第五章 一元一次方程1
5.1.1认识一元一次方程(教案)
一、教学内容
本节课我们将学习人教版七年级数学上册第五章第一节第一部分“5.1.1认识一元一次方程”。教学内容主要包括以下方面:
1.一元一次方程的定义:让学生理解什么是一元一次方程,即只含有一个未知数,并且未知数的指数是1的方程。
例如:ax + b = 0(a、b是常数,且a≠0)
同学们,今天我们将要学习的是《5.1.1认识一元一次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或计算价格的情况?”(例如:三个人平分一堆糖果)这个问题与我们将要学习的一元一次方程密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。
-方程解的意义:理解方程解即问题的关键。
例如:在应用问题中,解出的x值即为所求的答案。
2.教学难点
-移项和合并同类项:学生容易混淆移项时符号的变化,以及合并同类项时的操作。
例如:解方程3x - 4 = 2x + 5时,将2x移到左边变为3x - 2x,将-4移到右边变为+4,学生容易在此过程中出错。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的指数是1的方程。它是解决许多实际问题的有力工具,尤其在计算和推理方面有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算一件商品打折后的价格,可以列出方程原价x减去折扣后的价格y等于折扣金额,即x - y =折扣金额。
2.通过对方程求解过程的学习,培养学生的逻辑推理能力和数学运算素养,使其能够熟练运用方程知识解决问题。
3.引导学生将实际问题转化为方程问题,培养其数学建模素养,提高解决实际问题的能力。
北师大版七年级数学上册第5章第1节认识一元一次方程课件
问题2:列方程式 (1)y与它的 1 的和是19_________
7
(2)a的2倍与b的和为7__2_a_+_b_=_7____ (3)x的平方与3的差等于-2_x_2_-_3_=_-_2_.
学习新知
五个情境中的三个方程为:
⑴ 40+15χ=100 ⑵ 2[χ+(χ+25)]=310 ⑶ χ(1+147.30%)=8930
上面情境中的三个方程 , 有什么共同点?
在一个方程中,只含有一个未知数χ(元), 并且未知数的指数是1(次),这样的方程叫做一 元一次方程。
你来试试
判断下列各式是不是一元一次方程,是的打 “√”,不是的打“x”。
• 解:设张叔叔原计划每时行走 x km,可 以得到方程:
情境 4 第六次全国人口普查统计数据,截至 2010年11月1日0时,全国每10万人中具有 大学文化程度的人数为8930人,比2000年 第五次全国人口普查时增长了147.30%.
如果设2000年6月每10万人
中约有x人具有大学文化程度, 2000年6月底
拓展提升
1、根据题意先设未知数,再列出方程 ①一个数的 1 与3的差等于最大的一位数, 求这
6
个数. ②购买一本书, 打八折比打九折少花2元钱, 求原 价. ③甲、乙两队开展足球对抗赛, 规定每队胜一 场得3分, 平一场得1分, 负一场得0分.甲队与乙 队一共比赛了10场, 甲队保持了不败记录, 一共 得了22 分, 甲队胜了多少场? 平了多少场?
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
第五章 第3课 解一元一次方程(1)——移项
谢谢!
(1)一个月内本地通话 200 分钟,按方式一、方式二各需交费多 少元? (2) 对于某个本地通话时间,会出现两种计费方式收费一样多 吗?
(1)按方式一需交费:30+0.30×200=90(元);按方式二需交费: 0.40×200=80(元) (2)设这个通话时间为 x 分钟,依题意,有 30+0.3x=0.4x 解得 x=300 所以本地通话时间为 300 分钟时,两种计费方式一样多.
10. 解方程 9x+20=4x-25,移项正确的是( B ) A. 9x+4x =-25+20 C. 9x-4x=25-20 B. 9x-4x =-25-20 D. 9x-4x =-25+20
第2关 11. 若 x=3 是方程 2x+a=7 的解,则 a 的值是( A ) A. 1 B. 9 C. -5 D. 5 . .
(3)5y+6-8y=3y-12.
5y+6-8y=3y-12 5y-8y-3y=-12-6 -6y=-18 y=3
7 4 17. 当 x 为何值时,4-3x 与-3x-1 的值相等.
7 4 由 4-3x=-3x-1 解得 x=5, 7 4 所以当 x=5 时,4-3x 与-3x-1 的值相等
18. 根据下面的两种移动电话计费方式,解答问题: 方式一 月租费 本地通话费 30 元/月 0.30 元/分 方式二 0 0.40 元/分
12. 已知 x=5 是方程 ax-3=7 的解,则 a= 2 13. 关于 x 的方程 x 14. 如果 3ab A. 2
2n-1 3m-2
-1=-5 是一个一元一次方程, 则 m= 1 是同类项,则 n 的值为( A ) D. 0
与 ab
n+1
B. 1 C. -1
第3关 15. 解方程: (1)-x=1;
5.1 认识方程 课件 (共20张PPT) 北师大版数学七年级上册
4. 已知方程 (m 2)x m 1 3 m 5 是关于 x 的一元一 次方程,求 m 的值,并写出原方程.
解:因为方程 (m 2)x m 1 3 m 5 是关于 x 的一元 一次方程, 所以 |m|-1 = 1,且 m-2 ≠ 0,得 m = -2. 所以原方程为-4x + 3 = -7.
A. 3x-2=2x
B. 4x-1=2x+3
C. 3x+1=2x-1 D. 5x-3=6x-2
2. 若 x=4 是关于 x 的方程 ax=8 的解,则 a 的值 为___2___.
当堂小结
认识方程
方程的定义 一元一次方程
方程的解
课堂练习 1. x = 1 是下列哪个方程的解
A. 1 x 2 C. x 1 x 2
甲种支数 乙种支数 20支
解:设甲种铅笔买了 x 支,乙种铅笔买了 (20 - x) 支. 0.3x + 0.6(20-x) = 9,是一元一次方程.
(3)一个梯形的下底比上底多 2 cm,高是 5 cm,面 积是 40 cm2,求上底.
1 2 (上底+下底)×高 = 梯形面积
解:设上底为 x cm,则下底为 (x + 2) cm. 1 (x x 2)5 40,是一元一次方程. 2
x
415 424 433 442 451 460 379 388 …
10x + 15(45 - x) 46570 64655 6460 465 470 475 480 485 …
总结 使方程左、右两边的值相等的未知数的值,叫作方 程的解。求方程的解的过程称为解方程。
练一练
1. 下列方程中,解为 x=-2 的是( C )
典例精析
例1 判断下列各式哪些是方程:
北师大数学七年级上册第五章 求解一元一次方程(第1课时)
课堂检测
5.2 求解一元一次方程/
拓广探索题
有一些分别标有3,6,9,12,…的卡片,后一张卡片上
的数比前一张卡片上的数大3,从中任意拿相邻的三张卡片,
若它们上面的数之和为108,则拿到的是哪三张卡片? 解:设这张卡片中最小的一个数为x,则另两个数分别为 x+3、x+6, 依题意列方程,得x+x+3+x+6=108,解得x=33,
化简,得 2x=-5.
合并同类项,得 x=4.
方程两边同除以2,
得x=-52.
注意: 习惯上把含有未知数的项移到左边,常数项移到右边.
探究新知
5.2 求解一元一次方程/
归纳小结
解一元一次方程ax+b=cx+d(a,b,c,d
均为常数,且a≠c)的一般步骤:
移项
ax-cx=d-b
合并同类项 系数化为1
北师大版 数学 七年级 上册
5.2 求解一元一次方程/
5.2 求解一元一次方程 (第1课时)
导入新知
5.2 求解一元一次方程/
约公元825年,中亚细亚 数学家阿尔—花拉子米写了一 本代数书,重点论述了怎么解 方程.这本书的拉丁译本为 《对消与还原》,“对消”与 “还原”是什么意思呢?
素养目标
5.2 求解一元一次方程/
B.由-10x-5=-2x,得-10x-2x=5
C.由7x+9=4x-1,得7x-4x=-1-9 D.由5x=9,得x=95
解析:利用移项的要点解题,A是代数式变形,不是
移项;B移项时符号错了;D不是移项.
探究新知
5.2 求解一元一次方程/
易错警示 1.移项时必须是从等号的一边到另一边,并且不要忘记对 移动的项变号,如从2+5x=7得到5x=7+2是不对的.
第五章一元一次方程(1)
第五章一元一次方程(1)一、选择题1.下列方程中,是一元一次方程的是( ) A.x 2+1=0 B.x=0 C.1x=0 D.x+y=0 2.解方程-3x+5=2x-1, 移项正确的是( ) A.3x-2x=-1+5 B.-3x-2x=5-1 C.3x-2x=-1-5 D.-3x-2x=-1-53.若方程x ax 35+=的解为x =5,则a 等于( ) A. 80 B. 4 C. 16 D. 24.一个长方形周长是16cm ,长与宽的差是1cm ,那么长与宽分别为( )。
A 、3cm ,5cm B 、3.5cm ,4.5cm C 、4cm ,6cm D 、10cm,6cm 5.某商品的进价是110元,售价是132元,则此商品的利润率是( )A 、15%B 、20%C 、25%D 、10% 6.如果关于x 的方程01231=+m x 是一元一次方程,则m 的值为( )A .31B 、1C 、 3D 、不存在 7.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬( )A 5秒,B 6秒,C 8秒,D 10秒;8.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= ( )A. 103B. 310C. -103D.- 3109.若212n b a31=与-5b 2a 3n-2是同类项,则n=( ) A. 53 B. -3 C. 35- D.3 10.已知y 1=5x 61y ,1x 322-=+-,若y 1+y 2=20,则x=( )A.-30B.-48C.48D.30二、填空题 1.方程212-=x 的解为____________________ 2.一件商品按成本价提高20%后标价,又以9折销售,售价270元,设这种商品的成本个为x 元,列出方程是_________________________3.小明今年6岁,他的祖父72岁,_______________年后,小明的年龄是他祖父年龄的414.当=x ___时,代数式24+x 与93-x 的值互为相反数.5.在梯形面积公式s= 12(a +b) h 中,若s=24,b=5,h=4,则 a=_.6.某数x 的一半减去该数的13等于6,列方程为_________________________.7.如果2x-a=3,那么2x=3+_____________.8.如果方程5x=-3x+k 的解为-1,则k= 。
《认识一元一次方程》一元一次方程PPT课件
D.5x-3=6x-2
2. 若 x=1是方程x2 -2mx +1=0的一个解,则m的
值为( C )
A. 0
B. 2
C. 1
D. -1
✓ 过关检测
3.根据第六次全国人口普查统计数据:截至2010年11月1日 0时,全国每10万人中具有大学文化程度的人数为8930人,与 2000年第五次全国人口普查相比增长了147.30%.2000年第五 次全国人口普查时每10万人中约有多少人具有大学文化程度?
✓练
判断下列各式是不是一元一次方程,并说说你的依据。
(1)、2x2 - 5x+6=0 (×)
(2)、3χ-1=7 ( √ )
(3)、m=0 (√) (5)、χ+y=8 (×)
(4)、 (6)、
(√ ) ( ×)
注意:判断前,要将原方程化简、整理后,再作判断!
✓识
自主阅读下列文字,思考并完成下列问题:什么叫一元一次方 程的解?怎么判断一个数是不是方程的解?(时间:2min)
使方程左、右两边的值相等的未知数的值,叫做方程的 解.(注:我国古代称未知数为元,只含有一个未知数的方 程叫做一元方程,一元方程的解也叫根。)
判断一个数是不是方程的解,把这个数代入方程的左、 右两边,如果左、右两边的值相等,那么这个数是方程的解, 如果左、右两边的值不相等,那么这个数就不是方程的解。
今天问的:去日游期乐场的每张车票要多少元?
等量关系: 出租车费 + 门票钱 =总花费
问题2:设去游乐场的每张车票要x 元,可列出 方程
5+2x=13
✓识
为庆祝开园半周年,门票特惠!一张门票8折销售的售价 为72元! 请问:门票多少元一张?
七年级数学上册第五章《求解一元一次方程-(第1课时)》教学课件北师大版
习题5.3 1、2题
谢谢!
求解一元一次方程(一)
等式的基本性质1 等式两边同时加上(或
减去)同一个代数式,所得结果仍是等式.
符号语言
若 x=y,那么x+a = y+a(a为一代数式) 若 x=y,那么x-a = y-a(a为一代数式)
等式的基本性质2 等式两边同时乘一个数
(或除以同一个不为0的数), 所得结果仍是等式.
符号语言
若 x=y, 那么cx = cy(c为一数)
若 x=y,那么x/c = y/c(c为一数且c≠0)
(1)解方程: 5x-2=8. ·········① 解:方程两边都加上2 得:5x-2+2=8+2. 5x =8+2 ·········② 即: 5x=10
观察
5x-2=8 5x =8+2
(2) 解方程 5x=8x+2 解:方程两边都加上-8x
第一组 1 x 2 5 3x
4
7
第二组 x 6 x 5 2
练一练
(1) 7x+2=1
(2) 10x – 3 = 9
(3) 5x –2= 7x +8 (4) 3x+3=7x+7
(5)已知x=5是方程ax-8=20+a的解, 求a的值.
注意:移项要变号哟.
本节课我们学到了:
1.等式的基本性质; 2.什么叫移项; 3.如何用移项的方法解方程.
得:5x-8x=8x+2-8x 即: 5x-8x=2
-3x=2
·········① ·········②
观察
5x =8x-2
5x-8x=2
(1)5x-2=8 5x =8 +2
北师大版七年级数学上册第五章一元一次方程认识方程课件
D项,把x=1代入方程,得左边=1 1 =1,右边=1-2=-1,左边≠右
2
边,即x=1不是此方程的解. 故选B.
知识点4 根据实际问题列方程
4.(教材变式·P137T1(1))(2021吉林中考)古埃及人的“纸草
x+ 1 =1,③ 1 x= 1 ,④x2-3=0,其中是一元一次方程的个数为( A )
x
22
A.1
B.2
C.3
D.4
解析 ①x-y=0中含有两个未知数,不是一元一次方程;
②x+ 1 =1不是整式方程,不是一元一次方程;
x
③ 1 x= 1 是一元一次方程;
22
④x2-3=0中未知数的次数是2,不是一元一次方程.
3 72
解析 由题意可得 2 x+ 1 x+ 1 x+x=33.故选C.
327
5.根据所给问题,设未知数,列出方程. 从60 cm的木条上截去2段同样长的木条,还剩下10 cm长的 短木条,截去的每段长为多少?
解析 设截去的每段长为x cm, 根据题意可列方程为60-2x=10.
能力提升全练
6.(2024辽宁沈阳辽中期末,7,★★☆)下列各方程:①x-y=0,②
书”中记载了一个数学问题:一个数,它的三分之二,它的一
半,它的七分之一,它的全部,加起来总共是33.若设这个数
是x,则所列方程为 ( C )
A. 2 x+ 1 x+x=33
37
B. 2 x+ 1 x+ 1 x=33
327
C. 2 x+ 1 x+ 1 x+x=33
5.3 解一元一次方程 - 第1课时 移项课件(共19张PPT)
合并同类项
系数化为1
随堂练习
1.解方程:7x-2=5x+8.
解:移项,得7x-5x=8+2.合并同类项,得2x=10.系数化为1,得 x=5.
2.若 x-5与2x-1的值相等,则 x 的值是 .
解析:根据题意,得 x-5=2x-1.移项,得 x-2x= -1+5.合并同类项,得 -x=4. 系数化为1,得 x= -4.
2.移项的依据
注意
1. 移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置. 2. 方程中的各项均包括它们前面的符号,如x-2=1中,方程左边的项有x,-2,移项时所移动的项一定要变号.3. 移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边.
例题详解
例1
解下列方程:
两边同减3x
合并同类项
化为
知识点
解一元一次方程——移项
在解方程的过程中,等号的两边加上或减去方程中某一项的变形过程,相当于将这一项改变符号后,从等号的一边移到另一边.这种变形过程叫作移项.
1.移项的定义
移项的依据是等式的性质1,移项的目的是将含有未知数的项移到方程的一边,将常数项移到方程的另一边,使方程更接近 x=a 的形式.
-4
3.利用方程解答下列问题:(1) x的3倍与2的和等于x的2倍与1的差,求x的值;(2) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
解:(1) 列方程,得3x+2=2x-1.移项,得3x- 2x=-1-2.合并同类项,得x=-3.
(2)根据题意,得 -3x+2+2x-1=0.移项,得 -3x+2x= -2+1.合并同类项,得 -x=-1.系数化为1,得 x=1.
第五章 一元一次方程复习1
打的回家
买完蛋糕,小明为了赶在爸爸回家前先回到家,给他 一个惊喜,小明决定打的回家。出租车收费标准是: 起步价(即不超过3千米)为8元;里程超过3千米以 后每千米加价2元,小明共花了18元,你知道小明一 共乘了多少千米吗?
x 1
移项
合并同类项
两边同除以未知数系数
三、列方程解应用题 参观游乐园
星期天的早晨,小明妈妈带着小明和亲戚家的1 位小朋友小聪去游乐园游玩。甲旅行社的促销 设 审 解 列 验(答) 办法是“带队的一位大人买全票,其余小朋友 按团体票即半价优惠”;乙旅行社的促销办法 是“包括带队的大人在内,一律按全票的六折 优惠”。如果两家的服务质量相同,票价每张 均是90元。那么,你知道吗:
设玻璃杯里的蓝莓汁有x cm高, 由题意可得
3 5 x 600
2
帮妈妈解决困难
这个时候妈妈过来,对小明说:妈妈所在的服装 厂加工车间有工人54人,每人每天可加工上衣8件 或裤子10条,应怎样合理分配人数,才能使每天 生产的上衣和裤子配套?
设加工上衣X人,由题意可得 8X=10(54-X) X=30
帮爸爸解决问题
下个月爸爸就要出差了,为了经常与家人联系, 他将选择哪种手机卡更合算呢?全球通手机卡收 费每分钟0.20元,月租每月20元;神州行手机卡 没有月租费,每分钟0.4元。 (1)当一个月通话时间多少分钟时,使用这两种 手机的费用相同? (2)针对这两种手机卡,从经济角度考虑,小明 将如何选择?
七年级数学上册 第五章 一元一次方程课时练习 (新版)北师大版
第五章 一元一次方程1 认识一元一次方程第1课时 一元一次方程1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=22.方程x +3=-1的解是( ) A .x =2 B .x =-4 C .x =4 D .x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .第2课时 等式的基本性质1.下列变形符合等式的基本性质的是( )A .若2x -3=7,则2x =7-3B .若3x -2=x +1,则3x -x =1-2C .若-2x =5,则x =5+2D .若-13x =1,则x =-32.解方程-34x =12时,应在方程两边( ) A .同时乘-34 B .同时乘4 C .同时除以34 D .同时除以-343.利用等式的基本性质解方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.2 求解一元一次方程第1课时 利用移项解一元一次方程1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x2.解方程-3x +4=x -8时,移项正确的是( ) A .-3x -x =-8-4 B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来.解方程:2x -1=-x +5.解:移项,得2x -x =1+5,合并同类项,得x =6.第2课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?第3课时 利用去分母解一元一次方程1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?3 应用一元一次方程——水箱变高了1.内径为120mm的圆柱形玻璃杯,和内径为300mm、内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A.150mmB.200mmC.250mmD.300mm2.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A.4cm2B.6cm2C.8cm2D.12cm23.将一个底面半径是5cm,高为10cm的圆柱体冰淇淋盒改造成一个直径为20cm的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.4 应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?5 应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?6 应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是( )A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第五章一元一次方程1 认识一元一次方程第1课时一元一次方程1.C2.B3.84.3x+20=4x-25第2课时等式的基本性质1.D2.D3.解:(1)x =5.(2)x =-4.(3)x =-7.2 求解一元一次方程第1课时 利用移项解一元一次方程1.D2.A3.B4.解:(1)x =-32.(2)x =92. 5.解:他的解答不正确.正确解答:移项,得2x +x =5+1,合并同类项,得3x =6,系数化为1,得x =2.第2课时 利用去括号解一元一次方程1.D2.A3.-14.解:(1)x =6.(2)y =-6.(3)x =8.(4)x =0.5.解:设他投进3分球x 个,则投进2分球(x +4)个.由题意得2(x +4)+3x =23,解得x =3,则x +4=7.答:他投进了7个2分球,3个3分球.第3课时 利用去分母解一元一次方程1.D2.D3.(1)92 (2)434.解:(1)x =3.(2)x =32.(3)x =-516.(4)y =-25. 5.解:设这个班共有x 名学生,根据题意得x 8=x6-2,解得x =48. 答:这个班共有48名学生.3 应用一元一次方程——水箱变高了1.B2.C3.解:设改造后圆柱体的高为x cm ,根据题意得25π×10=100πx ,解得x =2.5. 答:改造后圆柱体的高为2.5cm.4.解:设这个正方形挂衣架的边长为x dm ,根据题意得4x =3+4+5,解得x =3,则x 2=9. 答:这个正方形挂衣架的面积为9dm 2.4 应用一元一次方程——打折销售1.C2.D3.B4.解:设进价是x 元,由题意得0.9×(1+20%)x =x +20,解得x =250.答:进价是250元.5.解:设打x折时利润率为10%,根据题意得0.1x×1100=600×(1+10%),解得x=6.答:为了保证利润率不低于10%,最低可打6折销售.5 应用一元一次方程——“希望工程”义演1.解:设应分配给甲仓库x吨,则分配给乙仓库(15-x)吨,根据题意得35+x=2(19+15-x),解得x=11,则15-x=4.答:应分配给甲仓库11吨,分配给乙仓库4吨.2.解:设新团员中有x名男同学,则有(65-x)名女同学,由题意得32x+24(65-x)=1800,解得x=30.答:这些新团员中有30名男同学.3.解:设应分配x名工人生产脖子上的丝巾,则分配(70-x)名工人生产手上的丝巾,由题意得1800(70-x)=2×1200x,解得x=30,则70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.6 应用一元一次方程——追赶小明1.B2.163.解:设轮船在静水中的速度是x千米/时,根据题意得2(x+3)=3(x-3),解得x=15.答:轮船在静水中的速度是15千米/时.4.解:设快车开出x小时后与慢车相遇,则此时慢车开出(x+1.5)小时,根据题意得80x+40(x +1.5)=300,解得x=2.答:快车开出2小时后与慢车相遇.(本资料素材和资料部分来自网络,供参考。
牡丹江市第八中学七年级数学上册第五章一元一次方程1认识一元一次方程第1课时认识一元一次方程教案新版北
第五章一元一次方程1 认识一元一次方程第1课时认识一元一次方程【知识与技能】1.理解一元一次方程,方程的解等概念.2. 会根据具体问题列一元一次方程.【过程与方法】通过实际问题建立方程模型,归纳一元一次方程的概念,培养学生的认知能力和归纳概括能力.【情感态度】结合本课教学特点,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣. 【教学重点】建立一元一次方程的概念,会根据具体问题列出一元一次方程.【教学难点】根据具体问题中的等量关系,列出一元一次方程.一、情境导入,初步认识教材第130页最上方的彩图如果设小彬的年龄为x岁,那么“乘2再减5”就是_________,因此可以得到方程:__________________.【教学说明】学生根据两人的对话找出相等关系,列出方程,初步体会根据实际问题建立方程模型的思想.二、思考探究,获取新知1.列方程问题1 (1)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm.大约几周后树苗长高到1m?如果设周后树苗长高到1m,那么可以得到方程:__________________.(2)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每小时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km,可以得到方程:__________________.(3)根据第六次全国人口普查统计表数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:__________________.(4)某长方形操场上的面积是5850m 2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m ,那么长为(x +25)m ,由此可以得到方程__________________.【教学说明】 学生根据题意,找出相等关系列出方程,进一步体会方程建模思想. 【归纳结论】 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种常用方法.2.一元一次方程及方程的解问题2 (1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程? (2)方程2x -5=21,40+5x =100,x (1+147.30%)=8930有什么共同点?【教学说明】 学生通过观察,与同伴进行交流,找出这些方程的共同点,归纳一元一次方程的概念.【归纳结论】 在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解. 三、运用新知,深化理解1.下列各式中,是一元一次方程的有________(填序号) . (1)833x=+;(2)8x -;(3)1=2x +2;(4)5x 2=20;(5)x +y =8. 2.如果3x n –1=2是关于x 的一元一次方程,那么n =________.3.x =2________方程4x –1=3的解.(填“是”或“不是”)4.小刚准备用自己节省零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他有260元.设x 个月后小刚有260元,则可列出计算月数的方程为( )A.30x +50=260B.30x – 50=260C.x – 50=260D.x +50=260【教学说明】 学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)(3) 2. 2 3.不是 4.A 四、师生互动,课堂小结1.师生共同回顾一元一次方程,方程的解的概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.第4课时 方程的应用1.进一步培养学生列方程解应用题的能力.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力.重点建立一元一次方程解决实际问题. 难点探究实际问题与一元一次方程的关系.活动1:创设情境,引入新课 师:展示投影:练习解方程:(1)12x +4x =9 (2)-4x =-2x +6 (3)5x +4=4x -3 (4)0.6x =50+0.4x学生独立完成,然后师生交流答案,看谁做得又对又快. 活动2:探究新知 教师展示教材例4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?学生讨论交流.教师可提示学生分析:1.本题可否用小学学习的算术法来求解?2.题目中两种工艺的废水排量都是与环保最大值相关的,根据小学学过的比例式,如果设环保设计的最大量为x t ,你能否列出一个关于x 的比例式?3.根据新旧工艺的废水排量之比为2:5,如果设新、旧工艺的废水排量分别为2x t 和5x t ,你能列出方程吗?解:设新、旧工艺的废水排量分别为2x t 和5x t . 根据废水排量与环保限制最大量之间的关系,得 5x -200=2x +100. 移项,得5x -2x =100+200. 合并同类项,得 3x =300,系数化为1,得 x =100,所以2x =200, 5x =500.答:新、旧工艺产生的废水排量分别为200 t 和500 t . 师:通过解答过程,你能说一下这种设法的好处吗?活动3:综合运用补例:一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?学生思考、讨论出多种解法,师生共同讲评.本问题是一个与上一问题相似的问题,关键是让学生认真分析出各个量之间的关系,让学生学会类比、用上一问题的方法模式去解决本问题。
七年级数学上册第五章解一元一次方程第1课时用移项法解一元一次方程习题pptx课件新版冀教版
列,故此时不能框出九个数.
1
2
3
4
5
6789 Nhomakorabea10
11
12
方程在解“表示同一个量的两个不同的式子相
等”中的应用
11. [2023·自贡]某校组织七年级学生到江姐故里研学旅行,
租用同型号客车4辆,还剩30人没有座位;租用5辆,还
3
4
5
=4.
5x
.
6
7
8
9
10
11
12
(2)-4 x +6 x -0.5 x =-0.3.
解:合并同类项,得
系数化为1,得 x =
1
2
3
4
1.5 x =-0.3.
-
.
5
6
7
8
9
10
11
12
2. 下列各方程合并同类项不正确的是(
C
)
A. 由4 x -2 x =4,得2 x =4
B. 由2 x -3 x =3,得- x =3
2 x ,得到方程的解为 x =-3.
(1)求 a 的值;
【解】把 x =-3代入方程3 a +2 x =15,得3 a -6=
15,解得 a =7.
1
2
3
4
5
6
7
8
9
10
11
12
(2)求此方程正确的解;
【解】把 a =7代入方程3 a -2 x =15,得21-2 x =
15,解得 x =3.
1
1
2
3
4
5
6
7
8
9
10
11
北师大版数学七年级上册第五章一元一次方程认识一元一次方程课件(共18张)
选一选:判断下列各式是不是方程,是
的打“√”,不是的打“x”.
(1)-2+5=3 (x)
(2)3x-1=7 (√ )
(3)m=0 ( √ )
(4)x﹥3 (x)
(5)x+y=8 (√ )
(6)2a +b ( x)
(7)2x2-5x+1=0(√ )
a
竞答:判断下列各式是不是方程, 请说明判断的根据.
(1) -2+5=3 ( x) (2) 3x-1=7
( √)
(3) m=0
( √ ) (4) x﹥ 3
( x)
(5) x+y=8 ( √) (6) 2x2-5x+1=0 ( √ ) (7) 2a +b ( x)
我发现 方程是等式,等式不一定是方程. 了:
a (二)学习概念:什么叫方程的解?
使方程左、右两边的值相等的未知数的值 叫做方程的解.
只含有一个未知数的方程的解,也叫做根.
是
2是2x=4的解吗? 不是 3是2x+1=8的解吗? 求得方程的解的过程,叫解方程.
a
合作与交流
a
情境一
40cm
小颖种了一株树苗,开始时树苗
高为40厘米,栽种后每周树苗长
x周
高约15厘米,大约几周后树苗长
高到1米?
100cm
40
15x
100
树苗开始的高度+长高的高度=树苗将到达的高度
a
A:
1、判断下列各式中,哪些是等式,哪些是方程,哪 些是一元一次方程. ①-2+5=3 ②3x-1=7 ③m=0 ④x>3 ⑤x+y=8⑥2x2-5x+1=0 ⑦ 2a+b
(RJ)人教版七年级数学上册教学课件第5章 一元一次方程1 第1课时 方程
5.1.1 从算式到方程
第1课时 方程
人教版七年级(上)
教学目标
1. 经历分析实际问题的过程,会用字母表示未知数, 并表示相关的量.
2. 通过列方程和列算式解决实际问题,感受从算术到 方程的进步,初步体会方程思想,提高学生的迁移 运用能力.
重点:会用字母表示未知数,并表示相关的量. 难点:列方程.
新知一览
从算式到方程
方程
一
等式的性质
元
用合并同类项的方法 解一元一次方程
一 解一元一次方程 次
用移项的方法解一元一次方程 利用去括号解一元一次方程
方
利用去分母解一元一次方程
程 实际问题与
产品配套问题和工程问题
一元一次方程
销售中 球赛积分 不同能效空调的 的盈亏 表问题 综合家李善兰翻译外国 数学著作时,开始将 equation (指含有未知数 的等式) 一词译为“方程”.
例1 根据下列问题,设未知数并列方程: (1)某校女生占全体学生数的 52%,比男生多 80 人, 这所学校有多少名学生?
解:设这所学校的学生数为 x,那么女生数为 0.52x ,
解:设正方形绿地边长为 x m,那么
扩大后的绿地面积为 (x2 + 5x) m2,
根据“扩大后的绿地面积是 500 m2”,
列得方程:
5m
x2 + 5x = 500.
原绿地面积 + 扩大面积 = 500 m2
1.(厦门·期中)已知长方形的长与宽分别为 16、x, 周长为 40,根据条件,列出方程为 2(16 + x) = 40 .
男生数为(1 - 0.52)x,根据“女生比男生多 80 人”,
列得方程: 0.52x - (1 - 0.52)x = 80. 你能解释方程
人教版七年级数学上册 第五章 “一元一次方程”《实际问题与一元一次方程(1)和差倍分问题》精品课件
2.(人教7上P107T7)用A型和B型机器生产同样的产品,已知5台A型
机器一天生产的产品装满8箱后还剩4个,7台B型机器一天生产的产品
装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求
每箱装多少个产品.
解:(解法1)设每台B型机器一天生产x个产品,则每台A型机器一天生
产(x+1)个产品.根据题意,得
解:设女生的人数为x.根据题意,得2x+8+x=50.
解得x=14.
答:女生的人数为14.
【变式2】(人教7上P91T10)把一根长100 cm的木棍锯成两段,要使
其中一段长比另一段长的2倍少5 cm, 应该在木棍的哪个位置锯开?
解:设其中的另一段长为xcm.
根据题意,得x+2x-5 =100.
解得x=35.
x+(1+50%)x+3x=1 100.
解得x=200.
答:前年该学校植树200棵.
【变式3】施工队修建一段铁路,第一个月修了全长的35%,第二个月
3
修了360米,两个月修的总长度比全长的 多40米,求这段铁路的长.
4
解:设这段铁路的长为x米.根据题意,得
35%x+360= x+40.解得x=800.
(+) − -
=
,解得x=19.
×-
因此
=12(个).
(解法2)设每箱装x个产品,根据“每台A型机器一天生产的产品=每
+ +
台B型机器一天生产的产品 +1”列方程得
=
+1.解得x=12.
Байду номын сангаас
答:每箱装12个产品.
同学们,再见!
428元,七年级2班每个学生捐款10元,七年级1班所捐款数比七年级2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
港中数学网
第五章 一元一次方程
一、选择题
1.下列方程是一元一次方程的是( ) A 、x+2y=9 B.x 2-3x=1 C.
11=x
D.x x 3121
=-
2.某商品的进价是3000元,标价是4500元,商店要求利润不低于5%的售
价打折出售,最低可以打( )折出售此商品。
A 、8折
B 、7折
C 、7.5折
D 、8.5折
3.方程3(x+1)=2x-1的解是( )A 、x=-4 B.x=1 C.x=2 D.x=-2
4.在一张日历上,任意圈出数列上三个数的和不可能是( ) A 、63 B 、39 C 、50 D 、57
5.方程
13
5
21=--x x ,去分母得( )A .3x -2x+10=1 B.3x -2x -10=1 C.3x -2x -10=6 D.3x -2x+10=6 6.如果关于x 的方程0123
1
=+m x 是一元一次方程,则m 的值为( )
A .
31
B 、
C 、
D 、不存在 7.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,
按标价600元7.5折出售,则甲、乙两商品的利润率( ) A 、甲高 B 、乙高 C 、一样高 D 、无法比较 二、填空题 1. 方程2
1
2-
=x 的解为____________________ 2. 如果x=1是方程m(x -1)=3(x+m)的解,则m=_________________ 3. 小明今年6岁,他的祖父72岁,_______________年后,小明的年龄是
他祖父年龄的
4
1 4. 一件商品按成本价提高20%后标价,又以9折销售,售价270元,设
这种商品的成本个为x 元,列出方程是_________________________ 5. 笼子里鸡和兔总共有56个头,160只脚,设鸡有x 只,则兔有
___________只,列方程__________________可求出鸡兔的只数。
6. 关于x 的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解
为:y=________________ 二、解下列方程
(1) 62221+-=--y y y (2) 3
2
)32(36=+-x (3)
)2(512)1(21+-=-x x (4) 103
.02.017.07.0=--x x
三、列方程解应用题
15.有一根竹竿和一根绳子,绳子比竹竿长0.2m ,将绳子对折后,它比竹竿短0.4m ,这根竹竿和这条绳子的长是多少米?。