【好题】高中必修三数学上期末第一次模拟试卷带答案

合集下载

【典型题】高中必修三数学上期末第一次模拟试题含答案

【典型题】高中必修三数学上期末第一次模拟试题含答案

【典型题】高中必修三数学上期末第一次模拟试题含答案一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .233.已知回归方程$21y x =+,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是( ) A .0.01B .0.02C .0.03D .0.044.执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .15.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?6.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .57.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.58.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个9.执行如图的程序框图,如果输出的是a=341,那么判断框()k<A.4k<B.5k<C.6k<D.710.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的S=(单位:升),则输入的k=()一个程序框图,若输出的3A.9B.10C.11D.1211.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a的值是()A .0.020B .0.018C .0.025D .0.0312.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .29二、填空题13.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.14.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.15.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.16.如果执行如图的程序框图,那么输出的S =__________.17.某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.18.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.19.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________20.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为________三、解答题21.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内.(1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.22.某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:(1)根据频率分布直方图计算该种蔬果日需求量的平均数x (同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为x 公斤(0500)x ≤≤,利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1750元的概率.23.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表: 组别 [)0,20[)20,40[)40,60[)60,80[)80,100频数1039040018812()1求所得样本的中位数(精确到百元);()2根据样本数据,可近似地认为市民的旅游费用支出服从正态分布()245,15N ,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;()3若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X ,求X 的分布列与数学期望.(参考数据:()0.6827P X μσμσ-<<+≈,(22)0.9545P X μσμσ-<<+≈;(33)0.9973)P X μσμσ-<<+≈24.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y (万元)进行了统计,得到相应数据如下表: 广告投入x (万元) 9 10 8 11 12销售收入y (万元)21232120 25(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()() 121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-25.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:质量指标值[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).质量指标值分组频数频率[)75,8560.06[)85,95[)95,105[)105,115[)115,125合计100126.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率; (Ⅱ)这种游戏规则公平吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.D解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 3.C解析:C 【解析】 【分析】 【详解】 因为残差,所以残差的平方和为(5.1-5)2+(6.9-7)2+(9.1-9)2=0.03.故选C.考点:残差的有关计算.4.B解析:B 【解析】由题意可得:初如值S=2,k=2015, S=-1,k=2016<2018 S=12,k=2017<2018 2,2018S k ==输出2,选C.5.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.7.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+,当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.8.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .9.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.D解析:D 【解析】 【分析】计算出每次循环时各变量的值并与3S =比较后可得对应的k 的值. 【详解】1n =,S k =; 2n =,22k k S k =-=; 3n =,263k k k S =-=; 4n =,33124k k kS =-==,所以12k =. 故选:D. 【点睛】本题以数学文化为背景考虑流程图,此类问题应该根据流程图计算每次循环时各变量的值,从而可得程序终止的条件、输出的结果等,本题属于中档题.11.A解析:A【解析】【分析】由频率分布直方图的性质列方程,能求出a.【详解】由频率分布直方图的性质得:()100.0050.0150.0350.0150.0101a+++++=,解得0.020a=.故选A.【点睛】本题考查实数值的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.A解析:A【解析】【分析】首先求得x的平均值,然后利用线性回归方程过样本中心点求解m的值即可.【详解】由题意可得:810111214115x++++==,由线性回归方程的性质可知:99112744y=⨯+=,故21252835275m++++=,26m∴=.故选:A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与y之间的关系,这条直线过样本中心点.二、填空题13.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为:5 4 3 4 2 则【点睛】本题考查几何概型及随解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.14.【解析】【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能解析:3【解析】 【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4343)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为3s =. 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.15.【解析】【分析】利用对立事件概率计算公式直接求解【详解】某篮球运动员在赛场上罚球命中率为这名运动员在赛场上的2次罚球中至少有一次命中的概率为故答案为【点睛】本题考查概率的求法考查对立事件概率计算公式解析:89【解析】 【分析】利用对立事件概率计算公式直接求解. 【详解】某篮球运动员在赛场上罚球命中率为23, ∴这名运动员在赛场上的2次罚球中,至少有一次命中的概率为022181()39p C =-=. 故答案为89. 【点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.16.42【解析】【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42 【解析】 【分析】输入1k =,由循环语句,依次执行,即可计算出结果 【详解】当1k =时,0212S =+⨯= 当2k =时,021226S =+⨯+⨯= 当3k =时,021222312S =+⨯+⨯+⨯= 当4k =时,021********S =+⨯+⨯+⨯+⨯= 当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯= 当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯= 故答案为42 【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础17.20【解析】青年职工中年职工老年职工三层之比为所以样本容量为故答案为20点睛:本题主要考查了分层抽样方法及其应用分层抽样中各层抽取个数依据各层个体数之比来分配这是分层抽样的最主要的特点首先各确定分层解析:20 【解析】青年职工、中年职工、老年职工三层之比为5:3:2,所以样本容量为102012=,故答案为20.点睛:本题主要考查了分层抽样方法及其应用,分层抽样中各层抽取个数依据各层个体数之比来分配,这是分层抽样的最主要的特点,首先各确定分层抽样的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,牢记分层抽样的特点和方法是解答的关键,着重考查了学生的分析问题和解答问题的能力.18.80【解析】【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100解析:80 【解析】 【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.19.【解析】【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛 解析:12【解析】 【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.20.13【解析】试题分析:记两段的长都不小于1m 为事件A 则只能在中间1m 的绳子上剪断剪得两段的长都不小于1m 所以事件A 发生的概率P (A )=考点:几何概型 解析:【解析】试题分析:记“两段的长都不小于1m”为事件A ,则只能在中间1m 的绳子上剪断,剪得两段的长都不小于1m , 所以事件A 发生的概率 P (A )=考点:几何概型三、解答题21.(1) 14P =.(2) 12P =. 【解析】 【分析】(1)4个球放入编号为1,2,3,4的抽屉里,有4种方法,满足题意的有1中,根据古典概型公式得到结果;(2)根据抽屉的编号,对于一种确定的放法,取法有6种情况,满足一白一黑的有3种情况,进而得到结果. 【详解】(1)将口袋中的3个白球,1个黑球,依次放入编号为1,2,3,4的抽屉内,共有4种不同的放法,分别是(白,白,白,黑),(白,白,黑,白),(白,黑,白,白),(黑,白,白,白),其中编号为2的抽屉内放黑球的情况有1种,所以编号为2的抽屉内放黑球的概率为14P =. (2)假设口袋内的球逐个依次取出放入抽屉内后是(白,白,白,黑),随机取出两个球,根据抽屉的编号,可能是()1,2,()1,3,()1,4,()2,3,()2,4,()3,4共6种,其中一黑一白的是()1,4,()2,4,()3,4共3种,所以取出的两个球是一黑一白的概率为12P =. 【点睛】 本题考查了古典概型公式的应用,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可. 22.(1)265公斤 (2)0.7 【解析】 【分析】(1)用频率分布直方图的每一个矩形的面积乘以矩形的中点坐标求和即为平均值;(2)讨论日需求量与250公斤的关系,写出分段函数再利用频率分布直方图求概率即可. 【详解】 (1)500.00101001500.00201002500.00301003500.0025100x =⨯⨯+⨯⨯+⨯⨯+⨯⨯4500.0015100+⨯⨯ 265=故该种蔬果日需求量的平均数为265公斤.(2)当日需求量不低于250公斤时,利润()=2515250=2500y ⨯-元, 当日需求量低于250公斤时,利润()()=25152505=151250y x x x ---⨯-元所以151250,0250,2500,250500.x x y x -≤<⎧=⎨≤≤⎩由1750y ≥得,200500x ≤≤, 所以()1750P y ≥=()200500P x ≤≤=0.0030100+0.0025100+0.0015100=0.7⨯⨯⨯故估计利润y 不小于1750元的概率为0.7 .【点睛】本题主要考查了频率分布直方图的应用,做此类题的关键是理解题意,属于中档题. 23.()145(百元);()217.1万;()3分布列见解析,()245E X =. 【解析】 【分析】()1设样本的中位数为x ,可得()40103904000.510001000100020x -++⋅=,解得x ; ()245μ=,15σ=,275μσ+=,旅游费用支出在7500元以上的概率为()1(22)22P x P x μσμσμσ--<<+≥+=,即可估计有多少万市民旅游费用支出在7500元以上;()3由表格知一年内游客继续来该景点游玩的概率为35,X 可能取值为3,4,5,6,利用二项分布列即可得出. 【详解】解:()1设样本的中位数为x ,则()40103904000.510001000100020x -++⋅=, 解得45x =,所得样本中位数为45(百元);()245μ=,15σ=,275μσ+=,旅游费用支出在7500元以上的概率为()1(22)10.954420.022822P x P x μσμσμσ--<<+-≥+===,0.022875017.1⨯=,估计有17.1万市民旅游费用支出在7500元以上;()3由表格知一年内游客继续来该景点游玩的概率为35,X 可能取值为3,4,5,6.()3283()5125P X ===,()12332364()55125P X C ⎛⎫=== ⎪⎝⎭,()22332545()55125P X C ⎛⎫=== ⎪⎝⎭,()33276()5125P X ===,故其分布列为:()34561251251251255E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查了二项分布列、互斥事件与对立事件的概率计算公式,考查了推理能力与计算能力,属于中档题.24.(1)71510ˆyx =+(2)30 【解析】 【分析】(1)由表中数据计算平均数和回归系数,求出y 关于x 的线性回归方程;(2)利用回归方程令715361ˆ0yx =+≥,求出x 的范围即可. 【详解】(Ⅰ)由题意知,10,22,x y ==()()()()()222221101211223710212ˆ10b-⨯-+⨯+-⨯-+⨯-+⨯==++++则,72210151ˆ0a∴=-⨯=, ∴ y 关于x 的线性回归方程为71510ˆy x =+. (Ⅱ)令715361ˆ0yx =+≥,则30x ≥,即广告投入至少为30(万元). 【点睛】本题考查了线性回归方程的求法与应用问题,是基础题. 25.(1)见解析; (2)100,99.7. 【解析】 【分析】(1)根据表格中的数据,可补全频率分布表,根据频率分布表中的频率除以组距求出纵坐标,从而可得频率分布直方图;(2)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;先判断中位数x 在内[)95,105,利用()0.380.060.26950.510x ++-⨯=,从而可得结果. 【详解】(1)频率分布表和直方图如下: 质量指标值分组频数 频率 [)75,85 6 0.06 [)85,95 26 0.26 [)95,10538 0.38 [)105,115 22 0.22 [)115,1258 0.08 合计1001(2)质量指标值的样本平均数为800.06900.26x =⨯+⨯+ 1000.381100.22⨯+⨯+1200.08100⨯=.所以此产品质量指标值的平均数的估计值为100. 因为0.060.260.5+<,0.060.260.380.5++>, 所以中位数x 在内[)95,105, 则()0.380.060.26950.510x ++-⨯=,解得99.7x【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.26.(1)15(2)这种游戏规则不公平【解析】试题分析:(1)相当于两人掷含有个面的色子,共种情况,然后输入和为偶数,且和为的情况种数,然后用古典概型求概率;(2)偶数,就是甲胜,其他情况乙胜,分别算出甲胜的概率和乙胜的概率,比较是否相等,相等就公平,不相等就不公平.试题解析:解:(1)设“甲胜且编号的和为6”为事件.甲编号为,乙编号为,表示一个基本事件,则两人摸球结果包括(1,2),(1,3),…,(1,5),(2,1),(2,2),…,(5,4),(5,5)共25个基本事件;包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个.∴.答:甲胜且编号的和为6的事件发生的概率为.(2)这种游戏不公平.设“甲胜”为事件,“乙胜”为事件.甲胜即两个编号的和为偶数所包含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲胜的概率为,乙胜的概率为,∵,∴这种游戏规则不公平.考点:古典概型.。

【典型题】高中必修三数学上期末第一次模拟试题(含答案)(1)

【典型题】高中必修三数学上期末第一次模拟试题(含答案)(1)

【典型题】高中必修三数学上期末第一次模拟试题(含答案)(1)一、选择题1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率分布直方图如图所示则下列说法正确的是()A.频率分布直方图中a的值为 0.040B.样本数据低于130分的频率为 0.3C.总体的中位数(保留1位小数)估计为123.3分D.总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等2.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序S (单位:升),则输入k的值为框图,若输出的2A.6 B.7 C.8 D.93.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸4.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是()A.没有白球B.2个白球C.红、黑球各1个D.至少有1个红球5.把化为五进制数是()A.B.C.D.a=-,则输出的S=6.执行如图所示的程序框图,如果输入的1A.2B.3C.4D.57.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A.5个B.10个C.20个D.45个8.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.27B.57C.29D.599.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ).A.①B.②④C.③D.①③10.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次11.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A.92,94B.92,86C.99,86D.95,9112.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A.48B.60C.64D.72二、填空题13.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______.14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)15.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________16.如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.17.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.18.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.19.一组样本数据按从小到大的顺序排列为:1,0,4,x,y,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,L,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.22.随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如图所示.(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收人薪资高于8000元的城市的概率;(2)若从月平均收入薪资与月平均期望薪资之差高于1000元的城市中随机选择2座城市,求这2座城市的月平均期望薪资都高于8000元或都低于8000元的概率.23.据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度调查人群应该取消应该保留无所谓在校学生2100人120人y人社会人士500人x人z人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.24.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A 组 86 77 80 94 88B 组9183?7593其中B 组一同学的分数已被污损,看不清楚了,但知道B 组学生的平均分比A 组学生的平均分高出1分.(1)若从B 组学生中随机挑选1人,求其得分超过85分的概率;(2)从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求||8m n -≤的概率.25.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值.26.某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如下的频率分布直方图.(1)完成年销售任务的销售点有多少个?(2)若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6),[6,10),____________=,[14,18),[18,22),(单位:千台)中每组分别应抽取的销售点数量.(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取2个,求这两个销售点不在同一组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.2.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.3.A解析:A【解析】【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:阅读时间[0,10)[10,20)[20,30)[30,40)[40,50)[50,60](分)抽样人数10182225205(名)故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.4.C解析:C【解析】分析:写出从红球3个、白球2个、黑球1个中随机摸出2个球的取法情况,然后逐一核对四个选项即可得到答案详解:从红球3个、白球2个、黑球1个中随机摸出2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共五种情况则与事件“至少有1个白球”互斥但不对立的事件是红球,黑球各一个包括1红1白,1黑1白两种情况.故选C点睛:本题主要考查了互斥事件和对立事件,是基础的概念题,只要理解其概念,结合本题列举出所有情况即可得出结果.5.B解析:B【解析】【分析】利用倒取余数法可得化为五进制数.【详解】因为所以用倒取余数法得323,故选:B. 【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.6.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.7.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .8.D解析:D 【解析】 【分析】由题意列出所有可能的结果,然后结合古典概型计算公式可得概率值. 【详解】能组成两位数有:10,12,13,20,21,23,30,31,32,总共有9种情况.其中偶数有5种情况,故组成的两位数是偶数的概率为59p =. 故选:D . 【点睛】本题主要考查古典概型计算公式,属于中等题.9.C解析:C 【解析】 【分析】 【详解】根据题意,从1,2,3,…,9中任取两数,其中可能的情况有“两个奇数”,“两个偶数”,“一个奇数与一个偶数”三种情况;依次分析所给的4个事件可得,①、恰有一个偶数和恰有一个奇数都是“一个奇数与一个偶数”一种情况,不是对立事件;②、至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,与两个都是奇数不是对立事件;③、至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,和“两个都是偶数”是对立事件;④、至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,至少有一个偶数包括“两个偶数”与“一个奇数与一个偶数”两种情况,不是对立事件. 故选C.10.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.11.B解析:B 【解析】由茎叶图可知,中位数为92,众数为86. 故选B.12.B解析:B【解析】【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=,解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=,所以数据落在区间[90,110)内的频数2000.360⨯=,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】因为袋中装有大小相同的总数为5个的黑球白球若从袋中任意摸出2个球共有10种没有得到白球的概率为设白球个数为x 黑球个数为5-x 那么可知白球共有3个黑球有2个因此可知填写为 解析:310【解析】因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种,没有得到白球的概率为110,设白球个数为x,黑球个数为5-x,那么可知白球共有3个,黑球有2个,因此可知填写为14.【解析】【分析】根据题意画出图形求出写作业所对应的区域面积利用得到结果【详解】由题意可知当豆子落在下图中的空白部分时小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知小明不在家 解析:5π4- 【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用()()1P A P A =-得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业∴大正方形面积111S =⨯=;阴影正方形面积1111224S =⨯= 空白区域面积:22111244S ππ-⎛⎫=⨯-= ⎪⎝⎭ 根据几何概型可知,小明不在家写作业的概率为:2514S P S π-=-= 本题正确结果:54π- 【点睛】本题考查几何概型中的面积型,属于基础题. 15.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18【解析】【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得.【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =.【点睛】本题主要考查了系统抽样,属于中档题.16.【解析】试题分析:根据题意正方形的面积为而阴影部分由函数与围成其面积为则正方形中任取一点点取自阴影部分的概率为则正方形中任取一点点取自阴影部分的概率为考点:定积分在求面积中的应用几何概型点评:本题考 解析:【解析】试题分析:根据题意,正方形的面积为而阴影部分由函数与围成,其面积为,则正方形中任取一点,点取自阴影部分的概率为.则正方形中任取一点,点取自阴影部分的概率为考点:定积分在求面积中的应用 几何概型点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.17.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒 由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-= ⎪⎝⎭,即0.65P =,故答案为0.65. 18.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容解析:21【解析】【分析】根据系统抽样的特征,求出分段间隔即可.【详解】根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为210021100=, 故答案是21.【点睛】 该题所考查的是有关系统抽样的组距问题,应用总体除以样本容量等于组距,得到结果,属于简单题目.19.【解析】分析:根据中位数为求出是代入平均数公式可求出从而可得出平均数代入方差公式得到方差详解中位数为这组数据的平均数是可得这组数据的方差是故答案为点睛:本题主要考查平均数与方差属于中档题样本数据的算 解析:743【解析】分析:根据1,0,4,,,14x y -中位数为5,,求出x 是6 ,代入平均数公式,可求出7y =,从而可得出平均数,代入方差公式,得到方差.详解1,0,4,,7,14x -Q 中位数为45,52x +∴=,6x ∴=,∴这组数据的平均数是10461456y -+++++=,7y =可得这组数据的方差是()17436251148163+++++=,故答案为743. 点睛:本题主要考查平均数与方差,属于中档题.样本数据的算术平均数公式为12n 1(x +x +...+x )x n=.样本方差2222121[()()...()]n s x x x x x x n =-+-++-,标准差s = 20.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12【解析】分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.三、解答题21.(1)14(2)这样规定公平,详见解析 【解析】【分析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得(),()P B P C 的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x 、y .用(,)x y 表示抽取结果,可得(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A ,则{(1,1),(2,2),(3,3),(4,4)}A =,事件A 由4个基本事件组成,故所求概率41()164P A ==. (2)设“甲获胜”为事件B ,“乙获胜”为事件C ,则{}(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)B =,{(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)}C =. 可得63()()168P B P C ===, 即甲获胜的概率是38,乙获胜的概率也是38,所以这样规定公平. 【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.22.(1)715(2)25 【解析】【分析】(1)记事件A 为该生选中月平均收入薪资高于8000元的城市,利用古典概型可得概率()P A ;(2)记2座城市的月平均期望薪资都高于8000元或都低于8000元为事件B ,利用古典概型可得概率()P B .【详解】(1)设该生选中月平均收入薪资高于8000元的城市为事件A ,15座城市中月平均收入薪资高于8000元的有7个, 所以7()15P A =. (2)月平均收入薪资和月平均期望薪资之差高于1000元的城市有6个,其中月平均期望薪资高于8000元的有3个,记为1A ,2A ,3A ;月平均期望薪资低于8000元的有3个,记为1B ,2B ,3B ,选取两座城市所有的可能为:12A A ,13A A ,11A B ,12A B ,13A B 23A A ,21A B ,22A B ,23A B ,31A B ,32A B ,33A B ,12B B ,13B B ,23B B ,共15种,设2座城市的月平均期望薪资都高于8000元或都低于8000元为事件B , 所以62()155P B ==. 【点睛】本题考查古典概型概率计算,考查数据处理能力,属于基础题.23.(1)22.(2)815【解析】【分析】(1)先由抽到持“应该保留”态度的人的概率为0.06,由已知条件求出x ,再求出持“无所谓”态度的人数,由此利用抽样比能求出应在“无所谓”态度抽取的人数;(2)先根据分层抽样,求出在校学生和社会人士的人数,再计算出这6人中任意选取2人的情况总数,及满足恰好1个人为在校学生的情况数,代入古典概型的概率计算公式,即可求解.【详解】 (1)由抽到持“应该保留”态度的人的概率为0.06,∴1200.063000x +=,∴60x =, ∴持“无所谓”态度的人数共有3000210050012060220----=, ∴应在“无所谓”态度抽取300220223000⨯=人, (2)由(1)知持“应该保留”态度的一共有180人, ∴在所抽取的6人中,在校学生为12064180⨯=人,分别记为1,2,3,4, 社会人士为6062180⨯=人,记为,a b , 则这6人中任意选取2人,共有15种不同情况,分别为(1,2),(1,3),(1,4),(1,)a ,(1,)b ,(2,3),(2,4),(2,)a ,(2,)b ,(3,4),(3,)a ,(3,)b ,(4,)a ,(4,)b ,(,)a b ,这2人中恰好有1个人为在校学生:(1,)a ,(1,)b ,(2,)a ,(2,)b ,(3,)a ,(3,)b ,(4,)a ,(4,)b 共8种,故这2人中恰好有1个人为在校学生的概率为8P=15. 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答中正确利用列举法列举出基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.24.(1)35 (2)35【解析】【分析】(1)先设在B 组中看不清的那个同学的分数为x ,分别求得两组的平均数,再由平均数间的关系求解.(2)先求出从A 组这5名学生中随机抽取2名同学所有方法数,再用列举的方法得到满足求||8m n -≤的方法数,再由古典概型求解.【详解】(1)设在B 组中看不清的那个同学的分数为x 由题意得918375938677809488155x ++++++++-= 解得x =88所以在B 组5个分数超过85的有3个所以得分超过85分的概率是35 (2)从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,则所有(),m n 共有()()()()()()()()()()94,88,94,86,94,80,94,77,88,86,88,80,88,77,86,80,86,77,80,77共10个其中满足求||8m n -≤的有: ()()()()()()94,88,94,86,88,86,88,80,86,80,80,77共6个故|||8m n -≤的概率为63105= 【点睛】本题主要考查了平均数和古典概型概率的求法,还考查了运算求解的能力,属于中档题. 25.238【解析】【分析】 5432()3835126((((38)3)5)12)6f x x x x x x x x x x x =+-++-=+-++-,当2x =时,代入计算即可得出.【详解】根据秦九韶算法,把多项式改写成如下形式:()()()()()3835126x x x f x x x =+-++-,当2x =时.03v =,103814v v =+=,2123v v =⨯-142325=⨯-=,3225v v =⨯+252555=⨯+=,43212v v =⨯+55212122=⨯+=,5426v v =⨯-12226238=⨯-=,所以当2x =时,多项式()f x 的值为238.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.26.(1)24;(2)见解析;(3)35【解析】【分析】(1)由频率之和等于1,列出方程()0.020.080.09241a +++⨯=,求解即可;(2)各组应抽取的销售点数量比例为2:8:9:3:3,按比例计算即可;(3)完成年销售任务的销售点,[)14,18中有3个,[)18,22中有3个,不在一组的基本事件有9个,所有的基本事件有15个,即可得到概率为93155=。

【人教版】高中数学必修三期末第一次模拟试卷带答案(1)

【人教版】高中数学必修三期末第一次模拟试卷带答案(1)

一、选择题1.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31452.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C .3224π- D .14π-3.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-4.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 5.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.5⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的6.如图给出的是计算1232018是()A .2018i <B .2018i =C .2018i ≤D .2018i >7.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?8.执行如图所示的程序框图,输出S 的值等于( )A .1111238+++⋅⋅⋅+ B .1111237+++⋅⋅⋅+ C .11111237+++++ D .11111238++++⋅⋅⋅+ 9.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( )A .12.68万元B .13.88万元C .12.78万元D .14.28万元10.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差11.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A .95B .96C .97D .9812.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________.14.在[0,1]上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为________. 15.在区间[]0,2中随机地取出一个数x ,则sin6x π>的概率是__________.16.根据如图所示的伪代码可知,输出的结果为______.17.执行如图所示的程序框图,输出的S 值是__________.18.执行如图所示的算法框图,若输入的x 的值为2,则输出的n 的值为__________.19.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示: 等级A + AB + BB -C + CC -D + DE 分数 7067646158555249464340上海某高中2018届高三()1班选考物理学业水平等级考的学生中,有5人取得A +成绩,其他人的成绩至少是B 级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______人. 20.已知由样本数据集合(){}11,1,2,3,...,x y i n =,求得的回归直线方程为1.2308ˆ.0y x =+,且ˆ4x =,若去掉两个数据点 (4.1,5.7)和(3.9,4.3)后重新求得的回归直线方程l 的斜率估计值为1.2,则此回归直线l 的方程为_______.三、解答题21.为了纪念五四运动100周年和建团97周年,某校团委开展“青春心向党,建功新时代”知识问答竞赛.在小组赛中,甲、乙、丙3人进行擂台赛,每局2人进行比赛,另1人当裁判,每一局的输方担任下局的裁判,由原来裁判向胜者挑战,甲、乙、丙3人实力相当. (1)若第1局是由甲担任裁判,求第4局仍是甲担任裁判的概率;(2)甲、乙、丙3人进行的擂台赛结束后,经统计,甲共参赛了6局,乙共参赛了5局而丙共担任了2局裁判.则甲、乙、丙3人进行的擂台赛共进行了多少局?若从小组赛中,甲、乙、丙比赛的所有场次中任取2场,则均是由甲担任裁判的概率是多少.22.2019年8月8日是我国第十一个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;23.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图. 24.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.25.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y 随月份t 变化的散点图,并用散点图和相关系数说明y 与t 之间具有线性相关性;(2)建立y 关于t 的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量. 参考数据:7772111y9.24,t 7 2.646iiii i i i y=====⋅≈≈∑∑∑(y -y ).参考公式:相关系数()()()()()()11112211niinn ni i i i i i nni i i i i i i t t y y r t ty y t y t y t ty y ======⋅--=⋅--=-⋅-⋅-∑∑∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,nii i ni i tty y bay bt t t==⋅--==-⋅-∑∑. 26.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料: 组号 1 2 3 4 5 温差x (C ︒) 10 11 13 12 8 发芽数y (颗)2325302616经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:()()()1122211ˆn ni i i i i i n n i i i i x x y y x y nxy b x x x nx====---==--∑∑∑∑,ˆˆa y bx =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13925P =⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23759P =⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率. 【详解】盒中有形状、大小都相同的2个红色球和3个黄色球, 从中取出一个球,观察颜色后放回并往盒中加入同色球4个, 若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13295152P =⨯=, 若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23775915P =⨯=, ∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P =+=+=, 故选:A . 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.4.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。

【易错题】高中必修三数学上期末一模试卷(及答案)(1)

【易错题】高中必修三数学上期末一模试卷(及答案)(1)

【易错题】高中必修三数学上期末一模试卷(及答案)(1)一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A . B . C . D .3.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .81 4.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .63 6.把化为五进制数是( ) A . B . C . D .7.在某地的奥运火炬传递活动中,有编号为1,2,3,L ,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( ).A .151B .168C .1306D .14088.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?9.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( )A .310B .25C .12D .3510.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <11.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .41312.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( )A .27B .57C .29D .59二、填空题13.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.15.阅读如图所示的程序框图,若,,,则输出的结果是________.16.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.17.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________18.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.19.向面积为20的ABC ∆内任投一点M ,则使MBC ∆的面积小于5的概率是__________.20.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ;④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.三、解答题21.为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.(1)若该高中学校有2000名在校学生,编号分别为0001,0002,0003,…,2000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)(2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出3个1档,2个2档,1个3档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.22.有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:(Ⅰ)求频率分布直方图中m的值;(Ⅱ)分别求出成绩落在[70,80),[80,90),[90,100]中的学生人数;(Ⅲ)从成绩在[80,100]的学生中任选2人,求所选学生的成绩都落在[80,90)中的概率23.我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图所示的频率分布直方图.P A的估计值;(1)记事件A:“全市家庭月均用水量不低于6t”,求()(2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(3)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).24.今年4月的“西安奔驰女车主哭诉维权事件”引起了社会的广泛关注,某汽车4S店为了调研公司的售后服务态度,对5月份到店维修保养的100位客户进行了回访调查,每位客户用10分制对该店的售后服务进行打分.现将打分的情况分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示.已知第二组的频数为10.(1)求图中实数a,b的值;(2)求所打分值在[6,10]的客户人数;(3)总公司规定,若4S店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S店是否需要停业整顿.25.某中学随机抽取部分高一学生调査其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x的值;(2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.26.为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P(A)=0.75.(1)求,a b 的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据二项式5(2)x +展开式的通项公式,求出3x 的系数,由已知先求a 的值,模拟程序的运行,可得判断框内的条件.【详解】解:由于32300(21)|6a x dx x x =-=-=⎰,Q 二项式5(2)x -展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅;3x ∴的系数是32352140C ⋅⋅=.∴程序运行的结果S 为360,模拟程序的运行,可得6k =,1S =不满足条件,执行循环体,6S =,5k =不满足条件,执行循环体,30S =,4k =不满足条件,执行循环体,120S =,3k =不满足条件,执行循环体,360S =,2k =由题意,此时,应该满足条件,退出循环,输出S 的值为360.则判断框中应填入的关于k 的判断条件是3k <?故选A .【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.2.C解析:C【解析】【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P =故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题. 3.A解析:A【解析】【分析】利用茎叶图、平均数的性质直接求解.【详解】由一组数据的茎叶图得:该组数据的平均数为:1(7581858995)855++++=. 故选:A .【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.4.C解析:C【解析】【分析】根据程序框图依次计算得到答案.【详解】根据程序框图:1,1S i ==;3,2S i ==;7,3S i ==;15,4S i ==;31,5S i ==,结束.故选:C .【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.5.A解析:A【解析】【分析】由茎叶图确定所给的所有数据,然后确定中位数即可.【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45.本题选择A 选项.【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B【解析】【分析】 利用倒取余数法可得化为五进制数.【详解】因为所以用倒取余数法得323,故选:B.【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.7.B解析:B【解析】【分析】【详解】分析:利用组合数列总事件数,根据等差数列通项公式确定所求事件数,最后根据古典概型概率公式求结果.详解:共有318C 17163=⨯⨯种事件数,选出火炬手编号为13(1)n a a n =+-,由1、4、7、10、13、16,可得4种,由2、5、8、11、14、17,可得4种,由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯. 选B . 点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.8.C解析:C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3=满足判断框内的条件,执行循环体,a 33=,k 5=满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170.则分析各个选项可得程序中判断框内的“条件”应为k 6<?故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【解析】【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率.【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次, 甲乙二人抢到的金额之和包含的基本事件的总数为2510n C ==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p ==,故选D. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.11.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A12.D解析:D 【解析】 【分析】由题意列出所有可能的结果,然后结合古典概型计算公式可得概率值. 【详解】能组成两位数有:10,12,13,20,21,23,30,31,32,总共有9种情况. 其中偶数有5种情况,故组成的两位数是偶数的概率为59p =. 故选:D . 【点睛】本题主要考查古典概型计算公式,属于中等题.二、填空题13.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE …的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础14.【解析】【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概【解析】 【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即232R =,即3R =,则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为:23【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.15.a 【解析】【分析】首先分析程序框图的作用是输出三个数中的最大值从而比较三个数的大小求得结果【详解】根据题中所给的程序框图可以判断出其作用是输出三者中的最大出那个数因为a=log1213=log23> 解析:【解析】 【分析】首先分析程序框图的作用是输出三个数中的最大值,从而比较三个数的大小,求得结果. 【详解】根据题中所给的程序框图,可以判断出其作用是输出三者中的最大出那个数, 因为,而,所以其最大值是, 故答案是:. 【点睛】该题考查的是有关程序框图的输出结果的求解问题,属于简单题目.16.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填:解析:34【解析】∵方程无实根,∴Δ=1-4a <0,∴14a >,即所求概率为34.故填:3417.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18 【解析】 【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.18.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人19.【解析】分析:在内任投一点要使的面积小于5根据几何关系求解出它们的比例即可详解:记事件{的面积大于5}基本事件是的面积如图:事件A 的几何度量为图中阴影部分的面积(DE 分别是三角形的边上的四等分点)且解析:716【解析】分析:在ABC ∆内任投一点M ,要使MBC ∆的面积小于5,根据几何关系求解出它们的比例即可.详解:记事件A ={MBC ∆的面积大于5}, 基本事件是ABC ∆的面积,如图:事件A 的几何度量为图中阴影部分的面积(D 、E 分别是三角形的边上的四等分点),ADE ABC ∆~∆Q ,且相似比为34,239416ADE ABC S S ∆∆⎛⎫∴== ⎪⎝⎭, ()916ADE ABC S P A S ∆∆∴==. ∴MBC ∆的面积小于5的概率是()97111616P A -=-=. 故答案为:716. 点睛:本题考查几何概型,解答此题的关键在于明确测度比是面积比,对于几何概型常见的测度是长度之比、面积之比、体积之比、角度之比,要根据题意合理的判断和选择是哪一种测度进行求解,属于中档题.20.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.三、解答题21.(1)见解析;(2)()1115P A = 【解析】 【分析】(1)第一步编号分组,第二步抽样;(2)先用枚举法确定从6名学生选2名的总事件数,再从中确定2名同学不在同一档的事件数,最后根据古典概型概率公式求结果. 【详解】(1)第一步:分组.将2000名学生分成50组,每组40人,编号是0001~0040的为第1组,编号为0041~0080的为第2组,…,编号为1961~2000为第50组;第二步:抽样.在第1组中用简单随机抽样方法(抓阄)抽取一个编号为m 的学生,则在第k 组抽取编号为()401k m -+的学生.每组抽取一人,共计抽取50名学生.(2)记该班3个1档的学生为1A ,2A ,3A ,2个2档的学生为1B ,2B ,1个3档的学生为1C ,从该班获得助学金的同学中选择2名同学不在同一档为事件A .基本事件:12A A ,13A A ,11A B ,11A B ,11A C ,23A A ,21A B ,22A B ,21A C ,31A B ,32A B ,31A C ,12B B ,11B C ,21B C ,共计15个.事件A 包含的基本事件共有11个,则()1115P A = 【点睛】本题考查系统抽样以及古典概型概率公式,考查基本分析求解能力,属基础题. 22.(Ⅰ)0.005m =(Ⅱ)6,4,2(Ⅲ)25【解析】 【分析】 【详解】 试题分析:(1)种用频率分布直方图的意义,所有小长方形的面积和为1列方程即可; (2)利用(1)的结果分别求出数据每个区间内的频率,从而求出成绩落在[70,80),[80,90),[90,100]中的学生人数;(3)由(2)知,成绩落在的学生共有6人,其中成绩落在[80,90)中的学生人数为4,记落在[80,90)中的学生为1234,,,a a a a ,落在[90,100]中的学生为12,b b ,利用古典概型的概率计算公式可求所选学生的成绩都落在[80,90)中的概率.试题解析:解:(1)由题意10(23456)1m m m m m ⨯++++=,0.005m =. (2)成绩落在[70,80)中的学生人数为20100.036⨯⨯=, 成绩落在[80,90)中的学生人数20100.024⨯⨯=成绩落在[90,100]中的学生人数20100.012⨯⨯=.(3)设落在[80,90)中的学生为1234,,,a a a a ,落在[90,100]中的学生为12,b b , 则{}1121314111223242122343132414212,,,,,,,,,,,,,,a a a a a a a b a b a a a a a b a b a a a b a b a b a b bb Ω=,基本事件个数为15n =,设A =“此2人的成绩都在[80,90)”,则事件A 包含的基本事件数6m =,所以事件A 发生概率62()155m P A n ===. 考点:1、频率分布直方图;2、古典概型.23.(1)0.3;(2)4.92 t .;(3)3.18t 【解析】 【分析】(1)通过频率分布直方图求得[]6,10的频率,由此求得()P A 的估计值.(2)根据由频率分布直方图计算平均数的方法,计算出全市家庭月均用水量平均数的估计值.(3)通过频率分布直方图,计算出累计频率为0.25的位置,从而求得全市家庭月均用水量的25%分位数的估计值. 【详解】(1)由直方图可知()P A 的估计值为()(0.090.06)20.3P A =+⨯=.(2)因为0.06210.11230.18250.09270.0629 4.92⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 因此全市家庭月均用水量的平均数估计值为4.92 t .(3)频率分布直方图中,用水量低于2 t 的频率为0.0620.12⨯=. 用水量低于4 t 的频率为0.0620.1120.34⨯+⨯=. 故全市家庭月均用水量的25%分位数的估计值为0.250.1222 3.18()0.22t -+⨯≈.【点睛】本小题主要考查根据频率分布直方图计算频率、平均数、百分位数,属于基础题. 24.(1)a =0.05,b =0.15;(2)65;(3)4S 店需要停业整顿 【解析】 【分析】(1)由频数10得频率,频率除以组距可得a ,由所有频率和为1可求得b ; (2)求得分值在[6,10]的频率,然后可得频数; (3)由频率分布直方图计算均值可得. 【详解】(1)由题意得:()0.0250.10.175********a b a ⎧++++⨯=⎪⎨=⎪⨯⎩,解得a =0.05,b =0.15.(2)所打分值在[6,10]的频率为(0.175+0.15)×2=0.65,∴所打分值在[6,10]的客户人数为:0.65×100=65. (3)由题意得该4S 店平均分为:1×0.025×2+3×0.05×2+5×0.1×2+7×0.175×2+9×0.15×2=6.5,∵6.5<7,∴该4S 店需要停业整顿. 【点睛】本题考查频率分布直方图,考查数列期望,属于基础题. 25.(1)0.0125;(2)25. 【解析】 【分析】(1)利用直方图矩形的面积的和为1,直接求解x 即可.(2)求出基本事件的总数以及符合条件的基本事件的个数,即可求解. 【详解】(1)由直方图可得:20×x +0.025×20+0.0065×20+0.003×2×20=1. 所以 x =0.0125.(2)由题意知:[0,20)有2人,设为1,2,[20,40)有4人,设为a ,b ,c ,d ; 则基本事件有:12,1a ,1b ,1c ,1d ,2a ,2b ,2c ,2d ,ab ,ac ,ad ,bc ,bd ,cd 共15种 抽到的2人每日自主安排学习时间均不低于20分钟的包括:ab ,ac ,ad ,bc ,bd ,cd 共6种.所以抽到的2人每日自主安排学习时间均不低于20分钟的概率P 62155==. 【点睛】本题考查了直方图,考查古典概率的求值,是一道中档题. 26.(1)a =0.035,b =0.015(2)25【解析】 【分析】(1)由第三、四、五组三个小矩形面积为0.75可求得a ,再由所有小矩形面积为1可求得b ;(2)6人中第二组中应抽取2人,分别记为12a a ,,第四组中应抽取4人,分别记为1234,,,b b b b ,用列举法列举出所有可能,再确定满足条件的可能情况,从而可计算出概率. 【详解】(1)由题意知P (A )=10×(a +0.030+0.010)=0.75,解得a =0.035,又10×(b +0.010)=0.25,所以b =0.015.(2)在第二组、第四组中用分层抽样的方法抽取6人,则第二组中应抽取2人,分别记为12a a ,,第四组中应抽取4人,分别记为1234,,,b b b b ,从这6人中抽取2人的所有可能情况有()11,a b , ()12,a b ,()13,a b ,()14,a b ,()21,a b ,()22,a b ,()23,a b ,()24,a b ,()12,a a ,()12,b b ,()13,b b ,()14,b b ,()23,b b ,()24,b b ,()34,b b ,共15种.其中从这6人中抽取的2个人恰好都在第四组中的情况有12(b ,b ),13(b ,b ),14(b ,b ),()23,b b ,()24,b b ,()34,b b ,共6种,所以所求概率为62155=. 【点睛】本题考查频率分布直方图,考查分层抽样,考查古典概型概率,属于基础题,其中概率问题是用列举法求解.。

【好题】高中必修三数学上期末一模试题(附答案)(1)

【好题】高中必修三数学上期末一模试题(附答案)(1)

【好题】高中必修三数学上期末一模试题(附答案)(1)一、选择题1.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2152.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1443.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯4.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-25.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A .20,22.5B .22.5,25C .22.5,22.75D .22.75,22.756.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( )A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 7.运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填( )A .60i >B .70i >C .80i >D .90i >8.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4139.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .27B .57C .29D .5910.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( )A .12B .13C .14D .1511.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .3612.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91二、填空题13.执行如图所示的程序框图,若输入的1,7s k ==则输出的k 的值为_______.14.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.15.如图是某算法流程图,则程序运行后输出S的值为____.16.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________17.如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.18.如图是一个算法的流程图,则输出的a的值是__________.19.在区间[]0,2中随机地取出一个数x ,则sin6x π>的概率是__________.20.父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间.求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为 __________.三、解答题21.某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.拥有驾驶证 没有驾驶证 合计得分优秀得分不优秀 25合计100(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82822.某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康A类学生,已知体育健康A类学生中有10名女生.(Ⅰ)根据已知条件完成下面22⨯列联表,并据此资料你是否认为达到体育健康A类学生与性别有关?非体育健康A类学生体育健康A类学生合计男生女生合计(Ⅱ)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康A +类学生,已知体育健康A +类学生中有2名女生,若从体育健康A +类学生中任意选取2人,求至少有1名女生的概率. 附:()()()()()22n ad bc k a c b d c d a b -=++++23.已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,12.现采用分层抽样的方法从中抽取6人,进行睡眠质量的调查.(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?(2)设抽出的6人分别用A 、B 、C 、D 、E 、F 表示,现从6人中随机抽取2人做进一步的身体检查.(i )试用所给字母列出所有可能的抽取结果;(ii )设K 为事件“抽取的2人来自同一兴趣小组”,求事件K 发生的概率.24.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:()1求所得样本的中位数(精确到百元);()2根据样本数据,可近似地认为市民的旅游费用支出服从正态分布()245,15N ,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;()3若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X ,求X 的分布列与数学期望.(参考数据:()0.6827P X μσμσ-<<+≈,(22)0.9545P X μσμσ-<<+≈;(33)0.9973)P X μσμσ-<<+≈25.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1: 年份x20112012 2013 2014 2015 储蓄存款y (千亿元)567810为了研究计算的方便,工作人员将上表的数据进行了处理,2010,5t x z y =-=-得到下表2: 时间代号t 1 2 3 4 5 z1235(Ⅰ)求z 关于t 的线性回归方程;(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程ˆˆˆybx a =+,其中1221ˆˆˆ,ni ii nii x y nx yb ay bx xnx ==-⋅==--∑∑) 26.某中学随机抽取部分高一学生调査其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.2.A解析:A 【解析】 【分析】计算出数据1x 、2x 、L 、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、L 、53n x -的平均值和方差. 【详解】设数据1x 、2x 、L 、n x 的平均值为x ,方差为2s , 由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=L L,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦L ()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L ,24s ∴=. 所以,数据153x -、253x -、L 、53n x -的平均值为()()()12535353n x x x n-+-+-L ()1235535321n x x x x n+++=-=-=-⨯=-L,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦L ()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L . 故选:A.本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.3.C解析:C 【解析】根据平均数的概念,其平均数为52x +,方差为2258⨯,故选C.4.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.5.C解析:C 【解析】 【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.6.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键7.B解析:B 【解析】执行一次,20010,20S i =+=,执行第2次,2001020,30S i =++=,执行第3次,200102030,40S i =+++=,执行第4次,26040,50S i =+=,执行第5次,30050,60S i =+=,执行第6次,35060,70S i =+=,执行第7次,41070,80S i =+=跳出循环,因此判断框应填70i >,故选B.8.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即7BC x =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A9.D解析:D 【解析】 【分析】由题意列出所有可能的结果,然后结合古典概型计算公式可得概率值. 【详解】能组成两位数有:10,12,13,20,21,23,30,31,32,总共有9种情况. 其中偶数有5种情况,故组成的两位数是偶数的概率为59p =. 故选:D . 【点睛】本题主要考查古典概型计算公式,属于中等题.10.A解析:A 【解析】 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P ==, 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题11.C解析:C 【解析】试题分析:该程序框图所表示的算法功能为:235919S =+++=,故选C . 考点:程序框图. 12.B解析:B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.5【解析】【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到解析:5【解析】【分析】模拟执行程序框图,依次写出每次循环得到的,s k的值,当5,58s k==时,根据题意,退出循环,输出结果.【详解】模拟执行程序框图,可得1,7 S k==;771,688s k=⋅==;763,5874s k=⋅==;355,5468s k=⋅==;此时,57810<,退出循环,输出结果,故答案为5.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.14.【解析】【分析】由题意从甲乙丙丁4位同学中选出2名代表参加学校的会议求得基本事件的总数再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中求得其包含的基本事件的个数即可求解【详解】由题意从甲乙解析:5 6【解析】【分析】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,求得基本事件的总数,再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,求得其包含的基本事件的个数,即可求解.【详解】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,则基本事件的总数为246n C==,又由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,其包含的基本事件的个数为221m C ==,所以甲乙两人至少有一人被选中的概率为151166m p n =-=-=. 故答案为56. 【点睛】本题主要考查了古典概型及其概率的计算公式,以及对立事件的应用,其中解答中认真审题,合理选择方法,分别求得基本事件的总数和事件所包含的基本事件的个数是解答的关键,着重考查了推理与计算能力,属于基础题.15.41【解析】【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件解析:41 【解析】 【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案。

【人教版】高中数学必修三期末第一次模拟试题含答案

【人教版】高中数学必修三期末第一次模拟试题含答案

一、选择题1.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为()A.435B.635C.1235D.18352.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅3.将一枚质地均匀的硬币连掷三次,设事件A:恰有1次正面向上;事件B:恰有2次正面向上,则()P A B+=()A.23B.14C.38D.344.已知0.5log5a=、3log2b=、0.32c=、212d⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m,使函数()32123x mx xf x=+++有极值点的概率为()A.14B.12C.34D.15.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.如图所示的程序框图输出的结果是()A.34 B.55 C.78 D.89 7.某程序框图如图所示,则该程序运行后输出的值是()A.3B.3C3D38.执行如下的程序框图,则输出的S是()A .36B .45C .36-D .45-9.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元10.某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277; ②5,9,100,107,121,180,195,221,265,299; ③11,41,71,101,131,161,191,221,251,281; ④31,61,91,121,151,181,211,241,271,299. 关于上述样本的下列结论中,正确的是( ) A .②④都不能为分层抽样 B .①③都可能为分层抽样 C .①④都可能为系统抽样 D .②③都不能为系统抽样11.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >12.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____15.从正方体六个面的对角线中任取两条作为一对,这对对角线所成的角为60︒的概率为________16.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.17.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的a ,b 的值分别为7,3,则输出的n 的值为____________.18.执行右边的程序框图,若,则输出的________.19.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x34 5 6y 23.55 5.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 20.已知下列命题:①在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好; ②两个变量相关性越强,则相关系数r 就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;⑥若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考前学生的紧张程度与性别是否有关系,现随机抽取某校500名学生进行了调查,结果如表所示: 心情 性别 男 女 总计 正常 30 40 70 焦虑 270 160 430 总计300200500(1)根据该校调查数据,能否在犯错误的概率不超过0.01的前提下,认为“该学校学生的考前焦虑情况与性别有关”?(2)若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,再从被抽取的7人中随机抽取2人,求这两人中有女生的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d +++=. ()20P K k ≥ 0.25 0.15 0.10 0.05 0.025 0.010 0k1.3232.0722.7063.8415.0246.63523.已知底面半径为r ,高为h 的圆柱和一正方体的体积相等,试设计一个程序分别求圆柱的表面积和正方体的表面积,并画出程序框图(π=3. 14). 24.下面给出了一个问题的算法: 第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步. 第三步,y =2x -1,输出y . 第四步,y =x 2-2x +3,输出y . 问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多大时,输出的数值最小?25.如表为某中学近5年被卓越大学联盟录取的学生人数.记2015年的年份序号为1,2016年的年份序号为2,…,2019年的年份序号为5.(1)求y 关于x 的线性回归方程,并估计2020年该中学被卓越大学联盟录取的学生人数.(2)若在2015年和2019年被卓越大学联盟录取的学生中分层抽样7人,再从这7人中任选2人,求这2人恰好来自同一年份的概率.参考数据:521ii x=∑=55,51i ii x y =∑=2920.参考公式:b =1221ni ii nii x ynx y xnx==--∑∑,a y bx =-26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035= 故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.2.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为4620 81010C C C⋅故选:C【点睛】本题主要考查了计算古典概型的概率,属于中档题.3.D解析:D【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A与事件B的事件个数,分别求出其概率,最后再相加即可.【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A:恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A=;满足事件B:恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B=;因此,3()()()4P A B P A P B+=+=.故选:D.【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.B解析:B【分析】求出函数的导数,根据函数的极值点的个数求出m的范围,通过判断a,b,c,d的范围,得到满足条件的概率值即可.【详解】f′(x)=x2+2mx+1,若函数f(x)有极值点,则f′(x)有2个不相等的实数根,故△=4m2﹣4>0,解得:m>1或m<﹣1,而a=log0.55<﹣2,0<b=log32<1、c=20.3>1,0<d=(12)2<1,满足条件的有2个,分别是a,c,故满足条件的概率p21 42 ==,故选:B.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.D解析:D 【分析】该框图的功能是计算:234562017sinsin sin sin sin sin sin3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案. 【详解】该框图的功能是计算:234562017sinsinsin sin sin sin sin3333333πππππππ+++++++.因为7132017sinsinsin sin 3333ππππ=====28142012sinsin sin sin33332ππππ=====, 39152013sinsin sin sin03333ππππ=====,410162014sin sin sin sin 3333ππππ=====,511172015sinsin sin sin33332ππππ=====-, 612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sinsin sin sin sin sin3333333πππππππ+++++++3373363360336(336()336022222=⨯+⨯+⨯+⨯-+⨯-+⨯=. 故选:D 【点睛】本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.8.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=;48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=;58i=≤成立,执行第五次循环,()52i=+=;101515S=+-⨯=-,516i=≤成立,执行第六次循环,()6268S=-+-⨯=,617151621i=+=;i=+=;i=≤成立,执行第七次循环,()7278211728S=+-⨯=-,718i=≤成立,执行第八次循环,()82i=+=;88S=-+-⨯=,819281836i=≤不成立,跳出循环体,输出S的值为36,故选A.98【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9.C解析:C【解析】试题分析:根据线性回归方程=50+80x的意义,对选项中的命题进行分析、判断即可.解:根据线性回归方程为=50+80x,得;劳动生产率为1000元时,工资约为50+80×1=130元,A正确;∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B正确;劳动生产率提高1000元时,工资约提高=80元,C错误;当月工资为210元时,210=50+80x,解得x=2,此时劳动生产率约为2000元,D正确.故选C.考点:线性回归方程.10.B解析:B【分析】根据系统抽样和分层抽样的定义分别进行判断即可.【详解】若采用简单随机抽样,根据简单随机抽样的特点,1~300之间任意一个号码都有可能出现;若采用分层抽样,则1~120号为一年级,121~210为二年级,211~300为三年级.且根据分层抽样的概念,需要在1~120之间抽取4个,121~210与211~300之间各抽取3个;若采用系统抽样,根据系统抽样的概念,需要在1~30,31~60,61~90,91~ 120,121~150,151~180,181~210,211~240,241~270,271~300之间各抽一个.①项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以①项为系统抽样或分层抽样;②项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,可能为分层抽样;③项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以③项为系统抽样或分层抽样;④项,第一个数据大于30,所以④项不可能为系统抽样,并且④项不满足分层抽样的条件.综上所述,B 选项正确. 故选:B. 【点睛】本题主要考查系统抽样和分层抽样,掌握系统抽样和分层抽样的定义是解题的关键,属于基础题.(1)系统抽样适用于总体容量较大的情况.将总体平均分成若干部分,按事先确定的规则在各部分中抽取,在起始部分抽样时采用简单随机抽样;(2)分层抽样适用于已知总体是由差异明显的几部分组成的.将总体分成互不交叉的层,然后分层进行抽取,各层抽样时采用简单随机抽样或系统抽样.11.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差 【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定 故22s < 故选A 【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础12.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】 由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定故选:A.【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.二、填空题13.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42解析:2 5【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5故答案为2 5 .14.【分析】先求对立事件概率:三门科目考试成绩都不是A再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A的概率为所以这位考生至少得1个A的概率为故答案为:【点睛】本题考查利用对立事件求解析:191 192【分析】先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【详解】这位考生三门科目考试成绩都不是A的概率为5731 (1)(1)(1)684192 ---=,所以这位考生至少得1个A的概率为1191 1192192 -=故答案为:191 192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.15.【解析】【分析】正方体的面对角线共有12条能够数出每一条对角线和另外的8条构成8对直线所成角为60°得共有12×8对对角线所成角为60°并且容易看出有一半是重复的得正方体的所有对角线中所成角是60° 解析:811【解析】 【分析】正方体的面对角线共有12条,能够数出每一条对角线和另外的8条构成8对直线所成角为60°,得共有12×8对对角线所成角为60°,并且容易看出有一半是重复的,得正方体的所有对角线中,所成角是60°的有48对,根据古典概型概率公式求解即可. 【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,与上平面A 1B 1C 1D 1中一条对角线A 1C 1成60°的直线有:A 1D ,B 1C ,A 1B ,D 1C ,BC 1,AD 1,C 1D ,B 1A 共八对直线,总共12条对角线; ∴共有12×8=96对面对角线所成角为60°,而有一半是重复的;∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有48对. 而正方体的面对角线共有12条,所以概率为:212488C 11故答案为811【点睛】本题考查正方体面对角线的关系,考查了古典概型的概率问题,而对于本题知道96对直线中有一半是重复的是求解本题的关键.16.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案. 详解:执行如图所示的程序框图: 第一次循环:11,,124S m n ===,满足条件; 第二次循环:11,,248S m n ===,满足条件; 第三次循环:11,,3816S m n ===,满足条件; 第四次循环:11,,41632S m n ===,满足条件; 第五次循环:11,,53264S m n ===,满足条件; 第六次循环:11,,664128S m n ===,不满足条件,推出循环,此时输出6n =; 点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.17.3【解析】输入进入循环不满足执行循环不满足执行循环满足输出故答案为3解析:3 【解析】输入7,3,1a b n === 进入循环,21,2622a a ab b =+===,不满足a b ≤ 执行循环,6312,,21224a n n a ab b =+==+===,不满足a b ≤ 执行循环,18913,,22428a n n a ab b =+==+===,满足a b ≤,输出3n = 故答案为318.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图 解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图19.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20.①③④⑦【分析】根据线性回归分析的概念进行分析即可【详解】在线性回归模型中相关指数越接近于1表示回归效果越好①正确;两个变量相关性越强则相关系数r 的绝对值就越接近于1②错误;③正确;两个模型中残差平解析:①③④⑦ 【分析】根据线性回归分析的概念进行分析即可. 【详解】在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好,①正确;两个变量相关性越强,则相关系数r 的绝对值就越接近于1,②错误;③正确;两个模型中残差平方和越小的模型拟合的效果越好,④正确;回归直线ˆˆˆybx a =+恒过样本点的中心(),x y ,不一定过样本点,⑤错误;若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,并不能说在100个吸烟的人中必有99人患有肺病,⑥错误;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,⑦正确.故答案为①③④⑦. 【点睛】本题考查线性回归分析的有关概念,掌握相关概念是解题基础,属于基础题.三、解答题21.乙商场中奖的可能性大. 【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=, 则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 22.(1)能;(2)67【分析】(1)根据题意,计算可得2K 的观测值,结合独立性检验的知识分析可得答案.(2)根据题意,分析可得抽取7人,其中有3名男生,4名女生.由组合数公式计算可得”从7人中任意抽取2人”和”抽取的两人中有女生”的选法数目,由古典概型公式计算可得答案. 【详解】解:(1)根据题意,由22⨯列联表可得:2K的观测值2500(3016027040)300009.967 6.63543070300200301k ⨯⨯-⨯==≈>⨯⨯⨯ 故能在犯错误的概率不超过0.01的前提下,认为该学校学生的考前焦虑情况与性别有关. (2)根据题意,若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,其中有3名男生,4名女生.从7人中任意抽取2人,有2721C =种情况.其中抽取的两人中有女生的抽法有211443+18C C C =种选法.故其概率186217P ==. 【点睛】本题考查了独立性检验,考查了古典概型.在进行独立性检验时,一般步骤为:假设无关,画列联表,求2K 的值,下结论.这里正确计算出2K 的近似值是关键.对于求古典概型概率问题,可列出所有的基本事件,也可以用排列组合的思想计算个数.23.见解析;【解析】试题分析: 先利用INPUT语句输入半径以及高的值,再分别赋值圆柱的表面积和正方体的表面积,最后输出圆柱的表面积和正方体的表面积试题程序如下:INPUT“r,h=”;r,hS=3. 14*r^2m=2*3. 14*r*hS1=2*S+mV=3. 14*r^2*ha=V^(1/3)S2=6*a^2PRINT“圆柱、正方体的表面积分别为”;S1,S2END程序框如图所示.点睛:24.(1)见解析(2)当输入的x 的值为1时,输出的数值最小. 【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论. 试题(1)这个算法解决的问题是求分段函数()()221x 4y x 23x 4x x ⎧-≥⎪=⎨-+<⎪⎩的函数值的问题. (2)本问的实质是求分段函数最小值的问题. 当x≥4时,y =2x -1≥7;当x<4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.25.(1)3759y x =+;281;(2)1121. 【分析】(1)由题意计算平均数,代入公式求出回归系数,写出线性回归方程,再利用线性回归方程计算6x =时的值即可;(2)由分层抽样求出抽取的人数,再利用概率公式求出对应的概率即可. 【详解】(1)由表格可求()11234+5=35x =+++,()1100130170200+250=1705y =+++,且521i i x=∑=55,51i i i x y =∑=2920, 所以12221292053170375553n i ii n i i x y nx y xnx b ==--⨯⨯==-⨯-=∑∑,17037359a y bx =-=-⨯=, 所以y 关于x 的线性回归方程为3759y x =+,当6x =时,37659281y =⨯+=,所以2020年该中学被卓越大学联盟录取的学生人数约为281;(2)由分层抽样可知7人中有10072100250⨯=+ 人来自2015年,有25075100250⨯=+人来自2019年,从中随机抽取两人共有21种结果,抽取的两人恰好来自同一年的有11种,所以所求概率为1121P =. 【点睛】本题主要考查线性回归方程和古典概型求概率,属于中档题.26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案;(3)完善列联表,由公式计算卡方的值,从而查表即可,【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=; 该市一天的空气质量等级为2的概率为:5101227100100++=; 该市一天的空气质量等级为3的概率为:67821100100++=; 该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。

【人教版】高中数学必修三期末第一次模拟试卷(及答案)

【人教版】高中数学必修三期末第一次模拟试卷(及答案)

一、选择题1.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-2.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .253.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19364.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .53175.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4 C.5 D.6n=,则输出的n=()6.运行下图所示的程序框图,如果输入的2020A.6 B.7 C.63 D.647.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k的值为()A .4B .5C .6D .78.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是( )A .n ≥999B .n ≤999C .n <999D .n >9999.已知x ,y 取值如下表:x0 1 4 5 6 8 y 1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且 1.03y x a =+,则a =( ) A .1.53B .1.33C .1.23D .1.1310.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号11.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.疫情防控期间,口罩的需求量很大,某地区有A .B 两家小型口罩加工厂,A 厂每天生产口罩4万到6万只,B 厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.14.如图,C 是以AB 为直径的半圆周上一点,已知在半圆内任取一点,该点恰好在ABC 内部的概率为1π,则ABC 的较小的内角为________.15.两个男生一个女生并列站成一排,其中两男生相邻的概率为_____ 16.根据如图所示的伪代码可知,输出的结果为______.17.运行如图所示的程序,输出结果为___________.18.一个算法的程序框图如图所示,则该算法运行后输出的结果为________.19.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______. 20.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x34 5 6y 23.555.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________.三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下: 分组(重量)[80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.23.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式;(2)若输出的y值为12,求点Q的坐标.24.利用海伦公式编写一个计算三边长为,,a b c的三角形面积的程序.[海伦公式为:1()()();()2S p p a p b p c p a b c=---=++].25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(I)求a的值;(Ⅱ)求被调查用户中,用电量大于250kW·h的户数;(III)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议,并简要说明理由.26.某养殖基地为满足市场需要,逐年加大对养殖基地的资金投入,技术分析员对4年来的年资金投入量x (单位:万元)与相应的年市场销售额y (单位:万元)作了初步的调研统计,得到数据如表:(1)求根据年资金投入量预报年市场销售额的的回归方程; (2)预报年资金投入量为7.5万元时年市场销售额;(3)若年市场销售额不低于100万,那么年资金投入量至少要多少?(保留两位小数)其中,()()()121nii i nii xx y yb xx==--=-∑∑,a bx y =-+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.2.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题3.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93 ()76,68、()76,72、()76,73、()76,85、()76,89、()76,93()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.4.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩, 此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.5.B解析:B 【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B. 考点:1、程序框图;2、循环结构.6.A解析:A 【分析】根据题中所给的框图,模拟执行程序框图,求得结果. 【详解】输入2020100n =>,且不是奇数,赋值1010100n =>,且不是奇数, 赋值505100n =>,且是奇数,赋值252100n =>,且不是奇数, 赋值126100n =>,且不是奇数,赋值63100n =<, 赋值()2log 6316n =+=,输出6. 故选:A 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,属于简单题目.7.B解析:B 【分析】模拟程序运行,依次计算可得所求结果 【详解】当4a =,3b =,2c =时,12S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =; 当6a =,5b =,4c =时,27124S =<,4k =;当7a =,6b =,5c =时,12S =>,5k =; 故选B 【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置8.C解析:C 【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容. 【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <.故选C. 【点睛】lglg lg(1)1nn n n =-++,通过将除法变为减法,达到简便运算的目的. 9.D解析:D 【解析】分析:首先根据题中所给的表中的数据,计算得出样本中心点的坐标,利用回归直线必过样本中心点,代入求得结果. 详解:依题意得,1(014568)46x =⨯+++++=,1(1.3 1.8 5.6 6.17.49.3) 5.256y =+++++=,因为回归直线必过样本中心点(,)x y ,即点(4,5.25),所以有5.25 1.034ˆa=⨯+,解得ˆ 1.13a =,故选D.点睛:该题考查的是有关回归直线的有关问题,涉及到的知识点有回归直线一定过样本中心点,计算得出相应坐标的平均值,求得样本中心点的坐标,代入求得结果.10.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号. 【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷, 已知03号,18号被抽取,所以应该抽取181533+=号, 故选C. 【点睛】本题主要考查了抽样,系统抽样,属于中档题.11.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【分析】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则画出可行域计算正方形与三角形面积利用几何概型求即可【详解】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则可行域面积为因为药店预计购进至少10解析:18【分析】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,画出可行域,计算正方形与三角形面积,利用几何概型求即可. 【详解】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,可行域面积为224⨯=,因为药店预计购进至少10万只,所以10x y +≥,满足条件的阴影部分面积为111122⨯⨯=, 所以可以去该地区购买到所需口罩的概率是11248=,故答案为:18.【点睛】本题主要考查几何概型求概率,考查了线性规划的应用,属于中档题.14.【分析】由几何概型中的面积型圆的面积公式三角形的面积公式及直角三角形的射影定理可得:设则又不妨设即所以得:所以所以得解【详解】过作设则由在半圆内任取一点该点恰好在内部的概率为则则即又不妨设即所以得: 解析:12π【分析】由几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理可得:设2AB a =,则22a S π=半圆,||2aCD =,又2||||||CD AD BD =⨯, 不妨设||||AD BD <,即CBA CAB ∠<∠,所以得:23||BD a +=,所以||tan 23||CD CBA BD ∠==-,所以12CBA π∠=,得解. 【详解】 过C 作CD AB ⊥,设2AB a =, 则22a S π=半圆,由在半圆内任取一点,该点恰好在ABC ∆内部的概率为1π, 则212ABC S a ∆=, 则211||||22AB CD a =, 即||2aCD =, 又2||||||CD AD BD =⨯,不妨设||||AD BD <,即CBA CAB ∠<∠, 所以得:23||BD +=, 所以||tan 23||CD CBA BD ∠== 所以12CBA π∠=,故答案为:12π.【点睛】本题考查了几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理,属中档题.15.【分析】基本事件总数n 两名男生相邻包含的基本事件个数m4由此能求出两名男生相邻的概率【详解】两名男生和两名女生随机站成一排照相基本事件总数n 两名男生相邻包含的基本事件个数m4则两名男生相邻的概率为p解析:23【分析】基本事件总数n 336A ==,两名男生相邻包含的基本事件个数m 2222A A ==4,由此能求出两名男生相邻的概率. 【详解】两名男生和两名女生随机站成一排照相,基本事件总数n 336A ==,两名男生相邻包含的基本事件个数m 2222A A ==4则两名男生相邻的概率为p 23m n ==. 故答案为:23【点睛】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.16.72【分析】模拟程序的运行依次写出每次循环得到的的值可得当时不满足条件退出循环输出的值为72【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循环体;满足条件执行循环体;满足条件执行循环体;不解析:72 【分析】模拟程序的运行,依次写出每次循环得到的S i ,的值,可得当9i = 时不满足条件8i <,退出循环,输出S 的值为72. 【详解】模拟程序的运行,可得10,i S ==, 满足条件8i <,执行循环体,39;i S ==,满足条件8i <,执行循环体,524i S ==, ; 满足条件8i <,执行循环体,745i S ==, ; 满足条件8i <,执行循环体,9i =,72S =; 不满足条件8i <,退出循环,输出S 的值为72, 故答案为72 【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.17.【详解】试题分析:第一次运行条件成立;第二次运行条件成立;第三次运行条件成立;第四次运行条件不成立;输出故答案应填:1考点:算法及程序语言解析:1【详解】试题分析:第一次运行,5,4s n ==条件14s <成立;第二次运行,9,3s n ==条件14s <成立;第三次运行,12,2s n ==条件14s <成立;第四次运行,14,1s n ==条件14s <不成立;输出1n =,故答案应填:1. 考点:算法及程序语言.18.1320【分析】由题意结合所给的流程图执行程序确定其输出值即可【详解】程序运行如下:首先初始化数据:第一次循环满足执行;第二次循环满足执行;第三次循环不满足跳出循环输出故答案为【点睛】识别运行程序框解析:1320 【分析】由题意结合所给的流程图执行程序,确定其输出值即可. 【详解】 程序运行如下:首先初始化数据:12,1i S ==,第一次循环,满足10i ≥,执行12,111S S i i i =⨯==-=; 第二次循环,满足10i ≥,执行132,110S S i i i =⨯==-=; 第三次循环,不满足10i ≥,跳出循环,输出1320S =. 故答案为1320. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.19.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16- 【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++=()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果20.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(Ⅰ)25;(Ⅱ)详见解析;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【分析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)由题意首先确定X 可能的取值,然后结合超几何概型计算公式得到分布列,然后求解其数学期望即可;(Ⅲ)由题意结合方差的性质和所给的图形确定方差的最大值即可. 【详解】(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求,故42()105P A ==. (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==;1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==;34310C 1(3)=C 30P X ==.所以X 的分布列为:X0 1 2 3P1612310 130故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【点睛】本题主要考查统计图表的识别,超几何概型计算公式,离散型随机变量的分布列与期望的计算,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力. 22.(1) 0.4(2)1个 (3) 31()62P A == 【解析】试题分析:(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求. (2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数. (3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率. 试题(1)重量在[)90,95的频率为:;(2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数为:;(3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有,,,,,6种情况.其中符合 “重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 3种;设“抽出的4个苹果中,任取2个,重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==. 考点:1、古典概型及其概率计算公式;2、分层抽样方法.【方法点晴】本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题. 23.(1)cos 2x y =,cos 2x y =-.(2) 1(,22-. 【详解】分析:(1)利用三角函数的定义与性质求出两种情况下y 与x 的函数关系式,即可得结果;(2)0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭;当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q的坐标为1,2⎛- ⎝⎭. 详解:(1)当0x π<≤时,cos2x y =;当2x ππ<<时,cos cos 22x x y π⎛⎫=-=- ⎪⎝⎭;综上可知,函数解析式为()(](),0,2,,22x cos x f x x cos x πππ⎧∈⎪⎪=⎨⎪-∈⎪⎩所以框图中①②处应填充的式子分别为cos 2x y =,cos 2xy =-. (2)若输出的y 值为12,则 0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭; 当2x ππ<<时,1cos22x -=,得43x π=,此时点Q的坐标为1,2⎛- ⎝⎭. 点睛:本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可. 24.见解析 【解析】试题分析:先输入三角形的三条边长a ,b ,c ,再计算2a b cp ++=,然后计算S =,最后输出S 的值.试题根据题意,所求的程序如下: INPUT a ,b ,c p =(a +b +c )/2S =SQR(p *(p –a )*(p –b )*(p –c )) PRINT S END25.(I )0.006;(Ⅱ)18;(III )245.5 kW·h. 【分析】(1)根据频率和为1计算出a 的值;(2)根据频率分布直方图计算出“用电量大于250kW·h”的频率,再将该频率乘以对应的总户数即可得到结果;(3)根据频率分布直方图计算出频率刚好为0.8时对应的月用电量,由此可得到第一档用电标准. 【详解】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW·h”的频率为()0.00240.0012500.18+⨯=,所以用电量大于250kW·h 的户数为:1000.1818⨯=, 故用电量大于250kW·h 有18户; (3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<, 前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组,所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW·h. 故第一档用电标准为245.5 kW·h. 【点睛】本题考查频率分布直方图的综合应用,主要考查利用频率分布直方图进行相关计算,对学生读取图表信息和计算能力有一定要求,难度一般. 26.(1)9.49.1y x =+;(2)79.6万元;(3)9.67万元. 【分析】(1)根据表中数据分别求得ˆ,,x y b,写出回归直线方程. (2)将x =7.5代入(1)的回归直线方程求解. (3)解不等式9.49.1100x +≥即可.【详解】(1)由表中数据得,23453.54x+++==,26394954424y+++==,∴()()()41421ˆ9.4i iiiix x y ybx x==--==-∑∑,429.4 3.59.1a yb x=-⋅=-⨯=,∴回归方程为9.49.1y x=+.(2)年资金投入量为7.5万元时,9.47.59.179.6y=⨯+=(万元);(3)由题意得:9.49.1100x+≥,解得90.99.4 x≥.∵90.99.679.4≈,∴若年市场销售额超过100万,那么年资金投入量至少要9.67万元.【点睛】本题主要考查回归方程的求法及应用,还考查了运算求解的能力,属于中档题.。

【好题】高中必修三数学上期末第一次模拟试卷(含答案)

【好题】高中必修三数学上期末第一次模拟试卷(含答案)

【好题】高中必修三数学上期末第一次模拟试卷(含答案)一、选择题1.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为()A.910B.710C.310D.1102.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A.B.C.D.3.将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A.112B.15C.115D.2154.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A.14B.13C.12D.235.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D .抽样表明,该校有50名学生为阅读霸6.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π7.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19368.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .59.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .27B .57C .29D .5910.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变11.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( ) A .38B .34C .35D .4512.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.如果执行如图的程序框图,那么输出的S __________.14.如下图,利用随机模拟的方法可以估计图中由曲线y=22x 与两直线x=2及y=0所围成的阴影部分的面积S :①先产生两组0~1的均匀随机数,a=RAND ( ),b=RAND ( );②做变换,令x=2a ,y=2b ;③产生N 个点(x ,y ),并统计落在阴影内的点(x ,y )的个数1N ,已知某同学用计算器做模拟试验结果,当N=1 000时,1N =332,则据此可估计S 的值为____.,上,其频率分布直方图如15.某班60名学生参加普法知识竞赛,成绩都在区间[40100]图所示,则成绩不低于60分的人数为___.16.变量X与Y相对应的5组数据和变量U与V相对应的5组数据统计如表:X1011.311.812.513U1011.311.812.513 Y12345V54321用b1表示变量Y与X之间的回归系数,b2表示变量V与U之间的回归系数,则b1与b2的大小关系是___.17.如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.18.执行如图所示的程序框图,输出的S值为__________.19.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.20.向面积为20的ABC ∆内任投一点M ,则使MBC ∆的面积小于5的概率是__________.三、解答题21.某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康A 类学生,已知体育健康A 类学生中有10名女生.(Ⅰ)根据已知条件完成下面22⨯列联表,并据此资料你是否认为达到体育健康A 类学生与性别有关?非体育健康A 类学生 体育健康A 类学生 合计男生女生合计(Ⅱ)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康A +类学生,已知体育健康A +类学生中有2名女生,若从体育健康A +类学生中任意选取2人,求至少有1名女生的概率. 附:P (20K k ≥)0.05 0.010 0.005 0k3.8416.6357.879()()()()()22n ad bc k a c b d c d a b -=++++22.随着智能手机的发展,各种“APP”(英文单词Application 的缩写,一般指手机软件)应运而生.某机构欲对A 市居民手机内安装的APP 的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP 的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)从被抽取安装APP 的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP 的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A 市使用智能手机的居民手机内安装APP 的平均个数在第几组(只需写出结论).23.甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局. (1)若在一局中甲先摸,求甲在该局获胜的概率;(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X 的概率分布及数学期望.24.某研究机构对春节燃放烟花爆竹的天数x 与雾霾天数y 进行统计分析,给出下表数据:(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(2)试判断y 与x 之间是正相关还是负相关,并预测燃放烟花爆竹的天数为9天时的雾霾天数约为几天?(参考公式:()()()1122211nniii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,a y bx =-$$.)25.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:为了研究计算的方便,工作人员将上表的数据进行了处理,2010,5t x z y =-=-得到下表2: (Ⅰ)求z 关于t 的线性回归方程;(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程ˆˆˆybx a =+,其中1221ˆˆˆ,ni ii nii x y nx yb ay bx xnx ==-⋅==--∑∑)26.一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题: (Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率; (Ⅱ)求至少有一次取到二等品的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.2.C解析:C 【解析】 【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率. 【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体, ∴基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P =故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.3.C解析:C【解析】【分析】将A,B,C三个字捆在一起,利用捆绑法得到答案.【详解】由捆绑法可得所求概率为242466A A1A15 P==.故答案为C【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.4.C解析:C【解析】【分析】利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.5.A解析:A【解析】【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A. 【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.6.D解析:D 【解析】 【分析】根据面积比的几何概型,即可求解飞针能从正方形孔中穿过的概率,得到答案. 【详解】由题意,边长为2的正方形的孔的面积为1224S =⨯=, 又由半径为2的圆形纸板的面积为224S ππ=⨯=,根据面积比的几何概型,可得飞针能从正方形孔中穿过的概率为1414S P S ππ===, 故选D. 【点睛】本题主要考查了面积比的几何概型的概率的计算,以及正方形的面积和圆的面积公式的应用,着重考查了推理与运算能力,属于基础题.7.C解析:C 【解析】 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。

【典型题】高中必修三数学上期末一模试题(附答案)(1)

【典型题】高中必修三数学上期末一模试题(附答案)(1)

【典型题】高中必修三数学上期末一模试题(附答案)(1)一、选择题1.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸2.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是( ) A .没有白球 B .2个白球 C .红、黑球各1个D .至少有1个红球3.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯ 4.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn5.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A .34B .35C .13D .126.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =1 7.把化为五进制数是( ) A .B .C .D .8.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.139.运行如图所示的程序框图,若输出的S的值为480,则判断框中可以填()A.60i>B.70i>C.80i>D.90i>10.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S=(单位:升),则输入的k=()A.9B.10C.11D.1211.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为()A .3.1B .3.2C .3.3D .3.412.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次二、填空题13.现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.14.若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___15.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.16.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.17.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______.18.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A )的概率为________19.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________20.在区间[]0,2中随机地取出一个数x ,则sin6x π>的概率是__________.三、解答题21.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率; (2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?22.某学校艺术专业300名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的300名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.23.某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.(Ⅰ)求a 的值及样本中男生身高在[]185,195(单位:cm )的人数;(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;(Ⅲ)在样本中,从身高在[)145,155和[]185,195(单位:cm )内的男生中任选两人,求这两人的身高都不低于185cm 的概率.24.为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。

【人教版】高中数学必修三期末第一次模拟试题附答案

【人教版】高中数学必修三期末第一次模拟试题附答案

一、选择题1.中国是发现、研究和运用勾股定理最古老的国家之一,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,他创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,已知四个直角三角形的两条直角边的长度之比为12,若向大正方形中随机投入一点,则该点落入小正方形的概率为()A.125B.19C.15D.132.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是()A.518B.718C.716D.5163.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x,y,则满足()()22lg2lg3lgx y x y+=+的概率为()A.18B.14C.13D.124.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A .123p p p >>B .123p p p =+C .213p p p >>D .123p p p =>5.执行如图的程序框图,若输出的6n =,则输入整数p 的最大值是( )A .15B .16C .31D .326.执行如图所示的程序框图,输出s 的值为( )A .1B 20181C 20191D 202017.若执行如图所示的程序框图,则输出S 的值为( )A .9-B .16-C .25-D .36-8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .7210.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .081511.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16012.为了考察两个变量x 和y 之间的线性相关性,甲.乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( ) A .直线l 1和l 2有交点(s ,t)B .直线l 1和l 2相交,但是交点未必是点(s ,t)C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.15.从一堆产品(正品与次品都多于2件)中任取2件,观察正品件数和次品件数,则下列说法:①“恰好有1件次品”和“恰好2件都是次品”是互斥事件②“至少有1件正品”和“全是次品”是对立事件③“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件④“至少有1件次品”和“全是正品”是互斥事件也是对立事件其中正确的有______(填序号).16.某程序框图如图所示,则该程序运行后输出的S值是_____________.17.执行右边的程序框图,若,则输出的________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.20.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bcKa b c d a c b d-=++++.优秀非优秀合计甲班10乙班30合计11022.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:方案一:一次性...抽取两球,若颜色相同,则获得奖品;方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品.(1)写出按方案一抽奖的试验的所有基本事件;(2)哪种方案获得奖品的可能性更大?23.设计算法流程图,要求输入自变量x的值,输出函数()5,0 20,0,3,02x xf x xx xππ⎧->⎪⎪==⎨⎪⎪+<⎩的值,并用复合if语句描述算法.24.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图. 25.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m=-,投资新型项目B的投资额x(单位:十万元)与纯利润y(单位:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a=+的斜率和截距的最小二乘估计分别为1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.26.某大学为了了解数学专业研究生招生的情况,对近五年的报考人数进行了统计,得到如下统计数据:年份20152016201720182019x12345报考人数y3060100140170(1)经分析,y 与x 存在显著的线性相关性,求y 关于x 的线性回归方程ˆˆˆybx a =+并预测2020年(按6x =计算)的报考人数;(2)每年报考该专业研究生的考试成绩大致符合正态分布()2,Nμσ,根据往年统计数据385μ=,2225σ=,录取方案:总分在400分以上的直接录取,总分在[]385,400之间的进入面试环节,录取其中的80%,低于385分的不予录取,请预测2020年该专业录取的大约人数(最后结果四舍五入,保留整数).参考公式和数据:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-,()()51360iii x x y y =--=∑.若随机变量()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由已知的线段的长度比,得出两正方形的面积,运用概率公式可得选项. 【详解】设直角三角形的两直角边分别为1和2所以小正方形的边长为211-=,面积为1,大正方形的面积为25=. 所以飞镖落在小正方形内的概率为15. 故选:C. 【点睛】本题考查几何概型,关键在于由长度的关系得出大正方形和小正方形的面积,属于中档题.2.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =. 故选:D . 【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.3.B解析:B 【分析】 先化简()()22lg 2lg 3lg x yx y +=+,得到x y =或2x y =.利用列举法和古典概型概率计算公式可计算出所求的概率. 【详解】 由22320xxy y ,有()()20x y x y --=,得x y =或2x y =,则满足条件的(),x y 为()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,()2,1,()4,2,()6,3,所求概率为91364p == .故选B. 【点睛】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.4.D解析:D 【解析】 【分析】设OA =2,则AB = 【详解】设OA =2,则AB =12222AOBS=⨯⨯=,以AB 中点为圆心的半圆的面积为212ππ⨯=, 以O 为圆心的大圆面积的四分之一为2124ππ⨯=, 以AB 为弦的大圆的劣弧所对弓形的面积为π﹣2, 黑色月牙部分的面积为π﹣(π﹣2)=2,图Ⅲ部分的面积为π﹣2. 设整个图形的面积为S ,则p 12S =,p 22S =,p 32S π-=. ∴p 1=p 2>p 3, 故选D .【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.5.C解析:C 【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可. 【详解】根据程序框图可知,1,0n S == 则11021,2S n -=+==21123,3S n -=+== 31327,4S n -=+== 417215,5S n -=+== 5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31 故选:C 【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.6.D解析:D 【分析】根据程序框图,模拟程序运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】第一次执行循环体后,2,01)n S ==+,第二次执行循环体后,3,0n S ==+,⋯第n 次执行循环体后, 1,0(1n n S n =+=++++,因为2019n <输出S ,所以01)S =+++++⋯+01)=+++++⋯+1=,故选:D 【点睛】本题主要考查了程序框图,解题时模拟程序运行过程即可,属于中档题.7.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•;第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案. 【详解】由题意可知,执行如图所示的程序框图,可知:第一循环:134,2146n S =+==⨯+=; 第二循环:437,26719n S =+==⨯+=; 第三循环:7310,2191048n S =+==⨯+=, 要使的输出的结果为48,根据选项可知8k ,故选C.【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.9.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.10.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.11.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题12.A解析:A【分析】由题意知,两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,所以两组数据的样本中心点是(s,t),回归直线经过样本的中心点,得到直线l1和l2都过(s,t).【详解】∵两组数据变量x的观测值的平均值都是s,对变量y的观测值的平均值都是t,∴两组数据的样本中心点都是(s,t)∵数据的样本中心点一定在线性回归直线上,∴回归直线l1和l2都过点(s,t)∴两条直线有公共点(s,t)故选A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113p ==⨯. 【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【解析】【分析】列举出所有的结果选出的所有的结果根据古典概型概率公式可求出函数是增函数的概率【详解】所有取值有:共12个值当时为增函数有共有6个所以函数是增函数的概率为故答案为【点睛】本题主要考查古解析:12【解析】 【分析】 列举出ab所有的结果,选出1a b >的所有的结果,根据古典概型概率公式可求出函数()log a bf x x =是增函数的概率.【详解】a b 所有取值有:135713571157,,,,,,,,,,,222244446266共12个值, 当1a b >时,()f x 为增函数,有357577,,,,,222446共有6个, 所以函数()log a bf x x =是增函数的概率为61122=,故答案为12. 【点睛】本题主要考查古典概型概率公式的应用以及对数函数的性质,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. 15.【分析】运用不能同时发生的两个事件为互斥事件如果两个事件为互斥事件且其中必有一个发生即为对立事件对选项一一判断即可得到正确结论【详解】恰好有1件次品和恰好2件都是次品不能同时发生是互斥事件故正确;至 解析:①②④【分析】运用不能同时发生的两个事件为互斥事件,如果两个事件为互斥事件,且其中必有一个发生,即为对立事件,对选项一一判断,即可得到正确结论. 【详解】①“恰好有1件次品”和“恰好2件都是次品”不能同时发生,是互斥事件,故①正确;②“至少有1件正品”和“全是次品”,不能同时发生,是互斥事件也是对立事件,故②正确;③“至少有1件正品”和“至少有1件次品”存在恰有一件正品和一件次品,不是互斥事件但不是对立事件,故③不正确;④“至少有1件次品”和“全是正品”不能同时发生,是互斥事件也是对立事件,④正确.故答案为①②④. 【点睛】本题考查命题的真假判断,主要是互斥事件和对立事件的判断,考查判断和分析能力,属于基础题.16.【分析】按照程序框图运行程序可确定输出结果利用裂项相消法可求得结果【详解】由程序框图运行程序输入则循环;循环;……输出结果故答案为:【点睛】本题考查根据程序框图计算输出结果涉及到裂项相消法求和的问题 解析:20152016【分析】按照程序框图运行程序可确定输出结果111122320152016S =++⋅⋅⋅+⨯⨯⨯,利用裂项相消法可求得结果. 【详解】由程序框图运行程序,输入1k =,0S = 则112S =⨯,2k =,循环;111223S =+⨯⨯,3k =,循环;……111122320152016S =++⋅⋅⋅+⨯⨯⨯,2016k =,输出结果 11111111112232015201622320152016S ∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-⨯⨯⨯12015120162016=-=故答案为:20152016【点睛】本题考查根据程序框图计算输出结果,涉及到裂项相消法求和的问题,属于基础综合题.17.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图 解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯ 1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4 【分析】执行程序,当4K =时循环结束,即可得出 【详解】因为第一次进入循环后1,1S K ==; 第二次进入循环后3,2S K ==; 第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4 【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.20.【解析】依次选取两个数字为237593211504……所以选出来的第个个体的编号为15 解析:15【解析】依次选取两个数字为23,75,93,21,15,04,…… 所以选出来的第3个个体的编号为15.三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K ⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个. 所以P (A )=736,即抽到9号或10号的概率为736. 【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题. 22.(1)见解析(2)方案二获得奖品的可能性更大. 【分析】(1)根据题意,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B ,利用列举法一一列举出来即可;(2)方案一二中,根据古典概型,分别求出两种方案的概率,即可得出结论. 【详解】(1)方案一中,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B , 则方案一所有可能的基本事为:{}{}{}{}{}{}{}{}{}{}12131112232122313212,,,,,,,,,A A A A A B A B A A A B A B A B A B B B共10个基本事件.(2)方案二中,设两次抽查取的球所标的数字分别为x 、y ,则所有可能的基本事件对应的二元有序数组(),x y 表示如下表,共25个基本事件:且每个基本事件发生的可能性均相同,故它们都是古典概型. 方案一,设事件A :两球颜色相同,则A 包含{}12A A 、{}13A A 、{}23A A 、{}12B B 共4个基本事件, 故()42105P A ==. 方案二中,设事件B :两球所标数字之和大于5,则B 包含()1,5、()2,4、()2,5、()3,3、()3,4、()3,5、()4,2、()4,3、()4,4、()4,5()5,1、()5,2、()5,3、()5,4、()5,5共15个基本事件,故()153255P B ==. 因为()()P A P B <,所以选择方案二获得奖品的可能性更大. 【点睛】本题考查古典概型以及概率在生活中的应用等知识点,同时考查推理论证能力以及考查逻辑推理与数据分析素养. 23.见解析 【详解】 试题分析:结合题意,将分段函数利用流程图设计为条件结构即可,然后结合流程图即可写出具体的算法语句,注意if 与else 的灵活准确应用. 试题输入x;if x < 0,then f(x)= π/2∙x+3;else if x = 0,then f(x)=0;else f(x)= π/2∙x-5.输出f(x).24.见解析【解析】试题分析:分析程序中各变量、各语句的作用,再根据循环语句找到能被15整除的正整n>时结束循环体,由此设计算法及画出框图.数,在1000试题算法如下:S1n=1;S2若n≤66,则执行S3,否则执行S6;S3a=15n;S4输出a;S5n=n+1,重复执行S2;S6结束.程序框图如图所示.25.(1) 1.60.2y x =+;(2)B 项目的收益更好. 【分析】(1)先利用平均数公式求出样本中心点的坐标, 再利用所给公式求出b 的值,最后将样本中心点的坐标代入回归方程求得a 的值即可;(2)分别利用所给关系式以及所求回归方程,求出A ,B 两个项目投资60万元,该企业所得纯利润的估计值,便可预测哪个项目的收益更好. 【详解】(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8, 所以1234535x ++++==,2357855y ++++==,22222212233547585351.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,则5 1.630.2a =-⨯=,故y 关于x 的线性回归方程为 1.60.2y x =+.(2)因为投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,所以若A 项目投资60万元,则该企业所得纯利润的估计值为1.760.59.7⨯-=万元; 因为y 关于x 的线性回归方程为 1.60.2y x =+,所以若B 项目投资60万元,则该企业所得纯利润的估计值为1.660.29.8⨯+=万元. 因为9.89.7>,所以可预测B 项目的收益更好. 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nniiii i x y x x y==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.26.(1)ˆ368yx =-;208人;(2)90. 【分析】(1)由已知表格中的数据求得ˆb与ˆa 的值,则线性回归方程可求,取6x =求得y 值即可;(2)研究生的考试成绩大致符合正态分布(385N ,215),求出(400)P X >,乘以208可得直接录取人数,再求出[385,400]之间的录取人数,则答案可求. 【详解】 解:(1)()11234535x =++++=()130601001401701005y =++++= 可求:()25110i i x x =-=∑, 由()()()121360ˆ3610ni ii n i i x x y y b x x ==--===-∑∑, ˆˆ1003638ay bx =-=-⨯=- ∴y 关于x 的线性回归方程是ˆ368yx =-. 当2020年即6x =时,ˆ3668208y=⨯-=人 即2020年的报考人数大约为208人(2)研究生的考试成绩大致符合正态分布()2385,15N , 则400=385+15,()10.68264000.15872P x ->==, 直接录取人数为2800.158733.0133⨯=≈人[]385,400之间的录取人数为0.68262800.856.8572⨯⨯=≈ 所以2020年该专业录取的大约为33+57=90人【点睛】 本题考查线性回归方程的求法,考查正态分布曲线的特点及所表示的意义,考查运算求解能力,属于中档题.。

【好题】高中必修三数学上期末一模试题(含答案)

【好题】高中必修三数学上期末一模试题(含答案)

【好题】高中必修三数学上期末一模试题(含答案)一、选择题1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气合格天数的比重下降了③8月是空气质量最好的一个月④6月的空气质量最差A.①②③B.①②④C.①③④D.②③④4.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A.13B.47C.23D.565.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.136.按照程序框图(如图所示)执行,第3个输出的数是()A.6B.5C.4D.37.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.27B.57C.29D.598.赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF 2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A.B.C.D.9.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A.B.C.D.10.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为()A.3.1B.3.2C.3.3D.3.411.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A.92,94B.92,86C.99,86D.95,9112.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是()A.25B.35C.23D.15二、填空题13.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X,则()E X=______________.14.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.15.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______. 16.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.17.根据如图所示算法流程图,则输出S 的值是__.18.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.19.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.20.在四位八进制数中,能表示的最小十进制数是__________.三、解答题21.A B 两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(1)试估计B 班的学生人数;(2)从A 班和B 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,B 班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量X .规定:当甲的测试数据比乙的测试数据低时,记1X =-;当甲的测试数据与乙的测试数据相等时,记X 0=;当甲的测试数据比乙的测试数据高时,记1X =.求随机变量X 的分布列及数学期望.(3)再从A 、B 两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明)22.甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局. (1)若在一局中甲先摸,求甲在该局获胜的概率;(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X 的概率分布及数学期望.23.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值.24.如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求分数在[50,60)的频率及全班人数;(2)求频率分布直方图中的,x y ;(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.25.为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高()x cm 和体重()y kg 数据如下表所示:编号 1 2 3 4 5 6 7 8 身高/x cm164160158172162164174166体重/y kg60 46 43 48 48 50 61 52该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.(1)调查员甲计算得出该组数据的线性回归方程为ˆˆ0.7yx a =+,请你据此预报一名身高为176cm 的女高中生的体重;(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为176cm 的女高中生的体重; (3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.附:对于一组数据()()()1122,,,,,,n n x y x y x y L ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为:()()()121ˆˆ,niii ni i x x y y b ay bx x x==--==--∑∑. 26.随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从20092018-年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.(互联网普及率=(网民人数/人口总数)×100%;手机网民普及率=(手机网民人数/人口总数)×100%) (Ⅰ)从20092018-这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记X 为手机网民普及率超过50%的年数,求X 的分布列及数学期望;(Ⅲ)若记20092018-年中国网民人数的方差为21s ,手机网民人数的方差为22s ,试判断21s 与22s 的大小关系.(只需写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.C解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.3.A解析:A 【解析】在A 中,1月至8月空气合格天数超过20谈的月份有:1月,2月,6月,7月,8月,共5个,故A正确;在B中,第一季度合格天数的比重为2226190.8462 312931++≈++;第二季度合格天气的比重为1913250.6263303130++≈++,所以第二季度与第一季度相比,空气达标天数的比重下降了,所以B是正确的;在C中,8月空气质量合格天气达到30天,是空气质量最好的一个月,所以是正确的;在D中,5月空气质量合格天气只有13天,5月份的空气质量最差,所以是错误的,综上,故选A.4.B解析:B【解析】【分析】由古典概型及其概率计算公式得:有人表现突出,则B县选取的人表现不突出的概率是6041057=,得解.【详解】由已知有分别从A,B两个县的15人中各选1人,已知有人表现突出,则共有1111 151********C C C C⋅-⋅=种不同的选法,又已知有人表现突出,且B县选取的人表现不突出,则共有1151260C C⋅=种不同的选法,已知有人表现突出,则B县选取的人表现不突出的概率是604 1057=.故选:B.【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系. 5.D解析:D【解析】【分析】根据题意画出图形,结合图形即可得出结论.【详解】如图所示,线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为2163 P==.故选D.【点睛】本题考查了几何概型的概率计算问题,是基础题.6.B解析:B 【解析】第一次输出1,A =第二次输出123A =+=,第三次输出325A =+= ,选B.7.D解析:D 【解析】 【分析】由题意列出所有可能的结果,然后结合古典概型计算公式可得概率值. 【详解】能组成两位数有:10,12,13,20,21,23,30,31,32,总共有9种情况. 其中偶数有5种情况,故组成的两位数是偶数的概率为59p =. 故选:D . 【点睛】本题主要考查古典概型计算公式,属于中等题.8.B解析:B 【解析】 【分析】 由题意可得,设,求得,由面积比的几何概型,可知在大等边三角形中随机取一点,则此点取自小等边三角形的概率,即可求解.【详解】 由题意可得,设,可得,在中,由余弦定理得,所以,,由面积比的几何概型,可知在大等边三角形中随机取一点, 则此点取自小等边三角形的概率是,故选B.【点睛】本题主要考查了面积比的几何概型,以及余弦定理的应用,其中解答中认真审题、把在大等边三角形中随机取一点,取自小等边三角形的概率转化为面积比的几何概型是解答的关键,着重考查了推理与运算能力,属于基础题.9.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。

【好题】高中必修三数学上期末一模试题带答案(1)

【好题】高中必修三数学上期末一模试题带答案(1)

【好题】高中必修三数学上期末一模试题带答案(1)一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .233.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795 B .0780C .0810D .08154.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤5.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .86.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A .112B .12C .13D .167.己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元8.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .639.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 10.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.511.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <12.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.5二、填空题13.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.14.执行如图所示的程序框图,若输入的1,7s k ==则输出的k 的值为_______.15.一个算法的伪代码如下图所示,执行此算法,若输出的y值为1,则输入的实数x的值为________.16.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是____________.17.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________18.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.19.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.22.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表l 所示: 表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,(c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次; 参考数据:其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.23.“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:cm),经统计,树苗的高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于27cm的为优质树苗.(1)求图中a的值;(2)已知所抽取的这120株树苗来自于A,B两个试验区,部分数据如列联表:A试验区B试验区合计优质树苗20非优质树苗60合计将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;(3)用样本估计总体,若从这批树苗中随机抽取4株,其中优质树苗的株数为X,求X 的分布列和数学期望EX.附:参考公式与参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++24.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y (万元)进行了统计,得到相应数据如下表:(1)求销售收入y 关于广告投入x 的线性回归方程y bx a =+$$$. (2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式: ()()()121niii nii x x y y b x x ∧==--=-∑∑,ˆˆ•ay b x =- 25.某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y 进行统计分析,给出下表数据:(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(2)试判断y 与x 之间是正相关还是负相关,并预测燃放烟花爆竹的天数为9天时的雾霾天数约为几天?(参考公式:()()()1122211nniii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑$,a y bx =-$$.)26.随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从20092018-年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.(互联网普及率=(网民人数/人口总数)×100%;手机网民普及率=(手机网民人数/人口总数)×100%) (Ⅰ)从20092018-这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记X 为手机网民普及率超过50%的年数,求X 的分布列及数学期望;(Ⅲ)若记20092018-年中国网民人数的方差为21s ,手机网民人数的方差为22s ,试判断21s 与22s 的大小关系.(只需写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭, 结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.D解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 3.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果. 详解:因为系统抽样的方法抽签,所以间距为10002050=所以抽取的第40个数为1520(401)795+⨯-= 选A.点睛:本题考查系统抽样概念,考查基本求解能力.4.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。

【冲刺卷】高中必修三数学上期末第一次模拟试题带答案

【冲刺卷】高中必修三数学上期末第一次模拟试题带答案

【冲刺卷】高中必修三数学上期末第一次模拟试题带答案一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .652.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .83.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是( ) A .没有白球 B .2个白球 C .红、黑球各1个D .至少有1个红球4.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯5.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-26.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A .20,22.5B .22.5,25C .22.5,22.75D .22.75,22.757.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?8.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.59.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为( )A .3.1B .3.2C .3.3D .3.411.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .2312.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A.92,94B.92,86C.99,86D.95,91二、填空题13.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.14.为调查某校学生每天用于课外阅读的时间,现从该校名学生中随机抽取名学生进行问卷调查,所得数据均在区间上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在(单位:分钟)内的学生人数为____.15.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________. 16.如图是一个算法流程图,则输出的S的值为______.17.如图所示,在边长为1的正方形OABC 中任取一点M .则点M 恰好取自阴影部分的概率是 .18.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下: 零件的个数x (个)2345加工的时间y (小时)2.5344.5(1)求出y 关于x 的线性回归方程ˆˆˆybx a =+,并在坐标系中画出回归直线;(2)试预测加工个零件需要多少小时?(注:,,,)22.某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数m n141286知道的人数348732(1)求上表中的,m n的值,并补全右图所示的的频率直方图;(2)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.23.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望.24.为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P(A)=0.75.(1)求,a b的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.年网民25.随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从20092018人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.(互联网普及率=(网民人数/人口总数)×100%;手机网民普及率=(手机网民人数/人口总数)×100%) (Ⅰ)从20092018-这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记X 为手机网民普及率超过50%的年数,求X 的分布列及数学期望;(Ⅲ)若记20092018-年中国网民人数的方差为21s ,手机网民人数的方差为22s ,试判断21s 与22s 的大小关系.(只需写出结论)26.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率; (Ⅱ)这种游戏规则公平吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.2.A解析:A 【解析】从流程图看,该程序是利用辗转相除法计算,m n 的最大公约数.题设中已知72m =,输入的数为n ,程序给出了它们的最大公约数为6,比较四个数,只有72,30的最大公约数为6,故输入的数n 的值为30,选A. 3.C解析:C 【解析】分析:写出从红球3个、白球2个、黑球1个中随机摸出2个球的取法情况,然后逐一核对四个选项即可得到答案详解:从红球3个、白球2个、黑球1个中随机摸出2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共五种情况则与事件“至少有1个白球”互斥但不对立的事件是红球,黑球各一个包括1红1白,1黑1白两种情况. 故选C点睛:本题主要考查了互斥事件和对立事件,是基础的概念题,只要理解其概念,结合本题列举出所有情况即可得出结果.4.C解析:C 【解析】根据平均数的概念,其平均数为52x +,方差为2258⨯,故选C.5.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.6.C解析:C 【解析】 【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.7.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.9.C解析:C 【解析】 【分析】由题意求出AB =,所求概率即为DEFABCS P S =V V ,即可得解. 【详解】由题意易知120ADB ∠=o ,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABC S FD P S AB ⎛⎫=== ⎪⎝⎭V V .故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B【解析】 【分析】由圆的面积公式得:S π=圆,由正方形的面积公式得:4S =正,由几何概型中的面积型结合随机模拟试验可得:7951000SS =圆正,得解. 【详解】由圆的面积公式得:S π=圆, 由正方形的面积公式得:4S =正, 由几何概型中的面积型可得:7951000S S =圆正, 所以79543.21000π⨯=≈, 故选:B . 【点睛】本题考查了圆的面积公式、正方形的面积公式及几何概型中的面积型,属简单题.11.C解析:C 【解析】 【分析】设小赵到达汽车站的时刻为x ,小王到达汽车站的时刻为y ,根据条件建立二元一次不等式组,求出对应的区域面积,结合几何概型的概率公式进行计算即可. 【详解】如图,设小赵到达汽车站的时刻为x ,小王到达汽车站的时刻为y , 则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x ,y )所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车, 必须满足{(x ,y )|0505x y ≤≤⎧⎨≤≤⎩,或515515x y ≤⎧⎨≤⎩<<},即(x ,y )必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125,则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515=59,故选:C【点睛】本题主要考查几何概型的概率公式的应用,根据条件求出对应区域的面积是解决本题的关键.12.B解析:B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.14.900【解析】【分析】利用频率分布直方图中频率和为1求a值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a=003故阅读的时间在7080)(单位:分钟)内解析:【解析】【分析】利用频率分布直方图中频率和为1求a值,根据[70,80)的频率求出在此区间的人数即可.【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3,故a=0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900,故答案为:900.【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法. 15.【解析】【分析】由题意知本题是一个几何概型试验包含的所有事件是Ω={(xy)|0≤x≤205≤y≤20}作出事件对应的集合表示的面积写出满足条件的事件是A={(xy)|0≤x≤205≤y≤20y﹣x解析:38【解析】【分析】由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤20,5≤y≤20},作出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5 },算出事件对应的集合表示的面积,根据几何概型概率公式得答案.【详解】由题意知本题是一个几何概型,设甲和乙到达的分别为7时x分、7时y分,则10≤x≤20,5≤y≤20,甲至少需等待乙5分钟,即y﹣x≥5,则试验包含的所有区域是Ω={(x,y)|0≤x≤20,5≤y≤20},甲至少需等待乙5分钟所表示的区域为A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5},如图:正方形的面积为20×15=300,阴影部分的面积为12⨯15×152252=,∴甲至少需等待乙5分钟的概率是225323008=, 故答案为38【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循 解析:7【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得1S =,1i =满足条件4i <,执行循环体,2S =,2i = 满足条件4i <,执行循环体,4S =,3i = 满足条件4i <,执行循环体,7S =,4i =此时,不满足条件4i <,退出循环,输出S 的值为7. 故答案为7. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.【解析】试题分析:根据题意正方形的面积为而阴影部分由函数与围成其面积为则正方形中任取一点点取自阴影部分的概率为则正方形中任取一点点取自阴影部分的概率为考点:定积分在求面积中的应用几何概型点评:本题考 解析:【解析】试题分析:根据题意,正方形的面积为而阴影部分由函数与围成,其面积为,则正方形中任取一点,点取自阴影部分的概率为.则正方形中任取一点,点取自阴影部分的概率为 考点:定积分在求面积中的应用 几何概型点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.18.①③【解析】【分析】由回归直线的方程的意义可判断①;由基本事件的定义可判断②;由互斥事件与对立事件的定义可判断③;由古典概型的定义可判断④【详解】①由回归直线的方程的意义可知意味着每增加一个单位平均解析:①③. 【解析】 【分析】由回归直线的方程的意义可判断①;由基本事件的定义可判断②;由互斥事件与对立事件的定义可判断③;由古典概型的定义可判断④. 【详解】①,由回归直线的方程的意义可知ˆ856yx =+意味着x 每增加一个单位,y 平均增加8个单位,正确;②,由于基本事件是每一个出现的基本实验结果,是不能再分的,而投掷一颗骰子实验,有掷出的点数为奇数还有1,3,5三个基本事件,故掷出的点数为奇数不是基本事件,同理掷出的点数为偶数也不是基本事件,故②是错误的;③,互斥事件不一定是对立事件,但对立事件一定是互斥事件,正确;④,古典概型要求每个基本事件出现的可能性相等,故在适宜的条件下种下一颗种子,观察它是否发芽,不是古典概型.故正确答案为:①③ 【点睛】本题主要考查回归直线的方程的意义、基本事件的定义、互斥事件与对立事件的定义、古典概型的定义,意在考查对基本定义掌握的熟练程度,属于中档题..19.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容 解析:21【解析】 【分析】根据系统抽样的特征,求出分段间隔即可. 【详解】根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为210021100=, 故答案是21. 【点睛】该题所考查的是有关系统抽样的组距问题,应用总体除以样本容量等于组距,得到结果,属于简单题目.20.【解析】分析:根据题意求出区间内随机取两个数分别记为以及对应平面区域的面积再求出满足调价使得函数有零点的所对应的平面区域的面积利用面积比的几何概型即可求解详解:由题意使得函数有零点则即在平面直角坐标 解析:14π-【解析】分析:根据题意,求出区间[,]-ππ内随机取两个数分别记为,a b ,以及对应平面区域的面积,再求出满足调价使得函数222()2f x x ax b π=+-+有零点的所对应的平面区域的面积,利用面积比的几何概型,即可求解.详解:由题意,使得函数222()2f x x ax b π=+-+有零点, 则222(2)4()0a b π∆=--+≥,即222a b π+≥,在平面直角坐标系中,a b 的取值范围,所以对应的区域,如图所示, 当,[,]a b ππ∈-对应的面积为边长为2π的正方形,其面积为24π,所以其概率为2324144ππππ-=-.点睛:本题主要考查了几何概型及其概率的计算,对于几何概型概率可以为线段的长度比,区域的面积、几何体的体积比等,其中这个“几何度量”值域大小有关,与形状和位置无关,解决的步骤为:求出满足条件的基本事件对应的“几何度量”,在求出总的事件所对应的“几何度量”,最后根据公式求解,着重考查了分析问题和解答问题的能力.三、解答题21.(1)0.7 1.5ˆ0yx =+;(2)8.05小时. 【解析】试题分析:(1)求出数据的横轴与纵轴的平均数,得到样本的中心点,求出对应的横标和纵标的和,求出横标的平方和,作出系数和a 的值,写出回归直线方程;(2)将10x =代入回归直线方程,可得出结论.试题解析:(1)由表中数据得: 3.5, 3.5x y ==,∴ˆ0.7b=,ˆ 1.05a =,∴0.7 1.5ˆ0y x =+. 回归直线如图所示:(2)将10x =代入回归直线方程, 得(小时).考点:回归分析的初步应用. 22.(1)m =4,n =6,图见解析 (2)512【解析】 【分析】(1)首先分别求出[10,20)和[20,30)的频率,再计算,m n 即可,根据,m n 的值即可补全频率分布直方图.(2)首先列出年龄在[10,20),[20,30)的居民中各随机选取1人的所有基本事件,再找到其中仅有一人不知道垃圾分类方法的基本事件个数,由古典概型公式即可求出概率. 【详解】(1)年龄在[10,20)的频数500.084m =⨯=, 年龄在[20,30)的频数为500.126n =⨯=. 频率直方图如图所示:(2)记年龄在区间[10,20)的居民为1234,,,a A A A (其中居民1a 不知道垃圾分类方法);年龄在区间[20,30)的居民为123456,,,,,b b B B B B (其中居民12,b b 不知道垃圾分类方法). 从年龄在[10,20),[20,30)的居民中各随机选取1人的所有基本事件有:()11,a b ,()12,a b ,()13,a B ,()14,a B ,()15,a B ,()16,a B ,()21,A b ,()22,A b ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()31,A b ,()32,A b ,()33,A B ,()34,A B ,()35,A B ,()36,A B ,()41,A b ,()42,A b ,()43,A B ,()44,A B ,()45,A B ,()46,A B ,共24个基本事件,其中仅有一人不知道垃圾分类方法的基本事件共有10个, 所以,选中的两人中仅有一人不知道垃圾分类方法的概率1052412P ==. 【点睛】本题主要考查频率分布直方图的性质,同时考查了列举法求基本事件个数和古典概型,属于中档题. 23.(1)37;(2)x 的分布列为 x1234p1328928528128()14E x =【解析】 【分析】 【详解】(I )1126283()7C C P A C == (II )1122622813(1)28C C C P X C +===;2112642222869(2)28C C C C P X C C +==⋅=; 22112642222228645(3)28C C C C C P X C C C +==⋅⋅=;;X 的分布列为 X1234()12342828282814E X =⨯+⨯+⨯+⨯= 点评:对于古典概型的问题,主要是理解试验的基本事件空间,以及事件发生的基本事件空间利用比值来求解概率,结合排列组合的知识得到.而分布列的求解关键是对于各个概率值的求解,属于中档题. 24.(1)a =0.035,b =0.015(2)25【解析】 【分析】(1)由第三、四、五组三个小矩形面积为0.75可求得a ,再由所有小矩形面积为1可求得b ;(2)6人中第二组中应抽取2人,分别记为12a a ,,第四组中应抽取4人,分别记为1234,,,b b b b ,用列举法列举出所有可能,再确定满足条件的可能情况,从而可计算出概率. 【详解】(1)由题意知P (A )=10×(a +0.030+0.010)=0.75,解得a =0.035,又10×(b +0.010)=0.25,所以b =0.015.(2)在第二组、第四组中用分层抽样的方法抽取6人,则第二组中应抽取2人,分别记为12a a ,,第四组中应抽取4人,分别记为1234,,,b b b b ,从这6人中抽取2人的所有可能情况有()11,a b , ()12,a b ,()13,a b ,()14,a b ,()21,a b ,()22,a b ,()23,a b ,()24,a b ,()12,a a ,()12,b b ,()13,b b ,()14,b b ,()23,b b ,()24,b b ,()34,b b ,共15种.其中从这6人中抽取的2个人恰好都在第四组中的情况有12(b ,b ),13(b ,b ),14(b ,b ),()23,b b ,()24,b b ,()34,b b ,共6种,所以所求概率为62155=. 【点睛】本题考查频率分布直方图,考查分层抽样,考查古典概型概率,属于基础题,其中概率问题是用列举法求解. 25.(Ⅰ)35;(Ⅱ)分布列见解析,1EX =;(Ⅲ)2212s s < 【解析】 【分析】(Ⅰ)由表格得出手机网民人数占网民总人数比值超过80%的年份,由概率公式计算即可;(Ⅱ)由表格得出X 的可能取值,求出对应的概率,列出分布列,计算数学期望即可;(Ⅲ)观察两组数据,可以发现网民人数集中在5~8之间的人数多于手机网民人数,则网民人数比较集中,而手机网民人数较为分散,由此可得出2212s s <.【详解】解:(Ⅰ)设事件A :“从20092018~这十年中随机选取一年,该年手机网民人数占网民总人数比值超过80%”.由题意可知:该年手机网民人数占网民总人数比值超过80%的年份为2013~2018,共6个 则63()105P A ==. (Ⅱ)网民人数超过6亿的年份有2013~2018共六年,其中手机网民普及率超过50% 的年份有2016,2017,2018这3年.所以X 的取值为0,1,2.所以232631(0)155C P X C ====, 1133263(1)5C C P X C ===, 23261(2)5C P X C ===. 随机变量X 的分布列为X0 12 P1535150121555EX =⨯+⨯+⨯=.(Ⅲ)2212s s <.【点睛】本题主要考查了计算古典概型的概率,离散型随机变量的分布列,数学期望等,属于中档题. 26.(1)15(2)这种游戏规则不公平 【解析】试题分析:(1)相当于两人掷含有个面的色子,共种情况,然后输入和为偶数,且和为的情况种数,然后用古典概型求概率;(2)偶数,就是甲胜,其他情况乙胜,分别算出甲胜的概率和乙胜的概率,比较是否相等,相等就公平,不相等就不公平. 试题解析:解:(1)设“甲胜且编号的和为6”为事件.甲编号为,乙编号为,表示一个基本事件,则两人摸球结果包括(1,2),(1,3),…,(1,5),(2,1),(2,2),…,(5,4),(5,5)共25个基本事件;包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个. ∴.答:甲胜且编号的和为6的事件发生的概率为.(2)这种游戏不公平.设“甲胜”为事件,“乙胜”为事件.甲胜即两个编号的和为偶数所包含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲胜的概率为,乙胜的概率为,∵,∴这种游戏规则不公平.考点:古典概型.。

【常考题】高中必修三数学上期末第一次模拟试卷(带答案)

【常考题】高中必修三数学上期末第一次模拟试卷(带答案)

【常考题】高中必修三数学上期末第一次模拟试卷(带答案)一、选择题22C.现有甲、1.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于0乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):①甲地:5个数据是中位数为24,众数为22;②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8则肯定进入夏季的地区有()A.①②③B.①③C.②③D.①x+猜想”是指:任取一个自然数,如果它是偶数,2.日本数学家角谷静夫发现的“31我们就把它除以2,如果它是奇数我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程N=,则输出i值为()序框图输入的6A.6B.7C.8D.93.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是()A.没有白球B.2个白球C.红、黑球各1个D.至少有1个红球4.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是().①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④5.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =16.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π7.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤8.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元9.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) A .5个B .10个C .20个D .45个10.运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填( )A .60i >B .70i >C .80i >D .90i >11.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .812.执行如图的程序框图,若输出的4n =,则输入的整数p 的最小值是( )A .4B .5C .6D .15二、填空题13.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______. 14.现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.15.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.16.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.17.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.18.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______.19.把十进制数23化为二进制数是______. 20.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.三、解答题21.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表l 所示: 表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,(c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次; 参考数据:其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.22.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均数与中位数.23.某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数m n141286知道的人数348732(1)求上表中的,m n的值,并补全右图所示的的频率直方图;(2)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.24.某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为n )进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在[)50,60内的植物有8株,在[]90,100内的植物有2株.(Ⅰ)求样本容量n 和频率分布直方图中的x ,y 的值;(Ⅱ)在选取的样本中,从高度在[]80,100内的植物中随机抽取3株,设随机变量X 表示所抽取的3株高度在[)80,90内的株数,求随机变量X 的分布列及数学期望;(Ⅲ)据市场调研,高度在[]80,100内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在[]80,100内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜? 25.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)26.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o 则总体方差就大于10.8,故满足题意,选C 考点:统计初步 2.D解析:D 【解析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算n 的值并输出相应的i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结论. 详解:模拟程序的运行,可得6,1n i ==,不满足条件n 是奇数,3,2n i ==,不满足条件1n =,执行循环体,不满足n 是奇数,10,3n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,可得5,4n i ==, 不满足条件1n =,执行循环体,满足条件n 是奇数,16,5n i ==, 不满足条件1n =,执行循环体,不满足n 是奇数,8,6n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,4,7n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,2,8n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,1,9n i ==, 满足条件1n =,退出循环,输出i 的值为9,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.C解析:C 【解析】分析:写出从红球3个、白球2个、黑球1个中随机摸出2个球的取法情况,然后逐一核对四个选项即可得到答案详解:从红球3个、白球2个、黑球1个中随机摸出2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共五种情况则与事件“至少有1个白球”互斥但不对立的事件是红球,黑球各一个包括1红1白,1黑1白两种情况. 故选C点睛:本题主要考查了互斥事件和对立事件,是基础的概念题,只要理解其概念,结合本题列举出所有情况即可得出结果.4.A解析:A 【解析】在A 中,1月至8月空气合格天数超过20谈的月份有:1月,2月,6月,7月,8月, 共5个,故A 正确;在B 中,第一季度合格天数的比重为2226190.8462312931++≈++;第二季度合格天气的比重为1913250.6263303130++≈++,所以第二季度与第一季度相比,空气达标天数的比重下降了,所以B 是正确的;在C 中,8月空气质量合格天气达到30天,是空气质量最好的一个月,所以是正确的; 在D 中,5月空气质量合格天气只有13天,5月份的空气质量最差,所以是错误的, 综上,故选A .5.A解析:A【解析】赋值语句的格式为“变量=表达式”,“=”的左侧只能是单个变量,B 、C 、D 都不正确.选A.6.D解析:D 【解析】 【分析】根据面积比的几何概型,即可求解飞针能从正方形孔中穿过的概率,得到答案. 【详解】由题意,边长为2的正方形的孔的面积为1224S =⨯=, 又由半径为2的圆形纸板的面积为224S ππ=⨯=,根据面积比的几何概型,可得飞针能从正方形孔中穿过的概率为1414S P S ππ===, 故选D. 【点睛】本题主要考查了面积比的几何概型的概率的计算,以及正方形的面积和圆的面积公式的应用,着重考查了推理与运算能力,属于基础题.7.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.8.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得$ a,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =$,∴$ 80.78100.2a y bx --⨯===$. ∴$ 0.780.2y x =+.取16x =,得$ 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.9.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .10.B解析:B 【解析】执行一次,20010,20S i =+=,执行第2次,2001020,30S i =++=,执行第3次,200102030,40S i =+++=,执行第4次,26040,50S i =+=,执行第5次,30050,60S i =+=,执行第6次,35060,70S i =+=,执行第7次,41070,80S i =+=跳出循环,因此判断框应填70i >,故选B.11.C解析:C 【解析】 【分析】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,从而计算得解. 【详解】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,由于20x =-<,可得2(2)4y =-=,则输出的y 等于4,故选C. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有读取程序框图的输出的结果,在解题的过程中,需要明确框图的功能,从而求得结果.12.A解析:A 【解析】 【分析】列举出算法的每一步循环,根据算法输出结果计算出实数p 的取值范围,于此可得出整数p 的最小值. 【详解】0S p =<满足条件,执行第一次循环,0021S =+=,112n =+=; 1S p =<满足条件,执行第二次循环,1123S =+=,213n =+=; 3S p =<满足条件,执行第二次循环,2327S =+=,314n =+=. 7S p =<满足条件,调出循环体,输出n 的值为4.由上可知,37p <≤,因此,输入的整数p 的最小值是4,故选A. 【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【解析】因为袋中装有大小相同的总数为5个的黑球白球若从袋中任意摸出2个球共有10种没有得到白球的概率为设白球个数为x 黑球个数为5-x 那么可知白球共有3个黑球有2个因此可知填写为 解析:310【解析】因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种,没有得到白球的概率为110,设白球个数为x,黑球个数为5-x,那么可知白球共有3个,黑球有2个,因此可知填写为14.1【解析】【分析】设这10个数为则这组数据的方差为:由此能求出这组数据的标准差【详解】现有10个数其平均数为3且这10个数的平方和是100设这10个数为则这组数据的方差为:这组数据的标准差故答案为1解析:1 【解析】 【分析】设这10个数为1x ,2x ,3x ,⋯,10x ,则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,这组数据的方差为:()()22222222212310123101231011[()()())69101010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯ ⎥⎥⎢⎦⎣⎝⎦,由此能求出这组数据的标准差. 【详解】现有10个数,其平均数为3,且这10个数的平方和是100, 设这10个数为1x ,2x ,3x ,⋯,10x , 则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,∴这组数据的方差为:()()22222222212310123101231011[()()())691011010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯= ⎥⎥⎢⎦⎣⎝⎦,∴这组数据的标准差1S =.故答案为1. 【点睛】本题考查一组数据的标准差的求法,考查平均数、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填:解析:34【解析】∵方程无实根,∴Δ=1-4a <0,∴14a >,即所求概率为34.故填:3416.1【解析】【分析】因为题目中要去掉一个最高分所以对进行分类讨论然后结合平均数的计算公式求出结果【详解】若去掉一个最高分和一个最低分86分后平均分为不符合题意故最高分为94分去掉一个最高分94分去掉一解析:1 【解析】 【分析】因为题目中要去掉一个最高分,所以对x 进行分类讨论,然后结合平均数的计算公式求出结果 【详解】若4x >,去掉一个最高分()90x +和一个最低分86分后,平均分为()1899291949291.65++++=,不符合题意,故4x ≤,最高分为94分,去掉一个最高分94分,去掉一个最低分86分后,平均分()18992909192915x +++++=,解得1x =,故数字x 为1 【点睛】本题考查了由茎叶图求平均值,理解题目意思运用平均数计算公式即可求出结果,注意分类讨论17.8【解析】【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要解析:8 【解析】 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===, 当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.18.【解析】【分析】由题意可知集合U 的子集有个然后求出任取集合U 的两个子集AB 的个数m 及时AB 的所有个数n 根据可求结果【详解】解:集合23的子集有个集合AB 是集合U 的子集任取集合U 的两个子集AB 的所有个解析:3()4n【解析】 【分析】由题意可知集合U 的子集有2n 个,然后求出任取集合U 的两个子集A 、B 的个数m ,及A B ⊆时A 、B 的所有个数n ,根据nP m=可求结果. 【详解】解:Q 集合{1,U =2,3,⋯,}n 的子集有2n 个,Q 集合A 、B 是集合U 的子集,∴任取集合U 的两个子集A 、B 的所有个数共有22n n ⨯个,A B ⊆Q ,①若A =∅,则B 有2n 个,②若A 为单元数集,则B 的个数为112n nC -⨯个, ⋯同理可得,若{1,A =2,3}n ⋯,则B =n 只要1个即012n n C =⨯,则A 、B 的所有个数为112202222(12)3n n n n n nn n n C C C --+⨯+⨯+⋯+⨯=+=个,集合A 紧跟集合B ”的概率为33()224n nn nP ==⨯. 故答案为3()4n【点睛】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.19.【解析】【分析】利用除取余法将十进制数除以然后将商继续除以直到商为然后将依次所得的余数倒序排列即可得到答案【详解】故【点睛】本题主要考查的是十进制与其他进制之间的转化其中熟练掌握除取余法的方法步骤是解析:210111()【解析】 【分析】利用“除k 取余法”将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案 【详解】232111÷=⋯ 11251÷=⋯ 5221÷=⋯ 2210÷=⋯1201÷=⋯故()()1022310111= 【点睛】本题主要考查的是十进制与其他进制之间的转化,其中熟练掌握“除k 取余法”的方法步骤是解答本题的关键。

【好题】高中必修三数学上期末模拟试卷(含答案)(1)

【好题】高中必修三数学上期末模拟试卷(含答案)(1)

【好题】高中必修三数学上期末模拟试卷(含答案)(1)一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .153.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .234.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .B .C .D .5.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?6.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤7.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020218.日本数学家角谷静夫发现的“31x + 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的6N =,则输出i 值为( )A.6B.7C.8D.99.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.1310.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ).A.①B.②④C.③D.①③11.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次12.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .36二、填空题13.将函数sin 23cos 2y x x =-的图象向左平移6π个单位长度,得到函数()y g x =的图象,则5()6g π__________.14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)15.根据如图所示算法流程图,则输出S 的值是__.16.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.17.如图所示的程序框图,输出的S的值为()A.12B.2C.1-D.12-18.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________,19.执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.20.已知AOB ∆中,60AOB ∠=o ,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.三、解答题21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.22.冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在[15,65)的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(2)现在要从年龄较大的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;23.有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:(Ⅰ)求频率分布直方图中m 的值;(Ⅱ)分别求出成绩落在[70,80),[80,90),[90,100]中的学生人数;(Ⅲ)从成绩在[80,100]的学生中任选2人,求所选学生的成绩都落在[80,90)中的概率 24.某地区为了了解本年度数学竞赛成绩情况,从中随机抽取了n 个学生的分数作为样本进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图如图所示,已知得分在[)70,80的频数为20,且分数在70分及以上的频数为27.(1)求样本容量n 以及x ,y 的值;(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在[)80,90内的概率.25.某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(1)求a 的值;(2)估计该单位其他部门的员工对后勤部门的评分的中位数;(3)以评分在[)40,60的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率.26.某学校高一、高二、高三的三个年级学生人数如下表高三高二高一女生100150z男生300450600按年级分层抽样的方法评选优秀学生50人,其中高三有10人. (1)求z 的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.C解析:C 【解析】 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.3.D解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 4.C解析:C 【解析】 【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率. 【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体, ∴基本事件总数n =27, 在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上, 且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P =故选:C 【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.5.C解析:C【解析】 【分析】根据程序框图依次计算得到答案. 【详解】根据程序框图:1,1S i ==;3,2S i ==;7,3S i ==;15,4S i ==;31,5S i ==,结束. 故选:C . 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.6.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。

【必考题】高中必修三数学上期末一模试卷(及答案)

【必考题】高中必修三数学上期末一模试卷(及答案)

【必考题】高中必修三数学上期末一模试卷(及答案)一、选择题1.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2152.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .93.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?4.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .635.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .116.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =17.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变 8.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα9.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.1310.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A.1 2B.3 4C.2 7D.3 811.赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A.B.C.D.12.执行如图的程序框图,若输出的4n=,则输入的整数p的最小值是()A.4B.5C.6D.15二、填空题t=,则输出的k=______.13.某程序框图如图所示,若输入的414.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.15.如图是某算法流程图,则程序运行后输出S的值为____.i=)满足16.已知某产品连续4个月的广告费i x(千元)与销售额i y(万元)(1,2,3,44115 iix ==∑,4112 iiy ==∑,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为^y bx a=+,0.6b=,那么广告费用为5千元时,可预测的销售额为___万元. 17.变量X与Y相对应的5组数据和变量U与V相对应的5组数据统计如表:X1011.311.812.513U1011.311.812.513 Y12345V54321用b1表示变量Y与X之间的回归系数,b2表示变量V与U之间的回归系数,则b1与b2的大小关系是___.18.如图是一个算法的流程图,则输出的a的值是__________.19.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,L,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.22.为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.(1)求a的值;(2)试估计该小区今年7月份用电量用不超过260元的户数;(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).23.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?24.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A组8677809488B组9183?7593其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求||8m n-≤的概率.25.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.26.某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为x元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费x的值,该手机厂商进行了问卷调查,统计后得到下表(其中y表示保费为x元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得()()5119.2i iix x y y=--=-∑,求出y关于x的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程$$ˆy bx a=+中斜率和截距的最小二乘估计分别为()()()121ni iiniix x y ybx x==--=-∑∑$,$a y bx=-$【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.2.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.3.B解析:B 【解析】 【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案. 【详解】根据程序框图,运行如下: 初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=; 判断条件成立,得到11920S =+=,918k =-=; 判断条件成立,得到20828S =+=,817k =-=; 判断条件成立,得到28735S =+=,716k =-=; 判断条件成立,得到35641S =+=,615k =-=; 判断条件不成立,输出41S =,退出循环,即6k ≥符合题意. 故选:B. 【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.4.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-; 4i =,()2164533293m a a =--=-;输出3293m a =-,结束; 令329367a -=,解得5a =. 故选C.6.A解析:A【解析】赋值语句的格式为“变量=表达式”,“=”的左侧只能是单个变量,B 、C 、D 都不正确.选A.7.A解析:A 【解析】 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.8.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴0cos α12sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.9.D解析:D 【解析】根据题意画出图形,结合图形即可得出结论.【详解】如图所示,线段MN 的长度为6,在线段MN 上随机取一点P ,则点P 到点M ,N 的距离都大于2的概率为2163P ==. 故选D .【点睛】本题考查了几何概型的概率计算问题,是基础题. 10.C解析:C【解析】【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案.【详解】 如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=.则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.解析:B【解析】【分析】 由题意可得,设,求得,由面积比的几何概型,可知在大等边三角形中随机取一点,则此点取自小等边三角形的概率,即可求解.【详解】 由题意可得,设,可得, 在中,由余弦定理得, 所以,,由面积比的几何概型,可知在大等边三角形中随机取一点, 则此点取自小等边三角形的概率是,故选B. 【点睛】本题主要考查了面积比的几何概型,以及余弦定理的应用,其中解答中认真审题、把在大等边三角形中随机取一点,取自小等边三角形的概率转化为面积比的几何概型是解答的关键,着重考查了推理与运算能力,属于基础题. 12.A解析:A【解析】【分析】列举出算法的每一步循环,根据算法输出结果计算出实数p 的取值范围,于此可得出整数p 的最小值.【详解】0S p =<满足条件,执行第一次循环,0021S =+=,112n =+=;1S p =<满足条件,执行第二次循环,1123S =+=,213n =+=;3S p =<满足条件,执行第二次循环,2327S =+=,314n =+=.7S p =<满足条件,调出循环体,输出n 的值为4.由上可知,37p <≤,因此,输入的整数p 的最小值是4,故选A.【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【解析】【分析】根据题意执行循环结构的程序框图逐次计算即可得到答案【详解】由题意执行程序框图:可得;第一循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第四次循环不满足条件;第五次循环不 解析:【解析】【分析】根据题意,执行循环结构的程序框图,逐次计算,即可得到答案.【详解】由题意执行程序框图:可得0S =, 8k =;第一循环,不满足条件,8S =,7k =;第二次循环,不满足条件,1S =,6k =;第三次循环,不满足条件,5S =,5k =;第四次循环,不满足条件0S =,4k =;第五次循环,不满足条件4S =,3k =,第六次循环,满足条件,输出3k =.【点睛】本题主要考查了循环结构的程序框图的计算输出问题,其中解答中根据给定的程序框图,逐次循环,逐次计算,注意把握判定条件是解答的关键,着重考查了推理与运算能力,属于基础题.14.1-π12【解析】【分析】由题意得长方形的面积为S=3×2=6以O 点为原型半径为1作圆此时圆在长方形内部的部分的面积为Sn=π2再由面积比的几何概型即可求解【详解】由题意如图所示可得长方形的面积为S 解析:【解析】【分析】 由题意,得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解. 【详解】 由题意,如图所示,可得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为, 所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分, 所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.41【解析】【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件解析:41【解析】【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案。

【典型题】高中必修三数学上期末一模试题及答案(1)

【典型题】高中必修三数学上期末一模试题及答案(1)

【典型题】高中必修三数学上期末一模试题及答案(1)一、选择题1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .653.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)4.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-25.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn6.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 2倍的概率( ) A .34B .35C .13D .127.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元8.按照程序框图(如图所示)执行,第3 个输出的数是( )A .6B .5C .4D .39.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) A .5个B .10个C .20个D .45个10.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变11.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a 的值是( )A .0.020B .0.018C .0.025D .0.0312.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π二、填空题13.将函数sin 23cos 2y x x =-的图象向左平移6π个单位长度,得到函数()y g x =的图象,则5()6g π__________.14.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.15.执行如图所示的伪代码,若输出的y 的值为10,则输入的x 的值是________.16.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.17.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________ 18.把十进制数23化为二进制数是______.19.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a =,29.6a =,39.3a = 49.4a =,59.4a =,69.3a = 79.3a =,89.7a =,99.2a = 109.5a =,119.3a =,129.6a = 20.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.三、解答题21.A B 两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(1)试估计B 班的学生人数;(2)从A 班和B 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,B 班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量X .规定:当甲的测试数据比乙的测试数据低时,记1X =-;当甲的测试数据与乙的测试数据相等时,记X 0=;当甲的测试数据比乙的测试数据高时,记1X =.求随机变量X 的分布列及数学期望.(3)再从A 、B 两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明)22.某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.(Ⅰ)求a 的值及样本中男生身高在[]185,195(单位:cm )的人数;(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;(Ⅲ)在样本中,从身高在[)145,155和[]185,195(单位:cm )内的男生中任选两人,求这两人的身高都不低于185cm 的概率.23.某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数m n141286知道的人数348732(1)求上表中的,m n的值,并补全右图所示的的频率直方图;(2)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.24.某洗车店对每天进店洗车车辆数x和用次卡消费的车辆数y进行了统计对比,得到如下的表格:车辆数x1018263640用次卡消费的车辆数y710171823(Ⅰ)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(b∧的结果保留两位小数)(Ⅱ)试根据()I求出的线性回归方程,预测50x=时,用次卡洗车的车辆数.参考公式:由最小二乘法所得回归直线的方程是ˆˆˆy bx a=+;其中,()1122211())()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---==--∑∑∑∑$,a y bx=-$.25.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系.(1)求出y 关于x 的回归直线方程y bx a =+$$$;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+$$$的斜率和截距的最小二乘估计分别为$1221,ni ii x ynx b ay bx x ynx=--==--∑∑$$. 26.设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为1A ,2A ,3A ,乙协会编号为4A ,丙协会编号分别为5A ,6A ,若从这6名运动员中随机抽取2名参加双打比赛. (1)用所给编号列出所有可能抽取的结果;(2)求丙协会至少有一名运动员参加双打比赛的概率; (3)求参加双打比赛的两名运动员来自同一协会的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.D解析:D 【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.3.D解析:D 【解析】 【分析】先将这个二进制转化成十进制,然后除8取余数,即可得出答案. 【详解】∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10). 再利用“除8取余法”可得:45(10)=55(8). 故答案选D .【点睛】本道题考查了不同进制数的转化,较容易,先将二进制数转化成十进制,然后转为八进制,即可.4.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=;此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.5.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 6.D解析:D 【解析】 【分析】先找出满足条件弦的长度超过2R 的图象的测度,再代入几何概型计算公式求解,即可得到答案. 【详解】根据题意可得,满足条件:“弦的长度超过2R 对应的弧”,其构成的区域为半圆»NP, 则弦长超过半径2倍的概率»12NP P ==圆的周长,【点睛】本题主要考查了几何概型的概率计算中的“几何度量”,对于几何概型的“几何度量”可以线段的长度比、图形的面积比、几何体的体积比等,且这个“几何度量”只与“大小”有关,与形状和位置无关,着重考查了分析问题和解答问题的能力.7.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得$ a,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b=$,∴$ 80.78100.2a y bx --⨯===$. ∴$ 0.780.2y x =+.取16x =,得$ 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.8.B解析:B 【解析】第一次输出1,A =第二次输出123A =+=,第三次输出325A =+= ,选B.9.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .10.B解析:B 【解析】∵数据x 1,x 2,x 3,…,x n 是郑州普通职工n (n ⩾3,n ∈N ∗)个人的年收入, 而x n +1为世界首富的年收入 则x n +1会远大于x 1,x 2,x 3,…,x n , 故这n +1个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n +1比较大的影响,而更加离散,则方差变大. 故选B11.A解析:A 【解析】 【分析】由频率分布直方图的性质列方程,能求出a . 【详解】由频率分布直方图的性质得:()100.0050.0150.0350.0150.0101a +++++=,解得0.020a =. 故选A . 【点睛】本题考查实数值的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.A解析:A 【解析】试题分析:设扇形OAB 半径为,此点取自阴影部分的概率是112π-,故选B. 考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.二、填空题13.【解析】【分析】先利用辅助角公式将函数的解析式化简根据三角函数的变化规律求出函数的解析式即可计算出的值【详解】由题意可得因此故答案为【点睛】本题考查辅助角公式化简三角函数图象变换在三角图象相位变换的 解析:3【解析】 【分析】先利用辅助角公式将函数sin 232y x x =-的解析式化简,根据三角函数的变化规律求出函数()y g x =的解析式,即可计算出56g π⎛⎫⎪⎝⎭的值. 【详解】sin 23cos 22sin 23y x x x π⎛⎫=-=- ⎪⎝⎭Q ,由题意可得()2sin 22sin 263g x x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 因此,5552sin 22sin 2sin 22sin 366333g ππππππ⎛⎫⎛⎫⎛⎫=⨯==-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为3-. 【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为()()sin 0y A x b ωϕω=++≠(或()()cos 0y A x b ωϕω=++≠)的形式,其次要注意左加右减指的是在自变量x 上进行加减,考查计算能力,属于中等题.14.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.15.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3 【解析】 【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可.【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去); 当3x <时,210y x ==,解得5x = ,舍去, 综上,x 的值为3,故答案为3 . 【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.16.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程 解析:78【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果. 【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =, 执行循环体,()243187x x x =--=-,43i =>, 输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18 【解析】 【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.18.【解析】【分析】利用除取余法将十进制数除以然后将商继续除以直到商为然后将依次所得的余数倒序排列即可得到答案【详解】故【点睛】本题主要考查的是十进制与其他进制之间的转化其中熟练掌握除取余法的方法步骤是 解析:210111()【解析】 【分析】利用“除k 取余法”将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案 【详解】232111÷=⋯11251÷=⋯5221÷=⋯ 2210÷=⋯1201÷=⋯故()()1022310111= 【点睛】本题主要考查的是十进制与其他进制之间的转化,其中熟练掌握“除k 取余法”的方法步骤是解答本题的关键。

【常考题】高中必修三数学上期末第一次模拟试卷及答案

【常考题】高中必修三数学上期末第一次模拟试卷及答案

【常考题】高中必修三数学上期末第一次模拟试卷及答案一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .232.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08153.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .634.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是( ) A .没有白球 B .2个白球 C .红、黑球各1个D .至少有1个红球5.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150;④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③ 6.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα7.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.58.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <9.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .1910.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .41311.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41312.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .23二、填空题13.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).14.执行如图所示的程序框图,若输入的1,7s k ==则输出的k 的值为_______.15.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.16.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________,上,其频率分布直方图如17.某班60名学生参加普法知识竞赛,成绩都在区间[40100]图所示,则成绩不低于60分的人数为___.18.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.19.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,L,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.20.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.三、解答题21.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m )0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率. 22.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x的值.23.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)24.某中学随机抽取部分高一学生调査其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.25.1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU ,AU 是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据: 行星编号(x ) 1(金星) 2(地球) 3(火星) 4( )5(木星) 6(土星)离太阳的距离(y )0.7 1.0 1.6 5.2 10.0受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星. (1)为了描述行星离太阳的距离y 与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);①y ax b =+;②(1)xy a b c b =⋅+>;③log (1)b y a x c b =⋅+>.(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;(3)请用你求得的模型,计算谷神星离太阳的距离.26.某学校为了解高二学生学习效果,从高二第一学期期中考试成绩中随机抽取了25名学生的数学成绩(单位:分),发现这25名学生成绩均在90~150分之间,于是按[)90,100,[)100,110,…,[]140,150分成6组,制成频率分布直方图,如图所示:(1)求m 的值;(2)估计这25名学生数学成绩的平均数;(3)为进一步了解数学优等生的情况,该学校准备从分数在[]130,150内的同学中随机选出2名同学作为代表进行座谈,求这两名同学分数在不同组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 2.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.3.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可.【详解】各数据为:122031323445454547474850506163,最中间的数为:45,所以,中位数为45.本题选择A选项.【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C【解析】分析:写出从红球3个、白球2个、黑球1个中随机摸出2个球的取法情况,然后逐一核对四个选项即可得到答案详解:从红球3个、白球2个、黑球1个中随机摸出2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共五种情况则与事件“至少有1个白球”互斥但不对立的事件是红球,黑球各一个包括1红1白,1黑1白两种情况.故选C点睛:本题主要考查了互斥事件和对立事件,是基础的概念题,只要理解其概念,结合本题列举出所有情况即可得出结果.5.B解析:B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为1001 24001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为1001 24001600100050=++,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴0cos α1sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.7.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.8.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.9.B解析:B 【解析】设大圆的半径为R ,则:126226T R ππ==⨯=, 则大圆面积为:2136S R ππ==,小圆面积为:22122S ππ=⨯⨯=,则满足题意的概率值为:213618p ππ==. 本题选择B 选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.10.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217 S DEPS BC⎛⎫===⎪⎝⎭故选:A11.C解析:C【解析】【分析】由题意求出7AB BD=,所求概率即为DEFABCSPS=VV,即可得解.【详解】由题意易知120ADB∠=o,AF FD BD==,由余弦定理得22222cos1207AB AD BD AD BD BD=+-⋅⋅=即7AB BD=,所以7AB FD=,则所求概率为217DEFABCS FDPS AB⎛⎫===⎪⎝⎭VV.故选:C.【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.12.C解析:C【解析】【分析】设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,根据条件建立二元一次不等式组,求出对应的区域面积,结合几何概型的概率公式进行计算即可.【详解】如图,设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x,y)所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车,必须满足{(x,y)|0505xy≤≤⎧⎨≤≤⎩,或515515xy≤⎧⎨≤⎩<<},即(x ,y )必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125, 则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515⨯=59, 故选:C 【点睛】本题主要考查几何概型的概率公式的应用,根据条件求出对应区域的面积是解决本题的关键.二、填空题13.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 14.5【解析】【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到解析:5 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,s k 的值,当5,58s k ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S k ==;771,688s k =⋅==;763,5874s k =⋅==;355,5468s k =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5.该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.15.3【解析】【分析】执行该算法后输出y =令y =1求出对应x 值即可【详解】执行如图所示的算法知该算法输出y =当x≥1时令y =x2﹣2x ﹣2=1解得x =3或x =﹣1(不合题意舍去);当x <1时令y ==1此 解析:3【解析】 【分析】执行该算法后输出y =222,11,11x x x x x x ⎧--≥⎪⎨+<⎪-⎩,令y =1求出对应x 值即可.【详解】执行如图所示的算法知,该算法输出y =222,11,11x x x x x x ⎧--≥⎪⎨+<⎪-⎩当x ≥1时,令y =x 2﹣2x ﹣2=1,解得x =3或x =﹣1(不合题意,舍去);当x <1时,令y =11x x +-=1,此方程无解; 综上,则输入的实数x 的值为3. 故答案为3. 【点睛】本题考查算法与应用问题,考查分段函数的应用问题,是基础题.16.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18 【解析】 【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.17.30【解析】由题意可得:则成绩不低于分的人数为人解析:30由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人18.8【解析】【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要解析:8 【解析】 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===, 当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.19.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.20.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果. 详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.三、解答题21.(1)答案见解析;(2)35. 【解析】【试题分析】(1)借助题设中提供的频率分布直方图,算出0-50的频率为0.004500.2⨯=,进而求出样本容量200.2100n =÷=,从而求出25m =,最后完成频率分布直方图;(2)先运用分层抽样的方法求出空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,即将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,算出从中任取2天的基本事件数为10种和其中事件A “两天空气都为良”包含的基本事件数为6种,进而算得事件A “两天都为良”发生的概率是()63105P A ==: (1)由频率分布直方图可知0-50的频率为0.004500.2⨯=, 所以200.2100n =÷=,从而25m =, 频率分布直方图补充如下图所示.(2)在空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天, 在所抽取的5天中,将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,从中任取2天的基本事件分别为:(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种.其中事件A “两天空气都为良”包含的基本事件为:(),a b ,(),a c ,(),a d ,(),b c ,(),b d 共6种,所以事件A “两天都为良”发生的概率是()63105P A ==. 22.(1) 22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩当0x =时,y 无解.(2) 2x =-.【解析】 【分析】(1)根据框图得到函数解析式;(2)结合第一问得到的函数表达式,分情况得到x 值即可. 【详解】(1)函数解析式为22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩,当0x =时,y 无解.(2)当0x <时,24x =,2x =-或2(舍). 当04x ≤≤时,2log 4x =,解得16x =(舍). 当4x >时,24x =,解得2x =(舍) 所以2x =- 【点睛】这个题目考查了程序框图的应用,以及分段函数的应用;解决分段函数求值问题的策略:(1)在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则.23.(1)0.9;(2)0.085a =,0.125b =;(3)第4组. 【解析】试题分析:(1)由频率分布表知,100人中有10人阅读时间不少于12小时,所以由对立事件的概率计算公式得p=;(2)由频率分表知,阅读时间在[4,6)的共17人,所以样本落在该组的概率为0.17,则频率分布直方图中样本落在[4,6)的小矩形的面积为0.17,从而求出矩形的高即a 的值,同理得到b 的值;(3)可以通过频率分布表或频率分布直方图求出平均数即可知平均数在那一组.试题解析:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是;(2)课外阅读时间落在[4,6)的有17人,频率为0.17,所以,课外阅读时间落在[8,10)的有25人,频率为0.25,所以,(3)估计样本中的100名学生课外阅读时间的平均数在第4组. 考点:频率分布表和频率分布直方图的应用.【方法点睛】频率分布直方图的几个常用结论:(1)所有小矩形的面积和为1;(2)小矩形的高等于样本落在该组的概率除以组距;(3)最高的小矩形的所在组的区间的中点值即为众数;(4)每个组的区间中点值乘以所在组的概率之和即为平均数;(4)样本取值m ,两侧的样本数据的概率相等且为,则m 即为中位数. 24.(1)0.0125;(2)25. 【解析】 【分析】(1)利用直方图矩形的面积的和为1,直接求解x 即可.(2)求出基本事件的总数以及符合条件的基本事件的个数,即可求解. 【详解】(1)由直方图可得:20×x +0.025×20+0.0065×20+0.003×2×20=1. 所以 x =0.0125.(2)由题意知:[0,20)有2人,设为1,2,[20,40)有4人,设为a ,b ,c ,d ; 则基本事件有:12,1a ,1b ,1c ,1d ,2a ,2b ,2c ,2d ,ab ,ac ,ad ,bc ,bd ,cd 共15种 抽到的2人每日自主安排学习时间均不低于20分钟的包括:ab ,ac ,ad ,bc ,bd ,cd 共6种.所以抽到的2人每日自主安排学习时间均不低于20分钟的概率P 62155==. 【点睛】本题考查了直方图,考查古典概率的求值,是一道中档题. 25.(1)模型②符合题意(2)见解析(3)2.8AU 【解析】 【分析】(1)画出散点图,根据图形得到答案.(2)将(1,0.7),(2,1),(3,1.6)分别代入xy a b c =⋅+得到解析式,再验证得到答案.(3)取4x =,代入计算得到答案. 【详解】(1)散点图如图所示:根据散点图可知,模型②符合题意(2)将(1,0.7),(2,1),(3,1.6)分别代入xy a b c =⋅+得230.711.6a b c a b c a b c ⋅+=⎧⎪⋅+=⎨⎪⋅+=⎩,解得0.15,2,0.4a b c ===,所以()*0.1520.4xy x =⨯+∈N当5x =时,50.1520.4 5.2y =⨯+=. 当6x =时,60.1520.410y =⨯+=. 与已知表中数据完全吻合.(3)当4x =时,40.1520.4 2.8AU y =⨯+=,即谷神星距太阳的距离为2.8AU【点睛】本题考查了散点图,函数解析式,意在考查学生的应用能力和计算能力. 26.(1)0.008m =(2)121.8(3)35【解析】 【分析】(1)利用小矩形的面积和为1,求得m 值;(2)每个小矩形的中点与面积相乘,再相加,求得平均数;(3)利用古典概型,求出试验的所有等可能结果,再计算事件所含的基本事件,最后代入公式计算概率值. 【详解】(1)0.040.120.240.40.12101m +++++=,∴0.008m =.(2)0.04950.121050.241150.4125x =⨯+⨯+⨯+⨯0.121350.08145121.8+⨯+⨯=.(3)由直方图得,[)130140,有3人,[]140,150有2人, [)130140,的学生为1A ,2A ,3A ,[]140,150的学生为1B ,2B , 所有情况:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B ,12B B 共10种情况;符合题意的:11A B ,12A B ,21A B ,22A B ,31A B ,32A B 共6种情况. 所以概率为63105P ==. 【点睛】本题考查频率分布直方图估计平均数、及古典概型的概率求解,考查概率与统计思想,考查数据处理能力.。

【典型题】高中必修三数学上期末一模试卷带答案(1)

【典型题】高中必修三数学上期末一模试卷带答案(1)

【典型题】高中必修三数学上期末一模试卷带答案(1)一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .232.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数): ①甲地:5个数据是中位数为24,众数为22; ②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8 则肯定进入夏季的地区有( ) A .①②③B .①③C .②③D .①3.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020214.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-25.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .11 6.把化为五进制数是( )A .B .C .D .7.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα8.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .59.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k < 10.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13 B .2πC .12D .2311.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .3612.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A.48B.60C.64D.72二、填空题13.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).14.某市有A、B、C三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样.本,进行成绩分析,则应从B校学生中抽取______人15.运行如图所示的程序框图,则输出的所有y值之和为___________.16.一个算法的伪代码如下图所示,执行此算法,若输出的y值为1,则输入的实数x的值为________.17.根据如图所示算法流程图,则输出S的值是__.18.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______.19.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.(1)求此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率; (2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在[)4.5,6.5(时)内的周数为X ,求X 的分布列以及数学期望.22.某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.拥有驾驶证 没有驾驶证 合计得分优秀得分不优秀 25合计100(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.82823.已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,12.现采用分层抽样的方法从中抽取6人,进行睡眠质量的调查.(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?(2)设抽出的6人分别用A 、B 、C 、D 、E 、F 表示,现从6人中随机抽取2人做进一步的身体检查.(i )试用所给字母列出所有可能的抽取结果;(ii )设K 为事件“抽取的2人来自同一兴趣小组”,求事件K 发生的概率.24.为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高()x cm 和体重()y kg 数据如下表所示:编号12345678身高/x cm164160158172162164174166体重/y kg6046434848506152该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.(1)调查员甲计算得出该组数据的线性回归方程为ˆˆ0.7y x a=+,请你据此预报一名身高为176cm的女高中生的体重;(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为176cm的女高中生的体重;(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.附:对于一组数据()()()1122,,,,,,n nx y x y x yL,其回归方程ˆˆˆy bx a=+的斜率和截距的最小二乘法估计分别为:()()()121ˆˆ,ni iiniix x y yb a y bxx x==--==--∑∑.25.在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.(Ⅰ)求A1被选中的概率;(Ⅱ)求A1,B1不全被选中的概率.26.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[20,70]之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中x的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄[20,30)[30,40)[40,50)[50,60)[60,70]人数②若从年龄在[30,50)的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[30,40)的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 2.B解析:B 【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o 则总体方差就大于10.8,故满足题意,选C考点:统计初步3.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭.本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.4.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.5.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-;4i =,()2164533293m a a =--=-;输出3293m a =-,结束;令329367a -=,解得5a =. 故选C.6.B解析:B 【解析】 【分析】利用倒取余数法可得化为五进制数.【详解】 因为所以用倒取余数法得323,故选:B. 【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.7.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭ ∴20cos α12sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.8.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.9.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.A解析:A 【解析】 因为[,]22x ππ∈-,若1cos [0,]2x ∈,则[,][,]2332x ππππ∈--⋃, ()21233()22P ππππ-⨯∴==--,故选A.11.C解析:C 【解析】试题分析:该程序框图所表示的算法功能为:235919S =+++=,故选C .考点:程序框图. 12.B解析:B 【解析】 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 14.40【解析】【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分解析:40 【解析】 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,Q 某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为:40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.15.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值 解析:10【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可. 【详解】 输入2n =-,第一次循环,8,1y n ==-; 第二次循环,3,0y n ==; 第三次循环,0,1y n ==; 第四次循环,1,2y n =-=; 退出循环,可得所有y 值之和为830110++-=,故答案为10. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.16.3【解析】【分析】执行该算法后输出y =令y =1求出对应x 值即可【详解】执行如图所示的算法知该算法输出y =当x≥1时令y =x2﹣2x ﹣2=1解得x =3或x =﹣1(不合题意舍去);当x <1时令y ==1此解析:3 【解析】 【分析】执行该算法后输出y=222,11,11x x xxxx⎧--≥⎪⎨+<⎪-⎩,令y=1求出对应x值即可.【详解】执行如图所示的算法知,该算法输出y=222,11,11x x xxxx⎧--≥⎪⎨+<⎪-⎩当x≥1时,令y=x2﹣2x﹣2=1,解得x=3或x=﹣1(不合题意,舍去);当x<1时,令y=11xx+-=1,此方程无解;综上,则输入的实数x的值为3.故答案为3.【点睛】本题考查算法与应用问题,考查分段函数的应用问题,是基础题.17.9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得S=0n=1满足条件n<6执行循环体S=1n=3满足条解析:9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得S=0,n=1满足条件n<6,执行循环体,S=1,n=3满足条件n<6,执行循环体,S=4,n=5满足条件n<6,执行循环体,S=9,n=7此时,不满足条件n<6,退出循环,输出S的值为9.故答案为:9.【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.18.【解析】【分析】由题意可知集合U的子集有个然后求出任取集合U的两个子集AB的个数m及时AB的所有个数n根据可求结果【详解】解:集合23的子集有个集合AB是集合U的子集任取集合U的两个子集AB的所有个解析:3 () 4n【解析】 【分析】由题意可知集合U 的子集有2n 个,然后求出任取集合U 的两个子集A 、B 的个数m ,及A B ⊆时A 、B 的所有个数n ,根据nP m=可求结果. 【详解】解:Q 集合{1,U =2,3,⋯,}n 的子集有2n 个,Q 集合A 、B 是集合U 的子集,∴任取集合U 的两个子集A 、B 的所有个数共有22n n ⨯个,A B ⊆Q ,①若A =∅,则B 有2n 个,②若A 为单元数集,则B 的个数为112n nC -⨯个, ⋯同理可得,若{1,A =2,3}n ⋯,则B =n 只要1个即012n n C =⨯,则A 、B 的所有个数为112202222(12)3n n n n n nn n n C C C --+⨯+⨯+⋯+⨯=+=个,集合A 紧跟集合B ”的概率为33()224n nn nP ==⨯. 故答案为3()4n【点睛】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.19.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65 【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-=⎪⎝⎭,即0.65P =,故答案为0.65. 20.【解析】分析:根据题意求出区间内随机取两个数分别记为以及对应平面区域的面积再求出满足调价使得函数有零点的所对应的平面区域的面积利用面积比的几何概型即可求解详解:由题意使得函数有零点则即在平面直角坐标 解析:14π-【解析】分析:根据题意,求出区间[,]-ππ内随机取两个数分别记为,a b ,以及对应平面区域的面积,再求出满足调价使得函数222()2f x x ax b π=+-+有零点的所对应的平面区域的面积,利用面积比的几何概型,即可求解.详解:由题意,使得函数222()2f x x ax b π=+-+有零点, 则222(2)4()0a b π∆=--+≥,即222a b π+≥,在平面直角坐标系中,a b 的取值范围,所以对应的区域,如图所示, 当,[,]a b ππ∈-对应的面积为边长为2π的正方形,其面积为24π,所以其概率为2324144ππππ-=-.点睛:本题主要考查了几何概型及其概率的计算,对于几何概型概率可以为线段的长度比,区域的面积、几何体的体积比等,其中这个“几何度量”值域大小有关,与形状和位置无关,解决的步骤为:求出满足条件的基本事件对应的“几何度量”,在求出总的事件所对应的“几何度量”,最后根据公式求解,着重考查了分析问题和解答问题的能力.三、解答题21.(1)0.35;(2)7;(3)分布列见解析;数学期望65. 【解析】 【分析】(1)用1减去频率直方图中位于区间[)3.5,6.5和[]7.5,10.5的矩形的面积之和可得出结果;(2)将各区间的中点值乘以对应的频率,再将所得的积全部相加即可得出所求平均数; (3)由题意可知34,10X B ⎛⎫⎪⎝⎭:,利用二项分布可得出随机变量X 的概率分布列,并利用二项分布的均值可计算出随机变量X 的数学期望. 【详解】(1)依题意,此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率为10.030.10.20.190.090.040.35------=; (2)所求平均数为40.0350.160.270.3580.1990.09100.047x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=(时);(3)依题意,34,10X B ⎛⎫ ⎪⎝⎭:.()47240101010000P X ⎛⎫=== ⎪⎝⎭,()314371029*********P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()2224371323210105000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()33437189310102500P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()438141010000P X ⎛⎫=== ⎪⎝⎭. 故X 的分布列为故()4105E X =⨯=. 【点睛】本题考查频率分布直方图中频率和平均数的计算,同时也考查了二项分布的概率分布列和数学期望的计算,考查计算能力,属于中等题.22.(1)列联表见解析;有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关;(2)35P = 【解析】 【分析】(1)根据频率分布直方图计算可补全列联表中的数据,根据公式计算可求得2 6.635K >,从而可得结论;(2)根据频率分布直方图计算出“安全意识优良”的人数,根据分层抽样原则可知“安全意识优良”的人中抽取2人;采用列举法列出所有基本事件,找到符合题意的基本事件个数,利用古典概型求得结果. 【详解】(1)由题意可知拥有驾驶证的人数为:10040%40⨯=人 则拥有驾驶证且得分为优秀的人数为:402515-=人由频率分布直方图知得分优秀的人数为:()100100.0150.00520⨯⨯+=人∴没有驾驶证且得分优秀的人数为:20155-=人则没有驾驶证且得分不优秀的人数为:10040555--=人 可得列联表如下:()21001555255122512 6.6354060208096K ⨯⨯-⨯∴==>>⨯⨯⨯∴有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关 (2)由频率分布直方图可求得70以上(含70)的人数为:()1000.0200.0150.0051040⨯++⨯=∴按分层抽样的方法抽出5人时,“安全意识优良”的有2人,记为1,2;其余的3人记为,,a b c从中随机抽取3人,基本事件有:()1,2,a ,()1,2,b ,()1,2,c ,()1,,a b ,()1,,a c ,()1,,b c ,()2,,a b ,()2,,a c ,()2,,b c ,(),,a b c 共10个恰有一人为“安全意识优良”的事件有6个∴恰有一人为“安全意识优良”的概率为:63105P == 【点睛】本题考查利用频率分布直方图计算频率和频数、独立性检验的应用、分层抽样的基本原理、古典概型的概率求解,属于中档题.23.(1)3人、2人、1人.(2)(i )见解析(ii )415【解析】 【分析】(1)先算出甲、乙、丙三个兴趣小组的学生人数之比,再采用分层抽样的方法抽取. (2)(i )从抽出的6人中随机抽取2人的所有可能结果用列举法列出.(ii )对6人进行编号,来自甲兴趣小组的是A ,B ,C ,来自乙兴趣小组的是D ,E ,来自丙兴趣小组的是F ,再列举则从6人中随机抽取2人来自同一兴趣小组的可能结果,用古典概型的概率. 【详解】(1)由已知,甲、乙、丙三个兴趣小组的学生人数之比为3:2:1,由于采用分层抽样的方法从中抽取6人,因此从甲、乙、丙三个兴趣小组中分别抽取3人、2人、1人.(2)(i )从抽出的6人中随机抽取2人的所有可能结果为:(),A B ,(),A C ,(),A D ,(),A E ,(),A F ,(),B C ,(),B D ,(),B E ,(),B F ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F ,共15种.(ii )不妨设抽出的6人中,来自甲兴趣小组的是A ,B ,C ,来自乙兴趣小组的是D ,E ,来自丙兴趣小组的是F ,则从6人中随机抽取2人来自同一兴趣小组的可能结果为(),A B ,(),A C ,(),B C ,(),D E ,共4种.所以,事件K 发生的概率()415P K =. 【点睛】本题主要考查了分层抽样和古典概型的概率的求法,还考查了运算求解的能力,属于中档题.24.(1)一名身高为176cm 的女大学生的体重约为58.7kg (2)回归方程为ˆ 1.1130.4yx =-,一名身高为176cm 的女大学生的体重约为63.2kg (3)乙的模型得到的预测值更可靠,详见解析 【解析】 【分析】(1)计算平均数,求出a ,即可求出回归方程;把178代入即可求出178cm 的女大学生的体重;(2)根据余下的数据计算平均数,求出b ,a ,即可求出回归方程;代入公式,即可求出身高为178cm 的女大学生的体重;(3)从散点图以及计算数据两个方面来分析甲和乙谁的方程可靠. 【详解】解:(1)经计算:165,51x y ==,于是:$510.716564.5a=-⨯=-, 则该组数据的线性回归方程为$0.764.5y x =-,当176x =时,$0.717664.558.7y =⨯-=,于是:一名身高为176cm 的女大学生的体重约为58.7kg ; (2)按照调查人员乙的想法,剩下的数据如下表所示:于是:()()()()()()()()()()()()6162222222144672200101122 1.14620102iii ii x x y y b x x ==---⨯-+-⨯-+-⨯-+⨯+⨯+⨯===-+-+-+++-∑∑$$50 1.1164130.4a=-⨯=-, 则该组数据的线性回归方程为$1.1130.4y x =-, 当176x =时, 1.1176130.463.2y =⨯-=,于是:一名身高为176cm 的女大学生的体重约为63.2kg ; (3)乙的模型得到的预测值更可靠,理由如下:①从散点图可以看出,第一组数据和第四组数据确实偏差较大,为更准确的刻画变化趋势,有必要把这两个数据剔除掉;②从计算结果来看,相对于第七组数据174cm 的女大学生体重,甲对身高176cm 的女大学生的预测值明显偏低,而利用乙的回归方程得到的预测值增幅较合理. (以上给出了两种理由,考生答出其中任意一种或其他合理理由均可得分) 【点睛】本题考查回归方程,考查学生的计算能力,正确求出回归方程是关键,属于基础题. 25.(Ⅰ)13(Ⅱ) 89【解析】分析:(Ⅰ)利用古典概型概率公式求出A 1被选中的概率; (Ⅱ)利用对立事件概率公式求出求A 1,B 1不全被选中的概率.详解:(Ⅰ)从擅长速算、数独的6名选手中各选出1名与魔方选手C 1组成中国战队的一切可能的结果组成集合Ω={(A 1,B 1,C 1),(A 1,B 2,C 1),(A 1,B 3,C 1),(A 2,B 1,C 1),(A 2,B 2,C 1),(A 2,B 3,C 1),(A 3,B 1,C 1),(A 3,B 2,C 1),(A 3,B 3,C 1)}, 由9个基本事件组成.由题知每一个基本事件被抽取的机会均等,用M 表示“A 1被选中”,则M ={(A 1,B 1,C 1),(A 1,B 3,C 1),(A 1,B 3,C 1)}, 因而.(Ⅱ)用N 表示“A 1、B 1不全被选中”这一事件,则其对立事件表示“A 1、B 1全被选中”,由于={(A 1,B 1,C 1) },∴,从而点睛:古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.26.(1)0.025x=,平均数x 为52,中位数为53.75m =(2)①见解析②35【解析】 【分析】(1)由频率分布直方图各个小矩形的面积之和为1可得x ,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.(2)①分层抽样,是按比例抽取人数;②年龄在[30,40)有2人,在[40,50)有4人,设在[30,40)的是1a ,2a ,在[40,50)的是1234b , b , b , b ,可用列举法列举出选2人的所有可能,然后可计算出概率. 【详解】(1)由频率分布直方图各个小矩形的面积之和为1, 得0.025x=在频率分布直方图中,这100位参赛者年龄的样本平均数为:250.05350.1450.2550.4650.452⨯+⨯+⨯+⨯+⨯=设中位数为m ,由0.050.10.2(50)0.040.5m +++-⨯=,解得53.75m =.(2)①每组应各抽取人数如下表: 年龄[20,30)[30,40)[40,50)[50,60)[60,70]人数12485②根据分层抽样的原理,年龄在[30,40)有2人,在[40,50)有4人,设在[30,40)的是1a ,2a ,在[40,50)的是1234b , b , b , b ,列举选出2人的所有可能如下:()()()()()()()()()()()1211121314212223241213,,,,,,,,,,,,,,,,,,,,,a a a b a b a b a b a b a b a b a b b b b b ,()()()()14232434,,,,,,,b b b b b b b b 共15种情况.设“这2人至少有一人的年龄在区间[30,40)”为事件A ,则包含:()()()()()()()()()121112131422222324,,,,,,,,,,,,,,,,,a a a b a b a b a b a b a b a b a b 共9种情况则93()155P A == 【点睛】本题考查频率分布直方图,考查样本数据特征、古典概型,属于基础题型.。

高中必修三数学上期末第一次模拟试卷及答案

高中必修三数学上期末第一次模拟试卷及答案

高中必修三数学上期末第一次模拟试卷及答案一、选择题1.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .B .C .D .2.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?3.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯4.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-25.执行如图的程序框图,那么输出的S 的值是( )A.﹣1 B.12C.2 D.16.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度7.运行如图所示的程序框图,若输出的S的值为480,则判断框中可以填()A.60iB .70i >C .80i >D .90i >8.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .9.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .810.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2911.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π12.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.5二、填空题13.某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.14.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.15.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.16.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =L ),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=L L ,则b =______. 17.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______. 18.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________, 19.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a =,29.6a =,39.3a = 49.4a =,59.4a =,69.3a = 79.3a =,89.7a =,99.2a = 109.5a =,119.3a =,129.6a = 20.已知由样本数据点集合(){},|1,2,3,,i ix y i n =L L ,求得的回归直线方程为1.230.08y x Λ=+ ,且4x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【好题】高中必修三数学上期末第一次模拟试卷带答案一、选择题1.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C.现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):①甲地:5个数据是中位数为24,众数为22;②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8则肯定进入夏季的地区有()A.①②③B.①③C.②③D.①2.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率分布直方图如图所示则下列说法正确的是()A.频率分布直方图中a的值为 0.040B.样本数据低于130分的频率为 0.3C.总体的中位数(保留1位小数)估计为123.3分D.总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是()A.320B.720C.316D.254.某工厂对一批新产品的长度(单位:mm)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.755.在某地的奥运火炬传递活动中,有编号为1,2,3,L,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A.151B.168C.1306D.14086.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19367.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是()A.310B.25C.12D.358.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A.1 2B.3 4C.2 7D.3 89.执行如图的程序框图,如果输出的是a=341,那么判断框()A .4k <B .5k <C .6k <D .7k < 10.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13 B .2πC .12D .2311.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为( )A .3.1B .3.2C .3.3D .3.412.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .29二、填空题13.现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)15.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.16.如下图,利用随机模拟的方法可以估计图中由曲线y=22x 与两直线x=2及y=0所围成的阴影部分的面积S :①先产生两组0~1的均匀随机数,a=RAND ( ),b=RAND ( );②做变换,令x=2a ,y=2b ;③产生N 个点(x ,y ),并统计落在阴影内的点(x ,y )的个数1N ,已知某同学用计算器做模拟试验结果,当N=1 000时,1N =332,则据此可估计S 的值为____.17.如图是某算法流程图,则程序运行后输出S 的值为____.18.根据如图所示算法流程图,则输出S 的值是__.19.在[0,1]上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为________. 20.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.三、解答题21.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均数与中位数. 22.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x的值.23.“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:cm),经统计,树苗的高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于27cm的为优质树苗.(1)求图中a的值;(2)已知所抽取的这120株树苗来自于A,B两个试验区,部分数据如下列联表:A试验区B试验区合计优质树苗20非优质树苗60合计将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A ,B 两个试验区有关系,并说明理由;(3)通过用分层抽样方法从B 试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.附:参考公式与参考数据:22()()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++()20P K k ≥ 0.010 0.005 0.001 0k6.6357.87910.82824.某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.(Ⅰ)求a 的值及样本中男生身高在[]185,195(单位:cm )的人数;(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;(Ⅲ)在样本中,从身高在[)145,155和[]185,195(单位:cm )内的男生中任选两人,求这两人的身高都不低于185cm 的概率.25.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y (万元)进行了统计,得到相应数据如下表: 广告投入x (万元) 9 10 8 11 12销售收入y (万元)21232120 25(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()() ()121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-26.某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如下的频率分布直方图.(1)完成年销售任务的销售点有多少个?(2)若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6),[6,10),____________=,[14,18),[18,22),(单位:千台)中每组分别应抽取的销售点数量.(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取2个,求这两个销售点不在同一组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o则总体方差就大于10.8,故满足题意,选C考点:统计初步2.C解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.3.B解析:B 【解析】 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.4.C解析:C 【解析】 【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.5.B解析:B 【解析】 【分析】 【详解】分析:利用组合数列总事件数,根据等差数列通项公式确定所求事件数,最后根据古典概型概率公式求结果.详解:共有318C 17163=⨯⨯种事件数,选出火炬手编号为13(1)n a a n =+-, 由1、4、7、10、13、16,可得4种, 由2、5、8、11、14、17,可得4种, 由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯.选B . 点睛:古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6.C解析:C【解析】【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。

相关文档
最新文档