导数法解三次函数问题
应用导数研究三次函数课件
知识点2 切线条数 切点的个数
数学思想方法 数形结合,特殊与一般,化归转化
思考
一般情形的证明
对于对称问题,在函数中讲到了很 多,你能用所学知识证明一般三次函数 f (x) ax3 bx2 cx d (a 0) 的对称中心 是 ( b , f ( b ))的这个结论吗?
3a 3a
g(x) x3 3x2 2x 1 (1,1)
x y20
过对称中心的切线只有1条
上下区域 1条
左右区域 3条
切线上(除对称中心) 2条
曲线上(除对称中心) 2条
一般情形
小结
知识点1 对称中心
三次函数有唯一的对称中心,对称中心的横 坐标与其导函数顶点的横坐标相同. ( b , f ( b ))
应用导数研究三次函数
图像的对称性及切线条数
湖北省黄冈中学 袁小幼
函数 y x3图像的对称性
函数 y 的x3图像关于(0,0)对称.
三次函数的图像有唯一的对称中心,对称中 心的横坐标与其导函数顶点的横坐标相同.
一般三次函数图像的对称性
三次函数 f (x) ax3 bx2 cx d (a 0)图像 的对称中心是什么?
f (x) 3ax2 2bx c 3a(x b )2 c b2
3a
3a
( b , f ( b )) 3a 3a
三次函数在对称中心处的切线
函数 g(x) x3 3x2 2x 1 过对称中心 (1,数图像切线条数的探究
同样的,你能证明切线条数的一般 性结论吗?
谢 谢!
4导数研究三次函数的性质
4导数研究三次函数的性质复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数的零点。
复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况;【典型例题】题型一:三次函数单调性的讨论例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围.例2.已知函数f (x )=-x 3+3x 2+9x +a ,(I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.题型二:三次函数极值,最值的讨论例3. 已知a 是实数,函数2()()f x x x a =-;(1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 在区间[]2,0上的最大值.例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<.(1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值;(2)设函数2()(()61)x F x f x x e '=++⋅,试判断函数()F x 的极值点个数.【课后作业】1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围.3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为5.设函数b x a ax x x f +-+-=2233231)( (0<a <1). (1)求函数)(x f 的单调区间; (2)当x ∈[]2,1++a a 时,不等式|()x f/ |≤a ,求a 的取值范围.6.已知函数3221()21(0)32a f x x x a x a =--+> (1)求函数()f x 的极值;(2)若函数()y f x =的图象与值线0y =恰有三个交点,求实数a 的取值范围;(3)已知不等式2'()1f x x x <-+对任意(1,)a ∈+∞都成立,求实数x 的取值范围.7.已知函数()()a x x f -=2()x b -,b a ,为常数,(1)若a b ≠,求证:函数()x f 存在极大值和极小值(2)设()x f 取得极大值、极小值时自变量分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),若a >b ,直线AB 的斜率为12-,求函数()x f 和/()f x 的公共递减区间的长度.答案:【典型例题】1. 61≥a . 2.(I ) 0)(,963)(2<'++-='x f x x x f 令,解得x <-1或x >3所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(II ))}2(),2(max{)(,5)1()(,3212m ax m in f f x f a f x f -=+-=-=∴<<-<-)2()2(,22)2(,2)2(->∴+=+=-f f a f a f 于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7,即函数f (x )在区间[-2,2]上的最小值为-7.3. 解析:(1)2'()32f x x ax =-.因为'(1)323f a =-=,所以0a =.又当0a =时,(1)1,'(1)3f f ==,所以曲线()(1,(1))y f x f =在处的切线方程为3x y --2=0.(2)令'()0f x =,解得1220,3a x x ==. 当203a ≤,即a ≤0时,()f x 在[0,2]上单调递增,从而max (2)84f f a ==-. 当223a ≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而max (0)0f f ==. 当2023a <<,即03a <<,()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤⎢⎥⎣⎦上单调递增,从而max 84,0 2.0,2 3.a a f a -<≤⎧⎪=⎨<<⎪⎩综上所述,max 84, 2.0, 2.a a f a -≤⎧⎪=⎨>⎪⎩4.解(Ⅰ)由已知得,323()2f x x ax b =-+; 由()0f x '=,得10x =,2x a =. ∵[1, 1]x ∈-,12a <<,∴ 当[1, 0)x ∈-时,()0f x '>,()f x 递增;当(0, 1]x ∈时,()0f x '<,()f x 递减.∴ ()f x 在区间[1, 1]-上的最大值为(0)f b =,∴1b =. 又33(1)11222f a a =-+=-,33(1)1122f a a -=--+=-,∴ (1)(1)f f -<. 由题意得(1)2f -=-,即322a -=-,得43a =.故43a =,1b =为所求. (Ⅱ) 2222()(3361)33(2)1x x F x x ax x e x a x e ⎡⎤=-++⋅=--+⋅⎣⎦. ∴ []222()63(2)233(2)1x x F x x a e x a x e '⎡⎤=--⋅+--+⋅⎣⎦22[66(3)83]x x a x a e =--+-⋅.二次函数266(3)83y x a x a =--+-的判别式为22236(3)24(83)12(31211)123(2)1a a a a a ⎡⎤∆=---=-+=--⎣⎦,令0∆≤,得:21(2),22333a a -≤-≤≤+令0∆>,得2,233a a <->+或 ∵20x e >,12a <<,∴当22a ≤<时,()0F x '≥,函数()F x 为单调递增,极值点个数为0;当12a <<()0F x '=有两个不相等的实数根,根据极值点的定义,可知函数()F x 有两个极值点.【课后作业】1.(1,0)或(-1,-4)2.解:f (x )=a·b =x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,……4分∴f ′(x )=-3x 2+2x +t . …………7分∵f (x )在(-1,1)上是增函数,∴-3x 2+2x +t ≥0在x ∈(-1,1)上恒成立.∴t ≥3x 2-2x , ……………11分令g (x )=3x 2-2x ,x ∈(-1,1).∴g (x )∈⎣⎡⎭⎫-13,5,∴t ≥5. ……………15分3. f (x )max =1,f (x )min =-2。
(完整版)专题三导数与三次函数
7 ∴33332222mamambbmmccm 由155fabc ∴32532mmm 6m ∴23ma,39,2122mbcm 2、若函数32111132fxxaxax在区域1,4内为减函数,在区间6,上为增函数,试求实数a的取值范围。(2004全国卷) 解:21fxxaxa 令0fx解得11x,21xa ①当11a即2a时,fx在1,上为增函数,不合题意 ②当11a即2a时,函数fx在,1上为增函数,在1,1a内为减函数,在1,a上为增函数,依题意应有: 当1,4x时,0fx,当6,x时,0fx 所以416a,解得 57a 综上,a的取值范围是5,7 3、已知函数323fxaxbxx在1x处取得极值, ⑴讨论1f和1f是函数fx的极大值还是极小值; ⑵过点0,16A作曲线yfx的切线,求此切线方程。(2004天津)
3 x ,1 -1 (-1,1) 1 1, fx + 0 - 0 + ()fx 极大值 极小值 ∴()fx的单调递增区间是,1和1, ()fx的单调递减区间是1,1 当1x时,fx有极大值311312faa 当1x时,fx有极小值311312faa 要使()fx有一个零点,需且只需2020aa,解得2a 要使()fx有二个零点,需且只需2020aa,解得2a 要使()fx有三个零点,需且只需2020aa,解得22a 变式五、已知函数33,0fxxxa,如果过点,2Aa可作曲线yfx的三条切线,求a的取值范围 解:设切点为00,xy,则233fxx ∴切线方程000yyfxxx 即 2300332yxxx ∵切线过点A,2a ∴23002332xax 即 320023320xaxa ∵过点,2Aa可作yfx的三条切线 ∴方程有三个相异的实数根
导数法解“三次”函数问题
导数法解“三次”函数问题新教材中导数内容的介入,为研究函数的性质提供了新的活力,通过求导可以研究函数的单调性和极值,其操作的步骤学生易掌握,判别的方法也不难。
特别地,当f(x)为三次函数时,通过求导得到的f /(x)为二次函数,且原函数的极值点就是二次函数的零点;同时利用导数的几何意义:曲线在某一点P (00,y x )处的切线的斜率)(0/x f k =,可得到斜率 k 为关于0x 的二次函数。
根据这些特点,一般三次函数问题,往往可通过求导,转化为二次函数或二次方程问题,然后结合导数的基本知识及二次函数的性质来解决。
下面笔者从课堂或试卷上出现的这一类型题目中选择几例,同时结合学生产生的问题,略作说明。
例1:已知f(x)=d cx bx x +++23在(—∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α、2、β.(1) 求c 的值; (2) 求证:f(1)≥2(3) 求|α-β|的取值范围。
解:(1),23)(2/c bx x x f ++= 由题意可得:x=0为f(x)的极值点, ∴0,0)0(/=∴=c f(2)令023)(2/=+=bx x x f ,得32,021b x x -==∵f(x)在(—∞,0)上是增函数,在[0,2]上是减函数, ∴232≥-b ,即3-≤b又∵b d d b f 48,048,0)2(--=∴=++∴=∴.2371)1(≥--=++=b d b f(3)∵方程f(x)=0有三个根α、2、β. ∴设),)(2()(223n mx x x d cx bx x x f ++-=+++= 由待定系数法得2,2d n b m -=+=∴α、β为方程02)2(2=-++d x b x 的两根,∴ α+β=-(b+2),αβ=-d/2;∴|α-β|2=16)2(1242)2(222--=--=++b b b d b ∵3-≤b ,∴|α-β|2≥9, ∴|α-β| ≥3一般地,若已知三次函数f(x)=)0(23>+++a d cx bx ax 在(—∞,m )上是增函数,在[m ,n]上是减函数,在(n,+∞)上是增函数,则二次方程f /(x)=0即0232=++c bx ax 的两个根为m ,n ;且当),(),(+∞⋃-∞∈n m x 时f /(x)>0,当),(n m x ∈时f /(x)<0,反之亦然。
导数在解决三次函数问题中的应用
值, 求f ( x ) 在【 - _ 1 , 2 】 的最 大值 ? 分析: 解 决本 类题 目的步 骤是 : ( 1 ) 求导 函数 ; ( 2 ) 求极 值 点; ( 3 ) 求单调 区间 ; ( 4 ) 求极值 或最值 。 解: f ' ( x ) = 3 x 2 一 x + b , f ( x ) 在x = l 时取 得极 值 . x = l 为方程 f ( x ) : O 的一根 j
导数与三次函数的关系
通过乘法法则和链式法则,将原函数进行求导,得到 导数表达式。
注意事项
在计算过程中,需要注意各项的系数和变量的指数变 化。
三次函数导数的性质
单调性
通过导数的符号判断函 数的单调性,若导数大 于0,函数单调递增; 若导数小于0,函数单 调递减。
极值点
导数为0的点称为临界 点或驻点,是函数值可 能发生变化的点,即极 值点。
数学教育改革
在数学教育领域,如何更好地教授导数与三次函数的关系,将直接 影响学生理解和应用数学的能力。
未来研究方向
对于导数与三次函数关系的深入研究,将推动数学理论和应用的不 断发展,为解决复杂问题提供更多有效工具。
THANKS
谢谢
凹凸性
通过求二阶导数判断函 数的凹凸性,二阶导数 大于0,函数为凹函数; 二阶导数小于0,函数 为凸函数。
三次函数导数的几何意义
切线斜率
导数在某一点的值表示该点处切线的斜率。
函数变化率
导数表示函数在某一点附近的变化率,即函 数值增量与自变量增量的比值。
单调区间
通过导数的符号变化,可以确定函数的单调 区间。
优化问题求解
导数在优化问题中扮演关键角色,如最大值和最小 值问题,通过求导可以找到使函数取得极值的点。
近似计算
在科学、工程和经济学中,经常需要估算函 数的近似值,导数有助于更精确地估计这些 值。
导数与三次函数关系在数学中的地位
连接初等与高等数学
导数与三次函数的关系是初等数学与 高等数学之间的桥梁,帮助学习者逐
VS
极值判断
在找到极值点后,我们可以进一步判断这 些点是极大值还是极小值。如果函数在极 值点左侧递增,右侧递减,则该点为极大 值;如果函数在极值点左侧递减,右侧递 增,则该点为极小值。
导数与三次函数
导数与三次函数一、教学目标1.知识与技能(1)理解导数的概念及其几何意义;(2)掌握三次函数的导数的计算方法;(3)能够利用导数求解三次函数的最值、单调性等问题。
2.过程与方法(1)通过观察、讨论和实例分析的方式,引导学生发现导数的概念及其几何意义;(2)通过导数的定义,推导出三次函数的导数计算公式;(3)通过练习、例题和实际问题的分析,培养学生运用导数求解最值和单调性等问题的能力。
3.情感、态度与价值观(1)培养学生观察、思考和分析问题的能力;(2)激发学生学习数学的兴趣和动力;(3)培养学生合作和创新的意识和能力。
二、教学重点(1)导数的概念及其计算方法;(2)三次函数的导数计算方法。
三、教学难点三次函数的导数计算方法。
四、教学准备黑板、彩色粉笔、教师用电脑及投影仪。
五、教学过程1.导入(1)教师以黑板和投影仪为媒介,展示一张由不同函数图象组成的图片,让学生观察并思考:这些函数之间有什么共同的特点?(2)学生回答后,教师引导他们讨论,并得出结论:这些函数图象的斜率是否恒定?(3)然后,教师告诉学生这种函数图象的斜率在不同点上是不同的,这个斜率就是导数。
2.导入导数的概念(1)教师在黑板上写下函数的定义:若函数f(x)在点x处有导数,则称函数在点x处可导,导数记为f'(x),定义如下:\[f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\](2)教师通过具体的实例进行解释,通过图像展示导数的几何意义:导数表示函数图象在其中一点处的切线的斜率。
3.计算三次函数的导数(1)教师在黑板上写下三次函数的一般形式:\[f(x)=ax^3+bx^2+cx+d\](2)教师引导学生思考,讨论如何计算这个函数的导数。
(3)通过讨论,教师引导学生推导出三次函数的导数计算公式:\[f'(x)=3ax^2+2bx+c\]4.练习(1)教师出示一道示例题,让学生计算函数\[f(x)=2x^3-4x^2+5x-3\]在$x=2$处的导数。
专题14 三次函数(学生版) -2025年高考数学压轴大题必杀技系列导数
专题14 三次函数函数与导数一直是高考中的热点与难点, 我们知道二次函数是重要的且具有广泛应用的基本初等函数,学生对此已有较为全面、系统、深刻的认识,并在某些方面具备了把握规律的能力,由于三次函数的导数是二次函数,我们可以利用二次函数深入研究三次函数的图象与性质,这使得三次函数成为高考数学的一个热点.(一)三次函数的单调性由于三次函数()f x 的导数()f x ¢是二次函数,我们可以利用()0f x ¢=根的情况及根的分布来研究三次函数的单调性,特别是含有参数的三次函数的单调性通常要借助二次方程根的分布求解.【例1】(2024届青海省部分学校高三下学期联考)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.【解析】(1)()()()()2111f x x mx m x x m =+-+=-++¢,令()0f x ¢=,解得1x =或1x m =--,①当11m -->,即2m <-时,由()0f x ¢>得1x <或1x m >--;由()0f x ¢<得11x m <<--,所以()f x 在(),1¥-和()1,m ¥--+上单调递增;在()1,1m --上单调递减;②当11m --=,即2m =-时,()0f x ¢³恒成立,所以()f x 在R 上单调递增;③当11m --<,即2m >-时,由()0f x ¢>得1x >或1x m <--;由()0f x ¢<得11m x --<<,所以()f x 在(),1m ¥---和()1,¥+上单调递增;在()1,1m --上单调递减;综上,当2m <-时,()f x 在(),1¥-和()1,m ¥--+上单调递增;在()1,1m --上单调递减;当2m =-时,()f x 在R 上单调递增;当2m >-时,()f x 在(),1m ¥---和()1,¥+上单调递增;在()1,1m --上单调递减.(2)因为()f x 有3个零点,所以2m ¹-,当2m >-时,极大值()()221163m f m m æö--=++ç÷èø;极小值()12123f m =--,所以()22106312023m m m ìæö++>ç÷ïïèøíï--<ïî,解得43m >-且1m ¹-,当2m <-时,极大值()12123f m =--;极小值()()221163m f m m æö--=++ç÷èø,所以()22106312023m m m ìæö++<ç÷ïïèøíï-->ïî,解得4m <-,综上,m 的取值范围为()()4,4,11,3¥¥æö--È--È-+ç÷èø.(二)过平面上一点P 作三次函数图象的切线的条数1.此类问题一般是先设出切点Q ()(),t f t ,写出曲线()f x 在x t =处的切线方程,把点P 坐标代入,整理出一个关于t 的三次方程,该方程实根个数就是切线条数.2.以三次函数为 bx ax x f +=3)(为例,研究一下三次函数的切线问题:若M (x 1,y 1)是三次曲线bx ax x f +=3)(上的任一点,设过M 的切线与曲线y=f (x )相切于(x 0,y 0),则切线方程为))((000x x x f y y -¢=-,因点M 上此切线上,故))((01001x x x f y y -¢=-,又13110300,bx ax y bx ax y +=+=,所以))(3()(0120030131x x b ax bx ax bx ax -+=+-+,整理得:0)2()(10210=+-x x x x ,解得,10x x =或210x x -=.综上所述,当点M 是对称中心即01=x 时,过点M 作曲线的切线切点是惟一的,且为M ,故只有一条切线;当点M 不是对称中心即01¹x 时,过点M 作曲线的切线可产生两个不同的切点,故必有两条切线,其中一条就是以M 为切点(亦即曲线在点M 处)的切线. 由此可见,不仅切线与曲线的公共点可以多于一个,而且过曲线上点的切线也不一定惟一【例2】(2024届福建省泉州市高中毕业班5月适应性练习)已知函数()()32220f x ax x x a a =--+³.(1)当1a =时,若直线3y x b =-+与曲线()y f x =相切,求b ;(2)若直线22y x =--与曲线()y f x =恰有两个公共点,求a .【解析】(1)当1a =时,()32221f x x x x =--+,()2342f x x x ¢=--,因为直线3y x b =-+与曲线()y f x =相切,设切点为()00,x y ,则切线斜率()2000342k f x x x ¢==--,可得2000032000034233221x x y x by x x x ì--=-ï=-+íï=--+î,解得00121x y b =ìï=-íï=î或00134273127x y b ì=ïïï=íïï=ïî,所以1b =或3127b =.(2)因为直线22y x =--与曲线()y f x =恰有两个公共点,所以方程322222ax x x a x --+=--,即方程()()321210a x x +--=有两个不等实根,因为=1x -是方程()()321210a x x +--=的一个根;当1x ¹-时,方程可化为()2220ax a x a -+++=(*),依题意,方程(*)有不等于1-的唯一根,因为0a ³,若0a =,则(*)即220x -+=,1x =,满足条件;若0a >,则由()()22202420a a a a a a ++++¹ìïí=+-+=ïîV ,解得:23a =.综上所述,0a =或23a =.【例3】(2024届江苏省南通市高三上学期期初质量监测)已知函数()()320f x ax bx cx a =++>的极小值为2-,其导函数()f x ¢的图象经过()1,0A -,()10B ,两点.(1)求()f x 的解析式;(2)若曲线()y f x =恰有三条过点()1,P m 的切线,求实数m 的取值范围.【解析】(1)()232f x ax bx c ¢=++,因为0a >,且()f x ¢的图象经过()1,0A -,()10B ,两点.所以当(),1x Î-¥-时,()0f x ¢>,()f x 单调递增;当()1,1x Î-时,()0f x ¢<,()f x 单调递减;当()1,x Î+¥时,()0f x ¢>,()f x 单调递增.所以()f x 在1x =处取得极小值,所以()12f a b c =++=-,又因为()10f ¢-=,()10f ¢=,所以320a b c -+=,320a b c ++=,解方程组3203202a b c a b c a b c -+=ìï++=íï++=-î得1a =,0b =,3c =-,所以()33f x x x =-.(2)设切点为()00,x y ,则30003y x x =-,因为()233f x x ¢=-,所以()20033f x x ¢=-,所以切线方程为()()()320000333y x x x x x --=--,将()1,P m 代入上式,得32002330x x m -++=.因为曲线()y f x =恰有三条过点()1,P m 的切线,所以方程322330x x m -++=有三个不同实数解.记()32233g x x x m =-++,则导函数()()26661g x x x x x ¢=-=-,令()0g x ¢=,得0x =或1.列表:x(),0¥-0()0,11()1,+¥()g x ¢+0-+()g x ↗极大↘极小↗所以()g x 的极大值为()03g m =+,()g x 的极小值为()12g m =+,所以()()0010g g ì>ïí<ïî,解得32m -<<-.故m 的取值范围是()3,2--.(三)三次函数的极值三次函数()f x 的极值点就是二次函数()f x ¢的零点,所以与三次函数极值有关的问题常借助“三个二次”的关系求解.【例4】(2024届山东省实验中学高三二模)已知函数()()2()(,,)f x x a x b a b a b =--Î<R .(1)当1,2a b ==时,求曲线()y f x =在点()()22f ,处的切线方程;(2)设12,x x 是()f x 的两个极值点,3x 是()f x 的一个零点,且3132,x x x x ¹¹.是否存在实数4x ,使得1234,,,x x x x 按某种顺序排列后构成等差数列?若存在,求4x ;若不存在,说明理由.【解析】(1)当1,2a b ==时,()()2(1)2f x x x =--,则()()()()()()22121135f x x x x x x ¢=--+-=--,故()21f ¢=,又()20f =,所以曲线()y f x =在点()2,0处的切线方程为2y x =-;(2)()()()222()()33a b f x x a x b x a x a x +æö¢=--+-=--ç÷èø,由于a b <,故23a ba +<,令()0f x ¢>,解得x a <或23a b x +>;令()0f x ¢<,解得23a ba x +<<;可知()y f x =在2,3ab a +æöç÷èø内单调递减,在()2,,,3a b a +æö-¥+¥ç÷èø内单调递增,所以()f x 的两个极值点为2,3a b x a x +==,不妨设122,3a bx a x +==,因为3132,x x x x ¹¹,且3x 是()f x 的一个零点,故3x b =.又因为22233a b a b a b ++æö-=-ç÷èø,故4122233a b a b x a ++æö=+=ç÷èø,此时22,,,33a b a ba b ++依次成等差数列,所以存在实数4x 满足题意,且423a bx +=.(四)三次函数的零点1.若三次函数()f x 没有极值点,则()f x 有1个零点;2. 三次函数()f x 有2个极值点12,,x x ,则()()120f x f x >时()f x 有1个零点;()()120f x f x =时()f x 有2个零点;()()120f x f x <时()f x 有3个零点.【例5】(2023届江西省赣抚吉十一校高三第一次联考)已知函数322()432f x x mx m x =--+,其中0m ³.(1)若()f x 的极小值为-16,求m ;(2)讨论()f x 的零点个数.【解析】(1)由题得22()383(3)(3)f x x mx m x m x m ¢=--=-+,其中0m ³,当0m =时,()0f x ¢³,()f x 单调递增,()f x 无极值;当0m >时,令()0f x ¢>,解得3m x <-或3x m >;令()0f x ¢<,解得33mx m -<<,所以()f x 的单调递减区间为,33m m æö-ç÷èø,单调递增区间为,3m æö-¥-ç÷èø,()3,m +¥,所以当3x m =时,()f x 取得极小值()33218f m m =-,所以321816m -=-,解得1m =.(2)由(1)知当0m >时,()f x 的极小值为()33218f m m =-,()f x 的极大值为31420327m f m æö-=+>ç÷èø,当32180m -<,即m >时,()f x 有三个零点,如图①曲线 ;当32180m -=,即m =,()f x 有两个零点,如图②曲线;当32180m ->,即0<,()f x 有一个零点,如图③曲线;当0m =时,()32f x x =+,易知()f x 有一个零点. 综上,当0m £<()f x 有一个零点;当m ,()f x 有两个零点;当m >,()f x 有三个零点.(五)三次函数图象的对称性三次函数32()(0)f x ax bx cx d a =+++¹的图象有六种,如图:10010200200f x ()x10010200200f x ()x100102000200f x ()x对函数32()(0)f x ax bx cx d a =+++¹,原函数的极值点与单调性与导函数的正负有关,所以容易发现导函数中的参数当a 为正时,原函数的图象应为上图中的(1)、(3)、(5、(4)、(6)三种情况.当0D >时,二次方程()0f x ¢=有两相异实根1x ,故函数()f x 存在两个极值点,图象为上图中的(3)、(4,且在根的两边()f x ¢的符号相同,这时函数()f x 只存在驻点1)、(2)两种,当0D <时;方程()0f x ¢=无实根,()f x ¢)两种.仔细观察图象,我们还不难发现三次函数是中心对称曲线,这一点可以得到进一步的验证:设n x m f x m f 2)()(=++-,得n d x m c x m b x m a d x m c x m b x m a 2])()()([])()()([2323=++++++++-+-+-整理得,n d mc bm am x b ma 2)2222()26(232=+++++.据多项式恒等对应系数相等,可得ab m 3-=且d mc bm am n +++=23,从而三次函数是中心对称曲线,且由)(m f n =知其对称中心))(,(m f m 仍然在曲线上.而abm 3-=是否具有特殊的意义?对函数)(x f 进行两次求导,b ax x f 26)(+=¢¢再令等于0,得abx 3-=,恰好是对称中心的横坐标,这可不是巧合,因为满足0)(=¢¢m f 的m 正是函数拐点的横坐标,这一性质刚好与图象吻合.【例6】对于三次函数32()(0)f x ax bx cx d a =+++¹,给出定义:设()f x ¢是函数()y f x =的导数,()f x ¢¢是()f x ¢的导数,若方程()0f x ¢¢=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若32115()33212f x x x x =-+-,请你根据这一发现.(1)求函数()f x 的对称中心;(2)计算122020()(()()20212021202120213f f f f +++×××+.【解析】(1)2()3,()21f x x x f x x ¢¢¢=-+\=-Q ,令()0f x ¢¢=,即210x -=,解得12x =,321111115()(()3123222212f \=´-´+´-=,由题中给出的结论,可知函数()f x 的对称中心为1(,1)2.(2)由(1)知函数32115()33212f x x x x =-+-的对称中心为1(,1)2,所以11()()222f x f x ++-=,即()(1)2f x f x +-=,故120202201920201()()2,(()2,(()2202120212021202120212021f f f f f f +=+=×××+=,所以1220201()()((220202020202120212021202312f f f f +++×××+=´´=. (六)三次函数与韦达定理的交汇由于三次函数的导数是二次函数,而二次函数常与韦达定理交汇,故有时可以用定理交汇处理三次函数问题【例7】设21,x x 是函数)0(23)(223>-+=a x a xb x a x f 的两个极值点,且2||||21=+x x(1)求a 的取值范围; (2)求证:934||£b .【解析】(1)22')(a bx ax x f -+=,'12,()0x x f x =是的两个实根,又a >0a bx x a x x -=+<-=2121,0,a ab x x x x 4||||||222121+=-=+由2||||21=+x x 得22232244444(1)b a b a a a a a +==-=-,即1002£<\³a b Q (2)设,44)(322a a a gb -==则)32(4128)(2'a a a a a g -=-=22()(0)(1)33g a 在,在单调递增,在,上单调递增max 216[()](327g a g ==,934£\b 【例8】(2024年2月第二届“鱼塘杯”高考适应性练习)对三次函数()32,0f x ax bx cx d a =+++¹,如果其存在三个实根123,,x x x ,则有123122331123,,b c dx x x x x x x x x x x x a a a++=-++==-.称为三次方程根与系数关系.(1)对三次函数()32f x ax bx cx d =+++,设()()g x f x =¢,存在0x ÎR ,满足()()()0000f x g x g x =¹¢=.证明:存在10x x ¹,使得()()()210f x a x x x x =--;(2)称()f x 是[],m M 上的广义正弦函数当且仅当()f x 存在极值点()12,,x x m M Î,使得()(){}()(){}12,,f x f x f m f M =.在平面直角坐标系xOy 中,(),A a b 是第一象限上一点,设()()()2,()4bf x x a xg x x a x b x =-+=--.已知()g x 在()0,a 上有两根03x x <.(i )证明:()f x 在()0,¥+上存在两个极值点的充要条件是327a b >;(ii )求点A 组成的点集,满足()f x 是[]03,x x 上的广义正弦函数.【解析】(1)因为()00f x =,所以不妨设()()()()()012,0f x a x x x x x x a =---¹,所以()()()()()()()()()010212,0g x f x a x x x x a x x x x a x x x x a ¢==--+--+--¹,因为()()000g x g x =¢¹,所以()()()()()0001020,0g x f x a x x x x a ¢==--=¹,所以不妨取02x x =满足题意,且此时必有10x x ¹,否则若0x x =,则有()()30f x a x x =-,()()()203g x f x a x x ¢==-,()()06g x a x x ¢=-,而此时()()00060g x a x x ¢=-=与已知()()000g x g x =¢¹矛盾,综上所述,存在10x x ¹,使得()()()210f x a x x x x =--.(2)(i )(),A a b 是第一象限上一点,所以0,0a b >>,因为()()b f x x a x x =-+,所以()()32222,0,0b x ax b f x a x a b x x-+-¢=--=>>,设()322h x x ax b =-+-,则()00h b =-<,而x ®-¥时,()h x ®+¥,x ®+¥时,()h x ®-¥,所以()3220h x x ax b =-+-=存在负根,因为()f x 在()0,¥+上存在两个极值点,等价于方程()3220x ax bf x x -+-¢==在()0,¥+上有两个根,等价于方程()3220h x x ax b =-+-=在()0,¥+上存在两个根,注意到三次方程最多有3个根,所以方程()3220h x x ax b =-+-=有一个负根,两个不同的正根,而()262h x x ax ¢=-+,当03a x <<时,()2620h x x ax ¢=-+>,()h x 单调递增,当3a x >时,()2620h x x ax ¢=-+<,()h x 单调递减,所以当且仅当33320327927a a a a h b b æö=-+-=->ç÷èø,即当且仅当327a b >,综上所述,命题(i )得证;(ii )容易验证,327a b >时,()0g x =也恰好有两个正根03,x x ,此时:由于对0x >来说,()0f x ¢=等价于3220x ax b -+=,()0g x =等价于()240x a x b --=,所以对0x >,如果()0g x =,那么()()()32202444a x a a x x a x a x f b b -----æö¢=-+=+=ç÷èø,这意味着3012,22a x a x x x --==,然后,对两个不相等的正数()()()(),,b u v f u f v u v a u v uv éù-=--+-êúëû,所以()()f u f v =当且仅当bu v a uv++=,那么如果1t x =或2x ,就有02a t x -=或3x ,故()()2f t g a t ¢=-,此时()()()()()()2322222222b t a t b b t at bt a t a t a a a t a t t a t t a t t a t ---++-+=-+=+=+=----,所以()()2f t f a t =-,这意味着()()()()0213,f x f x f x f x ==,最后,由于()()322m x h x x ax b =-=-+有一个极值点3a x =,所以12,x x 都不等于3a (12,x x 是不相等的正零点,同时该方程还有另一个负零点,但3a只要是根就是二重的,所以3a不可能是根),这就说明1302,x x x x ¹¹,结合()f x 的单调性以及()()()()0213,f x f x f x f x ==,必有0123x x x x <<<,所以此时()f x 一定是广义正弦函数,综上所述,满足题意的(){}3,|27A a b ab =>.【例1】(2024届福建省泉州市高三5月适应性练习)已知函数()()32220f x ax x x a a =--+³.(1)当1a =时,若直线3y x b =-+与曲线()y f x =相切,求b ;(2)若直线22y x =--与曲线()y f x =恰有两个公共点,求a .【解析】(1)当1a =时,()32221f x x x x =--+,()2342f x x x ¢=--,因为直线3y x b =-+与曲线()y f x =相切,设切点为()00,x y ,则切线斜率()2000342k f x x x ¢==--,可得2000032000034233221x x y x by x x x ì--=-ï=-+íï=--+î,解得00121x y b =ìï=-íï=î或00134273127x y b ì=ïïï=íïï=ïî,所以1b =或3127b =.(2)因为直线22y x =--与曲线()y f x =恰有两个公共点,所以方程322222ax x x a x --+=--,即方程()()321210a x x +--=有两个不等实根,因为=1x -是方程()()321210a x x +--=的一个根;当1x ¹-时,方程可化为()2220ax a x a -+++=(*),依题意,方程(*)有不等于1-的唯一根,因为0a ³,若0a =,则(*)即220x -+=,1x =,满足条件;若0a >,则由()()22202420a a a a a a ++++¹ìïí=+-+=ïîV ,解得:23a =.综上所述,0a =或23a =.【例2】(2024届福建省泉州第五中学高考热身测试)已知函数()32,f x x ax a =-+ÎR .(1)若2x =-是函数()f x 的极值点,求a 的值,并求其单调区间;(2)若函数()f x 在1,33éùêúëû上仅有2个零点,求a 的取值范围.【解析】(1)()23f x x a =¢-,()2120f a =¢--=,得12a =,当12a =时,()23120f x x ¢=-=,得2x =-或2x =,()(),,x f x f x ¢的变化情况如下表所示,x(),2¥--2-()2,2-2()2,¥+()f x +0-+()f x ¢增区间极大值18减区间极小值14-增区间所以函数()f x 的增区间是(),2¥--和()2,¥+,减区间是()2,2-;(2)令()320f x x ax =-+=,1,33x éùÎêúëû,得3222x a x x x+==+,令()22g x x x =+,1,33x éùÎêúëû,()()32221220x g x x x x-=-==¢,得1x =,如下表,x131,13æöç÷èø1()1,33()g x ¢-0+()g x 559减区间极小值3增区间293因为函数()f x 在1,33éùêúëû上仅有2个零点,即y a =与()y g x =有2个交点,如图:即5539a <£.【例3】(2024届陕西省铜川市高三下学期模拟)已知函数()()322312R h x x x x m m =+-+Î的一个极值为2-.(1)求实数m 的值;(2)若函数()h x 在区间3,2k éùêúëû上的最大值为18,求实数k 与m 的值.【解析】(1)由()()322312R h x x x x m m =+-+Î,得()()()26612621h x x x x x ¢=+-=+-,令()0h x ¢=,得2x =-或1x =;令()0h x ¢<,得2<<1x -;令()0h x ¢>,得<2x -或1x >.所以函数()h x 有两个极值()2h -和()1h .若()22h -=-,得()322(2)3(2)1222m ´-+´--´-+=-,解得22m =-;若()12h =-,得3221311212m ´+´-´+=-,解得5m =.综上,实数m 的值为-22或5.(2)由(1)得,()(),h x h x ¢在区间3,2æù-¥çúèû的变化情况如下表所示:x(),2-¥-2-()2,1-131,2æöç÷èø32()h x ¢+-+()h x Z 极大值20m +]极小值7m -Z92m -由表可知,①当312k £<时,函数()h x 在区间3,2k éùêëû上单调递增,所以最大值为3922h m æö=-ç÷èø,其值为253-或12,不符合题意;②当2k =-时,函数()h x 在()2,1-上单调递减,在31,2æöç÷èø上单调递增,因为()220h m -=+,3922h m æö=-ç÷èø,()322h h æö>ç÷èø,所以()h x 在3,2k éùêúëû上的最大值为()220h m -=+,其值为2-或25,不符合题意;③当2k <-时,函数()h x 在(),2k -上单调递增,在()2,1-上单调递减,在31,2æöç÷èø上单调递增,因为()220h m -=+,3922h m æö=-ç÷èø,()322h h æö>ç÷èø,所以()h x 在3,2k éùêúëû上的最大值为()220h m -=+,其值为2-或25,不符合题意;④当21k -<<时,()h x 在(),1k 上单调递减,在31,2æöç÷èø上单调递增,若()h x 在区间3,2k éùêúëû上的最大值为3922h m æö=-ç÷èø,其值为12或253-,不符合题意,又因为若22m =-,则()2202h m -=+=-.那么,函数()h x 在区间3,2k éùêúëû上的最大值只可能小于-2,不合题意,所以要使函数()h x 在区间3,2k éùêúëû上的最大值为18,必须使()32231218h k k k k m =+-+=,且5m =,即()322312518h k k k k =+-+=.所以322312130k k k +--=,所以3222213130k k k k k +++--=.所以()()()22111310kk k k k +++-+=,所以()()221310k k k +-+=.所以22130k k +-=或10k +=,所以k =10k +=.因为21k -<<,所以k =舍去.综上,实数k 的值为1,m -的值为5.【例4】(2023届江苏省徐州市睢宁县高三下学期5月模拟)已知函数32()2f x x mx =-+,R m Î,且()|()|g x f x =在(0,2)x Î上的极大值为1.(1)求实数m 的值;(2)若()b f a =,()c f b =,()a f c =,求,,a b c 的值.【解析】(1)2()|2|g x x x m =-,02x ££,① 0m £时,32()2g x x mx =-,∴2()620g x x mx ¢=-≥,无极值.② 4m ³时,32()2g x x mx =-+,∴()2(3)g x x m x ¢=-,当23m³,即6m ³时,()0g x ¢³,无极大值;当46m £<时,3m x <时,()0g x ¢>;23mx <<时,()0g x ¢<,∴()g x 在3m x =处取极大值,即3(1327m m g ==,∴3m =,舍去.③04m <<时,()32322,022,22m x mx x g x m x mx x ì-+££ïï=íï-<£ïî,∴()()()23,0223,22m x m x x g x m x x m x ì-££ïï=íï-<£î¢ï,03m x <<时,()0g x ¢>;32m m x <<时,()0g x ¢<;22mx <<时,()0g x ¢>.∴()g x 在3m x =处取极大值3127m =,∴3m =符合题意.综上,3m =.(2)由(1)可知,32()23f x x x =-+,()2()6661f x x x x x =-+=-+¢,令()0f x ¢>可得10x -<<,令()0f x ¢<可得1x >或0x <,如图所示.① 当0a <时,()0b f a =>,当302b <≤时,0()1c f b <=≤,则()0a f c =>,矛盾;当32b >时,()0c f b =<,∴()0a f c =>,矛盾.② 当0a =时,符合题意.③ 当102a <<时,102x <<时,()f x x <,∴10()2b f a a <=<<,则10()2c f b b <=<<,10()2a f c c <=<<,∴a cb a <<<,矛盾.④ 当12a =时,符合题意.⑤ 当112a <<时,112x <<时,()f x x >,∴11()2b f a a >=>>,则11()2c f b b >=>>,11()2a f c c >=>>,∴a cb a >>>,矛盾.⑥ 当1a =时,符合题意.⑦ 当312a <£时,0()1b f a =<≤,则0()1c f b =<≤,∴()1a f c =<,与1a >矛盾.⑧ 当32a >时,()0b f a =<,()0c f b =>,∴()1a f c =≤,与32a >矛盾.综上,0abc ===,或12a b c ===,或1a b c ===.【例5】(2023届重庆市第十一中学校高三上学期11月质量检测)已知函数()3233f x x x ax =-++,()f x 在1x 处取极大值,在2x 处取极小值.(1)若0a =,求函数()f x 的单调区间;(2)在方程()()1f x f x =的解中,较大的一个记为3x ,在方程()()2f x f x =的解中,较小的一个记为4x ,证明:4132x x x x --为定值.【解析】(1)当0a =时,()3233f x x x =-+,定义域为R,()236f x x x ¢=-,当()0f x ¢>时,2x >或0x <;当()0f x ¢<时,02x <<;即函数()f x 的单调增区间为(),0¥-,()2,+¥;单调减区间为(0,2).(2)由()236f x x x a ¢=-+,根据题意,得2360x x a -+=的两根为12,x x ,且12x x <,即36120a D =->,得3a <,122x x +=,所以121x x <<,因为()()1f x f x =,则32321113333x x ax x x ax -++=-++,可知323211133x x ax x x ax -+=-+,因为()10f x ¢=,即21163a x x =-,即()()()()233222211111111133323230x x x x ax ax x x x x x x x x x x x éù-+-+-=-+--+=-+-=ëû,可知3132x x =-,同理,由()()2f x f x =,可知()()()()233222222222222233323230x x x x ax ax x x x x x x x x x x x éù-+-+-=-+--+=-+-=ëû;得到4232x x =-,所以()1412123212111232113211x x x x x x x x x x x x ------====------.【例6】已知函数3211()(0)32f x ax bx cx a =++>.(1)若函数()f x 有三个零点分别为1x ,2x ,3x ,且1233x x x ++=-,129x x =-,求函数()f x 的单调区间;(2)若1(1)2f a ¢=-,322a c b >>,证明:函数()f x 在区间(0,2)内一定有极值点;(3)在(2)的条件下,若函数()f x求ba的取值范围.【解析】(1)因为函数3221111()()(0)3232f x ax bx cx x ax bx c a =++=++>,又1233x x x ++=-,129x x =-,则30x =,123x x +=-,129x x =-因为12,x x 是方程211032ax bx c ++=的两根,则332b a -=-,39c a =-,得2ba=,3c a =-,所以222()()(23)(1)(3)b c f x ax bx c a x x a x x a x x aa¢=++=++=+-=-+.令()0f x ¢=解得:1x =,3x =-当()0f x ¢>时,3x <-或1x >,当()0f x ¢<时,31x -<<,故()f x 的单调递减区间是(3,1)-,单调递增区间是(,3)-¥-,(1,)+¥.(2)因为2()f x ax bx c ¢=++,1(1)2f a ¢=-,所以12a b c a ++=-,即3220a b c ++=.又0a >,322a c b >>,所以30a >,20b <,即0a >.0b <.于是1(1)02f a ¢=-<,(0)f c ¢=, (2)424(32)f a b c a a c c a c ¢=++=-++=-.①当0c >时,因为(0)0f c ¢=>,1(1)02f a ¢=-<,而()f x ¢在区间(0,1)内连续,则()f x ¢在区间(0,1)内至少有一个零点,设为x m =,则在(0,)x m Î,()0f x ¢>,()f x 单调递增,在(,1)x m Î,()0f x ¢<,()f x 单调递减,故函数()f x 在区间(0,1)内有极大值点x m =; ②当0c £时,因为1(1)02f a ¢=-<, (2)0f a c ¢=->,则()f x ¢在区间(1,2)内至少有一零点.设为x n =,则在(1,)x n Î,()0f x ¢<,()f x 单调递减,在(,2)x n Î,()0f x ¢>,()f x 单调递增,故函数()f x 在区间(1,2)内有极小值点.综上得函数()f x 在区间(0,2)内一定有极值点.(3)设m ,n 是函数的两个极值点,则m ,n 也是导函数2()0f x ax bx c ¢=++=的两个零点,由(2)得3220a b c ++=,则b m n a +=-,32c bmn a a ==--.所以||m n -=由已知³,则两边平方得2(2)23b a ++³,得出21b a +³,或21b a +£-,即1b a ³-,或3ba£-,又232c a b =--,322a c b >>,所以3322a a b b >-->,即334a b a -<<-.因为0a >,所以334b a -<<-.综上分析,b a的取值范围是[1-,3)4-.1.(2024届江苏省连云港市高三下学期4月阶段测试)已知函数()32123f x x x mx n =-++在1x =时取得极值.(1)求实数m 的值;(2)存在[]2,4x Î,使得()2f x n >成立,求实数n 的取值范围.2.设函数()()()31f x x ax b x =---ÎR ,其中,a b 为实常数.(1)若3a =,求()f x 的单调区间;(2)若()f x 存在极值点0x ,且()()10f x f x =其中10x x ¹.求证:1023x x +=;3.(2024届海南省琼中县高三上学期9月全真模拟)已知函数()()24f x x x m =-,0m >.(1)当4m =时,求()f x 在[]1,1-上的值域;(2)若()f x 的极小值为2-,求m 的值.4.(2024届贵州省贵阳第一中学高三上学期适应性月考)已知函数()323f x x x =-.(1)求函数()y f x =在0x =处的切线方程;(2)若过点()1,P t -存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)请问过点()0,0A ,()1,1B --,()1,3C -,()1,1D -,()1,2E -分别存在几条直线与曲线()y f x =相切?(请直接写出结论,不需要证明)5. (2024届内蒙古包头市高三上学期调研)已知函数3219()32f x x ax x =-++.(1)讨论()f x 的单调性;(2)若()()F x f x x =-有2个零点,求a 的值.(注:()3322()x a x a x ax a -=-++)6.(2024届江苏省南通市模拟预测)设0a >,函数3()21f x ax x =-+.(1)当1a =时,求过点(0,1)-且与曲线()y f x =相切的直线方程:(2)12,x x 是函数()f x 的两个极值点,证明:()()12f x f x +为定值.7.已知曲线()33f x x x l =-+在点()()A m f m ,处的切线与曲线的另外一个交点为B P ,为线段A B 的中点,O 为坐标原点.(1)求()f x 的极小值并讨论()f x 的奇偶性.(2)直线OP 的斜率记为k ,若()0,2m "Î,18k ³,求证:7l £-.8.设函数()321132f x x x ax =-+,a ÎR .(1)若2x =是()f x 的极值点,求a 的值,并讨论()f x 的单调性.(2)已知函数()()21223g x f x ax =-+,若()g x 在区间()0,1内有零点,求a 的取值范围.(3)设()f x 有两个极值点1x ,2x ,试讨论过两点()()11,x f x ,()()22,x f x 的直线能否过点()1,1,若能,求a 的值;若不能,说明理由.9.已知函数()314f x x ax =++,()ln g x x =-,用{}min ,m n 表示m ,n 中的最小值,设函数()()(){}()min ,0h x f x g x x =>,讨论()h x 零点的个数.10.(2024届青海省部分学校高三下学期联考)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.11.(2023届上海市嘉定区高三三模)已知函数32()(R)f x x bx cx b c =++Î、,其导函数为()f x ¢,(1)若函数()f x 有三个零点123x x x 、、,且123133,9x x x x x ++==-,试比较(3)(0)f f -与3(2)f ¢的大小.(2)若(1)2f ¢=-,试判断()f x 在区间(0,2)上是否存在极值点,并说明理由.(3)在(1)的条件下,对任意的,R m n Î,总存在[0,3]x Î使得|()|f x mx n t ++³成立,求实数t 的最大值.12.设函数()3213f x x a x b =-+,其中a ,b 为常数.(1)讨论()f x 的单调性;(2)若函数()f x 有且仅有3个零点,求3b a 的取值范围.13.(2024届湖南省岳阳市高三教学质量监测三)已知ABC V 的三个角,,A B C 的对边分别为,,a bc 且2c b =,点D 在边BC 上,AD 是BAC Ð的角平分线,设AD kAC =(其中k 为正实数).(1)求实数k 的取值范围;(2)设函数325()22b f x bx cx =-+-①当k =时,求函数()f x 的极小值;②设0x 是()f x 的最大零点,试比较0x 与1的大小.。
运用导数解决三次函数问题
运用导数解决三次函数问题作者:陈志国来源:《理科考试研究·高中》2014年第01期三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1 已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f ′(x)=3x2-1,则f ′(x0)=3x20-1,过点P0的方程为y-y0=f ′(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0). 又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f ′(-12)=-14,f ′(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2 (x-1).二、三次函数的单调性例2 已知函数f(x)=x3-ax+b,①若f(x)在实数集R上单调递增,求a的取值范围;②若f(x)在(-1,1)上单调递减,求a的取值范围.解析f ′(x)=3x2-a.①依题意,有3x2-a>0在R上恒成立,即a三、三次函数的极值例3 已知函数f(x)=13x3+12ax2+2bx+c,若当x ∈(0,1)时,f(x)取得极大值;x ∈(1,2)时,f(x)取得极小值;求b-2a-1的取值范围.解析f ′(x)=x2+ax+2b,令f ′(x)=0,由题意知,上述方程应满足:一根在(0,1)内,另一根在(1,2)内.由y=f ′(x)的图象知f ′(0)>0,f ′(1)f ′(2)>0b>0,a+2b+1a+b+2>0.图1在aOb坐标系中作出上述区域(如图1所示).而b-2a-1的几何意义是:过两点P (a,b)与D(1,2)的直线斜率.而P(a,b)在区域内,由a+2b+1=0,a+b+2=0得A(-3,1),由b=0,a+b+2=0得B(-2,0),由b=0,a+2b+1=0得C(-1,0).由图知kDA四、三次方程根的判定例4 设a∈R,试讨论关于x的三次方程x3-3x2-a=0有相异实根的个数.解析将方程变形为x3-3x2=a(*),令y= f(x)=x3-3x2,则y′=3x(x-2),令y′=0得x=0或x=2.当x∈(-∞,0)时,y′>0;图2当x∈(0,2)时,y′当x∈(2,+∞)时,y′>0.故f(x)的极大值是f(0)=0,极小值是f(2)=-4.于是函数y=f(x)=x3-3x2的大致图象如图2.因为方程(*)的相异实根的个数,是y= f(x)的图象和直线y=a的交点的个数,所以相异实根个数为:(1)当a0时,有1个;(2)当a=-4或a=0时,有2个;(3)当-4五、与三次函数有关的应用题例5 某工厂生产某种产品,已知该产品月产量x(吨)与每吨产品的价格P(元/吨)之间的关系为P=24200-15x2,且生产x吨的成本为R=50000+200x元,问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?解析每月生产x吨时的利润为f(x)= (24200-15x2)x-(50000+200x)=-15x3+24000 x-50000(x≥0). 由f ′(x)=-35x2+24000=0解得x1=200, x2=-200(舍去).因f(x)在[0,+∞)内只有一个极值点x=200,且x∈(0,200)时,f ′(x) >0,x∈(200,+∞)时,f ′(x)六、与三次函数有关的不等式问题例6 已知函数f(x)=x3+ax+b定义在区间[0,1]上,且f(0)=f(1),若x1,x2∈[0,1],求证:|f(x1)-f(x2)|解析由f(0)=f(1),得1+a+b=ba=-1,所以f(x)=x3-x+b.f ′(x)=3x2-1,令f ′(x)=3x2-1=0,得x=±33.又x∈[0,1],而x∈(0,33)时,f ′(x) 0.所以当x=33时,f (x)有最小值f(33)=b-239.又当x=0或1时,f(x)取最大值b.故|f(x1)-f(x2)|≤[f (x)]max- [f(x)]min=239。
第五章 一元函数的导数及其应用(导数在三次函数中的应用)教案 数学人教A版(2019)选择性必修二
第五章 一元函数的导数及其应用(导数在三次函数中的应用)教案高二下学期数学人教A 版(2019)选择性必修第二册一.教学内容分析 三次函数 是高中数学利用导数研究函数单调性、极值、最值等内容的一个重要载体,是应用二次函数图像和性质的重要素材.本节课是要归纳出一元三次函数的单调性的两种情况,一种是在整个定义域内是单调的,一种是在整个定义域内有三个单调区间。
二.学生学习情况分析学生已经学习了导数在研究函数单调性及其极(最)值的应用,掌握了利用导数求函数单调区间、求极值最值、求切线方程,求参数取值范围的一般方法.三.教学目标一是利用导数研究函数的单调性,二是用导数研究函数的极(最)值,以三次函数为载体,掌握利用导数研究三次函数单调性,求极值最值四.教学重点与难点教学重点:用导数解决三次函数的单调性、极值最值、切线方程等问题教学难点:分类讨论,数形结合,化归思想在解决问题中的综合应用五.教学过程一、课前练习1.3()31=--f x x x 的单调递减区间为2. 322()3=+++f x x ax bx a 在1=-x 时有极值0,则-=a b3. 3()1=--f x x ax 在(2,)-+∞上既有极大值又有极小值,则a 的取值范围是4. 3()3=-+f x x x a 有三个零点,则a 的取值范围32()0f x ax bx cx d a =+++>()类似于二次函数的图像和性质表:232(0)=++>ax bx c a二、问题分析③f(x)的单调递增区间为(-∞,0),(2,+∞),单调递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.其中正确的命题有 ( )A.1个B.2个C.3个D.4个032>-ac b 032≤-ac b 图像()0f x =根的个数与x 轴的交点单调性极值类型一 求函数的极值【典例1】(1)对于函数f(x)=x 3-3x 2,给出命题: ①f(x)是增函数,无极值;②f(x)是减函数,无极值;类型二函数极值的应用例2:已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y=m 与y=f(x)的图象有三个不同的交点,求m的取值范围.【解题指南】先由已知条件求出a值,确定f(x),再由直线y=m与y=f(x)的图象有三个不同交点,利用数形结合求出m的范围.三、小结反思通过本节课学习谈谈你的收获.。
3次函数曲线-概念解析以及定义
3次函数曲线-概述说明以及解释1.引言1.1 概述概述在数学中,三次函数是一种常见的多项式函数,其最高次项的指数为3。
三次函数的一般形式可以表示为y = ax^3 + bx^2 + cx + d,其中a、b、c和d都是实数,并且a不等于0。
三次函数曲线通常呈现出一种典型的"弓形"形状,有时可能具有一个局部极值点或者一个拐点。
它们在图像上的走势和特点在多个领域中都有重要的应用,例如物理学、经济学和计算机图形学等。
理解和掌握三次函数曲线的特点对于解决实际问题和进行进一步的数学研究都是非常重要的。
本文将围绕三次函数曲线展开讨论,首先介绍三次函数的基本定义和性质,然后探讨三次函数曲线的图像特点以及如何进行函数图像的变换和分析。
接下来,我们将进一步研究三次函数曲线的局部极值点和拐点的性质,并举例说明在实际问题中的应用。
最后,我们将总结所讨论的内容,并展望一些可能的研究方向。
通过研究和理解三次函数曲线的性质和特点,我们可以更好地应用它们解决实际问题,并且有助于我们对数学的深入理解和进一步研究。
接下来,我们将详细介绍本文的组织结构和目的。
1.2 文章结构2. 正文在本文中,我们将着重研究3次函数曲线。
通过对这种特殊类型的函数曲线进行深入的分析和研究,我们可以更好地理解它们的数学性质和应用。
本文的正文部分将分为三个要点来探讨3次函数曲线所涉及的关键概念和性质。
2.1 第一要点在第一要点中,我们将首先介绍3次函数曲线的基本定义和表达形式。
我们将学习如何根据给定的系数,利用函数表达式来绘制3次函数曲线的图像。
此外,我们还将讨论3次函数曲线的对称性和奇偶性,并探索其在数学和科学领域中的实际应用。
2.2 第二要点在第二要点中,我们将进一步研究3次函数曲线的性质和特征。
我们将通过对曲线的导数和导数变化率的分析,探讨曲线的增减性和凸凹性。
此外,我们还将介绍曲线的转折点和拐点,并讨论这些特殊点对曲线整体形状的影响。
三次函数的性质及导函数研究函数的应用
专题一:三次函数的中心、单调性、极值、零点和恒成立问题前言:研究三次函数的性质,实质上是研究导函数对应的二次函数的性质。
一、三次多项式函数的中心理论:①若))(,(00x f x 是三次函数的中心,则0)(0//=x f 且0212x x x =+时,有)(2)()(021x f x f x f =+。
②若三次函数)(),(x f x g 的中心分别是))(,()),(,(0000x f x x g x ,则)()(x f x g y +=的中心为))()(,(000x g x f x +。
例1:(1)若()323f x x x =-,则1220122012f f ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭4022...2012f ⎛⎫+ ⎪⎝⎭40232012f ⎛⎫+=⎪⎝⎭A -8046B -4023C -2013D -2012(2)若321151()3132122g x x x x x =-+-+-,则12342010()()()()()20112011201120112011g g g g g +++++= (A )2010 (B )2011 (C )2012 (D )2013 二、三次函数的极值理论:函数有极值⇔函数不单调⇔导函数二次函数的0>∆; 函数无极值⇔函数单调⇔导函数二次函数的0≤∆。
例2:(1)若a >0,b >0,且函数224)(23+--=bx ax x x f 在x =1处有极值,则ab 的最大值等于 【 】 A .2 B .3 C .6 D .9(2)已知函数f (x )=13x 3-12x 2+cx +d 有极值,则c 的取值范围为 【 】A .c <14B . c ≤14C .c ≥14D .c >14(3)133)(23++-=x ax x x f 。
(i )2=a 时,求)(x f 的单调区间;(ii )若)(x f 在)3,2(中至少有一个极值点,求a 的范围。
用导数研究三次函数
用导数研究三次函数一、知识点解析 1、定义:定义1、形如32(0)y ax bx cx d a =+++¹的函数,称为“三次函数”。
定义2、三次函数的导函数为二次函数、三次函数的导函数为二次函数::)0(23)(2/¹++=a c bx ax x f ,我们把)3412422ac b ac b -=-=D (,叫做三次函数导函数的判别式。
叫做三次函数导函数的判别式。
2、三次函数图象与性质的探究:1、单调性、单调性一般地,当032£-ac b 时,三次函数)0(23¹+++=a d cx bx ax y 在R 上是单调函数;当032>-ac b 时,三次函数)0(23¹+++=a d cx bx ax y 在R 上有三个单调区间。
上有三个单调区间。
2、对称中心、对称中心三次函数)0()(23¹+++=a d cx bx ax x f 是关于点对称,且对称中心为点))3(,3(a b f a b --,此点的横坐标是其导函数极值点的横坐标。
,此点的横坐标是其导函数极值点的横坐标。
y =f(x)f(x)图象的对称中心在导函数图象的对称中心在导函数y =的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点。
同时也是二阶导为零的点。
3、三次方程根的问题、三次方程根的问题(1)当032£-=D ac b 时,由于不等式0)(³¢x f 恒成立,函数是单调递增的,所以原方程仅有一个实根。
程仅有一个实根。
(2)当△=032>-ac b 时,由于方程0)(=¢x f 有两个不同的实根21,x x ,不妨设21x x <,可知,))(,(11x f x 为函数的极大值点,))(,(22x f x 为极小值点,且函数)(x f y =在),(1x -¥和),(2+¥x 上单调递增,在[]21,x x 上单调递减。
三次函数的极值与拐点
三次函数的极值与拐点
引言
三次函数是一种形式为f(x) = ax^3 + bx^2 + cx + d的函数,其
中a、b、c和d为常数。
本文将讨论三次函数的极值与拐点。
极值
极值点即函数的局部极大值或极小值的点。
对于三次函数来说,极值点可以通过求导数来找到。
三次函数的一阶导数可以表示为
f'(x) = 3ax^2 + 2bx + c。
求导之后,我们可以将导数设置为0,然后
解方程求得极值点对应的x值。
拐点
拐点是函数曲线出现从凸向上或凹向下的转折点。
类似于极值,我们可以通过求函数的二阶导数来找到拐点。
对于三次函数来说,
其二阶导数为f''(x) = 6ax + 2b。
同样地,我们可以将二阶导数设置
为0,然后解方程求得拐点对应的x值。
总结
通过求导数和二阶导数,我们可以找到三次函数的极值点和拐点。
这些点在函数图像上具有重要的意义,帮助我们了解函数的性质和特点。
对于三次函数来说,它们可能存在零个、一个或两个极值点和拐点。
以上就是关于三次函数的极值和拐点的讨论。
希望本文能够对读者理解三次函数的特性有所帮助。
注意:本文中的内容仅供参考,具体计算过程需要根据具体的函数形式进行合理推导和计算。
tan三次方x的导数
tan三次方x的导数要求求解tan(x)的三次方导数,就是求出[tan(x)]^3关于x的导数。
为了求解这个问题,我们需要使用一些基本的导数公式和三次方函数的求导规则。
首先,我们可以回忆一下tan(x)的导数公式,即d/dx tan(x) = sec^2(x) (其中sec(x)表示secant(x))然后,我们可以使用链式法则来求解[tan(x)]^3的导数。
根据链式法则,如果我们有一个外部函数f(g(x)),那么它的导数可以通过以下公式计算:d/dx f(g(x)) = f'(g(x)) * g'(x)在这种情况下,外部函数是f(x) = x^3,内部函数是g(x) = tan(x)。
首先,我们需要计算内部函数的导数g'(x),然后再计算外部函数的导数f'(g(x))。
1. 计算g'(x):由于g(x) = tan(x),我们可以使用之前提到的tan(x)的导数公式,即d/dx tan(x) = sec^2(x)那么,g'(x) = sec^2(x)2. 计算f'(g(x)):由于f(x) = x^3,那么f'(x) = 3x^2。
由于我们的内部函数是g(x) = tan(x),我们需要将f'(x)替换为f'(g(x)),即将x替换为g(x):f'(g(x)) = 3[g(x)]^2 = 3[tan(x)]^2接下来,我们将以上的计算结果放入链式法则中:d/dx [tan(x)]^3 = f'(g(x)) * g'(x)= 3[tan(x)]^2 * sec^2(x)最终得到[tan(x)]^3的导数为3[tan(x)]^2 * sec^2(x)。
在解题过程中,我们使用了tan(x)的导数公式和链式法则。
这些是基本的导数规则,对于求解各种函数的导数都非常重要。
另外,我们也复习了关于tan(x)和sec(x)的定义,这些定义在求导过程中也经常会出现。
x三次方的导数定义式_解释说明
x三次方的导数定义式解释说明1. 引言1.1 概述在微积分中,导数是一个核心概念,用于描述函数在每个点处的变化率。
对于一次函数、二次函数以及常见的多项式函数,我们可以通过导数定义式来求出它们的导数,从而研究函数的性质和特点。
本文将重点讨论x三次方函数及其导数定义式,并展示推导过程和高阶导数计算方法。
1.2 文章结构本文将按照以下结构进行阐述:第二部分将介绍x的三次方函数的定义与性质,以及导数的概念和常见计算方法。
第三部分将详细解释x三次方函数导数定义式的推导过程,包括使用极限定义和幂函数求导法则。
第四部分将探讨x三次方函数高阶导数的计算方法,回顾一阶导数计算方法并推广至二阶和三阶导数,并介绍更高阶导数的递归计算方法。
最后,在结论部分对x三次方函数及其导数定义式进行总结与拓展思考,分析其理解与应用意义,并探讨其他类型函数类比思考与推广讨论。
同时给出一个综合案例分析:x四次方和更高次方函数的导数定义式解释说明。
1.3 目的通过本文的阐述,我们旨在帮助读者更深入地理解x三次方函数及其导数定义式。
同时,本文也将为读者提供进一步研究其他类型函数导数定义式和高阶导数计算方法的思路和启示。
希望读者能通过这篇长文,对微积分中函数的导数概念有更全面和深入的认识。
2. x的三次方函数2.1 定义与性质x的三次方函数是指形如f(x) = x^3的函数。
它是一个二次多项式函数,由x的立方项构成。
在数学中,我们通常将其称为立方函数或三次函数。
x的三次方函数具有以下性质:- 定义域为全体实数,即对于任意实数x都可以计算出对应的函数值;- 值域也是全体实数集合,因为无论x取任何实数值,其立方都是一个实数;- 函数图像关于原点对称,在第一象限、第三象限上呈现正增长趋势,在第二象限、第四象限上呈现负增长趋势;- 当x>0时,函数值随着自变量x的增大而增大;当x<0时,函数值随着自变量x的减小而减小。
2.2 导数的概念导数是描述函数斜率和变化率的概念。
三阶方程导数求解法
三阶方程导数求解法导言在数学中,方程是一个等式,其中包含一个或多个未知数。
求解方程是数学的一个重要研究领域,其中包括求解高阶方程。
本文将重点讨论三阶方程的导数求解法。
一、三阶方程的定义三阶方程是指次数为3的方程,形式为ax^3 + bx^2 + cx + d = 0,其中a、b、c 和d为实数,且a不等于0。
二、三阶方程的导数三阶方程的导数是指对方程进行求导的操作。
对于三阶方程,我们可以通过对方程的每一项进行求导,得到导数的表达式。
2.1 求导法则在求解三阶方程的导数之前,我们首先回顾一下求导的基本法则: - 常数的导数为0; - 变量的导数为1; - 幂函数的导数为幂次乘以系数,并降低幂次1。
2.2 三阶方程的导数表达式根据求导法则,我们可以得到三阶方程的导数表达式如下:f’(x) = 3ax^2 +2bx + c三、三阶方程导数求解法有了三阶方程的导数表达式,我们可以通过求解导数为0的解来求解原方程的极值点和拐点。
3.1 导数为0的解要求解导数为0的解,我们可以将导数表达式设置为0,得到一个二次方程:3ax^2 + 2bx + c = 03.2 求解二次方程对于二次方程3ax^2 + 2bx + c = 0,我们可以使用求根公式来求解。
求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)根据二次方程的解的性质,我们可以得到以下三种情况: - 当b^2 - 4ac > 0时,方程有两个不相等的实根; - 当b^2 - 4ac = 0时,方程有两个相等的实根; - 当b^2 - 4ac < 0时,方程没有实根。
3.3 求解原方程的极值点和拐点通过求解导数为0的解,我们可以找到原方程的极值点和拐点。
极值点是指函数在该点处取得最大值或最小值,拐点是指函数曲线在该点处发生转折。
•当导数为0的解为实数时,可以将解带入原方程,求得对应的y值,即为极值点或拐点。
•当导数为0的解为复数时,说明原方程没有极值点和拐点。
2x的三次方的导数
2x的三次方的导数
三次方函数y=ax^3(a为常数)的导数d/dx(y)=3ax^2。
当x=2时,
d/dx[(2x)^3]=3×2×2^2=24。
因此2x的三次方的导数为24。
需要计算相关变量函数的导数时,可以采用偏导数法,即求解形如
dy/dx的表达式。
当x和y是多元变量函数的函数时,dy/dx的求解会
变得更加复杂。
在求解例如2x的三次方的导数时,首先需要计算出f(x)的导数,即
f'(x)。
此时可以将2x的三次方表达式写为2x=2f(x)的形式,此时的f(x)
是一个多元变量函数,其中f(x)=(x^3)。
根据偏导数法,可以得到
f′(x)=3x2。
因此2x的三次方的导数为24。
函数求导还可以采用微积分中定义法则法、极限法等方法。
定义法则
先把多元函数展开成一元函数,再利用定义法则对函数求导;而极限
法则原理是在点x0处以极限形式表示函数在某点处的导数。
2x的三次方的导数也可以通过求解极限来确定,即当x逐渐接近2时,f′(x)的值也会逐渐接近24。
具体的求解过程如下:设x=2+h,其中h
取任意极小值,比如取h=0.01时,则2(2+0.01)的三次方=2.0806,因
此当x取h值时,
f′(x)=3*2*2^2+3*2*2*0.01+3*2*0.01^2=23.9996。
随着h值不
断减小,f′(x)=23.9996越来越接近24,因此2x的三次方的导数正是24。