠=∠=︒360145270CFC '∠=︒-︒⨯=︒故 ∠ 正确故选:A【点拨】本题主要考查平行线的性质和折叠的性质,解题关键是熟练掌握平行线的性质和折叠的性质.24.A。

平行线与相似三角形练习

平行线与相似三角形练习

平行线与相似三角形练习平行线和相似三角形是高中数学中重要的概念,它们在几何学中有着重要的应用。

本文将通过练习题的形式,帮助读者加深对平行线与相似三角形的理解。

练习题一:平行线的性质1. 若两条直线分别与一条平行线相交,那么这两条直线之间的夹角与这条平行线之间的夹角相等。

2. 平行线的反身性质:平行线之间的夹角相等的两条直线是平行线。

3. 平行线和垂直线之间的夹角是一个直角。

练习题二:相似三角形的判定1. 两个三角形的对应角相等,则这两个三角形相似。

2. 若两个三角形的对应边成比例,则这两个三角形相似。

3. 两个三角形的两个角分别相等,则这两个三角形相似。

4. 若两个三角形的一对对应边成比例,并且夹角相等,则这两个三角形相似。

练习题三:平行线与相似三角形的应用1. 已知AB//CD,EF//CD,且AC/CE=2,求DE的长度。

解析:根据平行线的比例定理,AB/EF=AC/CE=2,因此AB=2EF。

根据相似三角形的性质,两个三角形ADE和CEF相似,所以DE/EF=AD/CE。

由于EF=1,AD=2,CE=1,代入可得DE/1=2/1,所以DE=2。

2. 已知△ABC中,∠B=90°,AD是BC的中线,且AD=5,AC=12,求AB的长度。

解析:由于AD是BC的中线,所以BD=DC。

根据相似三角形的性质,三角形ABD和三角形ACD相似,因此BD/DC=AB/AC。

代入已知数据可得BD/BD+BD=AB/12,即1/2=AB/12,所以AB=6。

3. 已知AB//CD,AB=3,CB=4,EF=6,且CD=2.5,求EF的长度。

解析:根据平行线的比例定理,AB/CD=CB/EF,代入已知数据可得3/2.5=4/EF,解得EF=5。

练习题四:计算题1. 已知△ABC和△DEF是相似三角形,且AB=8,BC=6,AC=10,EF=15,求DE的长度。

解析:根据相似三角形的性质,AB/DE=BC/EF=AC/DF。

2022年强化训练沪科版七年级数学下册第10章相交线、平行线与平移同步练习试题(含答案解析)

2022年强化训练沪科版七年级数学下册第10章相交线、平行线与平移同步练习试题(含答案解析)

七年级数学下册第10章相交线、平行线与平移同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°2、如果两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角的度数分别是()A.48°,72°B.72°,108°C.48°,72°或72°,108°D.80°,120°3、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴b∥c.小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是()A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠54、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FD∥AB,∠B=30°,则∠ADB的度数是()A.95°B.105°C.115°D.125°5、下列说法中正确的有()个①两条直线被第三条直线所截,同位角相等;②同一平面内,不相交的两条线段一定平行;③过一点有且只有一条直线垂直于已知直线;④经过直线外一点有且只有一条直线与这条直线平行;⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.1 B.2 C.3 D.46、如图,三角形ABC沿着由点B到点C的方向平移得到三角形DEF,已知BC=5,EC=3,那么平移的距离为 ( )A.2 B.3 C.5 D.87、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为()A.40°B.50°C.140°D.150°8、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段()的长度A.CD B.AD C.BD D.BC9、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70°B.80°C.100°D.110°10、“小小竹排江中游,巍巍青山两岸走”,所描绘的图形变换主要是()A.平移变换B.翻折变换C.旋转变换D.以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下面两条平行线之间的三个图形,图____的面积最大,图______的面积最小.2、如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.3、如图,直线AB、CD、EF相交于点O,OG⊥EF,且∠GOB=20°,∠AOC=40°,则∠COE=_____°.4、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.5、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定AB∥CD的有___.(填序号)三、解答题(5小题,每小题10分,共计50分)1、小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB则有∠BEF=∠B∵AB∥CD∴EF∥CD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD 之间的数量关系.2、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.3、如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.4、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD()∵MN∥AB,∴∠A=()()∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.5、根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.证明:∵∠DAF=∠F(已知).∴AD∥BF(),∴∠D=∠DCF().∵∠B=∠D(已知),∴()=∠DCF(等量代换),∴AB∥DC().-参考答案-一、单选题1、C【分析】如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.2、B【分析】根据题意可得这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补, ∵一个角的12等于另一个角的13,∴这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-, 根据题意可得:()1118023x x =︒-, 解得:72x =︒,180108x ︒-=︒,故选:B .【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.3、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.解:证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴∠4=∠5.∴b∥c.∴应补充∠4=∠5.故选:D.【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.4、B【分析】由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.【详解】解:由题意得∠ADF=45°,∵FD AB∥,∠B=30°,∴∠B+∠BDF=180°,∴∠BDF=180°﹣∠B=150°,∴∠ADB=∠BDF﹣∠ADF=105°.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.5、A【分析】根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.【详解】①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;②同一平面内,不相交的两条直线一定平行,故②不正确;③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;④经过直线外一点有且只有一条直线与这条直线平行,故④正确⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.故正确的有④,共1个,故选A.【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.6、A【分析】根据平移的规律计算即可.【详解】∵三角形ABC沿着由点B到点C的方向平移得到三角形DEF,∴平移的距离为BE=BC-EC=5-3=2,【点睛】本题考查了平移,熟练掌握平移距离的计算是解题的关键.7、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,∴140B C ∠=∠=︒(两直线平行,内错角相等).故选:C .【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.8、A【分析】根据CD AB ⊥和点到直线的距离的定义即可得出答案.【详解】解:CD AB ⊥,∴点C 到AB 的距离是线段CD 的长度,故选:A .【点睛】本题考查了点到直线的距离,理解定义是解题关键.9、B先证明DE∥BC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DE∥BC,所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.10、A【分析】根据平移是图形沿某一直线方向移动一定的距离,可得答案.【详解】解:“小小竹排水中游,巍巍青山两岸走”所描绘的图形变换主要是平移变换,故选:A.【点睛】本题考查了平移变换,利用了平移的定义.二、填空题1、3 2【分析】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.解:图1、2、3的高相等,图2三角形的底是8,8÷2=4,图1梯形的上、下底之和除以2,即为(2+7)÷2=4.5;图3平行四边形的底为5,∵5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.故答案是:3,2.【点睛】本题主要考查平行线的性质及等积法,熟练掌握平行线间的距离相等及等积法是解题的关键. 2、2m n +⎛⎫ ⎪⎝⎭【分析】作EF ∥AB ,证明AB ∥ EF ∥CD ,进而得到∠BED =∠ABE +∠CDE ,根据角平分线定义得到11,22ABE m CDE n ∠=︒∠=︒,即可求出2m n BED +⎛⎫∠=︒ ⎪⎝⎭. 【详解】解:如图,作EF ∥AB ,∵AB ∥CD ,∴AB ∥ EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∴∠BED =∠BEF +∠DEF =∠ABE +∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC , ∴1111,2222ABE ABC m CDE ADC n ∠=∠=︒∠=∠=︒, ∴ 2m n BED ABE CDE +⎛⎫∠=∠+∠=︒⎪⎝⎭.故答案为:2m n +⎛⎫⎪⎝⎭【点睛】 本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.3、30°【分析】先根据对顶角得到∠BOD =40°,再根据垂直的定义得到∠EOG =∠FOG =90°,求出∠DOF ,最后根据对顶角求出∠COE .【详解】解:∵∠AOC =40°,∴∠BOD =40°,∵OG ⊥EF ,∴∠EOG =∠FOG =90°,∵∠GOB =20°,∴∠BOF =70°,∴∠COE =∠DOF =70°-40°=30°,故答案为:30°.【点睛】本题考查了垂直的定义,对顶角的性质;弄清各个角之间的关系是解决问题的关键.4、17︒【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴4285∠+∠=︒,34180∠+∠=︒,13125∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.5、②③④【分析】根据平行线的判定方法分别判定得出答案.【详解】解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;④中,∠B+∠BCD=180°,∴AB//CD(同旁内角互补,两直线平行),故此选项符合题意;故答案为:②③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.三、解答题1、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC+∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;【分析】(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.【详解】解:(1)如图所示,过点P作PG∥l1,∴∠APG=∠PAC=15°,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=55°;(2)由(1)可得当P在线段CD上时,∠APB=∠PAC+∠PBD;如图1所示,当P在DC延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;如图2所示,当P在CD延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;∴综上所述,当P在线段CD上时,∠APB=∠PAC+∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.2、53°【分析】首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=1∠COB=37°,再利用余角2定义可计算出∠COF的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∠COB=37°,∴∠COE=12∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.3、见解析【分析】先连接AA′然后作AA′的平行线,利用平移性质分别确定A、B、C平移后的对应点A′、B′、C′,然后再顺次连接即可.【详解】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A′、B′、C′是解答本题的关键.4、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°.【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【分析】根据平行线的性质与判定条件完成证明过程即可.【详解】证明:∵∠DAF=∠F(已知).∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等).∵∠B=∠D(已知),∴∠B=∠DCF(等量代换),∴AB∥DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.。

2022届成都市七年级下期 相交线与平行线、三角形全等练习题

2022届成都市七年级下期 相交线与平行线、三角形全等练习题

2022届成都市七年级下期相交线与平行线、三角形全等练习题1.下列说法中,正确的是()A.倒数等于它本身的数是1 B.如果两条线段不相交,那么它们一定互相平行C.等角的余角相等D.任何有理数的平方都是正数2.茗茗总结的下列结论中,不正确的是()A.等角的补角相等B.等角的余角相等C.过两点有且只有两条直线D.两点之间线段最短3.下列说法中,正确的是()A.垂线最短B.过直线外一点有且只有一条直线与已知直线平行C.相等的角一定是对顶角D.过一点有且只有一条直线与已知直线垂直4.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④5.下面说法正确的个数为()(1)过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个6.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.则∠A=∠F,请说明理由.解:∵∠AGB=∠EHF∠AGB= (对顶角相等)∴∠EHF=∠DGF∴DB∥EC∴∠=∠DBA (两直线平行,同位角相等)又∵∠C=∠D∴∠DBA=∠D∴DF∥(内错角相等,两直线平行)∴∠A=∠F.7.(1)如图1,已知∠1=∠2,∠B=∠C,可推得AB∥CD,理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B()∴AB∥CD().(2)已知,如图2,AD∥BE,∠1=∠2,∠A与∠E相等吗?试说明理由.9.如下图所示,边长分别为a,b的两个正方形拼在一起,用代数式表示图中阴影部分的面积,并求a=8,b=5时,阴影部分的面积.10.操作示例: 如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC.实践探究(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为;解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和,即S1+S2+S3+S4= .11.已知:△ABC中,AD⊥BC,AE平分∠BAC,请根据题中所给的条件,解答下列问题:(1)如图1,若∠BAD=60°,∠EAD=15°,求∠ACB的度数.(2)通过以上的计算你发现∠EAD和∠ACB-∠B之间的关系应为:.(3)在图2的△ABC中,∠ACB>90°,那么(2)中的结论仍然成立吗?为什么?12.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;13.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.14.学习数学应该积极地参加到现实的、探索的数学活动中去,努力地成为学习的主人.下面,请你探究:随着P点位置的变化,∠BPC与∠A的大小关系.(1)、(2)问用“>”表示其关系,(3)、(4)、(5)用“=”表示其关系.1如图(1),点P在AC上(不同于A、C两点),∠BPC与∠A的关系是,用一句话说出你判断的依据;②如图(2),点P在△ABC内部,∠BPC与∠A的关系是;③如图(3),点P是∠ABC、∠ACB平分线的交点,此时∠BPC与∠A的关系是;④如图(4),点P是∠ABC平分线和∠ACB外角平分线的交点,∠BPC与∠A的关系是;⑤如图(5),点P是∠ABC与∠ACB两外角平分线的交点,∠BPC与∠A的关系是;⑥在上述五种情形中,选择其中一种情形给予说明理由.⑦问题解决:如图(6),在△ABC中,∠C=90°,点P是∠ABC平分线和∠BAC外角平分线的交点,则∠P的度数为.1.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;其中假命题共有()A.1个B.2个C.3个D.4个2.(荆门)给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点,这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点(4)三角形的重心是它的中线的一个三等分点那么以上判断中正确的有()A.一个B.两个C.三个D.四个3.(深圳)已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是()A.4<c<7 B.7<c<10 C.4<c<10 D.7<c<134.(鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③5.命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果a2=b2,那么a=b;⑧三角对应相等的两三角形全等;⑨如果∠A+∠B=90°,那么∠A与∠B互余.其中真命题有…()A.3个B.4个C.5个D.6个6.如图所示的△ABC中,线段BE是三角形AC边上的高的是()A.B.C.D.7.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线8.下列说法错误的有()①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个9.已知EF是AB上的两点,AE=BF,AC∥BD,且AC=DB,求证:CF=DE.10.如图(19),在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图①)且AD=CE,求证:BA⊥A C.(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.11、如图,AB=AC,B D⊥AC于D,CE⊥AB于E BD、CE相交于F,,试说明AF平分∠BAC12、如图AB、CD相交于点O,,OA=OB,OC=OD,EF是过O点的任意一条直线,且交AC于点E,交BD于点F,请回答:(1)AC和BD有什么关系?(2)求证:OE=OF13. 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF 的中点吗?请证明你的结论。

七年级数学相交线和平行线强化训练

七年级数学相交线和平行线强化训练

4.2订交线和平行线课标要求①认识对顶角,知道对项角相等。

②认识垂线、垂线段等观点,认识垂线段最短的性质,领会点到直线距离的意义。

③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。

④知道两直线平行同位角相等,进一步探究平行线的性质⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。

⑥领会两条平行线之间距离的意义,会胸怀两条平行线之间的距离。

典型例题1.判断与性质例 1 判断题:1)不订交的两条直线叫做平行线。

()2)过一点有且只有一条直线与已知直线平行。

()3)两直线平行,同旁内角相等。

()4)两条直线被第三条直线所截,同位角相等。

()答案: (1) 错,应为“在同一平面内,不订交的两条直线叫做平行线” 。

(2)错,应为“ 过直线外一点,有且只有一条直线与已知直线平行”。

(3)错,应为“ 两直线平行,同旁内角互补”。

(4)错,应为“ 两条平行线被第三条直线所截,同位角相等” 。

例 2 已知:如图,AB ∥CD ,求证:∠ B+ ∠D= ∠BED 。

剖析:能够考虑把∠ BED 变为两个角的和。

如A B图5,过 E点引一条直线 EF ∥AB ,则有∠B=∠1,再想法证明∠ D=∠2,需证EF ∥CD,这可经过已知 AB ∥CD 和 EF ∥AB 获得。

证明:过点 E 作 EF ∥AB ,则∠B=∠1(两直线平E F行,内错角相等)。

C D ∵AB ∥CD (已知),又∵EF ∥AB (已作),∴EF ∥CD (平行于同向来线的两条直线相互平行)。

∴∠D=∠2 (两直线平行,内错角相等)。

又∵∠BED=∠1+ ∠2 ,∴∠BED=∠B+ ∠D(等量代换)。

变式 1 已知:如图 6,AB ∥CD ,求证:∠ BED=360 °-(∠B+ ∠D )。

剖析:本题与例 1的差别在于 E点的地点及结论。

我们往常所说的∠把∠BED 当作是大于平角的角,能够以为本题的结论与例 1 的结BED 都是指小于平角的角,假如论是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学强化训练(七)
班级_______姓名_______学号__________得分_______
平行线、相交线、三角形(总分150分,时间100分钟)
一.填空题(每题4分,共52分)
1.若︒=∠35A , 则A ∠的余角等于 度.
2.一大门的栏杆如图所示,BA 垂直于地面AE 于A ,
CD 平行于地面AE ,则∠ABC +∠BCD = 度.
3.已知△ABC 中,D 、E 分别是两边AB 和AC 的中点,
若△ABC 的周长是8cm ,则△ADE 的周长是 c m .
4.等腰△ABC 的两边长分别为2和5,则第三边长为 .
5.在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = .
6.若某三角形两边长为2,4,第三边上的中线为x , 则x 的取值范围为__________.
7.在ΔABC 中,∠C =90°∠ABC 的平分线BD 交AC 于点D ,若BD =10厘米,BC =8厘米,则
点D 到直线AB 的距离是__________厘米.
8.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥
于点F .若2BC =,则DE DF +=_____________.
9.某楼梯的侧面视图如图所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活
动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 米.
10.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .
①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要
__________cm ;
②如果从点A 开始经过4个侧面缠绕3圈到达点B ,那么所用细线最短需要
__________cm .
11.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让
同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为
顶点的三角形是等腰直角三角形.这样的三角形最多能画 个.
12.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的
低矮栅栏,则需要栅栏的长度为 m .
二:选择题(每题4分,共48分)
13.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...
是( ) A .2.5 B .3 C .4 D .5
14.如图,已知AB ∥CD ,BE 平分∠ABC ,且CD 于D 点, ∠CDE =150°,则∠C 为 ( )
A .120°
B .150°
C .135°
D .110° F
E B C D A B A 6cm 3cm
1cm B C
A
30°
E D
C B
A
15.下图所示几何体的主视图是 ( )
A B C D
16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为 ( )
A .40°
B .100°
C .40°或100°
D .70°或50°
17.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺
丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破
坏此木框,则任两螺丝的距离之最大值为何? ( )
A .5
B .6
C .7
D .10
18.如图,△ABC 中,有一点P 在AC 上移动.若AB =AC =5,BC =6,则AP +BP +CP 的最小
值为何? ( )
A . 8
B . 8.8
C . 9.8
D . 10
19.如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是△ABC 、△BCD 的角平分
线,则图中的等腰三角形有 ( )
A .5个
B .4个
C .3个
D .2个
20.已知等边△ABC 的边长为a ,则它的面积是
( ) A .21a 2 B .23a 2 C .42a 2 D .4
3a 2 21.如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且P A =PB .确定P
点的方法正确的是
( )
A .P 为∠A 、∠
B 两角平分线的交点
B .P 为∠A 的角平分线与AB 的垂直平分线的交点
C .P 为AC 、AB 两边上的高的交点
D .P 为AC 、AB 两边的垂直平分线的交点
22.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )
A .90°
B .60°
C .45°
D .30° 正面
A B P
C A B
C
B A
23.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是 ( )
A .22()()4m n m n mn +--=
B .222()()2m n m n mn +-+=
C .222()2m n mn m n -+=+
D .22()()m n m n m n +-=-
24.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为斜边并且在AB 的同一侧作等腰直角△ACD 和△BCE ,连结AE 交CD 于点M ,连结BD 交CE 于点N ,给
出以下三个结论:①MN ∥AB ;②1MN =1AC +1BC ;③MN ≤14AB ,其中正确结论的个数是 ( )
A .0
B .1
C .2
D .3
三.解答题(共50分)
25.已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法), 并根据要求填空:
(1)作∠ABC 的平分线BD 交AC 于点D ;
(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .
由⑴、⑵可得:线段EF 与线段BD 的关系为 .(8分)
26.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:_______________,并给予证明.(10分)
B D
C A
E
F
图①
图②
D E C B A
27.已知:如图,AB=AC ,点D 是BC 的中点,AB 平分DAE ∠,AE BE ⊥,垂足为E .
求证:AD=AE .(10分)
28.如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .
(1)请你判断AD 是△ABC 的中线还是角平分线?请证明你的结论.
(2)连接BF 、CE ,若四边形BFCE 是菱形,则△ABC 中应添加一个条件 (10分)
29.在ABC △中,AC=BC ,90ACB ∠=︒,点D 为AC 的中点.
(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F 作FH FC ⊥,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明.
(2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(12分)
H F 图2图1H F E B C D
A
E D B C
A。

相关文档
最新文档