2019届人教A版 二次函数与幂函数 单元测试
二次函数与幂函数典型例题(含答案)
二次函数与幂函数1.求二次函数的解析式.2.求二次函数的值域与最值.3.利用幂函数的图象和性质分析解决有关问题.【复习指导】本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用.基础梳理1.二次函数的基本知识(1)函数f(x)=ax2+bx+c(a≠0)叫做二次函数,它的定义域是R.(2)二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴方程为x=-,顶点坐标是.①当a>0时,抛物线开口向上,函数在上递减,在上递增,当x=-时,f(x)min =;②当a<0时,抛物线开口向下,函数在上递增,在上递减,当x=-时,f(x)max =.③二次函数f(x)=ax2+bx+c(a≠0)当Δ=b2-4ac>0时,图象与x轴有两个交点M1(x1,0)、M2(x2,0),|M1M2|=|x1-x2|=.(3)二次函数的解析式的三种形式:①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+h(a≠0);③两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)幂函数的图象(3)幂函数的性质第一象限一定有图像且过点(1,1);第四象限一定无图像;当幂函数是偶函数时图像分布第一二象限,奇函数时图像分布第一三象限;第一象限图像的变化趋势;当a<0时,递减,a>0时,递增,其中a>1时,递增速度越来越快,0<a<1时,递增速度越来越慢。
y=x y=x2y=x3y=x y=x-1定义域R R R[0,+∞){x|x∈R且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R且y≠0}奇偶性奇偶奇非奇非偶奇单调性增x∈[0,+∞)时,增,x∈(-∞,0]时,减增增x∈(0,+∞)时,减,x∈(-∞,0)时,减定点(0,0),(1,1) (1,1)一条主线二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知道的考查往往渗透在其他知识之中,并且大都出现在解答题中.两种方法二次函数y=f(x)对称轴的判断方法:(1)对于二次函数y=f(x)对定义域内x1,x2,都有f(x1)=f(x2),那么函数y=f(x)图象的对称轴方程为x=;(2)对于二次函数y=f(x)对定义域内所有x,都有f(a+x)=f(a-x)成立,那么函数y=f(x)图象的对称轴方程为x=a(a为常数).两种问题与二次函数有关的不等式恒成立问题:(1)ax2+bx+c>0,a≠0恒成立的充要条件是(2)ax2+bx+c<0,a≠0恒成立的充要条件是双基自测1.下列函数中是幂函数的是().A.y=2x2B.y=C.y=x2+x D.y=-2.(2011·九江模拟)已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是().A.f(1)≥25 B.f(1)=25C.f(1)≤25 D.f(1)>253.(2011·福建)若关于x的方程x2+mx+1=0,有两个不相等的实数根,则实数m的取值范围是().A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)4.(2011·陕西)函数的图象是().5.二次函数y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1,x2,则x1+x2=________.考向一求二次函数的解析式【例1】?已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.【训练1】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8.试确定此二次函数的解析式.考向二幂函数的图象和性质【例2】?幂函数y=xm2-2m-3(m∈Z)的图象关于y轴对称,且当x>0时,函数是减函数,则m的值为().A.-1<m<3 B.0C.1 D.2【训练2】已知点(,2)在幂函数y=f(x)的图象上,点在幂函数y=g(x)的图象上,若f(x)=g(x),则x=________.考向三二次函数的图象与性质【例3】?已知函数f(x)=x2-2ax+1,求f(x)在区间[0,2]上的最值.【训练3】已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x)的零点,且m<n,则a,b,m,n从小到大的顺序是________.双基自测1.(人教A版教材习题改编)下列函数中是幂函数的是().A.y=2x2B.y=C.y=x2+x D.y=-解析A,C,D均不符合幂函数的定义.答案 B2.(2011·九江模拟)已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是().A.f(1)≥25 B.f(1)=25C.f(1)≤25 D.f(1)>25解析对称轴x=≤-2,∴m≤-16,∴f(1)=9-m≥25.答案 A3.(2011·福建)若关于x的方程x2+mx+1=0,有两个不相等的实数根,则实数m的取值范围是().A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析依题意判别式Δ=m2-4>0,解得m>2或m<-2.答案 C4.(2011·陕西)函数的图象是().解析由幂函数的性质知:①图象过(1,1)点,可排除A,D;②当指数0<α<1时为增速较缓的增函数,故可排除C.答案 B5.二次函数y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1,x2,则x1+x2=________.解析由f(3+x)=f(3-x),知函数y=f(x)的图象关于直线x=3对称,应有=3?x1+x2=6.答案6考向一求二次函数的解析式【例1】?已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.[审题视点]采用待定系数法求f(x),再由f(x)与g(x)的图象关于原点对称,求g(x).解依题意得解得:∴f(x)=x2+2x.设函数y=f(x)图象上的任意一点A(x0,y0),该点关于原点的对称点为B(x,y),则x0=-x,y0=-y.∵点A(x0,y0)在函数y=f(x)的图象上,∴y0=x+2x0,∴-y=x2-2x,∴y=-x2+2x,即g(x)=-x2+2x.二次函数解析式的确定,应视具体问题,灵活地选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移、对称,函数的周期性、奇偶性等知识有机地结合在一起.【训练1】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8.试确定此二次函数的解析式.解法一利用二次函数的一般式.设f(x)=ax2+bx+c(a≠0).由题意得解之得∴所求二次函数的解析式为y=-4x2+4x+7.法二利用二次函数的顶点式.设f(x)=a(x-m)2+n(a≠0),∵f(2)=f(-1).∴此二次函数的对称轴为x==.∴m=,又根据题意,函数有最大值8,即n=8.∴y=f(x)=a2+8,∵f(2)=-1,∴a2+8=-1,解之得a=-4.∴f(x)=-42+8=-4x2+4x+7.考向二幂函数的图象和性质【例2】?幂函数y=xm2-2m-3(m∈Z)的图象关于y轴对称,且当x>0时,函数是减函数,则m的值为().A.-1<m<3 B.0C.1 D.2[审题视点]由幂函数的性质可得到幂指数m2-2m-3<0,再结合m是整数,及幂函数是偶函数可得m的值.解析由m2-2m-3<0,得-1<m<3,又m∈Z,∴m=0,1,2.∵m2-2m-3为偶数,经验证m=1符合题意.答案 C根据幂函数的单调性先确定指数的取值范围,当α>0时,幂函数在(0,+∞)上为增函数,当α<0时,幂函数在(0,+∞)上为减函数,然后验证函数的奇偶性.【训练2】已知点(,2)在幂函数y=f(x)的图象上,点在幂函数y=g(x)的图象上,若f(x)=g(x),则x=________.解析由题意,设y=f(x)=xα,,则2=()α,得α=2,设y=g(x)=xβ,则=(-)β,得β=-2,由f(x)=g(x),即x2=x-2,解得x=±1.答案±1考向三二次函数的图象与性质【例3】?已知函数f(x)=x2-2ax+1,求f(x)在区间[0,2]上的最值.[审题视点]先确定对称轴,再将对称轴分四种情况讨论.解函数f(x)=x2-2ax+1=(x-a)2+1-a2的对称轴是直线x=a,(1)若a<0,f(x)在区间[0,2]上单调递增,当x=0时,f(x)min=f(0)=1;当x=2时,f(x)max=f(2)=5-4a;(2)若0≤a<1,则当x=a时,f(x)min=f(a)=1-a2;当x=2时,f(x)max=f(2)=5-4a;(3)若1≤a<2,则当x=a时,f(x)min=f(a)=1-a2;当x=0时,f(x)max=f(0)=1;(4)若a≥2,则f(x)在区间[0,2]上单调递减,当x=0时,f(x)max=f(0)=1;当x=2时,f(x)min=f(2)=5-4a.解二次函数求最值问题,首先采用配方法,将二次函数化为y=a(x-m)2+n(a≠0)的形式,得顶点(m,n)或对称轴方程x=m,分三个类型:①顶点固定,区间固定;②顶点含参数,区间固定;③顶点固定,区间变动.【训练3】已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x)的零点,且m<n,则a,b,m,n从小到大的顺序是________.解析由于f(x)=1-(x-a)(x-b)(a<b)的图象是开口向下的抛物线,因为f(a)=f(b)=1>0,f(m)=f(n)=0,可得a∈(m,n),b∈(m,n),所以m<a<b<n.答案m<a<b<n考向四有关二次函数的综合问题【例4】?设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围.[审题视点]通过讨论开口方向和对称轴位置求解.解当a>0时,f(x)=a+2-.∴或或∴或或∴a≥1或<a<1或?,即a>;当a<0时,解得a∈?;当a=0时,f(x)=-2x+2,f(1)=0,f(4)=-6,∴不合题意.综上可得,实数a的取值范围是a>.含有参数的二次函数与不等式的结合问题是高考的热点,通过围绕二次函数的开口方向、对称轴,不等式的恒成立等基本问题展开,重点考查学生分类讨论的思想、函数与方程的思想,以及分析、解决问题的能力.【训练4】已知二次函数f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且对任意实数x均有f(x)≥0成立.(1)求F(x)的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.解(1)∵f(-1)=0,∴a-b+1=0,∴b=a+1,∴f(x)=ax2+(a+1)x+1.∵f(x)≥0恒成立,∴∴∴a=1,从而b=2,∴f(x)=x2+2x+1,∴F(x)=(2)g(x)=x2+2x+1-kx=x2+(2-k)x+1.∵g(x)在[-2,2]上是单调函数,∴≤-2,或≥2,解得k≤-2,或k≥6.所以k的取值范围为k≤-2,或k≥6.规范解答3——如何求解二次函数在某个闭区间上的最值【问题研究】二次函数在闭区间上的最值问题,一定要根据对称轴与区间的相对位置关系确定最值,当函数解析式中含有参数时,要根据参数的取值情况进行分类讨论,避免漏解.【解决方案】对于二次函数f(x)=ax2+bx+c(a≠0)而言,首先确定对称轴,然后与所给区间的位置关系分三类进行讨论.【示例】?(本题满分12分)(2011·济南模拟)已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).求二次函数f(x)的对称轴,分对称轴在区间的左侧、中间、右侧讨论.[解答示范]∵f(x)=-42-4a,∴抛物线顶点坐标为.(1分)①当≥1,即a≥2时,f(x)取最大值-4-a2.令-4-a2=-5,得a2=1,a=±1<2(舍去);(4分)②当0<<1,即0<a<2时,x=时,f(x)取最大值为-4a.令-4a=-5,得a=∈(0,2);(7分)③当≤0,即a≤0时,f(x)在[0,1]内递减,∴x=0时,f(x)取最大值为-4a-a2,令-4a-a2=-5,得a2+4a-5=0,解得a=-5或a=1,其中-5∈(-∞,0].(10分)综上所述,a=或a=-5时,f(x)在[0,1]内有最大值-5.∴f(x)=-4x2+5x-或f(x)=-4x2-20x-5.(12分)求解本题易出现的问题是直接利用二次函数的性质——最值在对称轴处取得,忽视对称轴与闭区间的位置关系,不进行分类讨论.【试一试】设函数y=x2-2x,x∈[-2,a],求函数的最小值g(a).[尝试解答]∵函数y=x2-2x=(x-1)2-1,∴对称轴为直线x=1,而x=1不一定在区间[-2,a]内,应进行讨论.当-2<a<1时,函数在[-2,a]上单调递减,则当x=a时,y min=a2-2a;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,y min=-1.综上,g(a)=。
高中数学必修一 讲义 专题3.11 函数的概念与性质全章综合测试卷-提高篇(学生版)
第三章函数的概念与性质全章综合测试卷-提高篇【人教A版2019】考试时间:90分钟;满分:150分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分150分,限时90分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2021秋•阿勒泰地区期末)中文“函数(function)”一词,最早是由近代数学家李善兰翻译出来的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,即函数指一个量随着另一个量的变化而变化,下列四组函数,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x(x∈R)与g(x)=x(x∈Z)C.f(x)=|x|与g(x)={x,x≥0−x,x<0D.f(x)=√x+2⋅√x−2,g(x)=√x2−42.(5分)(2022秋•宛城区校级月考)若函数f(x+1)的定义域为[﹣1,15],则函数g(x)=f(x2)√x−1的定义域为()A.[1,4]B.(1,4]C.[1,14]D.(1,14]3.(5分)(2022•华州区校级开学)已知f(x)是R上的奇函数,且f(2﹣x)=f(x),f(1)=3,则f(2022)+f(2023)=()A.﹣3B.﹣1C.1D.24.(5分)(2021秋•大通县期末)幂函数f(x)=(m2﹣m﹣1)x m2+2m−3在区间(0,+∞)上单调递增,且a+b>0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断5.(5分)(2021•博野县校级开学)函数y=x,y=x2和y=1x的图象如图所示,有下列四个说法:①如果1a>a>a2,那么0<a<1;②如果a 2>a >1a,那么a >1; ③如果1a >a 2>a ,那么﹣1<a <0;④如果a 2>1a>a 时,那么a <﹣1. 其中正确的是( )A .①④B .①C .①②D .①③④6.(5分)(2022春•湖北期末)已知函数f (x )是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且f (﹣1)=0,若对于任意两个实数x 1,x 2∈(0,+∞)且x 1≠x 2,不等式f(x 1)−f(x 2)x 1−x 2<0恒成立,则不等式xf (x )>0解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)∪(1,+∞) C .(﹣1,0)∪(1,+∞)D .(﹣1,0)∪(0,1)7.(5分)(2022•泸州模拟)某工厂某种产品的年固定成本为250万元,每生产x 千件该产品需另投入成本为G (x ),当年产量不足80千件时,G (x )=13x 2+10x (万元);当年产量不小于80千件时,G (x )=51x +10000x−1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完,则该厂在这一商品的生产中所获年利润的最大值是( ) A .1150万元B .1000万元C .950万元D .900万元8.(5分)(2022•天津三模)定义在R 上的函数f (x )满足f (x ﹣3)=f (x +1),且f(x)={√1−x 2,x ∈(−1,1]2−2|x −2|,x ∈(1,3],则下列说法正确的是( ) A .f (x )的值域为[0,1]B .f (x )图象的对称轴为直线x =4k (k ∈Z )C .当x ∈(﹣3,﹣2)时,f (x )=2x +6D .方程3f (x )=x 恰有5个实数解二.多选题(共4小题,满分20分,每小题5分)9.(5分)(2022春•琼山区校级月考)已知函数f (2x )=4x 2+1(x ∈[﹣2,2]),下列说法正确的是( ) A .f (1)=5 B .f (x )=x 2+1C .f (x )的定义域为[﹣1,1]D .f (x ﹣1)的图像关于x =1对称10.(5分)(2021秋•宣城期末)已知函数f (x )=x α的图像经过点(4,2),则下列说法正确的是( ) A .函数f (x )为偶函数B .函数f (x )在其定义域内为增函数C .当x >1时,f (x )>1D .当0<x 1<x 2时,f(x 1)+f(x 2)2<f(x 1+x 22)11.(5分)(2022春•重庆月考)函数f(x)={x 1+x x ≥0x1−xx <0,则下列结论正确的是( )A .f (x )为奇函数B .f (x )为增函数C .∀x ∈R ,|f (x )|<1D .∃x 0∈R ,|f (x 0)|>112.(5分)(2021秋•武汉期末)已知函数f (x )是定义在R 上的奇函数,当x >0时,f(x)=x −2x+1,则下列结论正确的是( ) A .f (0)=﹣2B .|f (x )|的单调递增区间为(﹣1,0),(1,+∞)C .当x <0时,f(x)=x +21−xD .xf (x )<0的解集为(﹣∞,﹣1)∪(1,+∞) 三.填空题(共4小题,满分20分,每小题5分) 13.(5分)(2021秋•滦南县校级月考)若函数f(x)=√mx +2mx+4的定义域为R ,则实数m 的取值范围是 .14.(5分)(2021秋•湖北期中)已知幂函数y =x p2−2p−3(p ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,实数a 满足(a2−1)p3<(3a +3)p3,则a 的取值范围是 .15.(5分)(2022春•河南月考)已知函数f(x)={x +1x ,0<x <1−x −4x +5,1≤x <2,若存在0<a <b <2,使得f (x )在[a ,b ]上单调,且f (x )在[a ,b ]上的值域为[ma ,mb ],则m 的取值范围为 . 16.(5分)(2021秋•巴州区期末)已知偶函数y =f (x )(x ∈R )在区间[﹣1,0]上单调递增,且满足f (1﹣x )+f (1+x )=0,给出下列判断: (1)f (5)=0;(2)f (x )在[1,2]上是减函数; (3)函数y =f (x )没有最小值; (4)函数f (x )在x =0处取得最大值; (5)f (x )的图象关于直线x =1对称. 其中正确的序号是 . 四.解答题(共6小题,满分70分)17.(10分)(2021秋•梁溪区校级期中)已知函数f(x)=√−ax 2+2x +5. (1)若函数定义域为R ,求a 的取值范围; (2)若函数值域为[0,+∞),求a 的取值范围.18.(12分)(2021秋•上饶期中)已知幂函数f (x )=(m 2﹣5m +7)x m +1(m ∈R )为偶函数. (1)求f (x )的解析式;(2)若f (2a +1)>16,求实数a 的取值范围.19.(12分)(2021秋•沙坪坝区校级期中)已知幂函数f(x)=(m2+m2−12)x m,且在定义域内单调递增.(1)求函数f(x)的解析式;(2)若函数g(x)=[f(x)]2+kf(x)﹣1,x∈[12,1],是否存在实数k,使得g(x)的最小值为0?若存在,求出k的值,若不存在,说明理由.20.(12分)(2022秋•徐州期末)经市场调查,某超市的一种商品在过去的一个月内(以30天计),销售价格(元)与时间t(天)的函数关系近似满足f(t)=100(1+1t),销售量(件)与时间t(天)的函数关系近似满足g(t)=125﹣|t﹣25|.(1)试写出该商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数表达式;(2)求该商品的日销售金额w(t)的最大值与最小值.21.(12分)(2021秋•张家口期中)已知函数f(x)是定义域为R上的奇函数,当x>0时,f(x)=x2+2x.(1)求f(x)的解析式;(2)若不等式f(t﹣2)+f(2t+1)>0成立,求实数t的取值范围;(3)若函数g(x)=f(x)﹣2ax+1(x∈[﹣2,﹣1]),求函数g(x)的最大值h(a).22.(12分)(2021秋•海陵区校级期中)已知a∈R,函数f(x)=x|x﹣a|.(1)判断函数f(x)的奇偶性,请说明理由;(2)设a>0,求函数f(x)在区间[1,3]上的最小值;(3)设a≠0,函数f(x)在区间(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围.(只要写出结果,不需要写出解题过程)。
12 二次函数与幂函数
(十二) 二次函数与幂函数A 级——夯基保分练1.已知幂函数y =f (x )的图象经过点⎝⎛⎭⎫2,14,则它的单调递增区间为( ) A .(0,+∞) B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:选C 设幂函数f (x )=x α, ∵f (x )的图象经过点⎝⎛⎭⎫2,14, ∴2α=14,解得α=-2,则f (x )=x -2=1x2,且x ≠0,∵y =x 2在(-∞,0)上递减,在(0,+∞)上递增, ∴函数f (x )的单调递增区间是(-∞,0).2.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6D .-6 解析:选C 由f (1)=f (2)=0知方程x 2+px +q =0的两根分别为1,2,则p =-3,q =2,∴f (x )=x 2-3x +2,∴f (-1)=6.3.设函数f (x )=ax 2+bx +c (a ≠0,x ∈R ),对任意实数t 都有f (2+t )=f (2-t )成立,在函数值f (-1),f (1),f (2),f (5)中,最小的一个不可能是( )A .f (-1)B .f (1)C .f (2)D .f (5)解析:选B 由f (2+t )=f (2-t )知函数y =f (x )的图象对称轴为x =2.当a >0时,易知f (5)=f (-1)>f (1)>f (2);当a <0时,f (5)=f (-1)<f (1)<f (2),故最小的不可能是f (1).4.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 由A 、C 、D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A 、C 错误,D 满足要求;由B知f (0)=c >0,所以ab >0,所以对称轴x =-b2a<0,B 错误.5.已知方程x 2+(m -2)x +2m -1=0的较小的实根在0和1之间,则实数m 的取值范围是____________.解析:令f (x )=x 2+(m -2)x +2m -1.由题意得⎩⎪⎨⎪⎧ f (0)>0,f (1)<0,即⎩⎪⎨⎪⎧2m -1>0,1+(m -2)+2m -1<0,解得12<m <23.答案:⎝⎛⎭⎫12,23B 级——达标综合练6.已知幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2解析:选B ∵幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n 是偶数,n 2-3n <0,解得n =1.7.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选A 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a=2,所以4a +b =0.8.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D f (x )的对称轴为x =1,由f (x )在[0,1]上递减知a >0,且f (x )在[1,2]上递增,f (0)=f (2),∵f (m )≤f (0),结合对称性,∴0≤m ≤2.9.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a =( ) A .-1 B .1 C .2D .-2解析:选B ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 10.(2021·浙江新高考仿真卷)设函数f (x )=sin 2x +a cos x +b 在⎣⎡⎦⎤0,π2上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,且与b 无关C .与a 无关,且与b 无关D .与a 无关,且与b 有关解析:选B 令t =cos x ,则g (t )=-t 2+at +b +1(0≤t ≤1),由题意,①当a2<0,即a <0时,g (0)为最大值,g (1)为最小值,此时M -m =1-a ;②当a2>1,即a >2时,g (0)为最小值,g (1)为最大值,此时M -m =a -1;③当12≤a2≤1,即1≤a ≤2时,M 取g ⎝⎛⎭⎫a 2,m 取g (0),此时M -m =a 24;④当0≤a 2<12,即0≤a <1时,M 取g ⎝⎛⎭⎫a 2,m 取g (1),此时M -m =a 24+1-a .综上所述,M -m 与a 有关,但与b 无关,故选B .11.(2021·上海杨浦调研)函数f (x )=x -12的定义域为____________.解析:因为函数f (x )=x -12=1x ,所以定义域为(0,+∞).答案:(0,+∞)12.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是____________,且函数f (x )恒过点____________.解析:二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2. 由函数的解析式易得函数f (x )恒过定点(0,2). 答案:(-∞,-2] (0,2)13.已知函数f (x )=x 2+ax +b (a ,b ∈R ),对于任意实数a ,总存在实数m ,当x ∈[m ,m +1]时,使得f (x )≤0恒成立,则b 的取值范围为____________.解析:设f (x )=x 2+ax +b =0,有两根x 1,x 2, ∴4b <a 2,x 1+x 2=-a ,x 1x 2=b ,∵对于任意实数a ,总存在实数m ,当x ∈[m ,m +1]时,使得f (x )≤0恒成立, ∴(x 1-x 2)2≥1恒成立,∴a 2-1≥4b , ∴b ≤-14,故b 的取值范围为⎝⎛⎦⎤-∞,-14. 答案:⎝⎛⎦⎤-∞,-14 14.若二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,则实数m 的取值范围是____________.解析:线段AB 的方程为x 3+y3=1(x ∈[0,3]),即y =3-x (x ∈[0,3]),由题意得方程组⎩⎪⎨⎪⎧y =3-x ,y =-x 2+mx -1,消去y 得x 2-(m +1)x +4=0,①由题意可得,方程①在x ∈[0,3]内有两个不同的实根,令f (x )=x 2-(m +1)x +4,则⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0≤m +12≤3,f (0)=4≥0,f (3)=10-3m ≥0,解得⎩⎪⎨⎪⎧m <-5或m >3,-1≤m ≤5,m ≤103,所以3<m ≤103.故实数m 的取值范围是⎝⎛⎦⎤3,103.答案:⎝⎛⎦⎤3,103 15.已知值域为[-1,+∞)的二次函数满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x 1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]内的最大值为f (2),最小值为f (-1),求实数k 的取值范围.解:(1)∵f (-1+x )=f (-1-x ), ∴f (x )的图象关于x =-1对称,∴设f (x )=a (x +1)2+h =ax 2+2ax +a +h , ∵函数f (x )的值域为[-1,+∞),可得h =-1, 由根与系数的关系可得x 1+x 2=-2,x 1x 2=1+ha ,∴||x 1-x 2=(x 1+x 2)2-4x 1x 2=-4ha=2, 解得a =-h =1,∴f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上递增,又g (x )=f (x )-kx =x 2-(k -2)x =⎝⎛⎭⎪⎫x -k -222-(k -2)24,∴k -22≤-1,即k ≤0,综上,实数k 的取值范围为(-∞,0].C 级——拔高创新练16.已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围为( )A .[-2,2]B .[1, 2 ]C .[2,3]D .[1,2]解析:选B 由于函数f (x )=x 2-2tx +1的图象的对称轴为x =t , 函数f (x )=x 2-2tx +1在区间(-∞,1]上单调递减, 所以t ≥1.则在区间[0,t +1]上,0距对称轴x =t 最远,故要使对任意的x 1,x 2∈[0,t +1],都有|f (x 1)-f (x 2)|≤2,只要f (0)-f (t )≤2即可,即1-(t 2-2t 2+1)≤2, 求得-2≤t ≤ 2.再结合t ≥1,可得1≤t ≤ 2.故选B .17.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是____________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数, 设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1. 所以必有-1<m -1<1,即0<m <2, 所以实数m 的取值范围是(0,2). 答案:(0,2)18.已知f (x )=mx 2+(1-3m )x +2m -1.(1)设m =2时,f (x )≤0的解集为A ,集合B =(a,2a +1](a >0).若A ⊆B ,求a 的取值范围;(2)求关于x 的不等式f (x )≤0的解集S ;(3)若存在x >0,使得f (x )>-3mx +m -1成立,求实数m 的取值范围. 解:(1)∵m =2,∴f (x )=mx 2+(1-3m )x +2m -1=2x 2-5x +3.又f (x )≤0, ∴(x -1)(2x -3)≤0, ∴1≤x ≤32,∴A =⎣⎡⎦⎤1,32. ∵A ⊆(a,2a +1](a >0),∴⎩⎪⎨⎪⎧2a +1≥32,a <1且a >0,∴14≤a <1.故a 的取值范围为⎣⎡⎭⎫14,1.(2)∵f (x )=mx 2+(1-3m )x +2m -1,f (x )≤0, ∴(x -1)[mx -(2m -1)]≤0,当m <0时,S =(-∞,1]∪⎣⎡⎭⎫2-1m ,+∞; 当m =0时,S =(-∞,1]; 当0<m <1时,S =⎣⎡⎦⎤2-1m ,1; 当m =1时,S ={1}; 当m >1时,S =⎣⎡⎦⎤1,2-1m . (3)∵f (x )>-3mx +m -1,∴m >-xx 2+1.令g (x )=-x x 2+1=-1x +1x (x >0),∵x >0,∴x +1x ≥2,∴0<1x +1x ≤12,∴-12≤g (x )<0,∵存在x >0,使得f (x )>-3mx +m -1成立, ∴m >[g (x )]min ,∴m >-12.∴实数m 的取值范围是⎝⎛⎭⎫-12,+∞.。
第二章第五节《二次函数与幂函数》演练知能检测
一、选择题1.(文)幂函数y =f (x )的图象经过点⎝⎛⎭⎫4,12,则f ⎝⎛⎭⎫14的值为( ) A .1 B .2 C .3D .4解析:选B 设f (x )=x α,则4α=12,α=-12,即f (x )=x 12-,于是f ⎝⎛⎭⎫14=⎝⎛⎭⎫1412-=2.1.(理)已知点⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数解析:选A 设f (x )=x α,由已知得⎝⎛⎭⎫33α=3,解得α=-1,因此f (x )=x -1,易知该函数为奇函数.2.(2013·临沂模拟)已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )解析:选D ∵a >b >c ,a +b +c =0,∴a >0,c <0,∴y =ax 2+bx +c 的开口向上,且与y 轴的交点(0,c )在负半轴上.D 项正确.3.已知函数f (x )=x 2+bx +c 且f (1+x )=f (-x ),则下列不等式中成立的是( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (0)<f (2)<f (-2) D .f (2)<f (0)<f (-2)解析:选C ∵f (1+x )=f (-x ), ∴(x +1)2+b (x +1)+c =x 2-bx +c . ∴x 2+(2+b )x +1+b +c =x 2-bx +c . ∴2+b =-b ,即b =-1.∴f (x )=x 2-x +c ,其图象的对称轴为x =12.∴f (0)<f (2)<f (-2).4.若二次函数f (x )=ax 2+bx +c 满足f (x 1)=f (x 2),则f (x 1+x 2)等于( )A .-b 2a B .-baC .cD.4ac -b 24a解析:选C ∵f (x 1)=f (x 2)且f (x )的图象关于x =-b 2a 对称,∴x 1+x 2=-ba .∴f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b ·ba+c =c .5.已知函数f (x )=x 2+x +c ,若f (0)>0,f (p )<0,则必有( ) A .f (p +1)>0 B .f (p +1)<0 C .f (p +1)=0D .f (p +1)的符号不能确定解析:选A 函数f (x )=x 2+x +c 的对称轴为x =-12,又因为f (0)>0,f (p )<0,故-1<p <0,p +1>0,所以f (p +1)>0.6.(理)(2013·温州模拟)方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝⎛⎭⎫-235,+∞ B .(1,+∞)C.⎣⎡⎦⎤-235,1 D.⎝⎛⎭⎫-∞,-235 解析:选C 令f (x )=x 2+ax -2,由题意,知f (x )图象与x 轴在[1,5]上有交点, 则⎩⎪⎨⎪⎧f (1)≤0,f (5)≥0. 解得-235≤a ≤1.6.(文)若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52 B.⎝⎛⎭⎫52,+∞C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 二、填空题7.(2012·江苏高考)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a24c ,解得c =9. 答案:98.若二次函数f (x )=ax 2+2x +c 的值域是[0,+∞),则a +c 的最小值为________. 解析:由已知a >0,4ac -44a =0,∴ac =1,c >0.∴a +c ≥2ac =2.当且仅当a =c =1时,取等号, ∴a +c 的最小值为2. 答案:29.已知函数y =mx 2+(m -3)x +1的值域是[0,+∞),则实数m 的取值范围是________. 解析:当m =0时,y =-3x +1,显然成立. 当m ≠0时,要使y ∈[0,+∞),只要⎩⎪⎨⎪⎧m >0,Δ=(m -3)2-4×m ×1≥0, 解得0<m ≤1或m ≥9.综上m 的取值范围是[0,1]∪[9,+∞). 答案:[0,1]∪[9,+∞) 三、解答题10.已知二次函数f (x )的二次项系数为a ,且f (x )>-2x 的解集为{x |1<x <3},方程f (x )+6a =0有两相等实根,求f (x )的解析式.解:设f (x )+2x =a (x -1)(x -3)(a <0), 则f (x )=ax 2-4ax +3a -2x ,f (x )+6a =ax 2-(4a +2)x +9a ,Δ=(4a +2)2-36a 2=0, 16a 2+16a +4-36a 2=0,20a 2-16a -4=0, 5a 2-4a -1=0,(5a +1)(a -1)=0, 解得a =-15,或a =1(舍去).因此f (x )的解析式为f (x )=-15(x -1)(x -3).11.已知f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有最大值-5,求a 的值及函数表达式f (x ).解:∵f (x )=-4⎝⎛⎭⎫x -a 22-4a , ∴抛物线顶点坐标为⎝⎛⎭⎫a 2,-4a .①当a 2≥1,即a ≥2时,f (x )取最大值-4-a 2.令-4-a 2=-5,得a 2=1,a =±1<2(舍去); ②当0<a 2<1,即0<a <2时,x =a2时,f (x )取最大值为-4a .令-4a =-5,得a =54∈(0,2);③当a2≤0,即a ≤0时,f (x )在[0,1]内递减,∴x =0时,f (x )取最大值为-4a -a 2,令-4a -a 2=-5,得a 2+4a -5=0,解得a =-5,或a =1,其中-5∈(-∞,0]. 综上所述,a =54或a =-5时,f (x )在[0,1]内有最大值-5.∴f (x )=-4x 2+5x -10516或f (x )=-4x 2-20x -5. 12.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,∵f (-1)=a -b +c =0,且-b2a =-1,∴a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由题意知f (x )=x 2+bx ,原命题等价于 -1≤x 2+bx ≤1在x ∈(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在x ∈(0,1]上恒成立,根据单调性可得1x-x 的最小值为0,-1x-x的最大值为-2,所以-2≤b≤0.故b的取值范围为[-2,0]。
课时作业(七) 二次函数与幂函数 (3)
课时作业(七) 二次函数与幂函数基础过关组一、单项选择题1.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( ) A .1 B .2 C .1或2D .3解析 因为函数f (x )为幂函数,所以m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2。
当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件。
故选A 。
答案 A2.已知幂函数f (x )的图象过点(2,14),则函数g (x )=f (x )+x 24的最小值为( )A .1B .2C .4D .6解析 设幂函数f (x )=x α。
因为f (x )的图象过点(2,14),所以2α=14,解得α=-2。
所以函数f (x )=x -2,其中x ≠0。
所以函数g (x )=f (x )+x 24=1x 2+x24≥21x 2·x 24=1,当且仅当x =±2时,g (x )取得最小值1。
答案 A3.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .2 C .-2D .1解析 函数f (x )=x 2-2x +m 图象的对称轴为x =1<3,二次函数图象的开口向上,所以f (x )在[3,+∞)上是增函数,因为函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,所以f (3)=1,即9-6+m =1,解得m =-2。
故选C 。
答案 C4.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析 由A ,C ,D 知,f (0)=c <0。
因为abc >0,所以ab <0,所以对称轴x =-b 2a>0,知A ,C错误,D 符合要求。
由B 知f (0)=c >0,所以ab >0,所以x =-b 2a<0,B 错误。
二次函数与幂函数练习题
二次函数与幂函数1.已知幂函数f (x )=x α的部分对应值如下表:则不等式f (|x |)≤2的解集是( A .{x |0<x ≤2}B .{x |0≤x ≤4}C .{x |-2≤x ≤2}D .{x |-4≤x ≤4} 2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )3.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f(-3)<c<f ⎝ ⎛⎭⎪⎫52 B .f ⎝ ⎛⎭⎪⎫52<c<f(-3) C .f ⎝ ⎛⎭⎪⎫52<f(-3)<c D .c <f ⎝ ⎛⎭⎪⎫52<f(-3) 4.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f(m)≤f(0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2] 5.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-52B.⎝ ⎛⎭⎪⎫52,+∞ C .(-∞,-2)∪(2,+∞) D.⎝ ⎛⎭⎪⎫-52,+∞ 6.若函数y=(x+1)(x-a)为偶函数,则a=( )A.-2B.-1C.1D.2 7.二次函数f (x )=x 2-ax +4,若f (x +1)是偶函数,则实数a 的值为( )A .-1B .1C .-2D .2 8.若f(x)=x 2+2mx+m 2-2m 在(-∞,3]上单调递减,则实数m 的取值范围是()A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)9.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n≤f(x)≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34D .1 10.已知函数f (x )=x 2+bx +c 且f (1+x )=f (-x ),则下列不等式中成立的是( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (0)<f (2)<f (-2)D .f (2)<f (0)<f (-2)11.下列函数中,其定义域、值域不同的是( )A .y =x 12B .y =x -1C .y =x 13D .y =x 2 12.已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.13.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________.14.若x>0,则131314242223234______.__x x x ⎛⎫⎛⎫+--= ⎪⎪⎝⎭⎝⎭15.函数21()m m f x x += (m∈N *)的定义域是________,单调递增区间是________. 16.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8).(1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值;(3)求不等式f (x )≥0的解集.17.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g(x)=f(x)-m·x 在[2,4]上单调,求m 的取值范围.18.已知函数2()m f x x x =-且f(4)7.2= (1)求m 的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.。
高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)
第七讲二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较R R R{x|x≥0}{x|x≠0}(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数图像R R考向一 幂函数概念及性质【例1】已知幂函数223(22)n nf x n n x -=+-(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 【答案】 1【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 【举一反三】1.已知函数f (f )=(f 2−f −1)f f 2+2f −3是幂函数,且其图象与两坐标轴都没有交点,则实数f =() A .−1 B .2 C .3 D .2或−1【答案】A【解析】∵函数f (f )=(f 2−f −1)f f2+2f −3是幂函数,∴f 2−f −1=1,解得:f =2或f =−1,f =2时,f (f )=f ,其图象与两坐标轴有交点不合题意,f =−1时,f (f )=1f 4,其图象与两坐标轴都没有交点,符合题意,故f =−1,故选:A .2.已知函数f(f)=(3f2−2f)f f是幂函数,若f(x)为增函数,则m等于()A.−13B.−1C.1 D.−13或1【答案】C【解析】函数f(x)=(3m2-2m)x m是幂函数,则3m2-2m=1,解得m=1或m=-13,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(f)=f f的图像过点(2,√2),则下列说法正确的是()A.f(f)是奇函数,且在(0,+∞)上单调递增B.f(f)是偶函数,且在(0,+∞)上单调递减C.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递增D.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递减【答案】C【解析】∵幂函数y=xα的图象过点(2,√2),∴√2=2α,解得α=12,故f(x)=√f,故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,故选:C.4.设α∈{−1,1,12,3},则使函数y=f f的定义域为R且为奇函数的所有α的值为()A.−1,1,3 B.12,1 C.−1,3 D.1,3【答案】D【解析】当α=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当α=1时,函数y=f f的定义域为R且为奇函数,满足要求;当α=12函数的定义域为{x|x≥0},不满足定义域为R;当α=3时,函数y=f f的定义域为R且为奇函数,满足要求;故选:D.考向二图像问题【例2】(1)当f∈{−1,12,1,3}时,幂函数f=f f的图象不可能经过的象限是A.第二象限 B.第三象限 C.第三、四象限 D.第二、四象限(2)在同一直角坐标系中,函数f(x)=f f(x≥0),g(x)=fff f x的图象可能是()A. B.C. D.【答案】(1)D (2)D【解析】(1)因为f=f−1经过第一、三象限;f=f12经过第一象限;f=f1经过第一、三象限;f=f3经过第一、三象限;所以不可能经过的象限是第二、四象限,选D.(2)∵实数a>0且a≠1,∴函数f(x)=x a(x>0)是上增函数,故排除A;∴当a>1时,在同一直角坐标系中,函数f(x)=x a(x>0)是下凹增函数,g(x)=log a x的是增函数,观察四个选项,没有符合条件选项;当0<a<1时,∴在同一直角坐标系中,函数f(x)=x a(x>0)是增函数,g(x)=log a x是减函数,由此排除B和C,符合条件的选项只有D.故选:D.【举一反三】1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数f=f 12的图象可能是()A.① B.② C.③ D.④【答案】D【解析】幂函数y=f12为增函数,且增加的速度比价缓慢,只有④符合.故选:D.2.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①f=f 13,②f=f2,③f=f12,④f=f−1B.①f=f3,②f=f2,③f=f 12,④f=f−1C.①f=f2,②f=f3y=x3,③f=f−1,④f=f 1 2D.①f=f 13,②f=f12,③f=f2,④f=f−1【答案】B【解析】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.3.在同一直角坐标系中,函数f(f)=f f(f≥0),f(f)=log f f(f>0,且f≠1)的图象可能是().A. B. C. D.【答案】D【解析】对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求;对于B项,幂函数f>1,对数函数0<f<1,所以B项不满足要求;对于C项,幂函数要求0<f<1,而对数函数要求,f>1,所以C项不满足要求;对于D项,幂函数与对数函数都要求0<f<1,所以D项满足要求;故选D.4.如图是幂函数y=x m和y=x n在第一象限内的图象,则( )A.-1<n<0,0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1【答案】B【解析】由题图知,f=f f在[0,+∞)上是增函数,f=f f在(0,+∞)上为减函数,∴f>0,f<0,又当f>1时,f=f f的图象在f=f的下方,f=f f的图象在f=f−1的下方,∴f<1,f<−1,从而0<f <1,f <−1,故选B.考向三 比较大小【例3】设f =(35)25,f=(25)35,f=(25)25,则f ,f ,f 的大小关系是A .f >f >fB .f >f >fC .f >f >fD .f >f >f【答案】A【解析】对于函数f =(25)f ,在(0,+∞)上是减函数,∵35>25,∴(25)35<(25)25,即f <f ;对于函数f =f 25,在(0,+∞)上是增函数,∵35>25,∴(35)25>(25)25,即f >f .从而f <f <f .故A 正确. 【举一反三】1.已知点(f ,9)在幂函数f (f )=(f −2)f f 的图象上,设f =f (f − 13),f =f (ln 13),f =f (√22) 则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f【答案】A【解析】由f (f )=(f −2)f f 为幂函数得f −2=1,f =3, 因为点(3,9)在幂函数f (f )上,所以3f =9,f =2,即f (f )=f 2, 因为f =f (f − 13)=f (3− 13),f =f (ln 13)=f (ff3),又3− 13<√22<1<ff3,所以f <f <f ,选A.2.设f =20.3,f =30.2,f =70.1,则f 、f 、f 的大小关系为( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题意得:f =20.3=√2310=√810,f =30.2=√3210=√910,f =70.1=√710f =√f 10在(0,+∞)上是增函数且9>8>7∴f >f >f 本题正确选项:f3..已知f =(√2)125,f =925,f =4log 4f 2,则下列结论成立的是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f 【答案】A【解析】f =265=6415,f =345=8115,∵64<81,∴6415<8115,即f <f ,f =e 2>4>3>345=f ,故f <f <f ,选A .考向四 二次函数解析式【例4】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. (3)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.【答案】(1)f (x )=x 2-2x +3 (2)x 2+2x (3)x 2+2x +1【解析】(1)由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.(2)设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x .(3)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1. 【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】 x 2-4x +3【解析】因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.2.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【套路总结】1. 求二次函数解析式的方法【答案】f (x )=-4x 2+4x +7.【解析】设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2. 又∵f (x )图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.4.已知二次函数f (x )=x 2+2bx +c (b ,c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.【答案】⎝ ⎛⎭⎪⎫15,57【解析】(1)设x 1,x 2是方程f (x )=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c ,即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题,知f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0⇒15<b <57,即实数b 的取值范围为⎝ ⎛⎭⎪⎫15,57. 考向五 二次函数的性质【例5】(1)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.(2) 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________ (3) 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 【答案】(1)[0,2] (2)[-3,0] (3)38或-3【解析】(1)二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. (2)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (3)f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.【举一反三】1.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________. 【答案】 2或-1【解析】函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.2.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是______.【答案】 [7,+∞)【解析】 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.3.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 【答案】 [-2,0]【解析】当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].考向六 二次函数恒成立【例6】 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.((2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】(1) (-∞,-1) (2)2【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2) 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2.1.已知函数f (x )=ax 2+bx +1(a ,b ∈R),x ∈R.(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 【答案】【解析】(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞).(2)解法一:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.∴g (x )min =g (-1)=1. ∴k <1,即k 的取值范围为(-∞,1).解法二:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1-k >0在区间[-3,-1]上恒成立,设g (x )=x 2+x +1-k ,则g (x )在[-3,-1]上单调递减,∴g (-1)>0,得k <1.2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】 ⎝ ⎛⎭⎪⎫12,+∞【解析】由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1,∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 【解析】 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 考向七 二次函数根的分布【例7】一元二次方程02)12(2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是.【答案】203a <<【解析】记2()(21)2f x x a x a =+-+-,由已知得,(1)0,(1)0,f f <⎧⎨-<⎩解得203a <<.【举一反三】1.已知关于x 的方程11()()2042x x a -+=在区间[]1,0-上有实数根,则实数a 的取值范围是. 【答案】[]1,0-【解析】当0a =时,方程为1()202x -+=,解得1x =-,符合;当0a ≠时,记2()2f m am m =-+,其中1()2x m =.当[1,0]x ∈-时,1()[1,2]2x m =∈,所以题目条件等价于函数2()2f m am m =-+在区间[1,2]内有零点. 当0a >时有函数对称轴102x a =>,若180a ∆=-=,即18a =,此时21()28f m m m =-+的零点为4m =,不符合.因为(2)40f a =>,180a ∆=->,即18a <,所以可知对称轴142x a=>,画图可知此时()f m 在区间[1,2]内无零点. 当0a <时有函数对称轴102x a=<,此时180a ∆=->恒成立.因为(2)40f a =<,所以有(1)10f a =+≥,解得1a ≥-.所以此时10a -≤<.综上可得,10a -≤≤.2.若方程210x mx -+=的两实根分别为,αβ,且012αβ<<<<,则m 的取值范围是. 【答案】5(2,)2【解析】因为关于x 的方程012=+-mx x 的两个根为,αβ,且012αβ<<<<则满足(1)020(2)0520<-<⎧⎧∴⎨⎨>->⎩⎩f m f m ,这样可以解得m 的范围5(2,)2. 3.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18C .()18,20D .()8,18 【答案】A【解析】由题意得()()()20420{10{1000f b c f b c f c ->-+>-<⇒-+<>>,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为()()()2,0,1,0,3,2A B C ):,而()393f b c =++,所以直线()393f b c =++过C 取最大值20,过B 点取最小值12,()3f 的取值范围是()12,20,选A .4.已知函数()42f x xx x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意,()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知,126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅()()2111166x x x x =⋅-⋅-+=()22116x x -+=()22139x ⎡⎤--+⎣⎦,()()21123,398,9x x <<∴--+∈,()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.1.已知函数f(f)=(f−1)2f f2−4f+2是在(0,+∞)上单调递增的幂函数,则f=( ) A.0或4 B.0或2 C.0 D.2【答案】C【解析】∵f(x)是幂函数,∴(m﹣1)2=1,得m=0,或m=2,∵f(x)在(0,+∞)上单调递增,∴m2﹣4m+2>0,则当m=0时,2>0成立,当m=2时,4﹣8+2=﹣2,不成立,故选C.2.已知幂函数f(x)=x a(a是常数),则()A.f(x)的定义域为R B.f(x)在(0,+∞)上单调递增C.f(x)的图象一定经过点(1,1)D.f(x)的图象有可能经过点(1,−1)【答案】C【解析】(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.3.如图所示的曲线是幂函数f=f f在第一象限的图象,已知f∈{−4,−14,14,4},相应曲线f1,f2,f3,f4对应的f值依次为()A.−4,−14,14,4 B.4,14,−14,−4 C.−14,−4,4,14D.4,14,−4,−14【答案】B【解析】结合幂函数的单调性及图象,易知曲线f1,f2,f3,f4对应的f值依次为4,14,−14,−4.故选B.4.函数f=2|f|−f2(f∈f)的图象为( )A .B .C .D .【答案】A【解析】由于函数y=2|x|﹣x 2(x ∈R )是偶函数,图象关于y 轴对称,故排除B 、D . 再由x=0时,函数值y=1,可得图象过点(0,1),故排除C ,从而得到应选A ,故选:A .5.已知函数g (x )=log a (x ﹣3)+2(a >0,a ≠1)的图象经过定点M ,若幂函数f (x )=x α的图象过点M ,则α的值等于( )A .﹣1B .12 C .2 D .3 【答案】B【解析】∵y=log a (x ﹣3)+2(a >0,a ≠1)的图象过定点M ,∴M (4,2),∵点M (4,2)也在幂函数f (x )=x α的图象上,∴f (4)=4α=2,解得α=12,故选:B . 6.已知幂函数y =x n 在第一象限内的图象如图所示,则曲线C 1、C 2、C 3、C 4的n 值可能依次为A .–2,–12,12,2B .2,12,–12,–2C .–12,–2,2,12D .2,12,–2,–12 【答案】B【解析】由图象可知:C 1的指数n>1,C 2的指数0<n<1,C 3,C 4的指数小于0,且C 3的指数大于C 4的指数.据此可得,只有B 选项符合题意.故选B .7.幂函数y =x n是奇函数,但图象不与坐标轴相交,则n 的值可以是 A .3 B .1 C .0 D .–1 【答案】D【解析】根据幂函数的性质判断出幂函数f =f f 是奇函数时,指数f 为奇数;幂函数f =f f 的图象与两坐标轴不相交时,幂函数的指数f 小于0,对照选项,只有D 正确.故选D . 8.在函数f =1f 2,f =2f 2,f =f 2+f ,f =3f 中,幂函数的个数为A .0B .1C .2D .3 【答案】B【解析】显然,根据幂函数定义可知,只有f =1f 2=f −2是幂函数,故选B .9.已知函数f =f f ,f =f f ,f =f f 的图象如图所示,则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f 【答案】A【解析】由图像可知,f >1,f =12,0<f <12,得f >f >f ,故答案为:A. 10.当f ∈{−1,12,3}时,幂函数f =f f 的图象不可能经过的象限是 A .第二象限 B .第三象限C .第四象限 D .第二、四象限 【答案】D【解析】f =f −1的图象经过第一、三象限,f =f 12的图象经过第一象限,f =f 的图象经过第一、三象限,f =f 3的图象经过第一、三象限.故选D .11.已知正实数f ,f ,f 满足log f 2=2,log 3f =13,f 6=172,则f ,f ,f 的大小关系是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题得f 2=2,∴f 6=8,f =313,∴f 6=32=9, 因为8<172<9,a,b,c 都是正数,所以f <f <f .故选:B12.已知幂函数f (x )=x a的图象经过点(2,√2),则函数f (x )为( ) A .奇函数且在(0,+∞)上单调递增 B .偶函数且在(0,+∞)上单调递减 C .非奇非偶函数且在(0,+∞)上单调递增D .非奇非偶函数且在(0,+∞)上单调递减【答案】C,【解析】∵幂函数f(x)=x a的图象经过点(2,√2),∴2a=√2,解得a=12∴函数f(x)=f12,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.13.已知函数f=f f2−5f+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A.2或3 B.3 C.2 D.1【答案】A【解析】幂函数f=f f2−5f+4为偶函数,且在(0,+∞)递减,∴f2−5f+4<0,且f2−5f+4是偶数,由f2−5f+4<0得1<f<4,又由题设f是整数,故f的值可能为2或3,验证知f=2或者3时,都能保证f2−5f+4是偶数,故f=2或者3即所求.故选:A14.已知函数f(f)为偶函数,当f>0时,f(f)=f2−3f,则()A.f(tan70∘)>f(1.4)>f(−1.5)B.f(tan70∘)>f(−1.5)>f(1.4)C.f(1.4)>f(tan70∘)>f(−1.5)D.f(−1.5)>f(1.4)>f(tan70∘)【答案】A【解析】当f>0时,f(f)=(f−1.5)2−1.52,tan70∘−1.5>tan60∘−1.5≈0.232,又函数f(f)为偶函数,所以f(−1.5)=f(1.5),1.5−1.4=0.1,根据二次函数的对称性以及单调性,所以f(tan70∘)>f(1.4)>f(−1.5).故选A15.已知函数f(f)=f2+ff+1在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,则实数f的取值范围是( )A.[−2,2]B.(−∞,−2]C.[2,+∞)D.R【答案】A【解析】由题意,函数f(f)=f2+ff+1表示开口向上,且对称轴的方程为f=−f2,要使得函数f(f)在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,≤1,解得−2≤f≤2,故选A.则−1≤−f216.幂函数f(f)=(f2−2f+1)f2f−1在(0,+∞)上为增函数,则实数f的值为____________.【答案】2【解析】由函数f(f)=(f2−2f+1)f2f−1是幂函数,则f2−2f+1=1,解得f=0或f=2;当f=0时,f(f)=f−1,在(0,+∞)上为减函数,不合题意;当f=2时,f(f)=f3,在(0,+∞)上为增函数,满足题意.故答案为:2.17. 已知函数f (f )=(f 2−f −1)f f 是幂函数,且f (f )在(0,+∞)上单调递增,则实数f =________. 【答案】2【解析】∵幂函数f (x )=(m 2﹣m ﹣1)x m在区间(0,+∞)上单调递增,∴{f 2−f −1=1f>0,解得m =2或-1(舍).故答案为:2.18.已知幂函数f (f )=(f 2−2f −7)f f −1在(0,+∞)上是减函数,则实数f 的值为__________. 【答案】-2【解析】因为函数f (f )=(f 2−2f −7)f f −1是幂函数,所以f 2−2f −7=1,即(f +2)(f −4)=0, 解得f =−2或f =4,当f =−2时,f (f )=f −3,满足在(0,+∞)上是减函数,当f =4时,f (f )=f 3,在(0,+∞)上是增函数,所以f =−2,故答案是:−2. 19.若f (f )=(f −1)2f f 是幂函数且在(0,+∞)单调递增,则实数f =_______. 【答案】2【解析】f (f )=(f −1)2f f 为幂函数,所以(f −1)2=1,解得f =0或2. 当f =0时,f (f )=f 0=1,在(0,+∞)不单调递增,舍去; 当f =2时,f (f )=f 2,在(0,+∞)单调递增成立.故答案为:f =2. 20.已知幂函数f (x )=(m 3–m +1)x12(1−8f −f 2)的图象与x 轴和y 轴都无交点.(1)求f (x )的解析式;(2)解不等式f (x +1)>f (x –2). 【答案】(1)f (x )=x –4;(2){x |x <12,x ≠0}.【解析】(1)因为f (x )是幂函数,所以m 3–m+1=1,解得m ∈{0,±1},又f (x )的图象与x 轴和y 轴都无交点,经检验,只有当m=1时符合题意,所以m=1,此时f (x )=x –4; (2)f (x )=x –4是偶函数且在(0,+∞)递减,所以要使f (x+1)>f (x –2)成立,只需|x+1|<|x –2|,解得x<12, 又f (x )的定义域为{x|x ≠0},所以不等式的解集为{x|x<12,x ≠0}. 21.已知幂函数y =f (x )=f −2f2−f +3,其中m ∈[–2,2],m ∈Z ,①定区间(0,+∞)的增函数;②对任意的x ∈R ,都有f (–x )+f (x )=0;求同时满足①、②两个条件的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域.【答案】f (f )=f 3;[0,27]. 【解析】∵幂函数y =f (x )=f −2f2−f +3在区间(0,+∞)为增函数,∴–2m 2–m +3>0,即2m 2+m –3<0,解得m ∈(−32,1), 又∵m ∈Z ,∴m =–1或m =0,当m =–1时,y =f (x )=x 2为偶函数,不满足f (–x )+f (x )=0; 当m =0时,y =f (x )=x 3为奇函数,满足f (–x )+f (x )=0. ∴同时满足①、②两个条件的幂函数f (x )=x 3,当x ∈[0,3]时,f (x )∈[0,27],即函数f (x )的值域为[0,27]. 22.已知函数f (f )=(f 2−2f −2)log f f 是对数函数.(1)若函数f (f )=log f (f +1)+log f (3−f ),讨论函数f (f )的单调性;(2)在(1)的条件下,若f ∈[13,2],不等式f (f )−f +3≤0的解集非空,求实数f 的取值范围. 【答案】(1)见解析;(2)[4,+∞).【解析】(1)由题意可知{f 2−2f −2=1f >0且f ≠1,解得f =3(负值舍去),所以f (f )=log 3f .因为f (f )=log f (f +1)+log f (3−f ),所以{f +1>03−f >0 ,即{f >−1f <3,即−1<f <3,故f (f )的定义域为{f |−1<f <3}.由于f (f )=log 3(f +1)+log 3(3−f )=log 3(−f 2+2f +3), 令f (f )=−f 2+2f +3(−1<f <3),则由对称轴f =1可知,f (f )在(−1,1)上单调递增,在(1,3)上单调递减; 因为f =log 3f 在(0,+∞)上单调递增,所以函数f (f )的单调递增区间为(−1,1),单调递减区间为(1,3).(2)因为不等式f (f )−f +3≤0的解集非空,所以f −3≥f (f )min ,f ∈[13,2], 由(1)知,当f ∈[13,2]时,函数f (f )的单调递增区间为[13,1],单调递减区间为(1,2], 因为f (13)=log 3329,f (2)=1,所以f (f )min =1,所以f −3≥1,即f ≥4,故实数f 的取值范围为[4,+∞). 23.设二次函数f (f )=f 2+ff +f ,f ,f ∈f .(1)若f (f )满足:对任意的f ∈f ,均有f (−f )≠−f (f ),求f 的取值范围; (2)若f (f )在(0,1)上与f 轴有两个不同的交点,求f 2+(1+f )f 的取值范围.【答案】(1) (0,+∞) (2) (0,116)【解析】(1)∵f (−f )+f (f )=(−f )2+f (−f )+f +f 2+ff +f =2(f 2+f )≠0恒成立, 所以,方程f 2+f =0无实数解所以,f 取值范围为(0,+∞)(2)设f (f )=0的两根为f 1,f 2,且0<f 1<f 2<1,则f (f )=(f −f 1)(f −f 2), 所以f 2+(1+f )f =f (1+f +f )=f (0)f (1)=(0−f 1)(0−f 2)(1−f 1)(1−f 2)=f 1f 2(1−f 1)(1−f 2)=(−f 12+f 1)(−f 22+f 2)=[−(f 1−12)2+14][−(f 2−12)2+14]≤116.又因为f 1,f 2不能同时取到12,所以f 2+(1+f )f 取值范围为(0,116). 24. 已知函数f (f )=f 2−2(f −1)f +4. (Ⅰ)若f (f )为偶函数,求f (f )在[−1,2]上的值域;(Ⅱ)若f (f )在区间(−∞,2]上是减函数,求f (f )在[1,f ]上的最大值. 【答案】(Ⅰ)[4,8];(Ⅱ)7-2f【解析】(Ⅰ)因为函数f (f )为偶函数,故f (−f )=f (f ),得f =1.f (f )=f 2+4,因为−1≤f ≤2,所以4≤f (f )≤8,故值域为:[4,8].(Ⅱ)若f (f )在区间(−∞,2]上是减函数,则函数对称轴f =f −1≥2,f ≥3因为1<f −1<f ,所以f ∈[1,f −1]时,函数f (f )递减,[f −1,f ]时,函数f (f )递增,故当f ∈[1,f ]时,f (f )max {f (1),f (f )} ,∴f (1)=7−2f ,f (f )=−f 2+2f +4,f (1)−f (f )=(7−2f )−(−f 2+2f +4)=f 2−4f +3=(f −2)2−1由于f ≥3∴f (1)≥f (f ) ,故f (f )在[1,f ]上的最大值为7-2f .25.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 【答案】(1)⎣⎢⎡⎦⎥⎤-214,15. (2)a =-13或-1【解析】(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1. 26.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【答案】见解析【解析】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧ t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.。
高考数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案理新人教A版
第四节 二次函数与幂函数2019考纲考题考情1.幂函数(1)定义:一般地,函数y =x α叫做幂函数,其中底数x 是自变量,α是常数。
(2)幂函数的图象比较:2.二次函数 (1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0)。
顶点式:f (x )=a (x -h )2+k (a ≠0)。
两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0)。
(2)图象与性质:与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0;(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0;(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min 。
一、走进教材1.(必修1P 79习题T 1改编)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A .12B .1C .32D .2 解析 因为f (x )=k ·x α是幂函数,所以k =1。
又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,所以α=12,所以k +α=1+12=32。
故选C 。
答案 C2.(必修1P 38B 组T 1改编)函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值为________。
解析 函数y =2x 2-6x +3=2⎝ ⎛⎭⎪⎫x -322-32的图象的对称轴为直线x =32>1,所以函数y =2x 2-6x +3在[-1,1]上为单调递减函数,所以y min =2-6+3=-1。
答案 -1 二、走近高考3.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b 。
幂函数与二次函数测试题目
幂函数与二次函数1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎪⎫4,12,则f (2)=( ) A.14 B .4C.22 D. 22.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为 ( ).A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)3.已知函数f (x )=⎩⎨⎧ 2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( ).A .-3B .-1C .1D .3 4 .函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b 2a对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ).A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}6.对于函数y =x 2,y =x 有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增;③它们的图像关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图像都是抛物线型.其中正确的有________.8.方程x 2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.9.设f (x )是定义在R 上以2为最小正周期的周期函数.当-1≤x <1时,y =f (x )的表达式是幂函数,且经过点⎝ ⎛⎭⎪⎫12,18.求函数在[2k -1,2k +1)(k ∈Z )上的表达式________.1211.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,求实数a 的取值范围.12.已知函数f (x )=322--m m x (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足3)1(m a -+<3)23(m a --的a 的范围.13.已知幂函数f (x )=12)(-+m m x (m ∈N *)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.。
二次函数与幂函数(试题部分)
一元二次方程根的分布
3.已知一元二次方程 x2+mx+3=0(m∈Z)有两个实数根 x1,x2,且 0<x1<2<x2<4,则 m 的值为(
A.-4
B.-5
答案
C.-6
D.-7
A
4.方程 x2+ax-2=0 在区间[1,5]上有解,则实数 a 的取值范围为(
A.(C.[-
23
5
23
5
答案
, + ∞)
答案
D.点(2,8)在曲线 y=f(x)上
A
2.(2013 重庆,3,5 分)√(3-)( + 6)(-6≤a≤3)的最大值为(
A.9
答案
B.
9
2
C.3
D.
)
3√2
2
B
3 4 5
3.(2014 辽宁,16,5 分)对于 c>0,当非零实数 a,b 满足 4a2-2ab+4b2-c=0 且使|2a+b|最大时, - + 的最小值为
由|a|+|b|={
得|a|+|b|≤3.
|-|, < 0,
当 a=2,b=-1 时,|a|+|b|=3, |f(x)|=|x2+2x-1|,此时易知|f(x)|在[-1,1]上的最大值为 2,即 M(2,-1)=2.
所以|a|+|b|的最大值为 3.
考点二
幂函数
5.(2014 浙江,7,5 分)在同一直角坐标系中,函数 f(x)=xa(x>0),g(x)=logax 的图象可能是(
)
D.[2,4]
D
1
5.(2020 届广东揭阳三中第一次月考,7)如图的曲线是幂函数 y=xn 在第一象限内的图象.已知 n 分别取±2,± 四个值,与
课时作业13:§2.4二次函数与幂函数
§2.4二次函数与幂函数基础组1.已知幂函数f (x )=(n 2+2n -2)x n2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或22.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )3.定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x , 则当x ∈[-2,-1]时,f (x )的最小值为( ) A .-116B .-18C .-14D .04. 对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)5.幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是( ) A .(-2,+∞) B .[-1,+∞) C .[0,+∞)D .(-∞,-2)6.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若a =c ,则函数f (x )的图象不可能是( )7.已知函数f (x )=a sin x -12cos2x +a -3a +12(a ∈R ,a ≠0),若对任意x ∈R 都有f (x )≤0,则a 的取值范围是( )A.⎣⎡⎭⎫-32,0 B .[-1,0)∪(0,1] C .(0,1]D .[1,3]8.若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( ) A .f (x )=-x 2-x -1 B .f (x )=-x 2+x -1 C .f (x )=x 2-x -1D .f (x )=x 2-x +19. “a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分又不必要条件10.已知二次函数f (x )=ax 2+bx +c 满足条件:①f (3-x )=f (x );②f (1)=0;③对任意实数x ,f (x )≥14a -12恒成立.则其解析式为f (x )=________.11.已知二次函数图象的对称轴为x =-2,截x 轴所得的弦长为4,且过点(0,-1),求函数的解析式.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2m x 在[2,4]上单调,求m 的取值范围.能力组13.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间 (-5,-3)上( ) A .先减后增 B .先增后减 C .单调递减D .单调递增14.函数f (x )=ax 2+ax -1在R 上恒满足f (x )<0,则a 的取值范围是( ) A .a ≤0B .a <-4C.-4<a<0D.-4<a≤0答案D15.当0<x<1时,函数f(x)=x1.1,g(x)=x0.9,h(x)=x-2的大小关系是________.16.是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1, 1]时,值域为[-2,2]?若存在,求a的值;若不存在,说明理由.参考答案 基础组1. B【解析】 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1适合题意,故选B.2.A【解析】 函数f (x )=x 2+bx +c图象的顶点坐标为⎝⎛⎭⎫-b 2,4c -b 24,则-b 2>0.f ′(x )=2x +b ,令f ′(x )=0,得x =-b2>0,即导函数f ′(x )的图象与x 轴的交点位于x 轴正半轴上,且斜率为正,故选A.3.A【解析】 设x ∈[-2,-1],则x +2∈[0,1],则f (x +2)=(x +2)2-(x +2)=x 2+3x +2,又f (x +2)=f [(x +1)+1]=2f (x +1)=4f (x ),∴f (x )=14(x 2+3x +2)∴当x =-32时,取到最小值为-116.4. D【解析】 解不等式x 2-1-(4+x )≥1,得x ≤-2或x ≥3.所以f (x )=24,(,2][3,)1,(2,3)x x x x +∈-∞-+∞⎧⎨-∈-⎩ 其图象如下图实线所示,由图可知,当-2≤k <1时,函数y =f (x )+k 的图象与x 轴恰有三个不同交点,故选D.5. C【解析】 因为函数过点(2,4),所以4=2α,α=2,故f (x )=x 2,单调增区间为[0,+∞),选C.6. D【解析】 由A 、B 、C 、D 四个选项知,图象与x 轴均有交点,记两个交点的横坐标分别为x 1,x 2,若只有一个交点,则x 1=x 2.因为a =c ,所以x 1x 2=ca =1,比较四个选项,可知选项D 的x 1<-1,x 2<-1,所以D 不满足.故选D.7. C【解析】 化简函数得f (x )=sin 2x +a sin x +a -3a.令t =sin x (-1≤t ≤1),则g (t )=t 2+at +a-3a ,问题转化为使g (t )在[-1,1]上恒有g (t )≤0,即3(1)103(1)120g ag a a ⎧-=-≤⎪⎪⎨⎪=+-≤⎪⎩解得0<a ≤1, 故选C. 8.D【解析】 设f (x )=ax 2+bx +c (a ≠0),由题意得221(1)(1)()2c a x b x c ax bx c x=⎧⎨++++-++=⎩ 故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f (x )=x 2-x +1.故选D. 9.B【解析】 函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数,则满足对称轴--4a2=2a ≤2,即a ≤1,所以“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的充分不必要条件.10.x 2-3x +2【解析】 依题意可设f (x )=a ⎝⎛⎭⎫x -322+k , 由f (1)=14a +k =0,得k =-14a ,从而f (x )=a ⎝⎛⎭⎫x -322-a 4≥14a -12恒成立, 则-a 4≥14a -12,且a >0,即14a +a 4-12≤0,即a 2-2a +14a ≤0,且a >0,∴a =1. 从而f (x )=⎝⎛⎭⎫x -322-14=x 2-3x +2.11. 解 ∵二次函数图象的对称轴为x =-2,∴可设所求函数的【解析】式为f (x )=a (x +2)2+b .∵二次函数f (x )的图象截x 轴所得的弦长为4,∴f (x )过点(-2+2,0)和(-2-2,0).又二次函数f (x )的图象过点(0,-1),∴⎩⎪⎨⎪⎧4a +b =02a +b =-1,解得⎩⎪⎨⎪⎧a =12b =-2.∴f (x )=12(x +2)2-2.即f (x )=12x 2+2x -1.12. 解 (1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上为增函数,故(3)5(2)2f f =⎧⎨=⎩∴⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,∴⎩⎪⎨⎪⎧a =1,b =0.②当a <0时,f (x )在[2,3]上为减函数,故(3)5(2)2f f =⎧⎨=⎩∴⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,∴⎩⎪⎨⎪⎧a =-1,b =3.∴a =1,b =0或a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-2m x =x 2-(2+2m )x +2.若g (x )在[2,4]上单调,则2+2m 2≤2或2m +22≥4,∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26.故m的取值范围是(-∞,1]∪[log 26,+∞).能力组13. D【解析】 当m =1时,f (x )=2x +3不是偶函数;当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增,故选D.14.D【解析】 当a =0时,f (x )=-1在R 上恒有f (x )<0; 当a ≠0时,∵f (x )在R 上恒有f (x )<0,∴⎩⎪⎨⎪⎧a <0a 2+4a <0,∴-4<a <0. 综上可知:-4<a ≤0. 15.h (x )>g (x )>f (x )【解析】 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知,h (x )>g (x )>f (x ).16.解 f (x )=(x -a )2+a -a 2.当a <-1时,f (x )在[-1,1]上为增函数, ∴(1)132(1)12f a f a -=+=-⎧⎨=-=⎩ ⇒a =-1(舍去);当-1≤a ≤0时,2()2(1)12f a a a f a ⎧=-=-⎨=-=⎩ ⇒a =-1;当0<a ≤1时,2()2(1)132f a a a f a ⎧=-=-⎨-=+=⎩ ⇒a 不存在; 当a >1时,f (x )在[-1,1]上为减函数, ∴(1)132(1)12f a f a -=+=⎧⎨=-=⎩ ⇒a 不存在.综上可得a =-1.。
2019年新人教A版必修一第三章函数概念与性质单元练习题
2019年新人教A 版必修一第三章函数概念与性质单元练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()2cos f x x x =+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A .20,3⎛⎫ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .()()2,0,3-∞+∞ D .(]2,0,03⎡⎫-∞⎪⎢⎣⎭U 2.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( ) A .(]1-∞-, B .()0+∞, C .()10-, D .()0-∞,3.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A.9,4⎛⎤-∞ ⎥⎝⎦ B.7,3⎛⎤-∞ ⎥⎝⎦C.5,2⎛⎤-∞ ⎥⎝⎦D.8,3⎛⎤-∞ ⎥⎝⎦4.设f (x )为奇函数,且当x ≥0时,f (x )= ,则当x <0时,f (x )= A.B. C. D.5.函数3222x x x y -=+在[]6,6-的图像大致为 A . B .C .D .6.已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()1f f -的值为( ) A.1- B.15 C.15- D.17.函数()2log f x x =的定义域是A.(]0,2B.[)0,2C.[0,2]D.(2,2) 8.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 9.若函数()f x =的定义域为R ,则实数m 取值范围是( ) A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞ 10.函数[]22,0,3y x x x =-∈的值域为( )A.[]0,3B.[]1,3C.[]1,0-D.[]1,3-二、填空题11.函数()f x =________.12.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2]-上,cos ,02,2()1,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则((15))f f 的值为____. 13.已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 14.已知函数()3xx 1f x =x 2x+e -e -,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________。
第2章 第3节 二次函数与幂函数-2023届高三一轮复习数学精品备课(新高考人教A版2019)
6.幂函数 f(x)=(m2-4m+4)·x m2-6m+8在(0,+∞)上为 增函数,则 m 的值为______1__.
解析 由题意知mm22- -46mm+ +48= >10, ,解得 m=1.
核心考点·讲练互动
►考向一 幂函数的图象和性质[自主练透] [例 1] (1)幂函数 y=f(x)的图象过点(4,2),则幂函数 y=f(x)的大致图象是( C )
[自主解答] 解法一 (利用二次函数的一般式) 设 f(x)=ax2+bx+c(a≠0). 由题意得44aaa-c+4-ba2+bb2+c==c8=-,-1,1,解得abc===7-4.,4, 故所求二次函数为 f(x)=-4x2+4x+7.
解法二 (利用二次函数的顶点式) 设 f(x)=a(x-m)2+n.∵f(2)=f(-1), ∴抛物线对称轴为 x=2+(2-1)=12. ∴m=12,又根据题意函数有最大值 8,∴n=8, ∴y=f(x)=ax-122+8. ∵f(2)=-1,∴a2-122+8=-1,解得 a=-4, ∴f(x)=-4x-122+8=-4x2+4x+7.
函数
y=x y=x2
y=x3
1
y=x2 y=x-1
图象
定义域
R
R
R {_x_|x_≥_0_}__ {_x_|x_≠__0_}__
值域
R
_{_y_|y_≥_0_}___
R {_y_|y_≥_0_}__ {_y_|y_≠_0_}___
奇偶性 奇__函数
_偶__函数
奇__函数 非__奇__非_偶___ 函数
4ac-b2 4a .(
×
)
1
解析 (1)由于幂函数的解析式为 f(x)=xa,故 y=2x3 不是幂函数,(1)错.
高一数学必修第一册2019(A版)-《幂函数》教材分析
3.3幂函数一、本节知识结构框图二、重点、难点重点:五个幂函数的图象与性质.难点:画3y x =和12y x =的图象,通过5个幂函数的图象概括出它们的共性. 三、教科书编写意图及教学建议教科书将幂函数的内容安排在函数的一般概念和性质之后,是高中阶段研究的第一类具体函数.教学中应注意通过对幂函数的讨论,引导学生加强对前面所学函数知识的理解和应用,体会研究具体函数的基本内容、过程和方法.根据《标准(2017版)》的要求,教科书从实际问题中得到5个常用的幂函数,通过归纳它们的共性,给出幂函数概念.教学时,只需对这5个函数的图象和性质进行认识,不必拓展到对一般幂函数的讨论.教学重点在于利用一般函数的概念、图象与性质研究这5个幂函数,体会研究一类函数的“基本套路”.因此,本节内容的学习可以看成是一般函数概念与性质的下位学习.1.幂函数的定义(1)教科书首先给出5个实例,目的是引出5个常用的幂函数,同时也体现了函数是刻画实际问题的重要模型.从第四个实际问题中获得的函数为c =,由于教科书将分数指数幂的内容安排在第四章“指数函数”中,因此这里用边框的形式直12S .因为这里不涉及分数指数幂的运算,所以教学中不必做过多解释.(2)教科书在给出5个实例后安排了观察栏目.实际上,其中有3个函数是学生在初中已经接触过的,它们分别是正比例函数、反比例函数和二次函数,这里要求学生从另一个角度看它们.因此,应引导学生从指数幂的形式入手,观察5个函数解析式中的底数、指数的共性,得出它们“都具有幂的形式,而且都是以幂的底数为自变量,幂的指数都是常数”,由此概括解析式的共性,获得幂函数的定义.(3)在获得幂函数的定义后,教科书设置了“思考”,引导学生回顾以往学习函数的经验,提出研究幂函数的基本内容和思路.教学中应引导学生回忆初中学习函数的过程,结合前面研究一般函数的内容,明确研究一类具体函数的基本过程:①根据函数的解析式求出函数的定义域;②画出函数的图象;③利用图象和解析式,讨论函数的值域、单调性、奇偶性等.2.5个幂函数的图象教科书直接在一个坐标系中给出了5个幂函数的图象.5个函数中,y x =,2y x =,1y x -=都是学生熟悉的,很容易画出图象;3y x =和12y x =的图象,在教学中应引导学生结合函数的解析式进行描点作图得到函数图象,要提醒学生取点时应注意代表性.最后,可以利用信息技术,在同一平面直角坐标系中画出5个函数的图象,便于学生观察它们的共性和个性,为得出性质奠定基础. 3.幂函数的性质教科书在函数图象后给出了一个探究栏目,引导学生通过函数的图象和解析式探索函数的性质.在明确了函数的研究内容,画出了函数图象后,应放手让学生展开自主探究。
2022年高一数学人教版A版(2019)必修第一册同步练习题3-3 幂函数
一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图给出四个幂函数的图象,则图象与函数大致对应的是( )A .①y =21x ;②y =x 2;③y =x 3;④y =x -1B .①y =x 3;②y =21x ;③y =x 2;④y =x -1C .①y =x 2;②y =x 3;③y =21x ;④y =x -1D .①y =x 3;②y =x 2;③y =21x ;④y =x -1【答案】D【解析】y =x 3是奇函数,且在R 上递增,对应题图①;y =x 2是偶函数,对应题图②;y =21x 的定义域为[0,+∞),对应题图③;y =x -1的定义域为(-∞,0)∪(0,+∞),对应题图④.故选D. 2.已知幂函数f (x )=(2n 2-n )x n +1,若f (x )在其定义域上为增函数,则n 等于( )A .1或-21B .1C .-21 D .-1或21 【答案】C【解析】依题意得2n 2-n =1,即2n 2-n -1=0,解得n =1或n =-21. 当n =1时,f (x )=x 2,在R 上不是增函数,不符合题意,舍去;当n =-21时,f (x )=x x 21,在定义域[0,+∞)上是增函数,符合题意.故选C.3.如图所示,曲线C 1与C 2分别是函数y =x m和y =x n在第一象限内的图象,则下列结论正确的是( ) A .n <m <0 B .m <n <0 C .n >m >0 D .m >n >0【答案】A【解析】由图象可知,两函数在第一象限内递减,故m <0,n <0.当x =2时,2m>2n,所以n <m <0.4.有四个幂函数:①f (x )=x -1;②f (x )=x -2;③f (x )=x 3;④f (x )=31x .某同学研究了其中的一个函数,他给出这个函数的三个性质:(1)偶函数;(2)值域是{y |y ∈R ,且y ≠0};(3)在(-∞,0)上是增函数.如果他给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .① B .② C .③ D .④【答案】B【解析】①f (x )=x -1只满足值域是{y |y ∈R ,且y ≠0};③f (x )=x 3只满足在(-∞,0)上是增函数;④f (x )=31x 只满足在(-∞,0)上是增函数,②f (x )=x -2是偶函数,在(-∞,0)上是增函数,但其值域是{y |y >0}.故选B.5.已知幂函数y =f (x )的图象过点)22,2(,则下列结论正确的是( ) A .y =f (x )的定义域为[0,+∞) B .y =f (x )在其定义域上为减函数 C .y =f (x )是偶函数 D .y =f (x )是奇函数6.已知幂函数f (x )=x a的图象过点)2,2(,则函数g (x )=(x -2)f (x )在区间]1,2[上的最小值是( )A .-1B .-2C .-3D .-4【答案】C【解析】由已知得2a=21,解得a =-1,∴g (x )=x x x 212-=-在区间]1,21[上单调递增, 则g (x )min =g )21(=-3.故选C.7.(多选)(2020·江苏启东高一期末)已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是( )A .函数y x α=的图象过原点B .函数y x α=是偶函数C .函数y x α=是单调减函数D .函数y x α=的值域为R 【答案】AD【解析】由于幂函数y x α=过点()2,8,所以28α=,解得3α=,所以3y x =.()0,0,满足3y x =,A 选项正确.3y x =是奇函数,所以B 选项错误.3y x =在R 上递增,所以C 选项错误.3y x =值域为R ,所以D 选项正确.故选:AD8.(多选)已知实数a ,b 满足等式a 12=b 13,则下列关系式中可能成立的是( ) A .0<b <a <1 B .-1<a <b <0 C .1<a <b D .-1<b <a <0【答案】AC【解析】画出y =21x 与y =31x 的图象(如图),设a 12=b 13=m ,作直线y =m .从图象知,若m =0或1,则a =b ;若0<m <1,则0<b <a <1;若m >1,则1<a <b .故其中可能成立的是A 、C.二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.已知幂函数f (x )=x α的部分对应值如表:则f (x )的单调递增区间是________. 【答案】[0,+∞)【解析】因为f )21(=22,所以)21(α=22,即α=21,所以f (x )=21x 的单调递增区间是[0,+∞).10.设α∈}3.1,21,1{-,则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值是________.【答案】-1【解析】因为f (x )=x α为奇函数,所以α=-1,1,3.又因为f (x )在(0,+∞)上为减函数,所以α=-1.11.(2020·黑龙江高二期末(文))已知幂函数()221()33m m f x m m x --=-+在(0,)+∞上单调递增,则m 值为_____. 【答案】2【解析】由题意可知2233110m m m m ⎧-+=⎪⎨-->⎪⎩,解得2m =,故答案为:212.给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为________. 【答案】③【解析】设f (x )=x α,则f (m +n )=(m +n )α,f (m )+f (n )=m α+n α,f (m )·f (n )=m α·n α=(mn )α,f (mn )=(mn )α,所以f (mn )=f (m )·f (n )一定成立,其他三个不一定成立,故填③.三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.已知函数()2221()1m m f x m m x --=+-,问当m 取什么值时这个函数是:(1)正比例函数; (2)反比例函数;(3)幂函数且在(0,)+∞上为增函数. 【解析】(1)若()f x 是正比例函数,则2210211m m m m ⎧+-≠⎨--=⎩, 由2211m m --=得2220m m --=,解得1m =1m = 此时满足得210m m +-≠. (2)若()f x 是反比例函数, 则由2211m m --=-且210m m +-≠, 得220m m -=;得0m =或2m =, 此时满足得210m m +-≠;(3)若()f x 是幂函数,则211m m +-=,即220m m +-=,此时1m =或2m =-, 当1m =时2()f x x -=在(0,)+∞上单调递减,不符题意,舍去; 当2m =-时()7f x x =在(0,)+∞上单调递增,符号题意;即2m =-.14.已知幂函数39*()m y x m N -=∈的图象关于y 轴对称且在()0,∞+上单调递减,求满足()()33132m m a a +<---的a 的取值范围.【解析】因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<, 解得3m <.又因为*m N ∈,所以1m =,2; 因为函数的图象关于y 轴对称, 所以39m -为偶数,故1m =.则原不等式可化为()()1133132a a +<---, 因为13y x -=在(),0-∞,()0,∞+上单调递减,所以1320a a +>->或3210a a -<+<或1032a a +<<-, 解得2332a <<或1a <-. 故a 的取值范围是1a <-或2332a <<. 16.(2020·黑龙江萨尔图�大庆实验中学高一期末)已知幂函数()()223m m f x x m --=∈Z 为偶函数,且在区间()0,∞+上单调递减. (1)求函数()f x 的解析式;(2)讨论()()b F x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)【解析】(1)∵幂函数()()223mm f x x m --=∈Z 在区间()0,∞+上是单调递减函数,∴2230m m --<,解得13m -<<, ∵m Z ∈,∴0m =或1m =或2m =.∵函数()()223mm f x x m --=∈Z 为偶函数,∴1m =,∴()4f x x -=;(2)()()4b b F x xf x x x-==⋅23ax bx -=-, 当0a b时,()F x 既是奇函数又是偶函数;当0a =,0b ≠时,()F x 是奇函数; 当0a ≠,0b =时,()F x 是偶函数; 当0a ≠,0b ≠时,()F x 是非偶非偶函数.。
第三章函数概念与性质 单元测试卷 高一上学期数学人教A版(2019)必修第一册(无答案)
高一数学函数概念与性质单元测试卷一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各组函数中,表示同一函数的是.( ) A. y =x +1与y =x 2+x xB. f(x)=2(√x)2与g(x)=xC. f(x)=|x|与g(x)={x (x >0)−x (x <0)D. f(x)=x|x|x 与f(t)={t (t >0)−t (t <0)2. 若函数f(x)满足f(2x −1)=1x ,则f(3)= ( ) A. −12B. 12C. −1D. 13. 幂函数f(x)=(m ²−3m +3)x m 2−6m+6在(0,+∞)上单调递增,则m 的值为( ) A. 1B. 2C. 3D. 1或24. 已知函数f(x)=x 4−x 2,则错误的是( ) A. f(x)的图象关于y 轴对称 B. 方程f(x)=0的解的个数为2 C. f(x)在(1,+∞)上单调递增D. f(x)的最小值为−145. 已知f(x)是定义在[−1,1]上的奇函数,且f(−1)=−1,当a ,b ∈[−1,1],且a +b ≠0时,(a +b)(f(a)+f(b))>0成立,若f(x)<m 2−2tm +1对任意的t ∈[−1,1]恒成立,则实数m 的取值范围是( ) A. (−∞,−2)∪{0}∪(2,+∞) B. (−∞,−2)∪(2,+∞) C. (−2,2)D. (−2,0)∪(0,2)6. 设函数f(x)(x ∈R)为奇函数,且在(−∞,0)上是减函数,f (−2)=0,则x ·f (x )<0的解集为( )A. (−1,0)∪(2,+∞)B. (−∞,−2)∪(2,+∞)C. (−∞,−2)∪(0,2)D. (−2,0)∪(0,2)7. 某手机生产线的年固定成本为250万元,每生产x 千台需另投入成本C(x)万元.当年产量不足80千台时,C(x)=13x 2+10x(万元);当年产量不小于80千台时,C(x)=51x +10000x−1450(万元),每千台产品的售价为50万元,该厂生产的产品能全部售完.当年产量为千台时,该厂当年的利润最大?( ) A. 60B. 80C. 100D. 1208. 函数f(x)满足f(−x)=f(x),当x 1,x 2∈[0,+∞)时都有f(x 1)−f(x 2)x 1−x 2>0,且对任意的x ∈[12,1],不等式f(ax +1)≤f(x −2)恒成立,则实数a 的取值范围是( ) A. [−2,0]B. [−5,0]C. [−5,1]D. [−2,1]二、多选题(本大题共4小题,共20分。
人教A版(2019)数学必修(第一册):期末测试卷(含答案)1
人教A版(2019)数学必修(第一册):期末测试卷(含答案)1 -CAL-FENGHAI.-(YICAI)-Company One1期末测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}12,3,4,5U =,,集合{}1,2A =,则UA =( )A.{}12,B.{}3,4,5C.{}1,2,3,4,5D.∅2.已知角α的终边上有一点)5M -,则sin α等于( )A.57-B.56-C.58-D.3.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 4.函数223y x x =-+,12x -≤≤的值域是( ) A .R B .[]36,C .[]26,D .[)2+∞,5.已知tan 32α=,则cos α的值为( )A .45B .45-C .415D .35-6.已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]01,上的增函数”是“()f x 为[]34,上的减函数”的( ) A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件D .充要条件7.函数()y f x =的图象如图所示,则()y f x =的解析式为( )A .sin 22y x =-B .2cos31y x =-C .πsin 215y x ⎛⎫=-- ⎪⎝⎭D .π1sin 25y x ⎛⎫=-- ⎪⎝⎭8.下列函数中,既是偶函数又在区间()0+∞,上单调递减的是( ) A .1y x= B .x y e -= C .21y x =-+D .lg y x =9.已知集合1|282x A x ⎧⎫=∈⎨⎬⎩⎭R <<,{}|11B x x m =∈-+R <<,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( ) A .2m ≥ B .2m ≤C .2m >D .22m -<<10.若函数()()()101x x f x k a a a a -=-->,≠在R 上既是奇函数,又是减函数,则()()log a g x x k =+的图象是( )ABCD11.已知 5.10.9m =,0.95.1n =,0.9log 5.1p =,则这三个数的大小关系是( ) A .m n p << B .m p n << C .p m n <<D .p n m <<12.具有性质()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211xy x -=+;③010111.x x y x x x⎧⎪⎪==⎨⎪⎪-⎩,<<,,,,> 其中满足“倒负”变换的函数是( ) A .①② B .①③C .②③D .①二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知幂函数()f x 的图象过点182⎛⎫⎪⎝⎭,,则()27f =________.14.若关于x 的不等式()21230a x x -+->有解,则实数a 的取值范围是________. 15.给出下列命题:①()72cos π22f x x ⎛⎫=-- ⎪⎝⎭是奇函数;②若α,β都是第一象限角,且αβ>,则tan tan αβ>; ③直线3π8x =-是函数33sin 2π4y x ⎛⎫=- ⎪⎝⎭的图象的一条对称轴;④已知函数()2π3sin 12f x x =+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2. 其中正确命题的序号是________.16.已知函数()f x 是R 上的奇函数,且()()2f x f x +=-,当()02x ∈,时,()212f x x =,则()7f =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知角α终边上一点()43P -,,求()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.18.(本小题满分12分)已知函数()22sin cos 2cos f x x x x =+.(1)求函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移π4个单位长度后,得到函数()y g x =的图象,求方程()1g x =在[]0πx ∈,上的解集.19.(本小题满分12分)设a 是实数,()2221x xa a f x ⋅+-=+. (1)证明:()f x 是增函数.(2)试确定a 的值,使()f x 为奇函数.20.(本小题满分12分)已知函数()2π4sin 14f x x x ⎛⎫=+-- ⎪⎝⎭,且给定条件p :“ππ42x ≤≤”.(1)求()f x 的最大值及最小值;(2)若条件q :“()2f x m -<”,且p 是q 的充分条件,求实数m 的取值范围.21.(本小题满分12分)自2018年10月1日起,《中华人民共和国个人所得税》新规定,公民月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:(1)如果小李10月份全月的工资、薪金为7 000元,那么他应该纳税多少元?(2)如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?(3)写出工资、薪金收入()<≤(元/月)与应缴纳税金y(元)的函数关系式.014000x x22.(本小题满分12分)已知函数()22=-+的两个零点为1f x x mxx=和x n=.(1)求m,n的值;(2)若函数()()22g x x ax a =-+∈R 在(]1-∞,上单调递减,解关于x 的不等式()log 20a nx m +-<.期末测试 答案解析一、 1.【答案】B【解析】因为{}12,3,4,5U =,,集合{}12A =,,所以{}3,4,5U A =. 2.【答案】B 【解析】6OM =,5sin 6α∴=-.3.【答案】B【解析】量词“存在”否定后为“任意”,结论“它的平方是有理数”否定后为“它的平方不是有理数”,故选B . 4.【答案】C【解析】函数()222312y x x x =-+=-+,对称轴为直线1x =.由12x -≤≤可得,当1x =时,函数取得最小值为2,当1x =-时,函数取得最大值为6,故函数的值域为[]26,,故选C . 5.【答案】B【解析】2222222222cos sin 1tan 134222cos cossin22135cos sin 1tan 222ααααααααα---=-====-+++. 6.【答案】D【解析】由已知()f x 在[]10-,上为减函数,∴当34x ≤≤时,140x --≤≤,∴函数()f x 在[]34,上是减函数,反之也成立,故选D . 7.【答案】D【解析】由函数()f x 的图象得,函数()f x 的最大值为2,最小值为0,周期7ππ4π2010T ⎛⎫=⨯-= ⎪⎝⎭,得2ω=.又函数()f x 过点π110⎛⎫ ⎪⎝⎭,和7π020⎛⎫⎪⎝⎭,,所以只有选项D 符合题意,故选D . 8.【答案】C【解析】由于1y x=为奇函数,故排除A ;由于()x y f x e -==,不满足()()f x f x -=-,也不满足()()f x f x -=,故它是非奇非偶函数,故排除B ;由于21y x =-+是偶函数,且在区间()0+∞,上单调递减,故C 满足条件;由于lg y x =是偶函数,但在区间()0+∞,上单调递增,故排除D ,故选C . 9.【答案】C【解析】{}1|28|132x A x x x ⎧⎫=∈=-⎨⎬⎩⎭R <<<<.x B ∈成立的一个充分不必要条件是x A ∈,AB ∴,13m ∴+>,即2m >.10.【答案】A【解析】函数()()(1x x f x k a a a -=-->0,)0a ≠在R 上是奇函数,()00f ∴=,2k ∴=,又()x x f x a a -=-为减函数,所以01a <<,所以()()log 2a g x x =+,定义域为()2-+∞,,且单调递减,故选A . 11.【答案】C【解析】设函数()0.9x f x =,() 5.1x g x =,()0.9log h x x =,则()f x 单调递减,()g x 单调递增,()h x 单调递减,()5.100.901f ∴=<<,即01m <<;()0.95.101g =>,即1n >;()0.90.95.1log 5.1log 10h ==<,即0p <,p m n ∴<<.故选C .12.【答案】C【解析】对于①,()1111ln ln111x x f f x x x x--⎛⎫==- ⎪+⎝⎭+≠,不满足“倒负”变换的函数; 对于②,()222222111111111x x x f f x x x x x ⎛⎫- ⎪--⎛⎫⎝⎭===-=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭,满足“倒负”变换的函数; 对于③,当01x <<时,11x >,()f x x =,()1f x f x x ⎛⎫=-=- ⎪⎝⎭;当1x >时,101x <<,()1f x x =-,()11f f x x x⎛⎫==- ⎪⎝⎭;当1x =时,11x =,()0f x =,()()110f f f x x ⎛⎫===- ⎪⎝⎭,满足“倒负”变换的函数.综上,②③是符合要求的函数.故选C . 二、13.【答案】13【解析】设幂函数()af x x =,由图象经过点182⎛⎫ ⎪⎝⎭,,得182a=,13a ∴=-,()13f x x -∴=,()13127273f -∴==. 14.【答案】23⎛⎫+∞ ⎪⎝⎭,【解析】当10a -=时,不等式化为230x ->,显然有解;当10a ->时,二次函数()()2123f x a x x =-+-开口向上,显然()0f x >有解; 当10a -<时,要使不等式有解,应为()41210a ∆=+->,23a ∴>,213a ∴<<. 综上,实数a 的取值范围是23a >. 15.【答案】①③④ 【解析】①()7π2cos 22sin 22f x x x ⎛⎫=--=⎪⎝⎭是奇函数,故①正确.②当°30α=,°300β=-时,αβ>,但tan tan αβ<,故②错误.③将3π8x =-代入3π3sin 24y x ⎛⎫=- ⎪⎝⎭后,y 取最大值3,故③正确.④()1cos π5331cos π222x f x x -=⨯+=-.()f x 的最小正周期是2,而()()f x c f x +=对任意x ∈R 都成立,则说明正整数c 是()f x 的周期,则c 的最小值是2,故④正确. 16.【答案】12-【解析】函数()f x 是R 上的奇函数,即()()f x f x -=-,()()2f x f x +=-,()()()222f x f x f x ∴++=-+=即()()4f x f x +=,可得函数周期4T =.那么()()()731f f f ==-,()()f x f x -=-,()()11f f ∴-=-.当()02x ∈,时,()212f x x =,则()112f =.()172f ∴=-. 三、17.【答案】角α的终边过点()43P -,,3tan 4y x α∴==-,(4分)()πcos sin πsin sin 32tan 11π9πsin cos 4cos sin 22ααααααααα⎛⎫+-- ⎪-⋅⎝⎭∴===--⋅⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.(10分) 18.【答案】(1)()π214f x x ⎛⎫++ ⎪⎝⎭,由()πππ2π22π242k x k k -++∈Z ≤≤,得()3ππππ88k x k k -+∈Z ≤≤,()f x ∴的单调递增区间是()3ππππ88k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.(6分) (2)由已知,得()π214g x x ⎛⎫=-+ ⎪⎝⎭,由()1g x =π204x ⎛⎫-= ⎪⎝⎭,()ππ28k x k ∴=+∈Z .(9分)[]0πx ∈,,π8x ∴=或5π8x =,∴方程()1g x =的解集为π5π85⎧⎫⎨⎬⎩⎭,.(12分)19.【答案】(1)证明:()2221x x a a f x ⋅+-=+.设12x x <,则()()()()()1212121212222222221212121x x x x x x x x a a a a f x f x ⨯-⋅+-⋅+--=-=++++,又由12x x <理,得()()120f x f x -<,则()f x 在R 内为增函数.(5分)(2)根据题意,()2222121x x x a a f x a ⋅+-==-++,则()221x f x a --=-+,()221x f x a -=-++,(8分)若()f x 为奇函数,则()()f x f x -=-,即222121x x a a --=-+++,变形可得()()1210x a -+=恒成立,故1a =.(12分)20.【答案】(1)()ππ21cos 2212sin 2214sin 2123f x x x x x x ⎡⎤⎛⎫⎛⎫=-+--=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又ππ42x ≤≤, ππ2π2633x ∴-≤≤.(4分) π34sin 2153x ⎛⎫∴-+ ⎪⎝⎭≤≤, ()max 5f x ∴=,()min 3f x =.(6分)(2)由(1)得,()35f x ≤≤.()2f x m -<,()22m f x m ∴-+<<.又p 是q 的充分条件,2325m m -⎧∴⎨+⎩<,>, 解得35m <<.∴实数m 的取值范围为{}|35m m <<.(12分)21.【答案】(1)700050002000-=(元), 应交税为15003%50010%95⨯+⨯=(元).(3分)(2)小张10月份交纳税金425元,由分段累进可得15003%45⨯=;()4500150010%300-⨯=; 4254530080--=,8020%400÷=,则他10月份的工资、薪金是5000150030004009900+++=(元).(7分)(3)当014000x <≤时,可得()()()00500050000.03500065004565000.1650095004530000.195000.2950014000x x x y x x x x ⎧⎪-⨯⎪=⎨+-⨯⎪⎪+⨯+-⨯⎩,<≤,,<≤,,<≤,,<≤,即为0050000.03150500065000.1605650095000.21555950014000.x x x x x x x ⎧⎪-⎪⎨-⎪⎪-⎩,<≤,,<≤,,<≤,,<≤(12分) 22.【答案】(1)根据题意,知1x =和x n =是方程220x mx -+=的两个根, 由根和系数的关系可知112n m n +=⎧⎨⋅=⎩,, 3m ∴=,2n =.(4分) (2)函数()g x 的对称轴为直线2a x =, ()g x 在()1-∞,上单调递减,12a ∴≥,2a ∴≥.(8分) ∴由(1)知,()()log 2log 210a a nx m x +-=+<,0211x ∴+<<,102x ∴-<<,∴原不等式的解集为102⎛⎫- ⎪⎝⎭,.(12分)。
高中数学人教A版(2019)必修一 第三章 第三节 幂函数的性质及图像
高中数学人教A版(2019)必修一第三章第三节幂函数的性质及图像一、单选题(共11题;共55分)1.(5分)幂函数y=x23的大致图像是()A.B.C.D.2.(5分)如图是幂函数y=x n的部分图像,已知n取12,2,−2,−12这四个值,则于曲线C1,C2,C3,C4相对应的n依次为()A.2,12,−12,−2B.−2,−12,12,2C.−12,−2,2,12D.2,12,−2,−123.(5分)若幂函数f(x)=(m2+m−5)x m2−2m−3的图像不经过原点,则m的值为()A.2B.-3C.3D.-3或24.(5分)如图的曲线是幂函数y=x n在第一象限内的图像.已知n分别取±2,±12四个值,与曲线c1、c2、c3、c4相应的n依次为()A.2,12,−12,−2B.2,12,−2,−12C.−12,−2,2,12D.−2,−12,12,25.(5分)下图给出4个幂函数的图象,则图像与函数的大致对应是()A.①y=x13,②y=x2,③y=x12,④y=x−1B.①y=x3,②y=x2,③y=x12,④y=x−1C.①y=x2,②y=x3,③y=x12,④y=x−1D.①y=x13,②y=x12,③y=x2,④y=x−16.(5分)函数y=x53的图象大致是()A.B.C.D.7.(5分)在下列四个图形中,y=x−12的图像大致是()A.B.C.D.8.(5分)幂函数y=f(x)的图象经过点(8,2√2),则f(x)的图象是()A.B.C.D.9.(5分)函数f(x)=x−12的大致图象是()A.B.C.D.10.(5分)函数y=x23的图象是()A.B.C.D.11.(5分)函数y=x a,y=x b,y=x c的图像如图所示,则实数a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b 二、多选题(共2题;共10分)12.(5分)若函数f(x)=(3m2−10m+4)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(−∞,0)上单调递减D.在x∈(−∞,0)上单调递增13.(5分)已知幂函数y=xα的图像如图所示,则a值可能为()A.13B.12C.15D.3三、填空题(共6题;共35分)14.(5分)已知幂函数f(x)=(m2−2m−2)x m2−2在(0,+∞)为减函数,则f(2)=. 15.(5分)若幂函数y=(m2−m−1)x m为偶函数,则m= .16.(5分)已知幂函数f(x)=mx n的图像过点(14,116),则mn=.17.(5分)函数y=(m2−m−1)x m2−2m−1是幂函数,且在x∈(0,+∞)上是减函数,则实数m=.18.(5分)已知幂函数f(x)=(m2+m−1)x m的图像如图所示,那么实数m的值是.19.(10分)已知幂函数y=x n的图像过点(3,19),则n=,由此,请比较下列两个数的大小:(x2−2x+5)n(−3)n.四、解答题(共1题;共10分)20.(10分)已知幂函数f(x)=xα的图像过点(2,4).(1)(5分)求函数f(x)的解析式;(2)(5分)设函数ℎ(x)=2f(x)−kx−1在[−1,1]是单调函数,求实数k的取值范围.答案解析部分1.【答案】B【解析】【解答】解:∵23>0,∴幂函数在第一象限内的图象为增函数,排除A,C,D,故答案为:B.【分析】利用幂函数的单调性进行判断,可得答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(七) 二次函数与幂函数(对应学生用书第214页)A 组 基础达标 (建议用时:30分钟)一、选择题1.函数y =3x 2的图象大致是( )C [y =3x2=x 23,其定义域为R ,排除A ,B ,又0<23<1,图象在第一象限为上凸的,排除D ,故选C.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B .13C .7D .5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0A [因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )D [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,∴函数图象与x 轴交点的横坐标之积为负数,即两个交点分别位于x 轴的正半轴和负半轴,故排除B ,C.又f (0)=c <0,∴也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B .1 C .2D .-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.已知点(2,2)在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,12在幂函数y =g (x )的图象上,若f (x )=g (x ),则x =________.±1 [由题意,设f (x )=x α,则2=(2)α,得α=2,设g (x )=x β,则12=(-2)β,得β=-2.由f (x )=g (x ),得x 2=x -2,解得x =±1.]7.已知二次函数y =x 2+2kx +3-2k ,则其图象的顶点位置最高时对应的解析式为________.y =x 2-2x +5 [y =x 2+2kx +3-2k =(x +k )2-k 2-2k +3,所以图象的顶点坐标为(-k ,-k 2-2k +3).因为-k 2-2k +3=-(k +1)2+4,所以当k =-1时,顶点位置最高.此时抛物线的解析式为y =x 2-2x +5.]8.已知函数y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为________.1 [当x <0时,-x >0,f (x )=f (-x )=(x +1)2. ∵x ∈⎣⎢⎡⎦⎥⎤-2,-12,∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1,∴m -n 的最小值是1.] 三、解答题9.已知幂函数f (x )=x(m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1.∴f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.10.已知函数f (x )=x 2+(2a -1)x -3, (1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.(2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1.B 组 能力提升 (建议用时:15分钟)11.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)·x4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b>0,ab <0,则f (a )+f (b )的值( )A .恒大于0B .恒小于0C .等于0D .无法判断 A [∵f (x )=(m 2-m -1)x4m 9-m 5-1是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]12.(2018·福州质检)已知函数f (x )=x 2-πx ,α,β,γ∈(0,π),且sin α=13,tan β=54,cos γ=-13,则( )A .f (α)>f (β)>f (γ)B .f (α)>f (γ)>f (β)C .f (β)>f (α)>f (γ)D .f (β)>f (γ)>f (α)A [因为函数f (x )=x 2-πx 是二次函数,对称轴为x =π2,开口向上,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,在⎝ ⎛⎭⎪⎫π2,π上单调递增;又α,β,γ∈(0,π),则sin α=13<sin β=2541<sin γ=89,所以⎪⎪⎪⎪⎪⎪α-π2>⎪⎪⎪⎪⎪⎪β-π2>⎪⎪⎪⎪⎪⎪γ-π2,则f (α)>f (β)>f (γ),故选A.]13.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是________.[7,+∞) [函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴为x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.]14.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.[解] (1)由题意知 ⎩⎨⎧-b2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).。