2013年中考第一轮复习之平行四边形

合集下载

高考物理一轮复习课件实验验证力的平行四边形定则

高考物理一轮复习课件实验验证力的平行四边形定则

机构、凸轮机构等。通过应用平行四边形定则,可以预测和优化这些机
构的运动性能和力学性能。
02
电气工程
在电气工程中,平行四边形定则可以用于分析和计算电场和磁场中的力
。例如,在电动机或发电机的设计中,可以利用平行四边形定则来确定
线圈在磁场中所受的力,进而优化电机的性能。
03
建筑工程
在建筑工程中,平行四边形定则用于分析和设计结构的稳定性。例如,
力的分解是指将一个力矢量分解为两个或多个分力 矢量的过程,同样遵循平行四边形定则。
在实验中,可以通过测量分力的大小和方向,来验 证平行四边形定则的正确性。同时,也可以通过改 变分力的数量和方向,来探究不同情况下力的合成 与分解规律。
02
实验器材与步骤
实验器材
方木板 白纸
图钉(若干)
实验器材
橡皮条 细绳套(两个)
02
8. 改变两个力的大小和方向,重 复上述实验步骤。
操作注意事项
1. 在使用弹簧测力计时 ,要注意使弹簧测力计 与木板平面平行。
2. 在同一次实验中,橡 皮条拉长后的结点位置 O必须保持不变。
3. 细绳套应适当长一 些,便于确定力的方向 。但不要过长,以免产 生较大的误差。
4. 在实验过程中,要始 终记录力的实际大小和 方向,不要凭主观判断 来作图。
误差来源分析
实验装置误差
包括测量仪器的精度、稳定性以及装置调整不当等 引起的误差。
操作误差
由于实验操作不熟练或操作不当引起的误差,如读 数误差、记录误差等。
环境误差
实验环境如温度、湿度、气压等因素对实验结果的 影响。
减小误差的措施
选用高精度测量仪器
提高测量仪器的精度,减小仪 器误差对实验结果的影响。

2013年中考数学第一轮复习最好资料(上)

2013年中考数学第一轮复习最好资料(上)

目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲尺规作图127第4讲图形的相似130第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147基础题强化提高测试中考数学基础题强化提高测试1149中考数学基础题强化提高测试2151中考数学基础题强化提高测试3153中考数学基础题强化提高测试4155中考数学基础题强化提高测试5157中考数学基础题强化提高测试61592013年中考数学模拟试题(一)1612013年中考数学模拟试题(二)165第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( ) A .-(-2)-(-3) B .(-2)×(-3)C .(-2)2D .(-3)-3 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃. 8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1A .a <bB .|a |>|b |C .-a <-bD .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.(2012年浙江绍兴)计算:-22+-113⎛⎫ ⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭;第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________; (2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( ) A .(15+a )万人 B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B .2 n C .m +n D .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( ) A .-1 B .1 C .-5 D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( ) A .3 B .-3 C .1 D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________. 7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12C .1D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a . 其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.(2012年山东东营)若3x =4,9y=7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式 第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( ) A .x 5 B .-x 5 C .x 6 D .-x 62.(2012年四川广安)下列运算正确的是( ) A .3a -a =3 B .a 2·a 3=a 5 C .a 15÷a 3=a 5(a ≠0) D .(a 3)3=a 63.(2012年广东汕头)下列运算正确的是( ) A .a +a =a 2 B .(-a 3)2=a 5 C .3a ·a 2=a 3 D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy5.(2012年江苏杭州)下列计算正确的是( ) A .(-p 2q )3=-p 5q 3 B .(12a 2b 3c )÷(6ab 2)=2ab C .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( ) A .a 2+a 3=a 5 B .(a +b )2=a 2+b 2 C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( ) A .-10a 5 B .10a 6 C .-25a 5 D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( ) A .(x -2)2+3 B .(x +2)2-4 C .(x +2)2-5 D .(x +2)2+4 9.计算:(1)(3+1)(3-1)=____________; (2)(2012年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B级中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b210.若m2-n2=6且m-n=3,则m+n=________.B级中等题11.对于任意自然数n,(n+11)2-n2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题 19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x有意义,x 的取值范围满足( )A .x =0B .x ≠0C .x >0D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b2 (2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z=____________;x 2-9x 2-2x -3=____________.5.已知a -b a +b =15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________. B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yz z +y =34,zx z +x=-34,则xyzxy +yz +zx 的值为____________.第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( )A.12B. 4C. 3D.82.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.(-3)2=-33.若a <1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a4.(2012年广西玉林)计算:3 2-2=( ) A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A .-2- 3B .-1- 3C .-2+ 3D .1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x -2和5x +6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-410.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( )A .9B .±3C .3D .514.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 516.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩C. 5,2x y =⎧⎨=-⎩D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩B.50,610320x y x y +=⎧⎨+=⎩C.50,6320x y x y +=⎧⎨+=⎩D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组: 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C级拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时 一元二次方程A 级 基础题1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( ) A .x =2 B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=-2 2.方程x 2-4=0的根是( ) A .x =2 B .x =-2C .x 1=2,x 2=-2D .x =43.(2011年安徽)一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2C .1和2D .-1和24.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定 5.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( ) A .-2 B .2 C .3 D .1 6.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( ) A .m ≤-1 B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-148.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x 1,x 2是方程x 2+x -1=0的两个实数根,则x 21+x 22=__________. 14.(2011年江苏苏州)已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( ) A .x >2 B .x ≥2 C .x <2 D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________.6.若关于x 的不等式组2,x x m⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________.9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒(用含x 的代数式表示)? (2)该敬老院至少有多少名老人?最多有多少名老人?B 级 中等题11.(2012年湖北荆门)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%13.(2012年湖北黄石)若关于x 的不等式组233,35x x x a >-⎧⎨->⎩有实数解,则实数a 的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C级拔尖题15.试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48 000 m2和B种板材24 000 m2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2.请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房A种板材/m2B种板材/m2安置人数/人甲型1086112乙型1565110问这400间板房最多能安置多少灾民?选做题17.若关于x,y的二元一次方程组31,33x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则实数a的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台)2 420 1 980 (1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO 扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()图X3-1-3A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-714.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续九次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的图X3-1-8,坐标系中画出△ABC .设AB 与y轴的交点为D ,则S △ADOS △ABC=__________;(2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为____________.图X3-1-8C 级 拔尖题16.(2011年贵州贵阳)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭. 【运用】(1)如图X3-1-9,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.图X3-1-9。

中考数学一轮复习平行四边形知识点及练习题含答案

中考数学一轮复习平行四边形知识点及练习题含答案

中考数学一轮复习平行四边形知识点及练习题含答案一、选择题1.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=12AB;②图中与△EGD 全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④ S四边形ODGF= S△ABF.其中正确的结论是()A.①③B.①③④C.①②③D.②②④2.如图,点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③仅有当∠DAP=45°或67.5°时,△APD是等腰三角形;④∠PFE=∠BAP:⑤22PD=EC.其中有正确有()个.A.2 B.3 C.4 D.53.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).A5B21C.212+D.512+4.如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )A .4B .3C .2D .15.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.86.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=+7.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则( )A .AHE BGE ∠>∠B .AHE BGE ∠=∠C .AHE BGE ∠<∠D .AHE ∠与BGE ∠的大小关系不确定8.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为37. 其中正确的是()A.②③B.①②③④C.①③④D.②③④9.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连结EF,则线段EF的长的最小值是( )A.2.5 B.2.4 C.2.2 D.210.如图,矩形ABCD和矩形CEFG,AB=1,BC=CG=2,CE=4,点P在边GF上,点Q 在边CE上,且PF=CQ,连结AC和PQ,M,N分别是AC,PQ的中点,则MN的长为()A.3 B.6 C.372D.17二、填空题11.在平行四边形ABCD 中, BC边上的高为4 ,AB=5 ,25AC ,则平行四边形ABCD 的周长等于______________ .12.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,3AB =,2AC =,则BD 的长为_______________.14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.15.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.16.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.17.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.18.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.22.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图223.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.24.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.25.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.26.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.27.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.28.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .29.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.30.点E 在正方形ABCD 的边BC 上,点F 在AE 上,连接FB ,FD ,∠ABF=∠AFB . (1)如图1,求证:∠AFD=∠ADF ;(2)如图2,过点F 作垂线交AB 于G ,交DC 的延长线于H ,求证:DH=2 AG ; (3)在(2)的条件下,若EF=2,CH=3,求EC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12 CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DEAB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴=在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。

特殊平行四边形-中考数学第一轮总复习课件(全国通用)

特殊平行四边形-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.2 特殊平行四边形知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例1-1】如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF.求证:四边形ABFC是矩形.A EFD CB利用对角线相等的平行四边形是矩形证明方法一:利用△ABE≌△FCE证平行四边形;证法二:利用△ABE∽△FCE证平行四边形考点聚焦一个角为直角对角线相等平行四边形平行四边形直角证明四边形ABCD 是矩形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的____________;【例1-2】如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( ) A.1 B.1.5 C.2 D.4AHGECBD F C 考点聚焦对边平行且相等四角都是直角对角线互相平分且相等矩形的性质(1)边:________________;(2)角:________________;(3)对角线:______________________.1.已知□ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.如图,矩形ABCD的对角线AC=10,P,Q分别为AO,AD的中点,则PQ=_____.3.如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为____.4.如图,矩形OCDE,矩形OFGH,矩形OMNP各有一边在半⊙O的直径AB上,D,G,N都在半⊙O上,比较EC,HF,MP的大小_________.B 2.514EC=HF=EP5.如图,在矩形ABCD中,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,设点P运动的时间为t秒,则当t=_______时,△PAE是以PE为腰的等腰三角形.6.如图,将矩形ABCD绕点B顺时针旋转,得到矩形EBFG,且点E落在CD上,过点C作FG的垂线,垂足为H,若FH=HG,则BC:AB的值为_______.7.如图,在Rt△ABC中,∠BAC=90º,BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小最为_____.M2.4知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例2-1】如图,在等腰△ABC中,AD平分顶角∠BAC,交底边BC于点H,点E在AD上,BE=BD,求证:四边形BDCE是菱形.考点聚焦证明四边形ABCD 是菱形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的________________平行四边形一组邻边相等平行四边形对角线互相垂直四边相等AH E DCB利用“三线合一”得出AD 垂直平分BC,从而得出四边相等。

中考数学一轮复习特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义(含答案)

中考数学一轮复习特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义(含答案)


A.若 AB⊥ BC,则 ABCD是菱形 B.若 AC⊥ BD,则 ABCD是正方形
C.若 AC=BD,则 ABCD是矩形 D.若 AB=AD,则 ABCD是正方形
【答案】 C.
【解析】
试题分析:根据矩形的判定可得 A、C 项应是矩形;根据菱形的判定可得 B、D 项应是菱形 , 故答案选 C.
考点:矩形、菱形的判定 .
主要考查学生运用定理进行推理的能力.
【举一反三】
如图,正方形 ABCD的边长为 1 , AC、BD是对角线,将 △DCB绕点 D顺时针旋转 450 得到 △DGH,
HG交 AB于点 E ,连接 DE交 AC于点 F ,连接 FG,则下列结论:
①四边形 AEGF是菱形
②△ AED≌△ GED见解析;( 2)四边形 ABEF是菱形,理由详见解析 . 【解析】
( 2)四边形 ABEF是菱形;理由如下: ∵四边形 ABCD是平行四边形, ∴ AD∥ BC, ∴∠ DAE=∠ AEB, ∵ AE平分∠ BAD, ∴∠ BAE=∠ DAE, ∴∠ BAE=∠ AEB, ∴ BE=AB, 由( 1)得: AF=AB, ∴ BE=AF, 又∵ BE∥ AF, ∴四边形 ABEF是平行四边形,
. 对于菱形的判定,若可证出四边形为平行
四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等
.
【举一反三】
1. 如图,四边形 ABCD是菱形, AC 8 , DB 6 , DH AB 于 H,则 DH等于
A. 24 5
B . 12 5
C
.5 D .4
D
C
【答案】 A. 【解析】
【答案】证明见解析 . 【解析】
考点:正方形的判定;全等三角形的判定与性质.

第一轮复习—21多边形与平行四边形

第一轮复习—21多边形与平行四边形

多边形与平行四边形一、四边形1. 四边形有关知识⑴ n 边形的内角和为 .外角和为 .⑵ 如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .⑶ n 边形过每一个顶点的对角线有 条,n 边形的对角线有 条.2. 平面图形的镶嵌⑴ 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个_________时,就拼成一个平面图形. ⑵ 只用一种正多边形铺满地面,请你写出这样的一种正多边形____________.3.易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.二、平行四边形1.平行四边形的性质(1)平行四边形对边______,对角______;角平分线______;邻角______.(2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)(3)平行四边形的面积公式____________________.2.平行四边形的判定(1)定义法:两组对边 的四边形是平行四边形.(2)边:两组对边 的四边形是平行四边形;一组对边 的四边形是平行四边形.(3)角:两组对角 的四边形是平行四边形.(4)对角线:对角线 的四边形是平行四边形.练习题一、选择题 3.如图,ABCD中,AB =10,BC =6,E 、F 分别是AD 、DC 的中点,若EF =7,则四边形EACF 的周长是( ) A .20 B .22 C .29 D .316.如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( )A .6B .8C .9D .10二、填空题2.如图,在ABCD 中,已知AB =9㎝,AD =6㎝,BE 平分∠ABC 交DC 边于点E ,则DE 等于 ㎝.3.如图,E 、F 分别是 ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD 15=2cm ,S △BQC 25=2cm ,则阴影部分的面积为BE A B D C EF_________2cm 。

中考数学一轮复习平行四边形(讲义及答案)含答案

中考数学一轮复习平行四边形(讲义及答案)含答案

中考数学一轮复习平行四边形(讲义及答案)含答案一、解答题1.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).2.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.3.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.4.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)5.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.6.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.8.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.9.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:AG AE=(2)过点F作FP AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF 是矩形;②2【分析】(1)证明△FCG ≌△EDG (ASA ),得到FG=EG 即可得到结论;(2)①当AE=3.5时,平行四边形CEDF 是矩形.过A 作AM ⊥BC 于M ,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM ,证明△MBA ≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF 是矩形;②根据四边形CEDFCEDF 是菱形,得到CD ⊥EF ,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DG CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ △FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.2.(1)见详解;(2)四边形ADCF 是矩形;证明见详解.【分析】(1)可证△AFE ≌△DBE ,得出AF=BD ,进而根据AF=DC ,得出D 是BC 中点的结论; (2)若AB=AC ,则△ABC 是等腰三角形,根据等腰三角形三线合一的性质知AD ⊥BC ;而AF 与DC 平行且相等,故四边形ADCF 是平行四边形,又AD ⊥BC ,则四边形ADCF 是矩形.【详解】(1)证明:∵E 是AD 的中点,∴AE=DE .∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE .在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ).∴AF=BD .∵AF=DC ,∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:∵AF=DC ,AF ∥DC ,∴四边形ADCF 是平行四边形.∵AB=AC ,BD=DC ,∴AD ⊥BC 即∠ADC=90°.∴平行四边形ADCF 是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.3.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案.【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,∴ADE FEM ∠=∠;(2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形,∴AD AB = ,∵,N E 分别为,AD AB 中点 ∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE == 又∵90A ∠=︒∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒,又∵90CBM ∠=︒,BF 平分CBM ∠∴45,135CBF EBF ∠=︒∠=︒.∴DNE EBF ∠=∠在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF =(3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =,∴AN AE =,∴AEN △为等腰直角三角形,∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒,∵BF 平分CBM ∠, AN AE =,∴9045135EBF ∠=︒+︒=︒,∴DNE EBF ∠=∠,在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌,∴DE EF =.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .4.【发现与证明..】结论1:见解析,结论2:见解析;【应用与探究】AC 2或2. 【分析】【发现与证明..】由平行四边形的性质得出∠EAC=∠ACB ,由翻折的性质得出∠ACB=∠ACB ′,证出∠EAC=∠ACB ′,得出AE=CE ;得出DE=B ′E ,证出∠CB′D=∠B′DA=12(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=2.【详解】【发现与证明..】:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=12(180°−∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;【应用与探究】:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=222BC ;②如图2所示:AC=BC=2;综上所述:AC2或2.【点睛】本题考查平行四边形的性质, 正方形的性质, 翻折变换(折叠问题).【发现与证明..】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论2:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明..】的关键是根据已知条件找到对应角之间的关系. 【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA 和AB’共线和BC 和B’C 两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.5.(1)9或5;(2)①见解析,②见解析【分析】(1)分两种情况:①如图1-1,得出正方形ABCD 的边长为3,求出正方形ABCD 的面积为9;②如图1-2,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,证明△ABE ≌△BCF (AAS ),得出AE=BF=2由勾股定理求出AB=225AE BE +=,即可得出答案;(2)①过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,证明△ABE ≌△BCF (AAS ),得出AE=BF ,同理△CDM ≌△BCF (AAS ),得出△ABE ≌△CDM (AAS ),得出BE=DM 即可; ②由①得出AE=BF=h 2+h 3=h 2+h 1,得出正方形ABCD 的面积S=AB 2=AE 2+BE 2,即可得到答案.【详解】解:(1)①如图,当点B D ,分别在14,l l 上时,面积为:339⨯=;②如图,当点B D ,分别在23,l l 上时,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF=2,∴AB=2222215AE BE +=+=,∴正方形ABCD 的面积=AB 2=5;综上所述,正方形ABCD 的面积为9或5;(2)①证明:过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,如图所示:则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中,90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF ,同理△CDM ≌△BCF (AAS ),∴△ABE ≌△CDM (AAS ),∴BE=DM ,即h 1=h 3.②解:由①得:AE=BF=h 2+h 3=h 2+h 1,∵正方形ABCD 的面积:S=AB 2=AE 2+BE 2,∴S=(h 2+h 1)2+h 12=2h 12+2h 1h 2+h 22.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.(1)15,8;(2)PE PF CG +=,见解析;(3)534)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出2253AM AB BM =-=,得出ABC ∆的面积12532BC AM =⨯=,由ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2532222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++=,即可得出答案; (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥,∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒,∴2222534DC DF FC =-=-=,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD 是正方形,再根据已知条件证明△BCF ≌△DCE ,即可得到四边形AECF 的面积=正方形ABCD 的面积;(2) 延长BG 交AD 于点M ,作AN ⊥MN ,连接FG ,先证明四边形BCEM 是平行四边形,得到BM=CE ,证明△BCF ≌△GCF ,得到BF=GF ,∠FGC=∠FBC=90︒,由AN ⊥MN ,得GM=2MN ,根据∠BAC=45︒,BC ∥AD 得到AM=BF ,再证△BFH ≌△AMN,得到GM=2FH , 由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)见解析;(2)AE =33)(3)122AG AF =,理由见解析. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x 3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND 是Rt △∵△ABC 是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x则AE=2x 3x易得△GBE 是等腰直角三角形∴BG=EG 3x∴AB=BC=31)x易得∠DHF=30°∴HD=2DF=3,HF=3∴BF=BH+HF=233∵Rt △AMC ≌Rt △AND(HL)∴易得3∴BC=BF-CF=233333=+∴(31)33x =∴3x =∴AE =223x=(3)12AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD = ∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF =∴12AF∴122AG AF = 【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.9.(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形的性质证得BG=DE ,利用SAS 可证明ABG ≌ADE ,再利用全等的性质即可得到结论;(2)过M 作MK ⊥BC 于K ,延长EF 交AB 于T ,根据ASA 可证明MHK △≌AED ,得到AE=MH ,再利用AAS 证明TNF △≌DAE △,得到NF=AE ,从而证得MH=NF ,即可得到结论.【详解】证明:(1)∵四边形ABCD 与四边形CEFG 均为正方形,∴AB=AD=BC=CD ,CG=CE ,∠ABG=∠ADE=90°,∴BC -GC=CD -EC ,即BG=DE ,∴ABG ≌ADE ,∴AG=AE ;(2)过M 作MK ⊥BC 于K ,则四边形MKCD 为矩形,∴∠MKH=∠ADE=90°,MK=CD ,∠AMK=90°,∴MK=AD ,∠AMP+∠HMK=90°,又∵FP AE ,∴∠EAD+∠AMP=90°,∴∠HMK=∠EAD ,∴MHK △≌AED ,∴MH=AE ,延长EF 交AB 于T ,则四边形TBGF 为矩形,∴FT=BG ,∠FTN=∠ADE=90°,∵ABG ≌ADE ,∴DE=BG ,∴FT=DE ,∵FP ⊥AE ,∠DAB=90°,∴∠N+∠NAP=∠DAE+∠NAP=90°,∴∠N=∠DAE ,∴TNF △≌DAE △,∴FN=AE ,∴FN=MH ,∴FN-FH=MH-FH,∴NH=FM.【点睛】本题考查了正方形的性质,矩形的判定与性质,及全等三角形的判定与性质,熟练掌握各性质、判定定理是解题的关键.10.(1)14;(2)mbAGa;(3)53【分析】(1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;(2)如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到14mb=14AG•a,于是得到结论;(3)如图③,同理:过O作QM⊥AB,PN⊥AD,先根据平行四边形面积可得OM和ON 的比,同理可得S△BOE=S△AOG,根据面积公式可计算AG的长.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴OA=OC,∠OAG=∠EBO=45°,∠AOB=90°,∵EF⊥GH,∴∠EOG=90°,∴∠BOE=∠AOG(SAS),∴△BOE≌△AOG,∴S△BOE=S△AOG,又∵S△AOB=14S四边形ABCD,∴S四边形AEOG=14S正方形ABCD,故答案为:14.(2)解:如图②,过O作OM⊥AB于M,ON⊥AD于N,∴S△AOB=S△AOD=14S矩形ABCD,∵S四边形AEOG=14S矩形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=14mb,S△AOG=12AG•ON=14AG•a,∴mb=AG•a,∴AG=mba;(3)如图③,过O作OM⊥AB于M,ON⊥AD于N,∵S△AOB=S△AOD=14S▱ABCD,S四边形AEOG=14S▱ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=12OM,S△AOG=12AG•ON,∴OM=AG•ON,∵S▱ABCD=3×2OM=5×2 ON,∴53 OMON,∴AG=53;【点睛】本题是四边形综合题,考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S△BOE=S△AOG是解决问题的关键.。

中考数学一轮复习 四边形与平行四边形

中考数学一轮复习 四边形与平行四边形

FH PACBED考数学复习二十——四边形与平行四边形一、中考要求:1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念;掌握多边形的内角和定理与外角和定理;了解n 边形的对角线的条数公式。

2.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

3.掌握平行四边形的定义、性质和判定方法(从边、角、对角线三个方面);知道平行四边形是中心对称图形,具备不稳定性,4.会用平行四边形的性质与判定解决简单的问题。

二、知识要点:1.一般地,由n 条不在同一直线上的线段 连结组成的平面图形称为n 边形,又称为多边形。

2.如果多边形的各边都 ,各内角也都 ,则称这个多边形为正多边形。

3.连结多边形不相邻的两个顶点的线段叫做多边形的 。

4.n 边形的内角和为 。

正n 边形的一个内角是 。

5.任意多边形的外角和为 。

正n 边形的一个外角是 。

6.从n 边形的一个顶点可引 条对角线,n 边形一共有 条对角线。

7.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个 角时,这几个多边形就能拼成一个平面图形。

两种图形的平面镶嵌:正三角形可以与边长相等的 镶嵌。

8.平行四边形的定义两组对边分别 的四边形叫做平行四边形。

9.平行四边形的性质(1)边: (2)角: (3)对角线: (4)对称性:10.两条平行线间的距离: 11.平行四边形的识别从边考虑⎪⎩⎪⎨⎧ ⎪⎭⎪⎬⎫ 是平行四边形。

从角考虑: (4)两组对角 的四边形是平行四边形。

说说此判定的证明方法:从对角线考虑(5)对角线 的四边形是平行四边形。

三、典例剖析:例1.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG . 求证:四边形GEHF 是平行四边形.例2.如图,在平行四边形ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于点M 、N . 给出下列 结论:①△ABM ≌△CDN ;②AM =31AC ;③DN =2NF ; ④S △AMB =21S △ABC .其中正确的结论是 (只填序号).例3.已知四边形ABCD 的对角线AC 与BD 交于点O ,给出下列四个论断 ① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题: ①构造一个真命题...: ; ②构造一个假命题...: , 举反例加以说明 . 例4.如图,在△ABC 中,AB =AC =5,BC =6,动点P 从点A 出发沿AB 向点B 移动,(点P 与点A 、B 不重合),作PD //BC 交AC 于点D ,在DC 上取点E ,以DE 、DP 为邻边作平行四边形PFED ,使点F 到PD 的距离16FH PD =,连接BF ,设AP x =(1)△ABC 的面积等于NMFEDBA(1)两组对边 的四边形 (2)两组对边 的四边形 (3)一组对边 且 的四边形(2)设△PBF 的面积为y ,求y 与x 的函数关系,并求y 的最大值;(3)当BP =BF 时,求x 的值随堂演练:1.图中是一个五角星图案,中间部分的五边形ABCDE 是一个正五边形, 则图中∠ABC 的度数是 .2.如果只用一种正多边形进行镶嵌,那么在下列的正多边形中, 不能镶嵌成一个平面的是( ).A .正三角形B .正方形C .正五边形D .正六边形 3.一个多边形内角和是,则这个多边形是( ) A .六边形B .七边形C .八边形D .九边形4.在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为( ) A .2B .35C .53D .155.边长为的正六边形的面积等于( ) A .B .C .D .6.如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为7.下列四种边长均为a 的正多边形中,能与边长为a 的正三角形作平面镶嵌的正多边形有1080a 243a 2a 2233a 233a A BCDEABCDOED D 1D 2 AA 1 A 2 A 3 A 4B 1B 2 CC 2 13 4 B()①正方形②正五边形③正六边形④正八边形A.4种B.3种C.2种D.1种8.如图,在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.9.如图,在平行四边形ABCD中,DB=DC、65=∠A,CE⊥BD于E,则=∠BCE.10. 如图是对称中心为点的正八边形.如果用一个含角的直角三角板的角,借助点(使角的顶点落在点处)把这个正八边形的面积等分.那么的所有可能的值有()A.2个B.3个C.4个D.5个11. 问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:四边形DBFE的面积S=,△EFC的面积1S=,△ADE的面积2S=.探究发现(2)在(1)中,若BF a=,FC b=,DE与BC间的距离为h.请证明2124S S S=.拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用..(2.)中的结论....求△ABC的面积.O45O O nnB CD GFE图2AB CDFE图1A36214.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.图1中考数学复习作业二十1.如图下面对图形的判断正确的是( )A .非对称图形B .既是轴对称图形,又是中心对称图形C .是轴对称图形,非中心对称图形D .是中心对称图形,非轴对称图形 2.如图所示,顺次连接矩形ABCD 各边中点,得到菱形EFGH , 这个由矩形和菱形所组成的图形( ) A .是轴对称图形但不是中心对称图形 B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性3.只用下列正多边形地砖中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形4.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有 ( )A .3种B .4种C .5种D .6种5.平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线把长边分成两条线段之比是( )A .3:2B .3:1C .4:2D .4:16.如果平行四边形的一条边长是4,一条对角线长是10,那么它的另一条对角线的长m 的取值范围是( )A .6<m <14B .1<m <9C .3<m <7D .2<m <18 7.三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使 点C 落在ABC 内(如图),若∠1=20°,则∠2的度数为。

中考一轮复习 数学专题13 平行四边形与特殊平行四边形(学生版)

中考一轮复习 数学专题13 平行四边形与特殊平行四边形(学生版)

专题13 平行四边形与特殊的平行四边形一、单选题1.(2022·贵州贵阳)如图,将菱形纸片沿着线段AB 剪成两个全等的图形,则1∠的度数是( )A .40°B .60°C .80°D .100°2.(2022·广东)如图,在ABCD 中,一定正确的是( )A .AD CD =B .AC BD = C .AB CD = D .CD BC =3.(2021·广西柳州)如图,在菱形ABCD 中,对角线8,10AC BD ==,则AOD △的面积为( )A .9B .10C .11D .124.(2020·湖北)已知ABCD 中,下列条件:①AB BC =;①AC BD =;①AC BD ⊥;①AC 平分BAD ∠,其中能说明ABCD 是矩形的是( )A .①B .①C .①D .①5.(2020·贵州黔南)如图,将矩形纸条ABCD 折叠,折痕为EF ,折叠后点C ,D 分别落在点C ',D '处,D E '与BF 交于点G .已知30BGD '∠=︒,则α∠的度数是( )A .30°B .45°C .74°D .75°6.(2020·湖南益阳)如图,ABCD 的对角线AC ,BD 交于点O ,若6AC =,8BD =,则AB 的长可能是( )A .10B .8C .7D .67.(2020·广西玉林)点D ,E 分别是三角形ABC 的边AB ,AC 的中点,如图,求证://DE BC 且12DE BC = 证明:延长DE 到F ,使EF =DE ,连接FC ,DC ,AF ,又AE =EC ,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程;①//DF BC =∴; ①//,//CF AD CF BD ==; ①四边形DBCF 是平行四边形;①//,DE BC ∴且12DE BC ∴=则正确的证明排序应是:( )A .①→①→①→①B .①→①→①→①C .①→①→①→①D .①→①→①→①8.(2021·山东德州)下列选项中能使平行四边形ABCD 成为菱形的是( )A .AB =CD B .AB =BC C .①BAD =90° D . AC =BD9.(2021·四川德阳)如图,在菱形ABC D 中,对角线AC ,BD 相交于点O ,点E 是C D 中点,连接OE ,则下列结论中不一定正确的是( )A .AB =AD B .OE 12=ABC .①DOE =①DEOD .①EOD =①EDO10.(2022·河南)如图,在菱形ABC D 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为( )A .6B .12C .24D .4811.(2022·辽宁)如图,在矩形ABCD 中,6,8AB BC ==,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ,作直线MN 分别交,AD BC 于点E ,F ,则AE 的长为( )A.74B.94C.154D.25412.(2022·甘肃兰州)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,60ABC∠=︒,BD=OE=()A.4B.C.2D13.(2022·广东广州)如图,正方形ABCD的面积为3,点E在边CD上,且CE = 1,①ABE的平分线交AD于点F,点M,N分别是BE,BF的中点,则MN的长为()A BC.2D14.(2022·海南)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若:1:2,BF CE EF ==ABCD 的边长是( )A .3B .4C .5D 15.(2022·江苏无锡)如图,在ABC D 中,AD BD =,105ADC ∠=,点E 在AD 上,60EBA ∠=,则ED CD的值是( )A .23 B .12 C D 16.(2022·四川宜宾)如图,在矩形纸片ABC D 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .81517.(2022·湖北随州)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABC D 中,BD 为对角线,E ,F 分别为BC ,CD 的中点,AP EF ⊥分别交BD ,EF 于O ,P 两点,M ,N 分别为BO ,DC 的中点,连接AP ,NF ,沿图中实线剪开即可得到一副七巧板,则在剪开之前,关于该图形,下列说法:①图中的三角形都是等腰直角三角形;①四边形MPEB 是菱形;①四边形PFDM 的面积占正方形ABCD 面积的14.正确的有( )A .只有①B .①①C .①①D .①①18.(2021·四川绵阳)如图,在边长为3的正方形ABCD 中,30∠=︒CDE ,DE CF ⊥,则BF 的长是( )A .1 BC D .219.(2021·辽宁朝阳)如图,在菱形ABC D 中,点E ,F 分别在AB ,CD 上,且BE =2AE ,DF =2CF ,点G ,H 分别是AC 的三等分点,则S 四边形EHFG ÷S 菱形ABCD 的值为( )A .19B .16C .13D .2920.(2020·辽宁锦州)如图,在菱形ABC D 中,P 是对角线AC 上一动点,过点P 作PE ①BC 于点E ,PF ①AB 于点F .若菱形ABCD 的周长为20,面积为24,则PE +PF 的值为( )A .4B .245C .6D .48521.(2020·广西河池)如图,在▱ABC D 中,CE 平分①BCD ,交AB 于点E ,EA =3,EB =5,ED =4.则CE 的长是( )A .B .C .D .22.(2020·江苏南通)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1cm/s .现P ,Q 两点同时出发,设运动时间为x (s ),①BPQ 的面积为y (cm 2),若y 与x 的对应关系如图①所示,则矩形ABCD 的面积是( )A .96cm 2B .84cm 2C .72cm 2D .56cm 2 本本本本本本@本本@本本本本本 23.(2020·山东威海)七巧板是大家熟悉的一种益智玩具,用七巧板能拼出许多有趣的图案.小李将块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图①),已知40AB cm ,则图中阴影部分的面积为( )A .225cmB .21003cmC .250cmD .275cm24.(2020·湖南益阳)如图,在矩形ABCD 中,E 是CD 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=B .45BAC ∠= C .12EF FB =D .AD AB =25.(2020·云南)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 是CD 的中点,则DEO 与BCD △的面积的比等于( )A .12 B .14 C .16 D .1826.(2020·贵州毕节)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,连接EF ,若6AB cm =,8BC cm =,则EF 的长是( )A .2.2cmB .2.3cmC .2.4cmD .2.5cm27.(2020·广东广州)如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题28.(2022·广东广州)如图,在□ABC D 中,AD =10,对角线AC 与BD 相交于点O ,AC +BD =22,则△BOC 的周长为________29.(2022·青海)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____. *@本#号资料皆来源于微信:数学30.(2021·贵州黔东南)如图,BD 是菱形ABCD 的一条对角线,点E 在BC 的延长线上,若32ADB ∠=︒,则DCE ∠的度数为_________度.31.(2021·湖南益阳)如图,已知四边形ABCD 是平行四边形,从①AB AD =,①AC BD =,①ABC ADC ∠=∠中选择一个作为条件,补充后使四边形ABCD 成为菱形,则其选择是___(限填序号).32.(2020·辽宁营口)如图,在菱形ABC D 中,对角线AC ,BD 交于点O ,其中OA =1,OB =2,则菱形ABCD 的面积为_____.33.(2020·江苏镇江)如图,点P 是正方形ABCD 内位于对角线AC 下方的一点,①1=①2,则①BPC 的度数为_____°.34.(2020·青海)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知120BOC ∠=︒,3cm DC =,则AC 的长为________cm .35.(2020·广东)如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.36.(2020·四川凉山)如图,ABCD ◊的对角线AC 、BD 相交于点O ,//OE AB 交AD 于点E ,若OA =1,AOE ∆的周长等于5,则ABCD ◊的周长等于__________.37.(2021·辽宁鞍山)如图,矩形ABC D 中,3AB =,对角线AC ,BD 交于点O ,DH AC ⊥,垂足为点H ,若2ADH CDH ∠=∠,则AD 的长为_______________. 本号资料皆来源于微@信:数学**38.(2021·山东东营)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.39.(2021·湖南株洲)如图所示,线段BC 为等腰ABC 的底边,矩形ADBE 的对角线AB 与DE 交于点O ,若2OD =,则AC =__________.40.(2021·湖南邵阳)如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______. 本号资料皆来源于微信#:##数学41.(2021·江苏连云港)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.42.(2022·吉林)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且14AF AC =,连接EF .若10AC =,则EF =__________.43.(2022·广西贺州)如图,在矩形ABC D 中,86AB BC ==,,E ,F 分别是AD ,AB 的中点,ADC ∠的平分线交AB 于点G ,点P 是线段DG 上的一个动点,则PEF 的周长最小值为__________.44.(2022·辽宁辽宁)如图,CD 是①ABC 的角平分线,过点D 分别作AC ,BC 的平行线,交BC 于点E ,交AC 于点F .若①ACB =60°,CD =CEDF 的周长是_______.45.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ①ON 交AB 于点M ,连接MN ,则tan①AMN =_____.46.(2022·黑龙江哈尔滨)如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 在OB 上,连接AE ,点F 为CD 的中点,连接OF ,若AE BE =,3OE =,4OA =,则线段OF 的长为___________.47.(2022·江苏无锡)如图,正方形ABCD 的边长为8,点E 是CD 的中点,HG 垂直平分AE 且分别交AE 、BC 于点H 、G ,则BG =________.48.(2021·四川内江)如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 __.49.(2021·辽宁锦州)如图,在矩形ABC D 中,AB =6,BC =10,以点B 为圆心、BC 的长为半径画弧交AD 于点E ,再分别以点C ,E 为圆心、大于12CE 的长为半径画弧,两弧交于点F ,作射线BF 交CD 于点G ,则CG 的长为__________________.50.(2021·黑龙江哈尔滨)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BC ⊥,垂足为点E ,过点A 作AF OB ⊥,垂足为点F .若2BC AF =,6OD =,则BE 的长为_____.51.(2020·山东济南)如图,在矩形纸片ABC D 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=_____.52.(2020·辽宁大连)如图,矩形ABCD 中,6,8AB AD ==,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为_____.53.(2020·四川凉山)如图,矩形ABC D 中,AD =12,AB =8,E 是AB 上一点,且EB =3,F 是BC 上一动点,若将EBF ∆沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距为 .54.(2020·广东广州)如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.三、解答题55.(2022·湖南)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 是CD 的中点,连接OE ,过点C 作CF BD ∥交OE 的延长线于点F ,连接DF .(1)求证:ΔΔODE FCE ≅;(2)试判断四边形ODFC 的形状,并写出证明过程.56.(2022·湖北恩施)如图,已知四边形ABCD 是正方形,G 为线段AD 上任意一点,CE BG ⊥于点E ,DF CE ⊥于点F .求证:DF BE EF =+.57.(2022·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1,ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中面出ADC,使ADC与ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4.连接DH,请直接写出线段DH的长.58.(2022·山东青岛)如图,在四边形ABC D中,AB①CD,点E,F在对角线BD上,BE=EF=FD,①BAF=①DCE=90°.(1)求证:△ABF①△CDE;(2)连接AE,CF,已知__________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF 的形状,并证明你的结论.条件①:①ABD=30°;条件2:AB=B C.(注:如果选择条件①条件①分别进行解答,按第一个解答计分)59.(2021·江苏徐州)如图,将一张长方形纸片ABCD 沿E 折叠,使,C A 两点重合.点D 落在点G 处.已知=4AB ,8BC =.(1)求证:AEF ∆是等腰三角形;(2)求线段FD 的长.60.(2021·贵州安顺)如图,在矩形ABCD 中,点M 在DC 上,AM AB =,且BN AM ⊥,垂足为N .(1)求证:ABN MAD ≌;(2)若2,4AD AN ==,求四边形BCMN 的面积.61.(2020·广西)如图,在菱形ABC D 中,点E ,F 分别是边AD ,AB 的中点. (1)求证:ABE ADF ≌;(2)若BE①C =60°,求菱形ABCD 的面积.62.(2020·湖南娄底)如图,ABCD 中,2BC AB =,AB AC ⊥,分别在边BC 、AD 上的点E 与点F 关于AC 对称,连接EF 、AE 、CF 、DE .(1)试判定四边形AECF 的形状,并说明理由;(2)求证:AE DE ⊥63(2022·湖南永州)如图,BD是平行四边形ABCD的对角线,BF平分DBC∠,交CD于点F.(1)请用尺规作ADB∠的角平分线DE,交AB于点E(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形DEBF为平行四边形,请将下面的证明过程补充完整.证明:①四边形ABCD是平行四边形,①AD BC∥①ADB∠=∠______(两直线平行,内错角相等)又①DE平分ADB∠,BF平分DBC∠,①12EDB ADB∠=∠,12DBF DBC∠=∠①EDB DBF∠=∠①DE∥______(______)(填推理的依据)又①四边形ABCD是平行四边形①BE DF∥①四边形DEBF为平行四边形(______)(填推理的依据).64.(2022·贵州贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.65.(2022·湖南永州)为提高耕地灌溉效率,小明的爸妈准备在耕地A 、B 、C 、D 四个位置安装四个自动喷酒装置(如图1所示),A 、B 、C 、D 四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管).方案一:如图2所示,沿正方形ABCD 的三边铺设水管;方案二:如图3所示,沿正方形ABCD 的两条对角线铺设水管.(1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;(2)小明看了爸妈的方案后,根据“蜂集原理”重新设计了一个方案(如图4所示),满足120AEB CFD =∠∠=°,AE BE CF DF ===,EF AD ∥、请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由. 1.4≈ 1.7≈)66.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F .求证AE EF =.(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件: ;(2)如图1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF =;(3)在(2)的条件下,连接AC ,过点E 作EP ⊥AC ,垂足为P .设=BE k BC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.67.(2022·四川成都)如图,在矩形ABCD 中,()1AD nAB n =>,点E 是AD 边上一动点(点E 不与A ,D 重合),连接BE ,以BE 为边在直线BE 的右侧作矩形EBFG ,使得矩形EBFG ∽矩形ABCD ,EG 交直线CD 于点H .(1)【尝试初探】在点E 的运动过程中,ABE △与DEH △始终保持相似关系,请说明理由.(2)【深入探究】若2n =,随着E 点位置的变化,H 点的位置随之发生变化,当H 是线段CD 中点时,求tan ABE ∠的值.(3)【拓展延伸】连接BH ,FH ,当BFH △是以FH 为腰的等腰三角形时,求tan ABE ∠的值(用含n 的代数式表示).68.(2022·内蒙古赤峰)同学们还记得吗?图①、图①是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:(1)【问题一】如图①,正方形ABCD 的对角线相交于点O ,点O 又是正方形111A B C O 的一个顶点,1OA 交AB 于点E ,1OC 交BC 于点F ,则AE 与BF 的数量关系为_________;(2)【问题二】受图①启发,兴趣小组画出了图①:直线m 、n 经过正方形ABCD 的对称中心O ,直线m 分别与AD 、BC 交于点E 、F ,直线n 分别与AB 、CD 交于点G 、H ,且m n ⊥,若正方形ABCD 边长为8,求四边形OEAG 的面积;(3)【问题三】受图①启发,兴趣小组画出了图①:正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,顶点E 在BC 的延长线上,且6BC =,2CE =.在直线BE 上是否存在点P ,使APF 为直角三角形?若存在,求出BP 的长度;若不存在,说明理由.69.(2022·广西玉林)如图,在矩形ABCD 中,8,4AB AD ==,点E 是DC 边上的任一点(不包括端点D ,C ),过点A 作AF AE ⊥交CB 的延长线于点F ,设DE a =.(1)求BF 的长(用含a 的代数式表示);(2)连接EF 交AB 于点G ,连接GC ,当//GC AE 时,求证:四边形AGCE 是菱形.70.(2022·山东威海)如图:(1)将两张长为8,宽为4的矩形纸片如图1叠放. #本号资料皆来源于微信:数学①判断四边形AGCH的形状,并说明理由;②求四边形AGCH的面积.(2)如图2,在矩形ABCD和矩形AFCE中,AB=BC=7,CF AGCH的面积.71.(2022·河南)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,①MBQ=______°,①CBQ=______°;①改变点P在AD上的位置(点P不与点A,D重合),如图3,判断①MBQ与①CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.72(2021·山东德州)如图,点E,F分别在正方形ABCD的边AB,AD上,且AE DF=,点G,H分别在边AB,BC上,且FG EH⊥,垂足为P.(1)求证:FG EH=;(2)若正方形ABCD边长为5,2AE=,3tan4AGF∠=,求PF的长度.73.(2021·青海西宁)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,BOC CEB ≅△△.(1)求证:四边形OBEC 是矩形;(2)若120ABC ∠=︒,6AB =,求矩形OBEC 的周长.74.(2021·四川德阳)如图,点E 是矩形ABCD 的边BC 上一点,将①ABE 绕点A 逆时针旋转至①AB 1E 1的位置,此时E 、B 1、E 1三点恰好共线.点M 、N 分别是AE 和AE 1的中点,连接MN 、NB 1.(1)求证:四边形MEB 1N 是平行四边形;(2)延长EE 1交AD 于点F ,若EB 1=E 1F ,11AE F CB E SS =,判断①AE 1F 与①CB 1E 是否全等,并说明理由.75.(2021·山东菏泽)在矩形ABCD中,BC=,点E,F分别是边AD、BC上的动点,且AE CF=,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.(1)如图1,当EH与线段BC交于点P时,求证:PE PF=;(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;AB=时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.(3)当576.(2021·青海)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作︒︒︒等大小的角,可以采用如下方法:60,30,15操作感知:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图13-1).第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图13-2).猜想论证:(1)若延长MN 交BC 于点P ,如图13-3所示,试判定BMP 的形状,并证明你的结论.拓展探究:(2)在图13-3中,若AB a BC b ==,,当a b ,满足什么关系时,才能在矩形纸片ABCD 中剪出符(1)中的等边三角形BMP ?77.(2020·山东日照)如图,Rt △AB C 中,①C =90°,以AB 为边在AB 上方作正方形ABDE ,过点D 作DF ①CB ,交CB 的延长线于点F ,连接BE .(1)求证:△ABC ①①BDF ;# 本号资料皆来源#于微信:数学*(2)P ,N 分别为AC ,BE 上的动点,连接AN ,PN ,若DF =5,AC =9,求AN +PN 的最小值.78.(2020·云南昆明)如图1,在矩形ABC D中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF 上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当①AMD是等腰三角形时,求AP的长.79(2020·吉林)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中5AD AG==,9AB=.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图①,则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图①若4sin5BAD∠=,则四边形DCFG的面积为______.。

2013-2022北京中考真题数学汇编:平行四边形

2013-2022北京中考真题数学汇编:平行四边形

2013-2022北京中考真题数学汇编平行四边形一、单选题1.(2015·北京·中考真题)如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km ,则M 、C 两点间的距离为( )A .0.5kmB .0.6kmC .0.9kmD .1.2km二、填空题 2.(2021·北京·中考真题)如图,在矩形ABCD 中,点,E F 分别在,BC AD 上,AF EC .只需添加一个条件即可证明四边形AECF 是菱形,这个条件可以是______________(写出一个即可).3.(2019·北京·中考真题)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.4.(2019·北京·中考真题)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是______.5.(2013·北京·中考真题)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若5AB =,12AD =,则四边形ABOM 的周长为_______.三、解答题6.(2022·北京·中考真题)如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.7.(2022·北京·中考真题)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.8.(2020·北京·中考真题)在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.9.(2020·北京·中考真题)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF .(1)求证:四边形OEFG 是矩形;(2)若AD =10,EF =4,求OE 和BG 的长.10.(2018·北京·中考真题)如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH .(1)求证:GF=GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.11.(2018·北京·中考真题)如图,在四边形ABCD中,AB//DC,AB AD=,对角线AC,BD交于点O,AC平分⊥交AB的延长线于点E,连接OE.BAD∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若AB=2BD=,求OE的长.12.(2018·北京·中考真题)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l (____________)(填推理的依据).13.(2017·北京·中考真题)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -(____________+____________).易知,S △ADC =S △ABC ,_____________=______________,______________=_____________.可得S 矩形NFGD = S 矩形EBMF .14.(2017·北京·中考真题)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.15.(2016·北京·中考真题)如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA=DE .16.(2016·北京·中考真题)如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.17.(2015·北京·中考真题)在ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .18.(2014·北京·中考真题)在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE ,DE ,其中DE 交直线AP 于点F .(1)依题意补全图1.(2)若20PAB ∠=︒,求ADF ∠的度数.(3)如图2,若4590PAB ︒<∠<∠︒,用等式表示线段AB ,FE ,FD 之间的数量关系,并证明.19.(2013·北京·中考真题)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连结DE,2CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.参考答案1.D【分析】根据直角三角形斜边上的中线等于斜边的一半即可求得.【详解】解:根据题意可得,AM =1.2,∵M 为中点,∴AB =2AM =2.4,∴CM =1 1.22AB = 故选:D .【点睛】题目主要考查直角三角形斜边上的中线的性质,理解题意,熟练掌握运用这个性质是解题关键. 2.AF AE =(答案不唯一)【分析】由题意易得四边形AECF 是平行四边形,然后根据菱形的判定定理可进行求解.【详解】解:∵四边形ABCD 是矩形,∴//AD BC ,∵AF EC =,∴四边形AECF 是平行四边形,若要添加一个条件使其为菱形,则可添加AF AE =或AE =CE 或CE =CF 或AF =CF ,理由:一组邻边相等的平行四边形是菱形;故答案为AF AE =(答案不唯一).【点睛】本题主要考查菱形的判定定理、矩形的性质及平行四边形的判定,熟练掌握菱形的判定定理、矩形的性质及平行四边形的判定是解题的关键.3.12【分析】由菱形的性质得出OA =OC ,OB =OD ,AC ⊥BD ,设OA =x ,OB =y ,由题意得:51x y x y +=⎧⎨-=⎩,解得:32x y =⎧⎨=⎩,得出AC =2OA =6,BD =2OB =4,即可得出菱形的面积. 【详解】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:51x yx y+=⎧⎨-=⎩,解得:32xy=⎧⎨=⎩,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=116412 22⨯=⨯⨯=AC BD;故答案为12.【点睛】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.4.①②③【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,∴OA=OB=OC=OD,AB∥CD,AD∥BC,∴∠OBM=∠ODP,∠OAQ=∠OCN,过点O的直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,∴∠BOM=∠DOP,∠AOQ=∠CON,所以△BOM≌△DOP(ASA),△AOQ≌△CON(ASA),所以OM=OP,OQ=ON,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM =QN 时,四边形MNPQ 是矩形,故存在无数个四边形MNPQ 是矩形;故正确;③如图,当PM ⊥QN 时,存在无数个四边形MNPQ 是菱形;故正确;④当四边形MNPQ 是正方形时,MQ =PQ ,则△AMQ ≌△DQP ,∴AM =QD ,AQ =PD ,∵PD =BM ,∴AB =AD ,∴四边形ABCD 是正方形,当四边形ABCD 为正方形时,四边形MNPQ 是正方形,故错误;故正确结论的序号是①②③.故答案为:①②③.【点睛】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.5.20【分析】先由5AB =,12AD =得到13AC =,然后结合矩形的性质得到 6.5OB =,再结合点O 和点M 分别是AC 和AD 的中点得到OM 和AM 的长,最后得到四边形ABOM 的周长.【详解】解:5AB =,5CD ∴=,12AD =∵,90D ∠=︒,13AC ∴=,点O 和点M 分别是AC 和AD 的中点,6.5OB ∴=,162AM AD ==,OM 是ACD ∆的中位线, 1 2.52OM CD ∴==, 5 6.5 2.5620ABOM C AB BO OM MA ∴=+++=+++=四边形.故答案为:20.【点睛】本题考查了矩形的性质、三角形的中位线定理,解题的关键是熟知矩形的性质.6.(1)见解析(2)见解析【分析】(1)先根据四边形ABCD 为平行四边形,得出AO CO =,BO DO =,再根据AE CF =,得出EO FO =,即可证明结论;(2)先证明DCA DAC ∠=∠,得出DA DC =,证明四边形ABCD 为菱形,得出AC BD ⊥,即可证明结论. (1)证明:∵四边形ABCD 为平行四边形,∴AO CO =,BO DO =,∵AE CF =,∴AO AE CO CF -=-,即EO FO =,∴四边形EBFD 是平行四边形.(2)∵四边形ABCD 为平行四边形,∴AB CD ∥,∴DCA BAC ∠=∠,∵,BAC DAC ∠=∠∴DCA DAC ∠=∠,∴DA DC =,∴四边形ABCD 为菱形,∴AC BD ⊥,即EF BD ⊥,∵四边形EBFD 是平行四边形,∴四边形EBFD 是菱形.【点睛】本题主要考查了平行四边形的性质和性质,菱形的判定和性质,平行线的性质,熟练掌握菱形和平行四边形的判定方法,是解题的关键.7.(1)见解析(2)CD CH =;证明见解析【分析】(1)先利用已知条件证明()SAS FCE BCD ≅,得出CFE CBD ,推出EF BD ∥,再由AF EF ⊥即可证明BD AF ⊥;(2)延长BC 到点M ,使CM =CB ,连接EM ,AM ,先证()SAS MEC BDC ≅,推出ME BD =,通过等量代换得到222AM AE ME =+,利用平行线的性质得出90BHE AEM ,利用直角三角形斜边中线等于斜边一半即可得到CD CH =.(1)证明:在FCE △和BCD △中, CE CD FCE BCD CF CB =⎧⎪∠=∠⎨⎪=⎩,∴ ()SAS FCE BCD ≅,∴ CFE CBD ,∴ EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.(2)解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠=,CM =CB ,∴ AC 垂直平分BM ,∴AB AM =,在MEC 和BDC 中,CM CB MCE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴ ()SAS MEC BDC ≅,∴ ME BD =,CME CBD ,∵222AB AE BD =+,∴ 222AM AE ME =+,∴ 90AEM ∠=︒,∵CME CBD , ∴BH EM ∥,∴ 90BHE AEM ,即90DHE ∠=︒, ∵12CE CD DE , ∴ 12CH DE , ∴ CD CH =.【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明90DHE ∠=︒是解题的关键.8.(12)图见解析,222EF AE BF =+,证明见解析.【分析】(1)先根据中位线定理和线段中点定义可得//DE BC ,12DE BC =,CE AE a ==,再根据平行四边形的性质、矩形的判定与性质可得DE CF =,从而可得CF BF b ==,然后利用勾股定理即可得;(2)如图(见解析),先根据平行线的性质可得EAD GBD ∠=∠,DEA DGB ∠=∠,再根据三角形全等的判定定理与性质可得ED GD =,AE BG =,然后根据垂直平分线的判定与性质可得EF FG =,最后在Rt BGF 中,利用勾股定理、等量代换即可得证.【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为ABC 的中位线,且CE AE a ==∴//DE BC ,12DE BC =∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒∵DF DE ⊥∴90EDF ∠=︒∴四边形DECF 为矩形∴DE CF =11()22CF BC BF CF ∴==+ ∴CF BF b ==则在Rt CEF 中,EF(2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG∵//BG AC∴EAD GBD ∠=∠,DEA DGB ∠=∠∵D 是AB 的中点∴AD BD =在EAD 和GBD △中,EAD GBD DEA DGB AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅∴ED GD =,AE BG =又∵DF DE ⊥∴DF 是线段EG 的垂直平分线∴EF FG =∵90C ∠=︒,//BG AC∴90GBF C ∠=∠=︒在Rt BGF 中,由勾股定理得:222FG BG BF =+∴222EF AE BF =+.【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.9.(1)见解析;(2)OE =5,BG =2.【分析】(1)先证明EO 是△DAB 的中位线,再结合已知条件OG ∥EF ,得到四边形OEFG 是平行四边形,再由条件EF ⊥AB ,得到四边形OEFG 是矩形;(2)先求出AE =5,由勾股定理进而得到AF =3,再由中位线定理得到OE =12AB =12AD =5,得到FG =5,最后BG =AB -AF -FG =2.【详解】解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG ,∵OG ∥EF ,∴四边形OEFG 为平行四边形∵EF ⊥AB ,∴平行四边形OEFG 为矩形.(2)∵点E 为AD 的中点,AD =10,∴AE =152AD = ∵∠EFA =90°,EF =4,∴在R t △AEF 中,3AF .∵四边形ABCD 为菱形,∴AB =AD =10,∴OE =12AB =5,∵四边形OEFG 为矩形,∴FG =OE =5,∴BG =AB -AF -FG =10-3-5=2.故答案为:OE =5,BG =2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,解题的关键是掌握特殊四边形的性质和判定属于中考常考题型,需要重点掌握.10.(1)证明见解析;(2),理由见解析【分析】(1)连接DF .根据对称的性质可得AD FD =.AE FE =.证明ADE FDE △≌△,根据全等三角形的性质得到DAE DFE ∠=∠.进而证明Rt DCG △≌Rt DFG △,即可证明;(2)在AD 上取点M 使得AM AE =,连接ME .证明DME ≌EBH △,根据等腰直角三角形的性质即可得到线段BH 与AE 的数量关系.【详解】(1)证明:连接DF .∵A ,F 关于DE 对称.∴AD FD =.AE FE =.在ADE 和FDE 中AD FDAE FE DE DE=⎧⎪=⎨⎪=⎩,∴ADE FDE △≌△,∴DAE DFE ∠=∠.∵四边形ABCD 是正方形,∴90A C ∠=∠=︒.AD CD =,∴90DFE A ∠=∠=︒,∴18090DFG DFE ∠=︒-∠=︒,∴DFG C ∠=∠ ,∵AD DF =,AD CD =,∴DF CD =.在Rt DCG △和Rt DFG △中DC DFDG DG =⎧⎨=⎩.∴Rt DCG △≌Rt DFG △,∴CG FG =.(2)BH .证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =,90A ADC ∠=∠=︒.∵DAE △≌DFE △,∴ADE FDE ∠=∠.同理:CDG FDG ∠=∠, ∴11145222EDG EDF GDF ADF CDF ADC ∠=∠+∠=∠+∠=∠=︒ ∵DE EH ⊥,∴90DEH ∠=︒,∴18045EHD DEH EDH ∠=︒-∠-∠=︒,∴EHD EDH ∠=∠.∴DE EH =.∵90A ∠=︒,∴90ADE AED ∠+∠=︒.∵90DEH ∠=︒,∴90AED BEH ∠+∠=︒,∴ADE BEH ∠=∠.∵AD AB =,AM AE =,∴DM EB =.在DME 和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩,∴DME ≌EBH △,∴ME BH =,在Rt AME △中,90A ∠=︒,AE AM =.∴ME ,∴BH =.【点睛】本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,等腰直角三角形的性质与判定等知识,此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.11.(1)证明见解析;(2)OE =2.【分析】(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ,根据直角三角形斜边的中线等于斜边的一半即可求解.【详解】(1)证明:∵AB //CD ,∴CAB ACD ∠=∠,∵AC 平分BAD ∠,∴CAB CAD ∠=∠,∴CAD ACD ∠=∠,∴AD CD =,又∵AD AB =,∴AB CD =,又∵AB ∥CD ,∴四边形ABCD 是平行四边形,又∵AB AD =,∴ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O ,∴AC BD ⊥,12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==, 在Rt △AOB 中,90AOB ∠=︒,∴2OA ,∵CE AB ⊥,∴90AEC ∠=︒,在Rt △AEC 中,90AEC ∠=︒,O 为AC 中点, ∴122OE AC OA ===. 【点睛】本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.12.(1)作图见解析(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【详解】分析:根据作图过程,补全图形即可.详解:(1)尺规作图如下图所示:(2)PA ,CQ ,三角形中位线平行于三角形的第三边.点睛:考查尺规作图,三角形中位线定理,熟练掌握三角形的中位线定理是解题的关键.13.S △AEF ,S △CFM ;S △ANF ,S △AEF ;S △FGC ,S △CFMF .【详解】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可.试题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 .14.(1)证明见解析.【分析】(1)先证明四边形BCDE 是平行四边形,再证明一组邻边相等即可;(2)连接AC ,根据平行线的性质及等角对等边证明AB =1,AD =2,可知30ADB ∠=︒,再根据菱形的性质即可得出ACD △是含30的特殊三角形,最后根据勾股定理即可求AC 的长.(1)2AD BC =,E 为AD 的中点,DE BC ∴=,AD BC ∥,∴四边形BCDE 是平行四边形,90ABD ∠=︒,AE DE =,BE DE ∴=,∴四边形BCDE 是菱形.(2)解:连接AC .AD BC ∥,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠,1AB BC ∴==,22AD BC ∴==,30ADB ∴∠=︒,30DAC ∴∠=︒,四边形BCDE 是菱形∴260ADC ADB ∠=∠=︒,90ACD ∴∠=︒在Rt ACD △中,2AD =,1CD ∴=, ∴AC =【点睛】本题考查了菱形的性质与判定,勾股定理等,解题的关键是连接AC 构造Rt ACD △.15.证明见解析.【分析】由平行四边形的性质得出AB ∥CD ,得出内错角相等∠E=∠BAE ,再由角平分线证出∠E=∠DAE ,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠E=∠BAE ,∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠E=∠DAE ,∴DA=DE .16.(1)证明见解析;(2【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论;(2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN∥AD,且MN=12AD,在Rt△ABC中,∵M是AC的中点,∴BM=12AC,又∵AC=AD,∴MN=BM;(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN=+,而由(1)知,MN=BM=12AC=12×2=1,∴17.(1)见解析(2)见解析【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,即可证明;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.18.(1)图形见解析(2)25°(3)222+=EF FD AB2【分析】(1)按照题意补全图形(2)连接AE,根据轴对称性和正方形的性质可得∠EAD=∠PAB+∠PAE=130°,即可求解;(3)连接AE、BF、BD,根据轴对称性和正方形的性质可得∠ABF=∠AEF=∠ADF,从而得到BD=,∠BFD=∠BAD=90°,再由勾股定理,即可求解.【详解】解:(1)补全图形如图所示:(2)连接AE,根据题意得:∠PAB =∠PAE =20°,AE =AB =AD ,∵四边形ABCD 是正方形,∴∠BAD =90°,∴∠EAD =∠PAB +∠PAE =130°,∴∠ADF =∠AED =()11802DAE ︒-∠=25°; (3)EF 2+FD 2=2AB 2,理由如下:连接AE 、BF 、BD ,由轴对称的性质可得:EF =BF ,AE =AB =AD ,∴∠BEF =∠EBF ,∠AEB =∠ABE ,∠AED =∠ADF ,∴∠ABF =∠AEF =∠ADF ,∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∴∠ABD +∠ADB =90°,BD =,∴∠ABF +∠DBF +∠ADB =∠DBF +∠ADB +∠ADF =90°,∴∠BFD =∠BAD =90°,∴BF 2+FD 2=BD 2∴EF 2+FD 2=2AB 2.【点睛】本题主要考查了轴对称的性质,正方形的性质,勾股定理,等腰三角形的性质,熟练掌握轴对称的性质,正方形的性质,勾股定理,等腰三角形的性质是解题的关键.19.(1)见解析(2【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】(1)证明:在▱ABCD中,AD BC,且AD=BC∵F是AD的中点AD∴DF=12BC又∵CE=12∴DF=CE,且DF CE∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,CD=2,DH∴CH=1AD=3,则EH=1.在▱CEDF中,CE=DF=12∴在Rt△DHE中,根据勾股定理知DE.。

中考第一轮复习第21讲平行四边形、矩形、菱形、正方形

中考第一轮复习第21讲平行四边形、矩形、菱形、正方形

第21讲平行四边形、矩形、菱形、正方形,知识清单梳理)平行四边形1.定义:两组对边分别__平行__的四边形叫做平行四边形.2.性质(1)边:对边__平行__且__相等__.(2)角:对角__相等__.(3)对角线:对角线互相平分.(4)对称性:__中心__对称.3.判定(1)两组对边分别__平行__的四边形是平行四边形.(2)两组对边分别__相等__的四边形是平行四边形.(3)一组对边__平行__且__相等__的四边形是平行四边形.(4)两组对角分别__相等__的四边形是平行四边形.(5)对角线互相__平分__的四边形是平行四边形.矩形1.定义:有一个角是__直角__的平行四边形叫做矩形.2.性质(1)边:对边__平行__且__相等__.(2)角:四个角都是__直角__.(3)对角线:对角线互相__平分__且__相等__.(4)对称性:__中心__对称和__轴__对称.3.判定(1)有__一__个角是__直角__的平行四边形是矩形.(2)有__三__个角是__直角__的四边形是矩形.(3)对角线__相等__的平行四边形是矩形.菱形1.定义:有一组__邻边相等__的平行四边形叫做菱形.2.性质(1)边:四边__相等__,对边平行.(2)角:对角__相等__.(3)对角线:对角线互相__垂直__、__平分__,且每一条对角线平分一组对角.(4)对称性:__中心__对称和__轴__对称.3.判定(1)有一组__邻边相等__的平行四边形是菱形.(2)四边__相等__的四边形是菱形.(3)对角线互相__垂直__的平行四边形是菱形.正方形1.定义:有一个角是__直角__,有一组邻边__相等__的平行四边形叫做正方形.2.性质(1)边:四边__相等__,对边平行.(2)角:四个角都是__直角__.(3)对角线:对角线互相__垂直__、__平分__、__相等__,每一条对角线平分一组对角.(4)对称性:__中心__对称和__轴__对称.3.判定(1)有一个角是__直角__、有一组邻边__相等__的平行四边形是正方形.(2)有一组邻边相等的__矩形__是正方形.(3)有一个角是直角的__菱形__是正方形.中点四边形1.顺次连接任意四边形各边中点,所得四边形是__平行四边__形.2.顺次连接平行四边形各边中点,所得四边形是__平行四边__形.3.顺次连接矩形各边中点,所得四边形是__菱__形.4.顺次连接菱形各边中点,所得四边形是__矩__形.5.顺次连接正方形各边中点,所得四边形是__正方__形.6.顺次连接等腰梯形各边中点,所得四边形是__菱__形.,云南省近五年高频考点题型示例)轴对称图形与中心对称图形【例1】(2019曲靖中考)平行四边形、矩形、菱形、正方形中是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【解析】平行四边形是中心对称图形,不是轴对称图形;矩形、菱形、正方形都是轴对称图形,故是轴对称图形的有3个.【答案】C平行四边形的性质和判定【例2】(2019昆明中考)如图,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【解析】根据平行四边形的判定定理分别进行分析即可.【答案】C1.(2019曲靖中考)若平行四边形中两个内角的度数比为1∶2,则其中较大的内角是__120__°.2.(2019云南中考)如图,在平行四边形ABCD中,∠C=60°,M,N分别是AD,BC的中点,BC=2CD.求证:(1)四边形MNCD是平行四边形;(2)BD=3MN.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC.∵M,N分别是AD,BC的中点,∴MD=NC,MD∥NC,∴四边形MNCD是平行四边形;(2)连接ND.∵四边形MNCD 是平行四边形, ∴MN =DC.∵N 是BC 的中点,∴BN =CN. ∵BC =2CD ,∠C =60°, ∴△NCD 是等边三角形. ∴ND =NC ,∠DNC =60°. ∵∠DNC 是△BND 的外角, ∴∠NBD +∠NDB=∠DNC. ∵DN =NC =NB ,∴∠DBN =∠BDN=12∠DNC=30°,∴∠BDC =90°. ∵tan ∠DBC =DC DB =33,∴DB =3DC =3MN.3.(2019云南中考)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点,求证:BE =DF.证明:连接BF ,DE.∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵E ,F 分别是OA ,OC 的中点. ∴OE =12OA ,OF =12OC ,∴OE =OF ,∴四边形BFDE 是平行四边形,∴BE =DF.矩形的性质和判定【例3】(2019云南中考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,∠ABC ∶∠BAD =1∶2,BE ∥AC ,CE ∥BD.(1)求tan ∠DBC 的值;(2)求证:四边形OBEC 是矩形.【解析】(1)由四边形ABCD 是菱形,得到对边平行,且BD 为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BCD 的度数,即可求出tan ∠DBC 的值;(2)由四边形ABCD 是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【答案】解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD=180°. ∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°,∴∠DBC =12∠ABC=30°,∴tan ∠DBC =tan30°=33; (2)∵BE∥AC,CE ∥BD ,∴四边形OBEC 是平行四边形. ∵四边形ABCD 是菱形, ∴AC⊥BD,即∠BOC=90°. ∴四边形OBEC 是矩形.4.(2019云南中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,若E ,F 是AC 上的两个动点,分别从A ,C 两点以相同的速度向C ,A 运动,其速度为2 cm/s.(1)当E 与F 不重合时,四边形DEBF 是平行四边形吗?说明理由;(2)若BD =24 cm ,AC =32 cm ,当运动时间t 为何值时,以D ,E ,B ,F 为顶点的四边形是矩形?说明理由.解:(1)当E 与F 不重合时,四边形DEBF 是平行四边形.理由如下: ∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵E ,F 两动点分别以相同的速度向C ,A 运动, ∴AE =CF ,∴OA -AE =OC -CF , 即OE =OF ,∴BD ,EF 互相平分,∴四边形DEBF 是平行四边形; (2)∵四边形DEBF 是平行四边形, ∴当BD =EF 时,四边形DEBF 是矩形. ∵BD =24 cm , ∴EF =24 cm ,∴OE =OF =12 cm , ∵AC =32 cm ,∴OA =OC =16 cm , ∴AE =4 cm 或28 cm ,∵E ,F 两动点的速度都是2 cm/s , ∴t =2 s 或t =14 s ,∴当运动时间t =2 s 或14 s 时,以D ,E ,B ,F 为顶点的四边形是矩形.菱形的性质和判定【例4】(2019昆明中考)菱形的两条对角线分别为8,10,则菱形的面积为________.【解析】菱形的面积计算公式S =12ab(a ,b 为菱形的对角线长),∴菱形的面积S =12×8×10=40.【答案】405.(2019曲靖中考)菱形的两条对角线长分别为6和8,则这个菱形的周长为__20__.6.(2019云南中考)如图,在△ABC 中,AB =BC ,D ,E ,F 分别是BC ,AC ,AB 边上的中点. (1)求证:四边形BDEF 是菱形;(2)若AB =12 cm ,求菱形BDEF 的周长.解:(1)∵D,E ,F 分别是BC ,AC ,AB 的中点, ∴DE ∥AB ,EF ∥BC ,∴四边形BDEF 是平行四边形. 又∵DE=12AB ,EF =12BC ,且AB =BC ,∴DE =EF ,∴四边形BDEF 是菱形;(2)∵AB=12 cm ,F 为AB 的中点, ∴BF =6 cm ,∴菱形BDEF 的周长为6×4=24 cm.7.(2019云南中考)如图,△ABC 是以BC 为底的等腰三角形,AD 是边BC 上的高,点E ,F 分别是AB ,AC 的中点.(1)求证:四边形AEDF 是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S. 解:(1)∵AD 是等腰△ABC 底边上的高, ∴D 是BC 边的中点.∵点E ,F 分别是AB ,AC 的中点,∴四边形AEDF 是平行四边形.又AB =AC , ∴DE =DF ,∴▱AEDF 是菱形;(2)连接EF 交AD 于O 点,设AO =x ,EO =y.由题意得⎩⎪⎨⎪⎧x +y =3.5,x 2+y 2=9,∴(x +y)2=9+2xy ,∴12.25=9+2xy ,∴2xy =3.25, ∴S =12·2x·2y=2xy =3.25.正方形的性质和判定【例5】(2019昆明中考)已知:如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF 是正方形(只写结论,不需证明). 【解析】(1)根据矩形的性质可得AB =CD ,∠A =∠D=90°,再根据M 是AD 的中点,可得AM =DM ,然后再利用SAS 证明△ABM≌△DCM ;(2)四边形MENF 是菱形.首先根据中位线的性质可证明NE∥MF,NE =MF ,可得四边形MENF 是平行四边形,再根据△ABM≌△DCM 可得BM =CM ,进而得ME =MF ,从而得到四边形MENF 是菱形;(3)当AD∶AB=2∶1时,四边形MENF 是正方形,证明∠EMF=90°,根据有一个角为直角的菱形是正方形得到结论.此题主要考查了矩形的性质、菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法. 【答案】解:(1)∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D=90°. 又∵M 是AD 的中点,∴AM =DM. 在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D=90°,AM =DM ,∴△ABM ≌△DCM(SAS); (2)四边形MENF 是菱形.证明如下: ∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1)得BM =CM ,∴ME =MF. ∴四边形MENF 是菱形.(3)当AD∶AB=2∶1时,四边形MENF 是正方形.理由:∵M 为AD 中点,∴AD =2AM. ∵AD ∶AB =2∶1,∴AM =AB. ∵∠A =90,∴∠ABM=∠AMB=45°. 同理∠DMC=45°,∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴菱形MENF 是正方形.,近五年遗漏考点及社会热点与创新题)1.遗漏考点正方形的有关计算【例1】如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF=( )A.45° B.30°C.60° D.55°【解析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.本题考查了三角形的内角和定理的运用、等腰三角形的性质的运用,正方形性质的应用及解此题的关键是如何把已知角与未知角结合起来,题目比较典型,但是难度较大.【答案】A【例2】如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1 B. 2C.4-2 2 D.32-4【解析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD的长,再求出BE的长,最后根据等腰直角三角形的直角边等于斜边的22倍计算即可得解.【答案】C2.创新题【例3】一个四边形四条边依次为a,b,c,d且a2+b2+c2+d2=2ac+2bd,则这个四边形是________.【解析】a2+b2+c2+d2=2ac+2bd,(a2-2ac+c2)+(b2-2bd+d2)=0,(a-c)2+(b-d)2=0,∴a-c=0,b-d=0,∴a=c,b=d.∴四边形是平行四边形.【答案】平行四边形,课内重难点真题精练及解题方法总结)1.(2019海南中考)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( C )A.14 B.16 C.18 D.20【方法总结】掌握菱形的边、对角线的性质,四边相等,对角线互相平分且垂直,再应用勾股定理即可解决.(第1题图)(第2题图)2.(2019贵州中考)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠EAF=45°,将△ABE 绕点A 顺时针旋转90°,使点E 落在点E′处,则下列判断不正确的是( D )A .△AEE ′是等腰直角三角形B .AF 垂直平分EE′C .△E ′EC ∽△AFDD .△AE ′F 是等腰三角形【方法总结】本题考查了旋转的性质、线段垂直平分线的性质、等腰三角形的判定、等腰直角三角形、正方形的性质及相似三角形的判定等知识的综合应用.3.(2019曲靖中考)如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是__10__.【方法总结】本题考查了轴对称——最短路线问题及正方形的性质,解此题通常利用“两点之间,线段最短”的性质.4.(2019临沧中考)如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t s(0<t≤15).过点D 作DF⊥BC 于点F ,连接DE ,EF.(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由. 解:(1)∵△ABC 中,∠B =90°,∠A =60°. ∴∠C =180°-∠B-∠A=30°. 又∵DF⊥BC,CD =4t ,AE =2t. ∴在Rt △CDF 中,DF =12CD =2t ,∴DF =AE ;(2)∵DF∥AB,DF =AE ,∴四边形AEFD 是平行四边形,当AD =AE 时,四边形AEFD 是菱形, 即60-4t =2t ,解得t =10, 即当t =10时,▱AEFD 是菱形; (3)当t =152时,△DEF 是直角三角形(∠EDF=90°); 当t =12时,△DEF 是直角三角形(∠DEF =90°).理由如下:①当∠EDF=90°时,DE ∥BC.∴∠ADE =∠C=30°,∴AD =2AE. 即60-4t =2×2t, 解得t =152,∴t =152时,∠EDF =90°. ②当∠DEF=90°时,DE ⊥EF ,∵四边形AEFD 是平行四边形, ∴AD ∥EF ,∴DE ⊥AD ,∴△ADE 是直角三角形,∠ADE =90°. ∵∠A =60°,∴∠DEA =30°,∴AD =12AE.AD =AC -CD =60-4t ,AE =2t ,∴60-4t =t ,解得t =12.③∵四边形ADEF 是平行四边形, ∴AD ∥EF ,∴∠DFE 不可能为直角.综上所述,当t =152时,△DEF 是直角三角形(∠EDF=90°);当t =12时,△DEF 是直角三角形(∠DEF=90°).5.(2019曲靖中考)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF.(1)求证:四边形CEDF 是平行四边形;(2)若AB =4,AD =6,∠B =60°,求DE 的长.解:(1)在▱ABCD 中, AD ∥BC ,且AD =BC. ∵F 是AD 的中点, ∴DF =12AD =12BC.又∵CE=12BC ,∴DF =CE ,且DF∥CE,∴四边形CEDF 是平行四边形; (2)过点D 作DH⊥BE 于点H. 在▱ABCD 中,∵∠B =60°, ∴∠DCE =60°, ∴∠CDH =30°, ∵AB =4,∴CD =AB =4,∴CH =12CD =2,DH =2 3.在▱CEDF 中,CE =DF =12AD =3,则EH =1.∴在Rt △DHE 中,根据勾股定理知DE =(23)2+1=13.6.(2019贵州中考)如图,DB ∥AC ,且DB =12AC ,E 是AC 的中点.(1)求证:BC =DE ;(2)连接AD ,BE ,若要使四边形DBEA 是矩形,则应给△ABC 添加什么条件,为什么?解:(1)∵E 是AC 的中点, ∴EC =AE =12AC.∵DB =12AC ,∴DB =EC.又∵DB∥EC,∴四边形DBCE 是平行四边形. ∴BC =DE ;(2)添加AB =BC.∴四边形DBEA 是平行四边形. ∵BC =DE ,AB =BC ,∴AB =DE.∴▱DBEA 是矩形.【方法总结】掌握平行四边形、矩形的性质及判定方法. 请完成精练本第29页作业2019-2020学年数学中考模拟试卷一、选择题1.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是( )A.①③②B.②①③C.③①②D.①②③2.如图,,,AB AC BD 是O 的切线,切点分别是,,P C D .若5,3AC BD ==,则AB 的长是( )A .2B .4C .6D .83.已知反比例函数2y x =-,下列说法不正确的是( ) A .图像必经过点()1,2- B .y 随着x 的增大而增大C .图像分布在第二,四象限内D .若1x >,则20y -<< 4.电影《流浪地球》从2月5日上映以来,凭借其气势磅礴的特效场面与动人的父子情获得大众的喜爱与支持,截止3月底,中国电影票房高达4559000000元.数据4559000000用科学记数法表示为( )A .845.5910⨯;B .945.5910⨯;C .94.55910⨯;D .104.55910⨯.5.下列命题中真命题的有( )①同位角相等;②在△ABC 中,若∠A=12∠B=13∠C ,△ABC 是直角三角形;③两条对角线互相垂直的四边形是菱形;④平分弦的直径垂直于弦,并且平分弦所对的弧.A .0B .1C .2D .36.如图,直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点(2,0),直线l 3⊥x 轴于点(3,0),……直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1、l 2、l 3、…、l n 分别交于点A 1、A 2、A 3、…、A n ;函数y =2x 的图象与直线l 1、l 2、l 3、…、l n 分别交于点B 1、B 2、B 3、…、B n .如果△OA 1B 1的面积记作S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,…,四边形A n ﹣1A n B n B n ﹣1的面积记作S n ,那么S 2018=( )A .2017.5B .2018C .2018.5D .20197.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( )A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m8.下列运算正确的是( )A .3a 2•a 3=3a 6B .5x 4﹣x 2=4x 2C .(2a 2)3•(﹣ab )=﹣8a 7bD .2x 2÷2x 2=09.若5-m (0,则( )A .m <5B .3≤m<5C .3≤m≤5D .3<m <5 10.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( )A .B .C .D .11.如图,将曲线c 1:y =k x(x >0)绕原点O 逆时针旋转60°得到曲线c 2,A 为直线y 上一点,P 为曲线c 2上一点,PA =PO ,且△PAO 的面积为y 交曲线c 1于点B ,则OB 的长( )A .B .5C .D 12.已知a 2﹣b 2=6,a+b =2,则a ﹣b 的值为( )A .1B .2C .3D .4二、填空题13.如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.用x的代数式表示四边形PQRS的面积S.则S=___.14.若一组数据1,2,x,4的众数是1,则这组数据的方差为_____.15.如图,在一条南北走向的高速公路左侧有一古塔C,小亮爸爸驾驶汽车沿高速公路从南向北匀速行驶,上午9:00他行驶到A点时,测得塔C在北偏西37°方向,上午9:11行驶到B点时,测得塔C在南偏西63.5°方向,若汽车行驶的速度为90km/h,则在行驶的过程中,汽车离塔C的最近距离约是_____km.(sin37°≈35,tan37°≈34,sin63.5°≈109,tan63.5°≈2)16.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为_____.17.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了__s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.18.若a+b =3,a 2+b 2=7,则ab =_____.三、解答题19.计算:214sin 4522-⎛⎫︒--- ⎪⎝⎭. 20.已知:如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F .(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,平行四边形ABCD 的面积是36,求AD 的长.21.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦22.计算:101230()3cos -+︒- 23.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为 ;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.已知点A(﹣1,4)在反比例函数y =k x 的图象上,B(﹣4,n)在正比例函数y =12x 的图象上 (1)写出反比例函数y =k x的解析式; (2)求出点B 的坐标. 25.问题发现:如图1,△ABC 是等边三角形,点D 是边AD 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 有何数量关系?拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC 的边长等于,AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.【参考答案】*** 一、选择题二、填空题13.2 (1)1xx-+.14.515.916. 417..18.1三、解答题19.-6【解析】【分析】将特殊三角函数值代入、先计算乘方、化简二次根式和去绝对值符号,最后相加减即可. 【详解】解:原式=4(242⨯---=24+=﹣6.【点睛】考查了特殊三角函数的混合运算,解题关键是熟记特殊三角函数及其运算法则.20.(1)见解析;(2)15 2(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=245,由平行四边形的面积公式可求AD的长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=12AE=3,BO=FO=12BF=4,AE⊥BF,∴BE5,∵S菱形ABEF=12AE•BF=12×6×8=24,∴BE•AH=24,∴AH=245,∴S平行四边形ABCD=AD×AH=36,∴AD=152.【点睛】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.x=0根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答.【详解】111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦ 193(3)93x x x x --+=- 9299x x x --=-60x =0x =【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.22.【解析】【分析】按顺序依次计算负整数指数幂、代入特殊角的三角函数值、化简二次根式、计算零指数幂,然后再按运算顺序进行计算即可.【详解】原式【点睛】本题主要考查实数的混合运算,解题的关键是掌握负整数指数幂、三角函数值、二次根式的性质及零指数幂的规定.23.(1)14;(2)16【解析】【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A 区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【详解】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况,∴享受9折优惠的概率为14,故答案为:14;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为21 126=.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)4yx=;(2)点B的坐标为:(﹣4,﹣2).【解析】【分析】(1)把A(﹣1,4)代入反比例函数y=kx即可求解;(2) 把B(﹣4,n)代入正比例函数y=12x即可求解.【详解】解:(1)∵点A(﹣1,4)在反比例函数y=kx的图象上,∴k=(﹣1)×4=﹣4,∴反比例函数的解析式为:4yx =.(2)∵B(﹣4,n)在正比例函数y=12x的图象上,∴12×(-4)=n,∴n=﹣2,即点B的坐标为:(﹣4,﹣2).【点睛】本题考查的是反比例函数和正比例函数,熟练掌握两者是解题的关键.25.问题发现:BD=CE;拓展探究:结论仍然成立,见解析;问题解决:BD的长为2和【解析】【分析】问题发现:如图1,由平行线分线段成比例定理可得BD=CE;拓展探究:如图2,证明△BAD≌△CAE,可得BD=CE;问题解决:分两种情况:①如图3,在直角三角形中,根据30°角所对的直角边等于斜边的一半求出DG=1,由勾股定理求出AG BG,从而计算出BD的长.②如图4,求EF的长和CF的长,根据勾股定理在Rt△EFC中求EC的长,所以BD=EC=【详解】解: 问题发现:如图1,BD=CE,理由是∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴BD=CE,拓展探究:结论仍然成立,如图2,由图1得,△ADE是等边三角形,∴AD=AE,由旋转得∠BAD=∠CAE,△BAD≌△CAE,(旋转的性质)∴BD=CE,问题解决:当△ADE旋转到DE与AC所在的直线垂直时,设垂足为点F,此时有两种情况:①如图3,∵△ADE是等边三角形,AF⊥DE,∴∠DAF=∠EAF=30°,∴∠BAD=30°,过D作DG⊥AB,垂足为G,∵AD=2,∴∵∴∴BD=2(勾股定理),②如图4,同理得△BAD≌△CAE, ∴BD=CE,∵△ADE是等边三角形, ∴∠ADE=60°,∵AD=AE,DE⊥AC,∴∠DAF=∠EAF=30°,∴EF=FD=12AD=1,∴∴,在Rt△EFC中===∴综上所述,BD的长为2和【点睛】本题是几何变换的综合题,考查了等边三角形、全等三角形的性质与判定;在几何证明中,如果出现等边三角形,它所得出的结论比较多,要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系,可以考虑利用平行相似来证明.2019-2020学年数学中考模拟试卷一、选择题1.下列命题,是真命题的是( )A.菱形的对角线相等B.若|a|=|b|,那么a=bC.同位角一定相等D.函数y=11x的自变量的取值范围是x≠﹣12.如图,一张矩形纸片ABCD,其中AD=10cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1),再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.165B.83C.85D.1033.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是()A.∠1=50°,∠2=40°B.∠1=40°,∠2=50°C.∠1=30°,∠2=60°D.∠1=∠2=45°4.如图,等边三角形ABC的边长为4,点O是△ABC的内心,∠FOG=120”,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE:②S△ODE=S△BDE:③四边形ODBE的面;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1B.2C.3D.45.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径作弧,两弧交于点M、N;第二步,过M、N两点作直线分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=8,AF=6,CD=4,则BE的长是()A .12B .11C .13D .106.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.47.如图,点D 在半圆O 上,半径OB =,AD =10,点C 在弧BD 上移动,连接AC ,H 是AC 上一点,∠DHC =90°,连接BH ,点C 在移动的过程中,BH 的最小值是( )A .5B .6C .7D .88.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为 (,M 是圆上一点,∠BMO=120°.⊙C 的圆心C 的坐标是( )A .1)22B .1)2- C .1()2D .1()2- 9.如图,在四边形AOBC 中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有( ) (1)A 、O 、B 、C 四点共圆 (2)AC =BC(3)cos ∠1=2a bc+ (4)S 四边形AOBC =()sin 12a b c +⋅∠A.1个B.2个C.3个D.4个10.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.11.如图,已知菱形ABCD,AB=4,BAD=120∠︒,E为BC中点,P为对角线BD上一点,则PE+PC 的最小值等于( )A. B. C. D.12.下列计算正确的是()A.=B.1)(11+-=C.﹣(﹣a)4÷a2=a2D.2111 (xy)xy xy24-⎛⎫=⎪⎝⎭二、填空题13.方程1322xx x+=--的解为__________.14.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=_____°.15.如图,∠AOB=10°,点P在OB上.以点P为圆心,OP为半径画弧,交OA于点P1(点P1与点O不重合),连接PP1;再以点P1为圆心,OP为半径画弧,交OB于点P2(点P2与点P不重合),连接P1P2;再以点P2为圆心,OP为半径画弧,交OA于点P3(点P3与点P1不重合),连接P2 P3;……请按照上面的要求继续操作并探究:∠P 3 P 2 P 4=_____°;按照上面的要求一直画下去,得到点P n ,若之后就不能再画出符合要求点P n+1了,则n =_____. 16.已知:()521x x ++=,则x =______________.17.在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 、E 、F 是三边的中点,则△DEF 的周长是_____.18.若点P (m ,2)与点Q (3,n )关于x 轴对称,则P 点关于原点对称的点M 的坐标为_____. 三、解答题19.图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上.在图①、图②给定的网格中各画一个△APC ,使点P 在线段AB 上,点C 为格点,且∠APC 的正切值为2.要求:(1)图①中的△APC 为直角三角形,图②中的△APC 为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹.20.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩.(1)用x 的式子分别表示y 、z ;(2)问如何安排劳力与养殖亩数收益最大?21.如图,在一条不完整的数轴上从左到右有点A ,B .将线段AB 沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A 为数轴原点,点B 表示的数是4,当点A′恰好是AB 的中点时,数轴上点B′表示的数为 .(2)设点A表示的数为m,点A′表示的数为n,当原点在线段A′B之间时,化简|m|+|n|+|m﹣n|.22.某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,(1)求m、n的值;(2)求“C等级”所对应的扇形圆心角的度数;(3)已知成绩等级为A的4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率23.如图,在平面直角坐标系中,二次函数y=ax2﹣2x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.(1)求二次函数的表达式;(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.24.如图是云梯升降车示意图,其点A位置固定,AC可伸缩且可绕点A转动,已知点A距离地面BD的高度AH为3.4米.当AC长度为9米,张角∠HAC为119°时,求云梯升降车最高点C距离地面的高度.(结果保留一位小数)参考数据:sin29°≈0.49,cos29°≈0.88,tan29°≈0.5525.我国古代数学著作《九章算术》中有如下问题:“今有牛五,羊二,直金十二两.牛二,羊五,直金九两,牛羊各直金几何?”意思是:5头牛,2只羊共价值12两“金”.2头牛,5只羊共价值9两“金”.求每头牛,每只羊各价值多少两“金”?【参考答案】***一、选择题二、填空题13.52 x14.5815.816.-5或-1或-317.618.(﹣3,﹣2)三、解答题19.见解析.【解析】【分析】根据正切函数的定义,结合网格特点作图即可.【详解】解:如图所示,图①中的△APC为直角三角形,图②中的△APC为锐角三角形.由题意可知,是DE,AB的中点,。

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)
2.平行四边形的性质:
(1) 平行四边形的对边平行且相等. (2) 平行四边形的邻角互补,对角相.等.
推论:夹在两条平行线间的 平行线段 相等. (3) 平行四边形的对角线互相平分 .
(4)若一直线过平行四边形两对角线的交点, 则: 则二等这分条此直平线行被四一边组形对的边面截积下的线段以对角线的交点为中点,并且这两条直.线
是 中心 对称图形.②正n边形有 n 条对称轴 .
3.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全 覆盖 ,叫做用多边形
覆盖平面(或平面镶嵌).平面镶嵌的条件:当围绕一点拼在一起的几个多边形的内
角和为 360° 时,可以平面镶嵌.
知识点梳理——平行四边形
1.平行四边形的概念: 两组对边分别平行的四边形叫做平行.四边形
【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C, ∴∠B=∠DEC, ∴ AB∥BE, ∵AD∥BC, ∴四边形ABED是平行四边形. ∴AD=BE.
14.(10分)(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、 A、C、F在同一直线上,AE=CF. 求证:(1)△ADE≌△CBF;
C ∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
典型例题
7.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,
AC⊥BC,则▱ABCD的面积为( B )
A.30 B.60
C.65 D.
典型例题
8.(2021·安顺、贵阳) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,
形的边数是

2.(2020•陕西12/25)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD ,则∠BDM的度数是 .

2013年浙江中考数学第一轮复习课件 专题突破强化训练专题十二动手操作与方案设计问题

2013年浙江中考数学第一轮复习课件 专题突破强化训练专题十二动手操作与方案设计问题
【思路点拨】 审题确定等量关系或不等量关系 → 设未知数列方程 → 求解 → 确定方案
2 2 【解析】(1)设篮球的单价为 x 元,则排球的单价为 x 元,依题意得 x + x=80,解得 x 3 3 =48, 2 ∴ x=32. 3 即篮球和排球的单价分别是 48 元和 32 元. (2)设购买的篮球数量为 n 个,则购买的排球数量为(36-n)个. n>25, 由题意得 48n+3236-n≤1 600, 解得 25<n≤ 28. 而 n 为整数,所以其取值为 26、 27、28,对应的 36-n 的值为 10、9、8,故共有三种 购买方案. 方案一:购买篮球 26 个,排球 10 个; 方案二:购买篮球 27 个,排球 9 个; 方案三:购买篮球 28 个,排球 8 个.
73-7y 解析:设甲种运动服买了 x 套,乙种买了 y 套,20x+35y=365,x= .当 y=3 时, 4 x=13,当 y=7 时,x=6.所以有两种方案.
答案:2
6.(2012· 杭州市学军中学调研)如图①所示,用形状相同、大小不等的三块直角三角形 木板,恰好能拼成如图②所示的四边形 ABCD,若 AE=4,CE=3BE,那么这个四边形的面 积是________.
(2012· 遵义)把一张正方形纸片如图①,图②对折两次后,再如图③挖去一个三角 形小孔,则展开后图形是( )
【思路点拨】 → 选择答案
逆向思维法画出图③关于 → 作新图形关于第一条折线的轴对称图形 第二条折线的轴对称图形
【解析】C 按下图作轴对称.
故答案为 C.
(2012· 成都)如图,矩形纸片 ABCD 中,AB= 8 cm,AD= 6 cm,按下列步骤进行裁 剪和拼图:
A. 10
B. 11

2013版物理一轮精品复习学案:实验3 验证力的平行四边形定则(必修1)

2013版物理一轮精品复习学案:实验3 验证力的平行四边形定则(必修1)

【考纲全景透析】一、实验目的1.验证互成角度的两个共点力合成时平行四边形定则.2.培养学生应用作图法处理实验数据和得出结论的能力.二、实验原理等效思想:使一个力F′的作用效果和两个力F1和F2的作用效果相同,都是使同一条一端固定的橡皮条伸长到同一点O,即伸长量相同,所以F′为F1和F2的合力,作出力F′的图示,再根据平行四边形定则作出力F1和F2的合力F的图示,比较F、F′在实验误差允许的范围内是否大小相等、方向相同.三、实验器材方木板、白纸、弹簧测力计(两个)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉、铅笔.【热点难点全析】一、实验步骤1.用图钉把白纸钉在方木板上.2.把方木板平放在桌面上,用图钉把橡皮条的一端固定在点如图所示,橡皮条的另一端拴上两个绳套.3.用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O.用铅笔描下O点的位置和两条细绳套的方向,并记录弹簧测力计的读数.注意在使用弹簧测力计的时候,要使它的弹簧与木板平面平行.4.用铅笔和刻度尺从力的作用点(位置O)沿着两条绳套的方向画直线,按选定的标度作这两只弹簧测力计的拉力F1和F2的图示,以F1和F2为邻边利用刻度尺和三角板作平行四边形,过O点画平行四边形的对角线,即为合力F的图示.5.只用一个弹簧测力计,通过细绳把橡皮条的结点拉到同样位置O.读出弹簧测力计的示数,记下细绳的方向,按同一标度作出这个力F′的图示.6.比较力F′与用平行四边形定则求得的合力F的大小和方向,在实验误差允许的范围内看它们是否相等.7.改变两个分力的大小和夹角,再做两次实验.8、误差分析(1)用两个弹簧测力计拉橡皮条时,橡皮条、细绳和弹簧测力计不在同一平面内,这样两个弹簧测力计的水平拉力的实际分力比由作图法得到的合力要小,造成实验误差.(2)结点O的位置和两个弹簧测力计的方向画得不准确,造成作图误差.(3)两个分力的起始夹角α太大,如大于120°,再重复做两次实验,为保证结点O位置不变(即保证合力不变),则α变化范围不大,因而弹簧测力计示数变化不显著,读数误差较大.(4)作图比例不恰当、不准确等造成作图误差.【例1】在做“验证力的平行四边形定则”实验时,橡皮条的一端固定在木板上,用两个弹簧测力计把橡皮条的另一端拉到某一确定的O点,以下操作正确的是().同一次实验过程中,O点位置允许变动B.实验中,弹簧测力计必须保持与木板平行,读数时视线要正对弹簧测力计的刻度C.实验中,先将其中一个弹簧测力计沿某一方向拉到最大量程,然后只需调节另一个弹簧测力计拉力的大小和方向,把橡皮条另一端拉到O点D.实验中,把橡皮条的另一端拉到O点时,两个弹簧测力计之间的夹角应取90°,以便于算出合力的大小【答案】B【详解】实验中有严格的要求:(1)结点O不允许移动.(2)弹簧测力计不要达到最大量程,因为一个达到最大,另一个将不好调整.(3)两个弹簧测力计的拉力夹角不易过大,也不易过小,取90°也可以,并不是必须取90°.二、注意事项1.使用弹簧测力计前,要先观察指针是否指在零刻度处,若指针不在零刻度处,要设法调整指针,使之指在零刻度处.再将两个弹簧测力计的挂钩钩在一起,向相反方向拉,如果两个示数相同方可使用.2.实验中的两个细绳套不要太短.3.在同一次实验中,使橡皮条拉长时结点的位置一定要相同.4.在用力拉弹簧测力计时,拉力应沿弹簧测力计的轴线方向.弹簧测力计中弹簧轴线、橡皮条、细绳套应该位于与纸面平行的同一平面内.要防止弹簧测力计卡壳,防止弹簧测力计或橡皮条与纸面有摩擦.5.在同一实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些.【例2】图甲为“探究求合力的方法”的实验装置.(1)下列说法中正确的是________..在测量同一组数据F1、F2和合力F的过程中,橡皮条结点O的位置能变化B.弹簧测力计拉细线时,拉力方向必须竖直向下C.F1、F2和合力F的大小都不能超过弹簧测力计的量程D.为减小测量误差,F1、F2方向间夹角应为90°(2)弹簧测力计的指针如图乙所示,由图可知拉力的大小为________N.【答案】(1)C(2)4.00【详解】(1)在测量同一组数据的过程中,橡皮条结点O的位置不能变化,如果变化,即受力变化,所以选项错误;由于弹簧测力计是通过定滑轮拉结点O,定滑轮只能改变力的方向不能改变力的大小,所以弹簧测力计拉线的方向不一定要沿竖直方向,B选项错误;弹簧测力计的使用,不能超过其量程,C选项正确;两个拉力的方向合适即可,不宜太大,也不宜太小,但不一定为90°,所以D选项错误.(2)考查弹簧测力计的读数.【高考零距离】【2012年】22.B6[2012·浙江卷] 在“探究求合力的方法”实验中,现有木板、白纸、图钉、橡皮筋、细绳套和一把弹簧秤.(1)为完成实验,某同学另找来一根弹簧,先测量其劲度系数,得到的实验数据如下表:用作图法求得该弹簧的劲度系数k=________N/m;(2)某次实验中,弹簧秤的指针位置如图所示,其读数为________N;同时利用(1)中结果获得弹簧上的弹力值为2.50 N,请在答题纸上画出这两个共点力的合力F合;(3)由图得到F 合=________N. 22.[答案] (1)53(51~55) (2)2.10(2.08~2.12) 图略 (3)3.3(3.1~3.5)[解析] (1)如图所示,在图象上取相距较远的两点P (0.50,0.31)、Q (6.00,3.25)、弹簧的劲度系数k =3.25-0.316.00-0.50N/cm =0.53 N/cm =53 N/m ;(2)利用作图法作出两个力的图示; (3)利用作图法求合力 【2011年-2010年】1.(2011·江苏物理·T10)某同学用如图所示的实验装置来验证“力的平行四边形定则”。

中考复习第一轮课件29四边形(1)

中考复习第一轮课件29四边形(1)

【概念解读】
四、梯形的定义及分类 1.梯形定义 梯形定义: 1.梯形定义:一组对边平行而另一组对边不平 行的四边形. 行的四边形.
一般梯形 2. 梯形分类 直角梯形 特殊梯形 等腰梯形
Hale Waihona Puke 3.等腰梯形的定义:两腰相等的梯形. 3.等腰梯形的定义:两腰相等的梯形. 等腰梯形的定义 直角梯形的定义:一腰垂直于底的梯形. 直角梯形的定义:一腰垂直于底的梯形.

【概念解读】
五、等腰梯形的性质与判定 1.性质 (1)等腰梯形的两腰相等. (2)等腰梯形在同一底上的两底角相等. (3)等腰梯形的对角线相等. 2.判定(1)两腰相等的梯形是等腰梯形. (2)同一底上的两底相等的梯形是等腰梯形.
【重点讲解】 例1.(2007江苏南通) 如图,在□ABCD中, 已知AD=5cm,AB=3cm,AE平分 ∠BAD交BC边于点E,则EC等于( B ). A、1cm B、2cm C、3cm D、4cm
【概念解读】
三、几种特殊平行四边形的常用判定方法 1.矩形(1)有三个角是直角 (2)是平行四边形 矩形(1)有三个角是直角; 是平行四边形, 1.矩形(1)有三个角是直角;(2)是平行四边形,并 且有一个角是直角;(3)是平行四边形 是平行四边形, 且有一个角是直角;(3)是平行四边形,并且两条 对角线相等 2.菱形(1)四条边相等 (2)是平行四边形 菱形(1)四条边相等; 是平行四边形, 2.菱形(1)四条边相等;(2)是平行四边形,并且有 一组邻边相等;(3)是平行四边形 是平行四边形, 一组邻边相等;(3)是平行四边形,并且两条对角 线互相垂直。 菱 线互相垂直。S菱=ah=1/2·对角线之积 对角线之积 3.正方形(1)是矩形 并且有一组邻边相等;(2)是 正方形(1)是矩形, 3.正方形(1)是矩形,并且有一组邻边相等;(2)是 菱形,并且有一个角是直角. 菱形,并且有一个角是直角.

多边形与平行四边形-中考数学第一轮总复习课件(全国通用)

多边形与平行四边形-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.1 多边形与平行四边形知识点多边形01平行四边形02拓展训练03【例1-1】如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=____º.AC B30 1.n边形的内角和___________,外角和_____.2.n边形的对角线__________.考点聚焦(n-2)·180º360ºn(n-3)/2知识点一典例精讲多边形1.将一个矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和不可能是( ) A.360º B.540º C.720º D.900º2.若正多边形的一个外角是60º,则该正多边形的内角和为______.3.一个多边形的内角和是外角和的2倍,则这个多边形的边数为____,有____条对角线.4.用一条宽相等的足够长的纸条,打一个结,如图(1),然后轻轻拉紧,压平就可以得到如图(2)的正五边形ABCDE,其中∠BAC=____度D 720º 6 9 365.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115º,则∠BAE的度数为______.6.如图,在五边形ABCDE中,∠A+∠B+∠E=300º,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是______.7.如图,∠A+∠B+∠C+∠D=_____º.8.如图,A,B,C,D,为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18º,则这个正多边形的边数为____.125º60º 26810知识点多边形01平行四边形02拓展训练03【例2-1】如图,在□ABCD中,点E,F分别在BC,AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE,CF,判断四边形AECF的形状,并说明理由.A DCBOEF考点聚焦证明四边形ABCD是平行四边形的方法(五种)边:①两组对边分别平行 ②两组对边分别相等 ③一组对边平行且相等角:④两组对角分别相等;对角线:⑤对角线互相平分.【例2-2】如图,□ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( ) A.15 B.18C.21D.24A ADCB1E O 考点聚焦平行四边形的性质(1)边:对边相等,对边平行;(2)角:对角相等;(3)对角线:对角线互相平分。

2013中考四边形研讨

2013中考四边形研讨
1、(2010· 泰安)(本小题满分10分) 如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、 AC上的一动点,且满足BP=AQ,D是BC的中点 (1)求证:△PDQ是等腰直角三角形; (2)当点P运动到什么位置时,四边形APDQ是正方形,并说明 理由。
2、(2011· 泰安)(本小题满分10分) 已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是 BC的中点,连接AE、AC。 (1)点F是DC上一点,连接EF,交AC于点O(如图1),求证: △AOE∽△COF; (2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证: 四边形EFDG是菱形。
A
对于双基题的强化, 主要目的还是希望 学生中考中做到: 基础题不失分,难 题能抢分。
D
F
B
C
E
例2、考察平行四边形的性质和判定
(双基拔高题)
(2010· 滨州中考)如图,平行四边形ABCD中, ∠ABC=60°,E、F分别在CD、BC的延长 线上,AE∥BD,EF⊥BC,DF=2,则EF的长为 ____.
C
定义: 有一个内角是直角的平行四边形是矩形
⑴矩形是特殊的平行四边形,具有 平 C 性质 行四边形的所有性质 D ⑵矩形的特殊性质: O ①矩形的四个角都是直角 A B 矩 ②矩形的两条对角线相等 ③矩形是轴对称图形;有两 形 条对称轴
⑴有三个角都是直角的四边形 ⑵对角线互相平分且相等的四边形 判别 ⑶有一个角是直角的平行四边形 ⑷对角线相等的平行四边形
平行四边形 矩形 菱形 正方形
对角线互相平分
四条边相等 四个角相等 对角线互相垂直 对角线相等 对角线平分一组对角



  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F E
D C B A 中考数学第一轮复习之———平行四边形 导学案
【复习目标】:
1. 掌握平行四边形的定义、性质与判定。

2. 会利用平行四边形的性质解决与其他知识点结合的综合问题.
【知识点提炼】
1.定义:两组对边分别 的四边形叫做平行四边形.
2.性质:平行四边形的对边___ _ ,对角___ ___,对角线________ .
3.判定:
4.对称性:它是 图形.
5.平行四边形面积公式: .
【典例精析】
例1:在□ABCD 中,∠A 比∠B 大20°,则∠C 的度数为___ .
例2:在ABCD 的周长为28cm ,且AB ∶BC=2∶5,那么AB= cm ,BC= cm.
例3:如图,在□ABCD 中,AB=10,AD=8,AC BC,则□ABCD 的面
积是 . 例4:如图,在□ABCD 中,E ,F 分别是CD ,AB 上的点,且DE =BF.
求证:四边形AECF 是平行四边形.
例5:如图所示,平行四边形ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于F.求证:AB=CF.
的四边形是平行四边形 对边.. 对角线... 对角..
F E
D C B A F
E D C B A F
E D C B A
F E D C B
A 变式1:如图所示,平行四边形ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于F.求证:C 为DF 中点;
变式2:如图所示,平行四边形ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于F ,若∠F=∠DAF ,试判断AB 与AD 的关系;
变式3:如图所示,平行四边形ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于F ,若AF 平分∠DAB ,且∠D=∠F ,求∠B ;
变式4:若在平行四边形ABCD 中,延长DC 至F ,使DC=CF ,连接AF 交BC 于E , 求证:E 是BC 的中点.
例6:如图所示,在□ABCD 中,E 、F 在对角线BD 上,并且BE=DF.试说明四边形AECF 是平行四边形.
变式1:如图所示,在□ABCD 中,E 、F 是对角线BD 的三等分点.试说明四边形AECF 是平行四边形.
变式2:在□ABCD 中,E 、F 分别是对角线BD 延长线和反向延长线上的点,并且BE=DF.试说明四边形AECF 是平行四边形.
【中考演练】
1. 下列条件中,能判定四边形是平行四边形的是( )
A. 一组对边相等
B. 对角线互相平分
C. 一组对角相等
D. 对角线互相垂直 2. 如图,在□ABCD 中,AC=20,BD=16,OA= ,OB= ,AB 的取值范围是 .
3. 如图,在周长为20cm 的□ABCD 中,A B ≠AD,AC 、BD 相交于点O ,OE ⊥BD 交AD 于点E ,则△ABE 的周长是( )
A.4cm
B.6cm
C.8cm
D.10cm
4.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AB=3,DE=2,则□ABCD 的 周长等于 .
F E D
C B A
F E F E D
C B A
(2题) (3题)(4题)
5.在平面直角坐标系中,□ABCD的顶点A、B、D坐标分别是(0,0),(5,0),(2,3),则点C的坐标是()
A.(3,7)
B.(5,3)
C.(7,3)
D.(8,2)
6.如图,在□ABCD中,AB=3,AD=4,∠ABC=60O,过BC的中点E作EF⊥AB,垂足为F,与DC的延长线交于点H,则△DEF的面积是.
(5题)(6题)(7题)
7. 如图,□ABCD中,点M是BC上的一点,连接AM与BD交于点N,AM:MN=4:1,CM=2,则BC的长是.
8.点E为□ABCD的边AB上一点,AE=3BE,点F是直线AD上一点,AF=2FD,EF交AC于G,
CG
AG
的值是.
【小结作业】
作业附小卷。

相关文档
最新文档