动力气象学第六章(改过)

合集下载

动力气象学问题讲解汇编

动力气象学问题讲解汇编

“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。

主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。

本讲稿的章节与公式编号与此参考书一致(除第五章外)。

第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。

它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。

由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。

这些方程基本上都是偏微分方程。

问题 2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。

表达某一固定地点某一物理量变化称为局地变化,其数学符号为t∂∂,也称为偏导数。

表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V 。

例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。

可以证明它们之间有如下的关系 zT w T V dt dT t T ∂∂-∇⋅-=∂∂ (2.4) 式中V 为水平风矢量,W 为垂直速度。

(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。

问题 2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。

而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。

动力气象学笔记

动力气象学笔记

动力气象学笔记一、绪论。

1. 动力气象学的定义与研究范畴。

- 动力气象学是应用物理学定律研究大气运动的动力过程和热力过程,以及它们相互关系的学科。

- 研究范畴包括大气环流、天气系统的发展演变、大气波动等。

2. 动力气象学在气象学中的地位。

- 是现代气象学的理论基础。

它为天气预报、气候研究等提供了理论依据。

例如,数值天气预报就是建立在动力气象学的基础上,通过求解大气运动方程组来预测未来的天气状况。

二、大气运动方程组。

1. 运动方程。

- 牛顿第二定律在大气中的应用。

- 在笛卡尔坐标系下,水平方向(x方向)的运动方程为:- (du)/(dt)=-(1)/(ρ)(∂ p)/(∂ x)+fv + F_x- 其中u是x方向的风速,(du)/(dt)是x方向的加速度,ρ是空气密度,p是气压,f = 2Ωsinφ是科里奥利参数(Ω是地球自转角速度,φ是纬度),v是y方向的风速,F_x是x方向的摩擦力。

- 同理,y方向的运动方程为:(dv)/(dt)=-(1)/(ρ)(∂ p)/(∂ y)-fu+F_y。

- 垂直方向(z方向)的运动方程由于垂直加速度相对较小,考虑静力平衡近似时为:(∂ p)/(∂ z)=-ρ g。

2. 连续方程。

- 质量守恒定律在大气中的体现。

- 其表达式为:(∂ρ)/(∂ t)+(∂(ρ u))/(∂ x)+(∂(ρ v))/(∂ y)+(∂(ρ w))/(∂ z)=0。

- 在不可压缩流体(ρ = const)的情况下,简化为:(∂ u)/(∂ x)+(∂ v)/(∂ y)+(∂ w)/(∂ z)=0。

3. 热力学方程。

- 能量守恒定律在大气中的表现形式。

- 对于干空气,常用的形式为:c_p(dT)/(dt)-(1)/(ρ)(d p)/(dt)=Q。

- 其中c_p是定压比热,T是温度,Q是单位质量空气的非绝热加热率。

三、尺度分析。

1. 尺度分析的概念与意义。

- 尺度分析是根据大气运动中各物理量的特征尺度,对大气运动方程组进行简化的方法。

动力气象学

动力气象学

中国科学院海洋研究所硕士研究生入学考试《动力气象学》考试大纲本《动力气象学》考试大纲不仅适用于中国科学院海洋研究所气象学专业的硕士研究生入学考试,也适应于中国科学院研究生院气象学等相关专业的硕士研究生入学考试。

动力气象学是大气科学的重要分支,是相关学科专业(包括海洋气象学)的基础理论课程,它的主要内容包括大气运动的基本方程组和基本动力特征、涡旋运动与准地转模式、大气中的波动、大气不稳定理论、热带大气动力学以及大气环流及其数值模拟。

要求考生对其基本概念有较深入和清楚的了解,能够系统地掌握大气运动的基本理论和方法,理解天气系统演变的基本规律和机理,特别是海洋过程在全球天气系统变化中的作用机理。

掌握大气运动基本方程及其变形,掌握大气中的主要波动类型和小扰动方法,掌握大气中存在的主要的不稳定现象及其产生的条件,掌握热带大气动力学的特征及其与中、高纬度的差异,熟悉大气环流的主要特征并了解大气环流的数值模拟,并具有综合运用所学知识分析问题和解决问题的能力。

一、考试内容(一)大气运动的基本方程组1.地球和大气的基本特征2.运动方程3.连续性方程4.状态方程、热力学方程和水汽方程5.球坐标系中的大气运动方程组6.局地直角坐标系中的大气运动方程组7.β平面近似8. 能量守恒定律9. 尺度分析和基本方程组的简化10.地转风与热成风11.静力平衡(二)涡旋运动与准地转模式1.环流与环流定理2.涡度方程、位涡度方程3.浅水模型中的涡度方程4.散度方程与平衡方程5.准地转模式与准地转位涡度守衡定律6.准地转位势倾向方程和ω方程(三)大气中的波动1.小扰动的波动方程式2.声波3.重力波4.惯性内波与惯性振荡5.重力惯性外波和重力惯性内波6.罗斯贝波7.群速度和上游效应(四)不稳定理论1.不稳定的概念2.惯性不稳定3.正压不稳定4.斜压不稳定5.开尔文-赫姆霍兹不稳定(五)热带大气动力学1.热带大气运动的主要特征及其尺度分析2.混合罗斯贝-重力波和开尔文波3.积云对流加热参数化4.第二类条件不稳定(CISK)和台风的发展(六)大气环流1.大气环流2.角动量平衡和输送3.热量和水分平衡4.能量循环二、考试要求(一)大气运动的基本方程组1.熟悉并掌握地球自转角速度、地球的平均半径、标准大气压和标准大气密度的数值。

动力气象学 线性动力稳定性理论 (6.1)--线性动力稳定性理论

动力气象学  线性动力稳定性理论 (6.1)--线性动力稳定性理论

• 在具有铅直切变基流中产生的长波不稳定称为斜压不稳 定。

Vg ln p


R f
k
(T ) p
31
• 在斜压大气中,斜压基本气流提供给扰动能量,使扰动得 到不稳定发展,这种动力不稳定称为斜压不稳定。斜压不 稳定扰动发展所需要的能量,除了基本流水平切变动能提 供能量外,还可通过斜压位能的释放提供。
(b) 振幅方程两端乘以Φ*,
*
d 2
dy 2

d dy
( *
d )
dy
d *
dy
d
dy

d dy
( *
d )
dy
d
dy
2
d
(* d )
d
2

k
2

2



2u y 2
2
dy dy dy
u c
代入(*)式
21
方程对y积分,并利用边界条件
i r 0(at y y1 , y2)
u

u0

du dy
y
由气块水平运动方程: du dy

du dt
dt dy

du dt
1 v

f0
则u u0 f0y u0 f0y
10
而在 y0 y 处,环境气流的速度
u
(
y0

y)

u0

u y
y
因而,气块的南北向加速度为:
dv dt

f0u

f0u
t x y
u v 0 x y
采用小扰动方法,在(x,y)平面内 u u ( y) u'(x, y,t)

动力气象学

动力气象学

参 考 书 目: 1 、叶笃正,李崇银,大气运动中的适应问题, 科学出版社,1965 2 、 Lorenz ,大气环流的性质和理论,科学出版 社,1976。 3 、 Haltiner, G, Numerical Prediction and Dynamical Meteorology, 1980(有中译本) 4、小仓义光,大气动力学原理,科学出版社, 1980 5 、 Holton , 动 力 气 象 学 引 论 , 科 学 出 版 社 , 1980 6、郭晓岚,大气动力学,江苏科技出版社, 1981
大 气 科 学 学 院 王 文
动 力 气 象 学
教材: 吕美仲等,动力象学,南京大学出版社,1996 2.HOLTON J. R. AN INTRODUCTION TO DYNAMIC METEOROLOGY, Academic Press, Fourth Version, 2004 3.刘式适等,大气动力学(第二版),北京大学出 版社,2011
参 考 书 目: 7、Pedlosky,地球物理流体动力学导论,海洋出 版社,1981 8、伍荣生等,动力气象学,上海科技出版社, 1983。 9、杨大升,刘余滨,刘式适,动力气象学,气 象出版社(修订本),1983 10、栗原宜夫,大气动力学入门,气象出版社, 1984 11、李崇银等,动力气象学概论,气象出版社, 1985 12、Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, 2nd ed, 1987
§1.1 基本假设 连续流体介质假设——质点力学的应用。
大气运动的速度、气压、密度和温度等物理量以及这 些场变量都是时间和空间的连续函数;
理想气体(无凝结); 动力过程和热力过程相互作用; 大气为可压缩连续流体

《动力气象学》问题讲解汇编

《动力气象学》问题讲解汇编

“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。

主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。

本讲稿的章节与公式编号与此参考书一致(除第五章外)。

第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。

它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。

由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。

这些方程基本上都是偏微分方程。

问题2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。

表达某一固定地点某一物理量变化称为局地变化,其数学符号为t ∂∂,也称为偏导数。

表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V ρ。

例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。

可以证明它们之间有如下的关系z T w T V dt dT t T ∂∂-∇⋅-=∂∂ρ (2.4) 式中V ρ为水平风矢量,W 为垂直速度。

(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。

问题2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。

而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。

动力气象学知到章节答案智慧树2023年南京大学

动力气象学知到章节答案智慧树2023年南京大学

动力气象学知到章节测试答案智慧树2023年最新南京大学绪论单元测试1.不同于普通流体,地球大气有哪些基本特征?参考答案:受到重力场作用;旋转流体;具有上下边界 ;密度随高度变化2.中纬度大尺度大气运动的特点包括参考答案:准水平无辐散;准地转 ;准静力 ; 准水平3.以下哪种波动的发现及其深入研究,极大地推动了天气预报理论和数值天气预报的发展?参考答案:Rossby波4.动力气象学的发展与数学、物理学及观测技术的发展密不可分。

参考答案:对5.大气运动之所以复杂,其中一个原因是其运动具有尺度特征,不同尺度的运动控制因子不同。

参考答案:对第一章测试1.以下关于惯性坐标系,错误的说法是参考答案:惯性坐标系下测得的风速是地球大气相对于旋转地球的相对速度2.关于科里奥利力,以下错误的说法是参考答案:在全球大气的运动中,科里奥利力均使得大气运动方向右偏3.物理量S(x,y,z,t)能够替代z作为垂直坐标需要满足哪些条件参考答案:需要满足一定的数学基础和物理基础;S与z有一一对应关系;要求S在大气中有物理意义4.通过Boussinesq近似方法简化大气运动方程组,可得如下哪些结论参考答案:垂直运动方程中与重力相联系的项要考虑密度扰动作用;连续方程中可不考虑扰动密度的影响,与不可压流体的连续方程形式相同;大气密度的扰动变化,对垂直运动有较大影响5.Rossby数的物理意义包括参考答案:Rossby数的大小可用于划分运动的尺度;表征地球旋转的影响程度;判别相对涡度和牵连涡度的相对重要性第二章测试1.下面哪些变量可以描述大气旋转性特征参考答案:螺旋度;环流;涡度2.在什么情况下,绝对环流是守恒的参考答案:正压无摩擦大气;绝热无摩擦大气3.对于中纬度大气的平均状况而言,从对流层低层向上到平流层,位势涡度会发生怎样的变化参考答案:位涡在对流层顶附近会迅速增加4.对大尺度运动,引起绝对涡度变化的量级最大的项为参考答案:散度项5.通常在大气中,非绝热加热在热源上方和下方分别会产生哪种位涡异常参考答案:负,正第三章测试1.地转偏差随纬度和季节变化的特征有参考答案:夏季比冬季大;在低纬度地区相对较大;在大气低层相对较大2.下列关于地转偏差的表述正确的是参考答案:在北半球与加速度方向垂直;与加速度项成正比3.下面哪项不是地转偏差的组成项参考答案:气压梯度项4.下面关于地转适应和地转演变的说法错误的是参考答案:地转演变可以看成线性过程5.以下正确的说法是参考答案:流场和气压场相互调整,使得大气恢复准地转平衡的过程称作地转适应;纯地转运动是定常运动第四章测试1.浪花云是由两种不同云层的切变不稳定导致,以下说法正确的是参考答案:快速移动且密度较低的云层在速度较慢且密度更高的云层上方2.小扰动法的基本气流一般取为沿纬圈平均的速度场,若考虑斜压切变气流,这一速度场应取为参考答案:y和z的函数3.以下哪些条件可以滤去重力内波参考答案:水平无辐散;中性层结大气;f平面上地转近似4.关于Rossby波的频散强度,以下正确的有参考答案:大槽大脊频散强;低纬频散强5.由一维线性涡度方程∂ζ⁄∂t+βv=0讨论Rossby波的形成,对初始只有v=Vcos(kx)的南北风谐波状扰动,以下不正确的是参考答案:x=0处的运动状态将被其左侧的运动状态代替第五章测试1.如果扰动随时间增长,那我们称这个扰动为参考答案:发展2.斜压不稳定中,扰动发展的能量来自参考答案:有效位能的释放;基本气流的动能3.若采用标准模方法分析稳定性,设扰动方程单波解为,以下哪个参数影响波在x方向上的传播速度。

动力气象学概要课件

动力气象学概要课件

数值模式是大规模数值计算中用来描述和预测大气系统的软解方案、数据输入和输出等模
块。
数值模式广泛应用于天气预报、气候模拟和环境评估等领域。
03
数值模式的误差和不确定性
数值模式的误差主要来源于模式分辨率、物理过 程参数化和初始条件等方面。
不确定性主要表现在模式输入数据的误差、模式 本身的不完善以及计算误差等方面。
为了减小误差和不确定性,需要不断提高数值模 式的精度和可信度。
数值模式的未来发展和挑战
随着计算机技术的不断发展,数值模式的分辨率和计算能力将得到进一步 提高。
未来数值模式将更加注重物理过程参数化的改进和精细化,以更准确地模 拟和预测大气系统的行为。
同时,随着大数据和人工智能技术的发展,如何利用这些技术提高数值模 式的精度和效率也是未来发展的重要方向。
航空气象服务
提供航空气象预报、机场天气预报、航空气象观测和报 告等服务,保障航空安全。
航海气象服务
提供航海气象预报、海洋气象观测和报告等服务,保障 航海安全。
THANK YOU
感谢各位观看
03
大气的运动和变化
大气的热力和动力学过程
总结词
描述大气中热力和动力学过程对大气的运动和变化的影响。
详细描述
大气的热力和动力学过程是大气运动和变化的主要驱动力。这些过程包括温度 差异引起的对流、风速差异引起的湍流等。这些过程通过能量传递和物质迁移 等方式,影响大气的运动和变化。
大气中的波动和涡旋
动力气象学概要课件
目录
• 动力气象学简介 • 大气的基本结构和特性 • 大气的运动和变化 • 动力气象学的数值模拟和预测 • 动力气象学的应用和实践
01
动力气象学简介

动力气象学总复习

动力气象学总复习

动力气象学总复习第一章绪论掌握动力气象学的性质,研究对象,研究内容以及基本假定动力气象学(性质)是由流体力学中分离出来(分支),是大气科学中一个独立的分支学科。

动力气象学定义:是应用物理学定律研究大气运动的动力过程、热力过程,以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气运动过程学科。

动力气象学研究对象:发生在旋转地球上并且密度随高度递减的空气流体运动的特殊规律。

动力气象学研究内容:根据地球大气的特点研究地球大气中各种运动的基本原理以及主要热力学和动力学过程。

主要研究内容有大气运动的基本方程、风场、气压坐标、环流与涡度、风与气压场的关系、大气中的波动、大气边界层、大气不稳定等等。

一、基本假设:大气视为“连续流体”,表征大气运动状态和热力状态的各种物理量(U, V, P, T, et al.) 看成是随时间和空间变化的连续函数;大气宏观运动时,可视为“理想气体”,气压、密度和温度之间满足理想其他的状态方程,大气是可“压缩流体”,动力过程和热力过程相互影响和相互制约;二、地球大气的动力学和热力学特性大气是“旋转流体”:90%的大气质量集中在10km以下的对流层;水平U, V远大于w(满足静力平衡);Ω =7.29⨯10-5rad/s,中纬度大尺度满足地转平衡(科氏力与水平气压梯度力相当)。

大气是“层结流体”:大气密度随高度变化,阿基米德净力使不稳定层结大气中积云对流发展;阿基米德净力使稳定层结大气中产生重力内波。

大气中含有水份:水份的相变过程使大气得到(失去)热量。

大气下垫面的不均匀性:海陆分布和大地形的影响。

大气运动的多尺度性:(见尺度分析)第二章大气运动方程组控制大气运动的基本规律有质量守恒、动量守恒、能量守恒等等。

支配其运动状态和热力学状态的基本定律有:牛顿第二定律、质量守恒定律、热力学第一定律和状态方程等等。

本章要点:旋转坐标系;惯性离心力和科氏力;全导数和局地导数;预报和诊断方程;运动方程、连续方程;状态方程、热力学方程及其讨论;局地直角坐标系。

《新编动力气象学》习题答案

《新编动力气象学》习题答案

=
2p f
u02
+
v02
cos(
ft
+
tan -1
u0 v0
)
8
15
(1) u = u0 cos ft + v0 sin ft, v = v0 cos ft - u0 sin ft (2) V = u2 + v2 (3) (x - a)2 + ( y - b)2 = u02 + v02
f (4) r = u02 + v02 = 68568(m)
10
(1) u = -2x, v = 2 y , w = 2zt 1+t 1+t
(2) 不是 (3)ìíîzx=y1=1
ìx = e-2t (4)ïí y = (1+ t)2
ïîz = e2t (1+ t)-2
11
3
(1) 不存在势函数,存在流函数y= 1 y2 - y + tx 2
ì ïx ï
ur
ur ur
(2) Ñ ´V a = Ñ ´V + 2W
10 d ( rv ) = 0 dt rd
11
(1) w0 = 0.2(m × s-1) , 爬坡 (2) ¶p = 0.0501(N × m-2 × s-1) = 5.5(hPa / 3hr)
¶t (3) w = -0.731´10-2 (m × s-1),下坡
¶t
+
u
¶v ¶x
+
v
¶v ¶y
=
-
1 r
¶p ¶y
ï ï-(u î
¶w ¶x
+
v
¶w ) ¶y

动力气象课本答案

动力气象课本答案

动力气象学复习思考题与习题汇编2010年8月目录第一章描写大气运动的基本方程组------------------------------------------------------------(1)第二章尺度分析与基本方程组的简化--------------------------------------------------------(23)第三章自由大气中的平衡流场-----------------------------------------------------------------(41)第四章环流定理、涡度方程和散度方程-----------------------------------------------------(56)第五章大气行星边界层--------------------------------------------------------------------------(69)第六章大气能量学--------------------------------------------------------------------------------(87)第七章大气中的基本波动-----------------------------------------------------------------------(98)第八章波包、波群与能量的传播-------------------------------------------------------------(119)第九章地砖适应过程与准地转演变过程----------------------------------------------------(124)第十章大气运动的稳定性理论----------------------------------------------------------------(135)第十一章低纬度热带大气动力学------------------------------------------------------------(145)第十二章非线性动力学基础------------------------------------------------------------------(146)矢量分析中的一些主要公式1.矢量恒等式以下的恒等式中C B A、、为任意的矢量,而a 为任意标量。

成信工动力气象学讲义07热带大气动力学

成信工动力气象学讲义07热带大气动力学

§1热带大气运动的主要特征§2热带大气运动的尺度分析§3热带大气波动§4热带扰动发生、发展的机制§5热带气旋结构的动力学分析重点:热带大气的基本特征,热带波动,CISK 理论§1热带大气运动的主要特征1f 的数值比较小,,比中高纬度小一个量级(但较大),所以热带地区采用赤道51010f s --=ββ平面近似:。

由于科氏力较小,大尺度运动是非地转的,但准静力平衡仍成立。

2()f y aββΩ==2大气运动的主要能源:太阳辐射能大部分在热带吸收,所以是大气运动的主要能源区,是平均动能的制造源。

3湿空气运动:凝结潜热能作为热带系统发展的主要能源。

4对流层的中、下层的层结稳定度较弱,有利于对流与物理量的垂直输送。

5水平温差较小,大气斜压性弱,所以热带某些地区的大气可视为准正压。

6主要的天气系统:1)积云对流云团(积云对流群):中、小尺度运动,水平尺度:几百千米,生命史:3—4天。

2)热带气旋(台风typhoon ,飓风Hurricane ):气旋式涡旋,低压,眼结构,暖心,螺旋云带。

易产生大风、暴雨等灾害性天气,水平尺度:几百千米,生命史:3天左右。

飓风一词源自加勒比海言语的恶魔Hurican,亦有说是马雅人神话中创世众神的其中一位,就是雷暴与旋风之神Hurakan。

台风一词则源自希腊神话中大地之母盖亚之子Typhon,它是一头长有一百个龙头的魔物,传说其孩子就是可怕的大风。

台风一词的由来:英语typhoon :(1)来自汉语(土耳其人在他们的"命名书"里说"TAYFUN"是指发生在中国海及西太平洋上的大风,译自“大风”(dais fang ),1560年进入英语。

(2)外来语(《辞海》,《英语大字典》:源自希腊语,与TYPHUS 有关.)中文「台風」一詞:(1)來自中国(2)源于日語台风的词汇几乎都一样,只是写法不同而已,而发音则几乎相同。

中小尺度动力气象学

中小尺度动力气象学

中小尺度天气动力学第一章中尺度天气系统的特征1、中尺度天气系统:时间尺度和空间尺度比常规探测站网小,但比积云单体的生命周期及空间尺度大得多的一种尺度。

即水平尺度为几公里到几百公里,时间尺度由1 小时到十几小时。

2、划分依据及分类:1)早期的经验分类天气系统——大尺度、中尺度和小尺度空间尺度分别为:106m、105m 和104m 时间尺度对应为:105s、104s 和103s2)依据物理本质对天气系统进行分类(动力学分类方法)行星尺度、气旋尺度、中尺度、积云尺度、小尺度3)Orlanski 的综合分类(观测与理论分类)大尺度(a 3)中尺度(a、伙Y 小尺度3、中尺度大气运动的基本特征1)空间尺度范围广,生命周期跨度大;2)气象要素梯度大;3)散度、涡度与垂直速度;4)非地转平衡和非静力平衡;5)质量场和风场的适应;6)小概率和频谱宽、大振幅事件第二章地形性中尺度环流1、中尺度大气环流系统的分类:地形性环流系统、自由大气环流系统2、地形波的基本类型主要依赖风的不同类型(1)层状气流小风、层状气流。

平滑浅波,波动只发生在山脉上空的浅层,向上很快消失——山脉波(mountain wave)(2)驻涡气流:在山顶高度以上风速较大时,可能在山脉背风坡形成半永久性的涡动,上面则有气流的平滑浅波——驻涡(standing eddy)(3)波动气流当风速随高度增大时,在背风坡出现波动气流一一背风波(lee wave)。

背风波可以伸展到对流层上层和平流层。

(4)转子气流:在背风波出现时,当垂直方向有风速极大值出现时,则会形成转子气流(rotor streaming)。

驻涡和转子是背风波的特殊形式!3、背风波的形成、特征及大气条件背风波是地形波的一种类型,由于障碍物引起空气垂直振荡而造成的。

特征:波长:1.8〜70km之间,多为5〜20km左右。

波长一般随高度而变,高层较长,低层较短。

随风速而变,风速愈大,波长愈大。

《动力气象学》课程笔记

《动力气象学》课程笔记

《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。

19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。

这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。

- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。

- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。

1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。

科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。

数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。

1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。

科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。

此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。

2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。

这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。

2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。

涡旋运动包括环流、涡度和螺旋度等概念。

了解涡旋运动有助于我们预测天气变化和气候趋势。

2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。

在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。

准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。

2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。

这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。

《动力气象学》课程辅导资料

《动力气象学》课程辅导资料

《动⼒⽓象学》课程辅导资料《动⼒⽓象学》课程辅导资料知识点归纳总结第⼀章绪论1. 研究地球⼤⽓运动时的基本假设连续介质假设:研究⼤⽓的宏观运动时,不考虑离散分⼦的结构,把⼤⽓视为连续流体。

从⽽,表征⼤⽓运动状态和热⼒状态的各种物理量,例如⼤⽓运动的速度、⽓压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。

是研究⼤⽓运动的基本出发点。

理想⽓体假设:⽓压、密度、温度之间的关系满⾜理想⽓体状态⽅程。

2. 地球⼤⽓的运动学和热⼒学特性有哪些?⼤⽓是重⼒场中的旋转流体:⼤⽓运动⼀定是准⽔平的;静⼒平衡是⼤⽓运动的重要性质之⼀。

科⾥奥利⼒的作⽤:⼤尺度运动中科⾥奥利⼒作⽤很重要;中纬度⼤尺度运动中,科⾥奥利⼒与⽔平⽓压梯度⼒基本上相平衡——地转平衡;地球旋转⾓速度随纬度的变化,与每⽇天⽓图上的西风带中的波动有关;起稳定性作⽤——位能、动能的转换——锋⾯。

⼤⽓是层结流体:⼤⽓的密度随⾼度是改变的——层结稳定度;不稳定层结⼤⽓中积云对流;稳定层结⼤⽓中重⼒内波。

⼤⽓中含有⽔份:相变潜热——低纬度扰动和台风的发展。

⼤⽓的下边界是不均匀的:湍流性;海陆分布和⼤⽓环流。

3. ⼤⽓运动的多尺度性⼤⽓运动⽆论在时间尺度还是在⽔平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很⼤差异,对天⽓的影响也不同,不同尺度运动系统之间还存在相互作⽤。

⽽根据流体⼒学和热⼒学原理建⽴起来的⼤⽓运动⽅程组,表征了⼤⽓运动普遍规律,从物理上讲,它⼏乎描述了各种尺度运动和它们之间的相互作⽤,⽅程组是⾼度⾮线性的,难以求解。

因此,在动⼒⽓象中,常对各种运动系统进⾏尺度分类,利⽤尺度分析法分析各类运动系统的⼀般性质,建⽴各类运动系统的物理模型(第三章)。

第⼆章描写⼤⽓运动的基本⽅程组1. 作⽤于⼤⽓的⼒,哪些是真实⼒,哪些是视⽰⼒?真实⼒:⽓压梯度⼒、地球引⼒、摩擦⼒,既改变⽓流的运动⽅向,也改变速度的⼤⼩视⽰⼒:科⾥奥利⼒、惯性离⼼⼒,只改变⽓流的运动⽅向,不改变速度的⼤⼩2. 描述⼤⽓运动的基本⽅程组和各⾃遵守的物理原理⽜顿第⼆定律——运动⽅程质量守恒定律——连续⽅程理想⽓体实验定律——状态⽅程能量守恒定律——热⼒学能量⽅程⽔⽓质量守恒——⽔汽质量守恒⽅程3. 分析流体运动的两种基本⽅法拉格朗⽇⽅法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推⼴到整个流体运动。

动力气象学第六章 大气波动学

动力气象学第六章 大气波动学
主要用于讨论线性波动的传播问题 (非线性波动——波-波相互作用)
kx t k(x ct)
一维波动(只随x变化),
波动在x方向上传播。
★一维波动
一维运动
一维运动: u 0, v w 0, 0
y z
一维波动: 0, v / w可以不等于0 y z
二维波动:
kx ly t
波矢
K=ki lj
涡旋运动(大气长波)的斜槽结构 用二维波动表达。
典型波动:
一维波动:渠道波 二维波动:湖里水面波 三维波动:声波、电视塔发射的球面波
单个简谐波解(单波解):
S Acos ; Asin ; Aei
kx ly nz t 三维波动 kx ly t 二维波动
可以略去 V u 表示
数学上:扰动量二次乘积项,数值很小; 物理上:非线性作用不重要。
如阻塞形势是大振幅扰动,非线性过程, 用线性过程就不能解释阻塞高压形成的 机制和特征。
第四节 声波
方程组可以描述的波动有:
声波、重力波、惯性波、大气长波 (Rossby波)、Kelvin波——热带。
※研究声波的目的——滤波
第六章 大气波动学
天气图上可见:
1、气压场、高度场基本呈波状分布。 2、一个纬圈上有3-6个波 ,波在几十
个经度。尺度在106m,大尺度波动。 称大气长波(Rossby波) 3、准地转,准涡旋运动的特点。 4、振幅,大约是101hPa,大振幅的 波动; 5、这种波动控制日常天气——重要波 动。
描述波动的波参数: 波长,波速,周期,振幅……
1
P
P
fv
t
x 2 x
此时,方程形式上虽然多了几项,但由于基 本量是已知的,故现在的方程是线性方程。

动力气象学第六章改过

动力气象学第六章改过
单击此处添加小标题
Z=0,位能参考面(即零位能面),则:
单击此处添加小标题
——重力-保守力
单击此处添加小标题
在Z高度处单位质量气块的位能:gz
单击此处添加小标题
质点处于地球表面附近重力场中任一点时,都具有重力势能(位能) 。
单击此处添加小标题
对大气而言,能量的基本形式有内能、位能、动能,如果考虑水汽,还有潜热能。
平均单位面积上铅直气柱中有效位能的近似表达式为:
由此可见,有效位能与大气的斜压性相对应,正压大气没有有效位能;斜压性越强,力管项大,有效位能越大。也称有效位能为斜压能。
五、实际大气中的能量循环过程
实际大气中的运动=
与大气环流相联系的纬向平均运动(“流”)+涡旋运动(“波”)
这样,考虑以下4个能量之间的转化:
(2)全位能与动能转换
同时在两个方程中出现,且正负相反;是全位能和动能之间的转换项。
且全位能变化多少,动能也要相应变化多少。体现了二者之间的转换关系,及转换机制。
01
所以,垂直运动是闭合系统中动能与全位能转换的必要条件
02
如果 则系统中有上升运动,也有下沉运动
进一步:
物理本质:暖空气-轻-上升
如果 正相关,即: 暖区加热,冷区冷却,使得等压面上本来就存在的温度差增大,故有效位能增加。 在南北方向上 在东西方向上
反之,如果是负相关,即: 暖区冷却,冷区加热,则温度分布趋向均匀,有效位能减小。 平均有效位能和扰动有效位能的转换: :由涡旋运动引起的通过某一纬圈的热量的南北输送
:由涡旋运动引起的某个纬带内热量的净输出量: 暖区有热量的净输出,冷区有热量的净输入。
闭合系统中的动能方程
已知单位质量质点的动能方程为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单位截面积、dz厚度 的气块薄片的质量:
1 dz dz
dz薄片的位能:
d gzdz
Z1—Z2单位截面积气柱所具有的位能:
gzdz
z1
z2
利用静力学方程,P坐标下:
dP gdz


P 1
z2
z1
gzdz
P2
zdP

P 1
P2
zdP
K K (Vh K ) Vh D t p
如闭合系统质量为M,假定没有穿越边 界的动能通量,且上下边界ω=0,则系 统的动能方程为:
KdM ( VK ) dM M M t Vh dM DdM
由此可见,在静力平衡条件下,从海平面向
上伸展到大气顶部的单位截面积的垂直气柱 (无限气柱)所包含的位能和内能都是与温 度有关,相互是有联系的。当整个气柱增温 以后,内能必然增加,而当温度增加,气柱 就会垂直膨胀,这样,重力位能就增加。
所以,对无穷高气柱而言,大 气的内能与位能成正比,同时增减, 故可以把它们结合起来考虑。 定义:全位能=位能+内能 即:
温度升高 内能增加 气柱膨胀 质心抬升 位能增加
大气的内能与位能之间是同向变化 如:大气动能增加,必定是内 能与位能同时减少向动能转换
证明在静力平衡条件下,无限高气柱所 包含的内能和位能成正比。
无限高气柱的情形:
位能:
zdP zdP
P2 0
P 1
P0
[d ( zP ) Pdz ]
第六章 大气能量学(Energetics)
研究天气系统变化及其机理的学说有 很多,均有各自表征天气系统的物理量。
如: 力学: 风V 涡旋动力学: 涡度ζ 能量学: 动能K 波动学: 波动(A,L,T,ω……)
能量转换和守恒定律是物质运动所遵 循的普通规律,大气中各种不同尺度运动 的产生、发展和消亡,实质上是系统运动
=-Vh Vh p (Vh ) ( ) p p (Vh ) ( ) p p P坐标系下静力平衡 方程 (V )
对闭合系统积分,得:
( V ) dM h M (V )dM dM
0
P0
zP P 0, z Pdz

P0 , z 0
0
pdz

0
= Pdz RTdz R Tdz
0 0 0



即:Ф~T
内能:
I Cv


0
Tdz
即:I~T
R C P CV 0.41 I CV CV I
4、大气中的能量转换
一、大气中的主要能量形式
对大气而言,能量的基本形式 有内能、位能、动能,如果考虑水 汽,还有潜热能。 1、主要能量形式 ① 位能(Gravitational potential energy) ——重力-保守力 质点处于地球表面附近重力场中任一 点时,都具有重力势能(位能) 。 Z=0,位能参考面(即零位能面),则: 在Z高度处单位质量气块的位能:gz
M M

M
KVdM KVd KV d

KVn d 0(水平边界设为封闭,即Vn 0)
所以,闭合系统的动能方程:
KdM V dM DdM h M M M t
系统动能不发生变化。
∴要使系统动能发生变化,一定要 有穿越等位势高度线的运动
——非地转运动。
(2)风从高位势吹向低位势: Vh 0 压力梯度力作正功,动能增加。
反之,从低位势到高位势,压力 梯度力作负功,质点动能减少。
思考: 地球自转对能量转换有何影响?
地球的自转所产生的地转偏向力虽 然不能改变空气运动的动能,但它使空 气运动趋向于沿等压线运动,这可使位 能和动能之间的能量转换的速度减缓。 当空气严格按地转风运动时,空气就不 穿越等压线运动,位能与动能之间的转 换将停止进行。
① 方程
已知P坐标系下水平运动方程为:
dVh fk Vh F dt
"Vh eq" 单位质量质点的动能方 程: d 1 2 ( Vh ) Vh Vh ( f Vh ) Vh F dt 2
② 内能(Internal energy) ——热力学能量(由大气温度变化引起的) 单位质量气块所具有内能:
CV T 这里,CV 定容比热,单位是J / kg K
dz厚度的簿块的内能:
dI CV Tdz
Z1—Z2单位截面积气柱所具有的内能:
I Cv

z2
z1
Tdz
P坐标下:
CV I g
Vh ( f Vh )科氏力作功项=0
Vh F =-D为粘性力作功项, D为摩擦耗散
Vh 为压力梯度力作功项
∴动能的来源只能来自压力梯度力作功 单位质量质点的动能方程:
d K Vh D dt
② 讨论:
(1)地转运动
Vg 0
K
z2 z1
1 2 V dz 2
1 2g

P2
P 1
1 P1 2 V dP V dP 2 g P2
2

潜热能(Latent heat energy)
定义:系统中所有水汽全部凝结所释放 的能量 。 汽化热L(相变潜热): 单位质量液态水汽化到气态 所吸收的热量。 ——单位质量水凝结所能释放的 热量。 比湿:q=水汽质量/空气质量 单位质量湿空气的潜热能为:
对闭合系统积分,得:

M
dE E dM dM ( EV )dM EdM M t M dt t M
闭合系统全位能方程:
dM EdM dM Q M M M t
3、闭合系统中的能量守恒与转换: (1)闭合系统中的动能方程+全位 能方程:

P2
P 1
CV TdP g

P 1
P2
TdP
③ 动能(Kinetic energy)
——标志着天气系统的强度。 单位质量气块所具有的动能:
1 2 V 2 其中,V 2 u 2 v 2 w2
dz厚度的簿块所具有的动能:
1 2 dK V dz 2
Z1—Z2单位截面积气柱所具有的动能:
三、 闭合系统的能量转换与守恒
闭合系统动能增加,则一定是
压力梯度力作正功 作功角度; 全位能向动能转换 能量转换角度。
利用闭合系统中的动能与全位 能方程,考察闭合系统动能变化的 同时,全位能的变化情况,讨论二 者的转换关系。
1、动能方程(另外一种表达形式): P坐标系下连续方程 Vh Vh ( Vh ) p
正负相反;是全位能和动能之间的转 换项。
dM 同时在两个方程中出现,且 M
0 E , K K E ; dM M 0 E , K E K .
且全位能变化多少,动能也要相 应变化多少。体现了二者之间的 转换关系,及转换机制。
如果=0,则 dM=0
2、能量的组合形式
在大气动力学中,根据各种基本能量形
式的特点及其有关过程的性质,常采用几种
主要的基本能量的组合形式。
①. 气柱的位能和内能的组合——来自气所特有一般,位能(机械能)与内能(热力 学能)是无关的,而大气有其特殊性。 地球大气的特点: (1)质量基本守恒(2)表面积不变。
气柱的位能和内能的关系物理分析:
dM DdM ( K E ) dM Q M M M t
这说明闭合系统内的动能与全位能之和的变化决 定于系统的非绝热加热和摩擦作功耗散。在绝热、 无摩擦条件下:总能量守恒
( K E ) dM 0 t M
(2)全位能与动能转换
KdM dM DdM M M t M dM EdM dM Q M M M t
通量项在闭合系统中的积分为0
M M
M
dM
KdM dM DdM M M t M
2、全位能方程 已知单位质量质点的全位能:
CV R R CP E I II I I C PT CV CV CV dE dT 则全位能方程 dt dt ?
2、闭合系统中的动能方程
闭合系统:与外界无质量的交换,即边 界上的法向速度为零。
Vn | 0
已知单位质量质点的动能方程为:
d K Vh D dt
1 2 K V h 2
K K Vh K Vh D t p K 因为: V K K ( Vh ) h p p P坐标系下连续方程 K Vh K p
已知热能方程:
dT dP Cp Q dt dt
dE Q dt
dE E E Vh E dt t p
E E V h E E ( Vh ) t p p E (Vh E ) (E ) t p E ( EV ) t
M
所以,垂直运动是闭合系统中动能与 全位能转换的必要条件 如果 0 则系统中有上升运动,也 有下沉运动
进一步:
RT M dM M P dM 如果T 与是负相关,即: 暖空气(T 大)、上升( 0) 暖空气上升 冷空气(T 小)、下沉( 0) 冷空气下沉 RT 则 dM 0 M P T (Tw Tc ) Tw + Tc = (Tc -Tw )<0 RT dM 0 M P 使得全位能减少,转化为动能。
相关文档
最新文档