第八章 第四节 直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系(总结归纳)
y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a
为
4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.
直线与圆锥曲线知识点与题型归纳总结
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
直线与圆锥曲线的位置关系详解
直线与圆锥曲线的位置关系●知识梳理本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.●点击双基1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有A.1条B.2条C.3条D.4条解析:数形结合法,同时注意点在曲线上的情况.答案:B2.已知双曲线C :x 2-42y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有A.1条B.2条C.3条D.4条解析:数形结合法,与渐近线平行、相切.答案:D3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)解析:数形结合法,与渐近线斜率比较.答案:C4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.解析:由题意知抛物线焦点F (1,0).设过焦点F (1,0)的直线为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2).代入抛物线方程消去y 得k 2x 2-2(k 2+2)x +k 2=0.∵k 2≠0,∴x 1+x 2=22)2(2k k +,x 1x 2=1. ∵|AB |=2212))(1(x x k -+ =]4))[(1(212212x x x x k -++ =]4)2(4)[1(4222-++k k k =8,∴k 2=1.∴△OAB 的重心的横坐标为x =3021x x ++=2. 答案:2 5.已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点,则l 的方程是____________.解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2),将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k =2121x x y y --=-)(42121y y x x ++=-2422121y y x x +⋅+ =-244⨯=-21. 由点斜式可得l 的方程为x +2y -8=0.答案:x +2y -8=0●典例剖析【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.剖析:确定某一变量的取值范围,应设法建立关于这一变量的不等式,题设中已经明确给定弦长≥2b ,最后可归结为计算弦长求解不等式的问题.解:将l 方程与椭圆方程联立,消去y ,得(1+9tan 2α)x 2+362tan 2α·x +72tan 2α-9=0,∴|AB |=α2tan 1+|x 2-x 1| =α2tan 1+·)tan 91(2α+Δ =αα22tan 916tan 6++. 由|AB |≥2,得tan 2α≤31, ∴-33≤tan α≤33. ∴α的取值范围是[0,6π)∪[6π5,π). 评述:对于弦长公式一定要能熟练掌握、灵活运用.本题由于l 的方程由tan α给出,所以可以认定α≠2π,否则涉及弦长计算时,还应讨论α=2π时的情况. 【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.剖析:证明OA ⊥OB 可有两种思路(如下图):(1)证k OA ·k OB =-1;(2)取AB 中点M ,证|OM |=21|AB |. 求k 的值,关键是利用面积建立关于k 的方程,求△AOB 的面积也有两种思路:(1)利用S △OAB =21|AB |·h (h 为O 到AB 的距离); (2)设A (x 1,y 1)、B (x 2,y 2),直线和x 轴交点为N ,利用S △OAB =21|AB |·|y 1-y 2|. 请同学们各选一种思路给出解法.解方程组时,是消去x 还是消去y ,这要根据解题的思路去确定.当然,这里消去x 是最简捷的.(1)证明:如下图,由方程组y 2=-x , y =k (x +1)ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由韦达定理y 1·y 2=-1.∵A 、B 在抛物线y 2=-x 上,∴y 12=-x 1,y 22=-x 2,y 12·y 22=x 1x 2.消去x 后,整理得∵k OA ·k OB =11x y ·22x y =2121x x y y =211y y =-1, ∴OA ⊥OB .(2)解:设直线与x 轴交于N ,又显然k ≠0,∴令y =0,则x =-1,即N (-1,0).∵S △OAB =S △OAN +S △OBN =21|ON ||y 1|+21|ON ||y 2| =21|ON |·|y 1-y 2|, ∴S △OAB =21·1·212214)(y y y y -+ =214)1(2+k. ∵S △OAB =10, ∴10=21412+k.解得k =±61. 评述:本题考查了两直线垂直的充要条件、三角形的面积公式、函数与方程的思想,以及分析问题、解决问题的能力.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.剖析:设B 、C 两点关于直线y =kx +3对称,易得直线BC :x =-ky +m ,由B 、C 两点关于直线y =kx +3对称可得m 与k 的关系式,而直线BC 与抛物线有两交点,∴Δ>0,即可求得k 的范围.解:设B 、C 关于直线y =kx +3对称,直线BC 方程为x =-ky +m ,代入y 2=4x ,得y 2+4ky -4m =0,设B (x 1,y 1)、C (x 2,y 2),BC 中点M (x 0,y 0),则y 0=221y y +=-2k ,x 0=2k 2+m . ∵点M (x 0,y 0)在直线l 上,∴-2k =k (2k 2+m )+3.∴m =-kk k 3223++. 又∵BC 与抛物线交于不同两点,∴Δ=16k 2+16m >0.把m 代入化简得kk k 323++<0, 即kk k k )3)(1(2+-+<0,解得-1<k <0. 评述:对称问题是高考的热点之一,由对称易得两个关系式.本题运用了“设而不求”,解决本题的关键是由B 、C 两点在抛物线上得“Δ>0”.【例4】已知抛物线C :y 2=4(x -1),椭圆C 1的左焦点及左准线与抛物线C 的焦点F 和准线l 分别重合.(1)设B 是椭圆C 1短轴的一个端点,线段BF 的中点为P ,求点P 的轨迹C 2的方程;(2)如果直线x +y =m 与曲线C 2相交于不同两点M 、N ,求m 的取值范围.(1)解法一:由y 2=4(x -1)知抛物线C 的焦点F 坐标为(2,0).准线l 的方程为x =0.设动椭圆C 1的短轴的一个端点B 的坐标为(x 1,y 1)(x 1>2,y 1≠0),点P (x ,y ),x =221+x , x 1=2x -2, y =21y , y 1=2y . ∴B (2x -2,2y )(x >2,y ≠0).设点B 在准线x =0上的射影为点B ′,椭圆的中心为点O ′,则椭圆离心率e =||||BF O F ',由||||B B BF '=||||BF O F ',得22)2()222(22-+--x y x =22)2()222(222y x x +----, 整理,化简得y 2=x -2(y ≠0),这就是点P 的轨迹方程.则 ∴解法二:抛物线y 2=4(x -1)焦点为F (2,0),准线l :x =0.设P (x ,y ),∵P 为BF 中点,∴B (2x -2,2y )(x >2,y ≠0).设椭圆C 1的长半轴、短半轴、半焦距分别为a 、b 、c ,则c =(2x -2)-2=2x -4,b 2=(2y )2=4y 2,∵(-c )-(-ca 2)=2, ∴cc a 22-=2, 即b 2=2c .∴4y 2=2(2x -4),即y 2=x -2(y ≠0),此即C 2的轨迹方程.x +y =m , y 2=x -2m >47. 而当m =2时,直线x +y =2过点(2,0),这时它与曲线C 2只有一个交点,∴所求m 的取值范围是(47,2)∪(2,+∞). ●闯关训练1.若双曲线x 2-y 2=1的右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值为A.-21B.21C.±21 D.±2 解析:P (a ,b )点在双曲线上,则有a 2-b 2=1,即(a +b )(a -b )=1.d =2||b a -=2,∴|a -b |=2.又P 点在右支上,则有a >b ,(2)解:由 (y ≠0),得y 2+y -m +2=0,令Δ=1-4(-m +2)>0,解得∴a -b =2.∴|a +b |×2=1,a +b =21. 答案:B2.已知对k ∈R ,直线y -kx -1=0与椭圆52x +my 2=1恒有公共点,则实数m 的取值范围是A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)解析:直线y -kx -1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点.所以,m 1≤1且m >0,得m ≥1.故本题应选C. 答案:C3.已知双曲线x 2-32y =1,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________.解析:设A (x 1,y 1)、B (x 2,y 2),代入双曲线方程3x 2-y 2=1相减得直线AB 的斜率k AB =2121x x y y --=2121)(3y y x x ++ =2232121y y x x ++⨯=123⨯=6. 答案:64.AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=1,则AB 中点的横坐标为___________;若AB 的倾斜角为α,则|AB |=____________.解析:设过F (2p ,0)的直线为y =k (x -2p ),k ≠0,代入抛物线方程,由条件可得结果.答案:21p - α2sin 2p 5.求过点(0,2)的直线被椭圆x 2+2y 2=2所截弦的中点的轨迹方程.解:设直线方程为y =kx +2,把它代入x 2+2y 2=2,整理得(2k 2+1)x 2+8kx +6=0.要使直线和椭圆有两个不同交点,则Δ>0,即k <-26或k >26. 设直线与椭圆两个交点为A (x 1,y 1)、B (x 2,y 2),中点坐标为C (x ,y ),则x =221x x +=1242+-k k , y = 1242+-k k +2=1222+k . x =1242+-k k , y =1222+k 消去k 得x 2+2(y -1)2=2,且|x |<26=,0<y <21. 6.中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为23,与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆方程.解:设椭圆方程22a x +22by =1(a >b >0), ∵e =23,∴a 2=4b 2,即a =2b . ∴椭圆方程为224b x +22by =1. 把直线方程代入化简得5x 2-8x +4-4b 2=0.设M (x 1,y 1)、N (x 2,y 2),则x 1+x 2=58,x 1x 2=51(4-4b 2). 从参数方程 (k <-26或k >26),∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=51(1-4b 2). 由于OM ⊥ON ,∴x 1x 2+y 1y 2=0.解得b 2=85,a 2=25. ∴椭圆方程为52x 2+58y 2=1. 7.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.y =(a +1)x -1, y 2=ax ,x =1,y =0.(2)当a ≠0时,方程组化为aa 1+y 2-y -1=0. x =-1, y =-1.若a a 1+≠0,即a ≠-1,令Δ=0,得1+4·aa 1+=0,解得a =-54,这时方程组恰有 x =-5,y =-2.综上所述,可知当a =0,-1,-54时,直线与曲线恰有一个公共点. ●思悟小结 1.解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项的系数和判别式Δ,有时借助图形的几何性质更为方便.2.涉及弦的中点问题,除利用韦达定理外,也可以运用平方差法,但必须以直线与圆锥使其恰有一组解.(1)当a =0时,此方程组恰有一组解 若aa 1+=0,即a =-1,方程组恰有一解 解析:联立方程组 一解曲线相交为前提,否则不宜用此法.3.求圆锥曲线的弦长时,可利用弦长公式d =2212))(1(x x k -+=2212))(11(y y k -+. 再结合韦达定理解决.焦点弦的长也可以直接利用焦半径公式处理,可以使运算简化.直线与圆锥曲线的位置关系●知识梳理本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.●点击双基1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有( )A.1条B.2条C.3条D.4条2.已知双曲线C :x 2-42y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( )A.1条B.2条C.3条D.4条3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是( )A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.5.已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点,则l 的方程是____________.●典例剖析【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】已知抛物线C :y 2=4(x -1),椭圆C 1的左焦点及左准线与抛物线C 的焦点F 和准线l 分别重合.(1)设B 是椭圆C 1短轴的一个端点,线段BF 的中点为P ,求点P 的轨迹C 2的方程;(2)如果直线x +y =m 与曲线C 2相交于不同两点M 、N ,求m 的取值范围.●闯关训练1.若双曲线x 2-y 2=1的右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值为A.-21B.21C.±21 D.±2 2.已知对k ∈R ,直线y -kx -1=0与椭圆52x +my 2=1恒有公共点,则实数m 的取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)3.已知双曲线x 2-32y =1,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________.4.AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=1,则AB 中点的横坐标为___________;若AB 的倾斜角为α,则|AB |=____________.5.求过点(0,2)的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.3,与直线x+y-1=0相交6.中心在坐标原点、焦点在x轴上的椭圆,它的离心率为2于M、N两点,若以MN为直径的圆经过坐标原点,求椭圆方程.7.已知直线y=(a+1)x-1与曲线y2=ax恰有一个公共点,求实数a的值.。
直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决.②直线与圆锥曲线仅有一个公共点,对于圆或椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行;对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.(2)从代数角度看,可通过将表示直线的方程,代入二次曲线的方程消元后所得的一元二次方程的解的情况来判断.直线l 方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元(x 或y ), 如消去y 后得ax 2+bx +c =0.若f (x ,y )=0表示椭圆,上述方程中a ≠0,若f (x, y )=0表示双曲线或抛物线, 上述方程中a =0或a ≠0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点.直线与圆锥曲线的位置关系重点是相交:相交――→转化联立方程组有两组不等的实数解――→转化一元二次方程有两个不等实数解――→转化判别式大于零.2.弦长的求法求弦长――→转化求两点间的距离――→综合运用⎩⎪⎨⎪⎧消元,解方程组,一元二次方程根与系数的关系.(1)弦长:(直线与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)),直线斜率为k ,一般地,弦长公式|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. (2)若弦过焦点:可用焦半径公式来表示弦长,简化运算. 如x 2a 2+y2b 2=1(a >b >0), |AB |=2a -e(x 1+x 2) (过右焦点), |AB |=2a +e(x 1+x 2) (过左焦点).如抛物线y 2=2px (p >0), |AB |=x 1+x 2+p .3.中点弦问题设A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1上不同的两点,且x 1≠x 2,x 1+x 2≠0,M (x 0,y 0)为AB 的中点,则⎩⎨⎧x 21a 2+y 21b21,x 22a 2+y22b 21.两式相减可得y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·y 0x 0=-b 2a2.类似地,可得圆锥曲线为双曲线x 2a 2-y 2b 2=1时,有k AB ·y 0x 0=b 2a2.圆锥曲线为抛物线y 2=2px (p >0)时,有k AB =py 0.探究点1 直线与圆锥曲线的交点问题例1 已知双曲线C :2x 2-y 2=2与点P (1, 2),求过点P 的直线l 的斜率的取值范围,使l 与C 分别有一个公共点,两个公共点,没有公共点.例1 [解答] (1)当l 垂直x 轴时,此时直线与双曲线相切,有一个公共点.(2)当l 不与x 轴垂直时,设直线l 的方程为y -2=k(x -1)代入双曲线C 的方程中,整理得(2-k 2)x 2+2(k 2-2k)x -k 2+4k -6=0, (*) 当k 2=2,即k =±2时, (*)为一次方程,显然只有一解; 当k 2≠2时,Δ=4(k 2-2k)2-4(2-k 2)(-k 2+4k -6)=48-32k.令Δ=0,可解得k =32;令Δ>0,即48-32k >0,此时k <32;令Δ<0,即48-32k <0,此时k >32.∴当k =±2或k =32或k 不存在时,l 与C 只有一个公共点;当k <-2或-2<k <2或2<k <32时,l 与C 有两个公共点;当k >32时,l 与C 没有公共点.[点评] (1)为了设出直线方程,先讨论斜率是否存在.当斜率存在时,设出方程并与双曲线方程组成方程组,消去y 得到关于x 的方程.当二次项系数为零时,直线与渐近线平行与双曲线只有一个交点;当二次项系数不为零时,若Δ=0,则有一个切点;若Δ>0,则有两个交点;Δ<0,则没有交点.(2)有关直线和圆锥曲线的范围问题,常常使用Δ来体现范围.探究点2 中点弦问题例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP →=PN →,AP →·MN →=0,求直线l 的方程.[解答] (1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2,∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP →=PN →,AP →·MN →=0,∴AP ⊥MN ,且点P 是线段MN 的中点, 由⎩⎪⎨⎪⎧y =kx -2,x 212+y 241,消去y ,得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*),由k ≠0,得方程(*)中Δ=(-12k)2=144k 2>0,显然方程(*)有两个不相等的实数根.设M(x 1,y 1)、N(x 2,y 2),线段MN 的中点P(x 0,y 0),则x 1+x 2=12k 1+3k 2∴x 0=x 1+x 22=6k1+3k 2, ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2即P ⎝⎛⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k1+3k2=-2-2(1+3k 2)6k.由MN →⊥AP →,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.探究点3 相交弦长与面积问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦点到相应准线的距离为22.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点到直线l 的距离为32,求△AOB 面积的最大值.例3 [解答] (1)∵e =c a =63,a 2c -c =22,解得a =3,c =2,∴b 2=3-2=1, 椭圆C 的方程为x 23+y 2=1.(2)当AB ⊥x 轴时,⎝⎛⎭⎫3223+y 2=1,得y 2=34,AB = 3. 当AB 不垂直x 轴时,设直线l 的方程为y =kx +m ,则|m|1+k2=32,得m 2=34k 2+34. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1, |AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1 =3+129k 2+1k2+6≤3+122×3+6=2(k ≠0),当且仅当9k 2=1k 2,即k =±33时,|AB|max =2,当k =0时,AB =3,综上所述|AB|max =2.∴当|AB|最大时,△AOB 面积最大值S =12×32×2=32.变式题:从椭圆x 2a 2+y2b 2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴端点B 的连线AB 平行于OM .(1)求椭圆的离心率;(2)当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203(Q是椭圆上的点),求此时椭圆的方程. [解答] (1)如图,由题意知x M =-c , 故y M =b 2a .又△F 1OM ∽△OAB ,c a =b 2a b ⇒b =c ⇒e =22. (2)设椭圆方程为x 2a 2+y2b 2=1(a>b>0),由(1)知a 2=2b 2,方程变为x 2+2y 2=2b 2.设直线PQ 方程为y -0=2(x -b),联立方程组,得5x 2-8bx +2b 2=0, x 1+x 2=8b 5,x 1x 2=2b 25.|PQ|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=26b5∵|y 2-y 1|=|2(x 2-x 1)|=2(x 1+x 2)2-4x 1x 2=43b5S △F 1PQ =12×||PQ ×||-22b 3=203⇒b 2=25,∴a 2=50,∴椭圆方程为x 250+y 225=1.探究点4 弦的定比分点问题例4 已知椭圆x 25+y 29=1,焦点F (0,2),又点A ,B 在椭圆上,而且AF →=2FB →,求直线AB 的斜率.例4 [解答] AF →=2FB →⇒A ,F ,B 三点共线. 设AB 方程为y =kx +2,与椭圆方程联立,得 (9+5k 2)x 2+20kx -25=0, x 1+x 2=-20k 9+5k 2,x 1x 2=-259+5k2.又AF →=2FB →⇒⎩⎪⎨⎪⎧x1=-2x 2,2-y 1=2y 2-4,所以-x 2=-20k 9+5k 2,-2x 22=-259+5k 2,消去x 2,解得k =±33. 探究点5 综合应用问题例5 已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C的右支于M 、N 两点,试确定λ的范围,使OM →·ON →=0,其中点O 为坐标原点. [解答] 设M(x 1,y 1),N(x 2,y 2),由已知易求B(1,0). 当MN 垂直于x 轴时,MN 的方程为x =1.设M(1,y 0),N(1,-y 0)(y 0>0),由OM →·ON →=0,得y 0=1,∴M(1,1),N(1,-1). 又M(1,1),N(1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52. ∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0. 由题意知λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM →·ON →=0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0,x 1+x 2>0,x 1x 2>0⇒⎩⎨⎧k 2=λ(1-λ)λ2+λ-1,k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λ,λ2+λ-1>0⇒5-12<λ<23.综上知5-12≤λ<23. 变式题:已知点P 1(x 0,y 0)为双曲线x 28b 2-y 2b 21(b 为正常数)上任一点,F 2为双曲线的右焦点,过P 1作右准线的垂线,垂足为A ,连结F 2A 并延长交y 轴于点P 2.(1)求线段P 1P 2的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B 、D 两点,在E 上任取一点Q (x 1,y 1)(y 1≠0),直线QB 、QD 分别交y 轴于M 、N 两点.求证:以MN 为直径的圆过两定点.[解答] (1)由已知得F 2(3b,0),A ⎝⎛⎭⎫83b ,y 0,则直线F 2A 的方程为y =-3y0b (x -3b),令x=0,得y =9y 0,即P 2(0,9y 0).于是直线QB 的方程为:y =y 1x 1+2b(x +2b),直线QD 的方程为y =y 1x 1-2b(x -2b),可得M ⎝⎛⎭⎪⎫0,2by 1x 1+2b ,N ⎝ ⎛⎭⎪⎫0,-2by 1x 1-2b . 则以MN 为直径的圆的方程为: ⎩⎪⎨⎪⎧x 2+⎝ ⎛⎭⎪⎫y -2by 1x 1+2b ⎝ ⎛⎭⎪⎫y +2by 1x 1-2b =0.令y =0得x 2=2b 2y 21x 21-2b 2,而Q(x 1,y 1)在x 22b 2-y 225b 2=1上,则x 21-2b 2=225·y 21,于是x =±5b , 即以MN 为直径的圆过两定点(-5b,0),(5b,0).规律总结本节问题的研究集中体现了解析几何的基本思想和方法,要求有较强的分析问题和解决问题的能力,有些问题涉及代数、三角、几何等多方面的知识,因此在复习中要注意各部分之间的联系和综合利用知识解决问题的能力.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,通过消元最终归结为讨论一个一元二次方程Ax 2+Bx +C =0的实数解的个数问题.应特别注意要分A =0和A ≠0的两种情况讨论,只有A ≠0时,才可用判别式来确定解的个数. 当直线平行于抛物线的对称轴时,直线与抛物线只有一个公共点.这些情况在解题中往往容易疏忽,要特别注意,对于选择、填空题,用数形结合往往快速简捷.2.斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=|x 1-x 2|·1+k 2=|y 1-y 2|·1+1k 2(k ≠0),利用这个公式求弦长时,应注意应用韦达定理.3.与焦点弦长有关的问题,要注意应用圆锥曲线的定义.4.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程时,一般可设A (x 1,y 1)、B (x 2,y 2),利用A 、B 在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m ,y 1+y 2=2n ,故可求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程.5.求圆锥曲线的方程时,通常利用待定系数法.。
《直线与圆锥曲线位置关系》教案
《直线与圆锥曲线位置关系》教案
作者:王晓丹
来源:《学校教育研究》2020年第01期
一、教学目标
知识与技能:了解直线与圆锥曲线的位置关系,通过类比直线与圆的位置关系,学会判断直线与椭圆、双曲線、抛物线的位置关系,能利用对方程组解的讨论来研究直线与圆锥曲线的位置关系。
过程与方法:在探究过程中,运用数形结合和方程的思想,以运动的观点观察问题,思考问题,分析问题,进一步提高学生解决问题的能力。
情感与态度:通过师生合作,生生合作学习,感受学习交流带来的成功感,激发学生提出问题和解决问题的勇气,树立自信心。
二、教学重点与难点
重点:用代数的方法(对方程组解的讨论)来研究直线与圆锥曲线的公共点问题。
难点:对直线与圆锥曲线仅有一个公共点时位置关系的应用探索。
三、教学方法
以学生为主体,引导学生探索发现如何用代数法判断直线与圆锥曲线的位置关系,再通过师生合作、生生合作解决直线与圆锥曲线的相关问题。
四、教学过程
(一)复习导入
问题1:直线与圆的位置关系有相交,相切,相离三种,如果把圆换成一般圆锥曲线,又有怎样的位置关系呢?
问题2:判断直线与圆的位置关系有哪些方法?
由此,引出本节课的重点:用代数法判断直线与圆锥曲线的位置关系。
直线和圆锥曲线的位置关系
直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版
第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
直线与圆锥曲线的位置关系教案
直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。
2. 能够运用直线与圆锥曲线的位置关系解决实际问题。
3. 培养学生的逻辑思维能力和数学解决问题的能力。
二、教学内容1. 直线与圆锥曲线的基本概念和性质。
2. 直线与圆锥曲线的相切、相离和相交情况。
3. 直线与圆锥曲线的交点个数与判别式。
4. 直线与圆锥曲线的应用问题。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。
3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。
四、教学准备1. 教学课件和教学素材。
2. 直尺、圆规等绘图工具。
3. 练习题和答案。
五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。
2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。
3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。
4. 练习:让学生进行相关的练习题,巩固所学知识。
6. 作业布置:布置相关的练习题,巩固所学知识。
六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。
2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。
七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。
2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。
八、作业布置1. 完成课后练习题,巩固所学知识。
2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。
九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。
2. 教学方法的适用性,是否达到预期教学效果。
十、教学评价1. 学生作业、练习题和课堂表现的评价。
2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。
3. 教学反馈,了解学生对教学内容的满意度和建议。
直线与圆锥曲线的位置关系的判断
1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c =0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.(×)(2)直线y=kx(k≠0)与双曲线x2-y2=1一定相交.(×)(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.(√)(4)直线与椭圆只有一个交点⇔直线与椭圆相切.(√)。
直线与圆锥曲线的位置关系 (1)
教学过程一、复习预习复习直线的方程与圆锥曲线的方程,圆锥曲线的几何性质。
直线一般方程:Ax +By +C =0(A 、B 不同时为0)椭圆方程:22221x y a b +=焦点在x 轴或22221y x a b +=焦点在y 轴双曲线方程:22221x y a b -=焦点在x 轴或22221y x a b-=焦点在y 轴抛物线方程:22y px =焦点在在x 轴或22x py =焦点在y 轴两点间距离公式: A (x 1,y 1),B (x 2,y 2),则|AB |=x 2-x 12y 2-y 12二、知识讲解本节课主要知识点解析,中高考考点、易错点学习考点1 直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y 0,消去y 后得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则 Δ>0 直线与圆锥曲线C 相交; Δ=0 直线与圆锥曲线C 相切; Δ<0 直线与圆锥曲线C 无公共点.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行.考点2 圆锥曲线的弦长(1)圆锥曲线的弦长直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.(2)圆锥曲线的弦长的计算设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=x2-x12y2-y12=1+k2|x1-x2|=1+1k2·|y1-y2|.(抛物线的焦点弦长|AB|=x1+x2+p=2psin2θ,θ为弦AB所在直线的倾斜角).三、例题精析考向一 直线与圆锥曲线的位置关系【例题1】【题干】设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]【答案】设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得.由题意得Q(-2,0).设l 的方程为y =k(x +2),代入y2=8x 得k2x2+4(k2-2)x +4k2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k2-2)2-16k4≥0,即k2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1. 答案 C【解析】研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,但对于选择题、填空题,常充分利用几何条件,利用数形结合的方法求解.考向二 弦长及中点弦问题 【例题2】【题干】若直线l 与椭圆C :x 23+y 2=1交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.【答案】解 设A (x 1,y 1),B (x 2,y 2). (1)当AB ⊥x 轴时,|AB |=3;(2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知,得|m |1+k2=32,即m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0. ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-13k 2+1. ∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m 23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,上式=3+129k 2+1k2+6≤3+122×3+6=4,当且仅当9k 2=1k ,即k =±33时等号成立.此时|AB |=2;当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值S max =12×|AB |max ×32=32.【解析】联立直线和椭圆方程,利用根与系数关系后代入弦长公式,利用基本不等式求出弦长的最大值即可.方法总结 当直线(斜率为k)与圆锥曲线交于点A(x1,y1),B(x2,y2)时,则|AB|=1+k2·|x1-x2|= 1+1k2|y1-y2|,而|x1-x2|=x1+x22-4x1x2,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.考向三 圆锥曲线中的最值(或取值范围)问题 【例题3】【题干】已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【答案】解 (1)∵a 2=2,b 2=1,∴c =1,F (-1,0), ∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M ⎝ ⎛⎭⎪⎫-12,t ,则圆半径r =⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-122=32, 由|OM |=r ,得⎝ ⎛⎭⎪⎫-122+t 2=32,解得t =±2,∴所求圆的方程为⎝ ⎛⎭⎪⎫x +122+(y ±2)2=94.(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根.如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k +1+k 22k +1=-k 22k +1=-12+14k +2,∵k ≠0,∴-12<x G <0,∴点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0. 【解析】(1)求出圆心和半径,得出圆的标准方程;(2)设直线AB的点斜式方程,由已知得出线段AB的垂直平分线方程,利用求值域的方法求解.方法总结直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.考向四 定值(定点)问题【例题4】 【题干】椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=322时,求直线l 的方程.(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值.【答案】(1)解 因椭圆焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆方程为y 22+x 2=1.直线l 垂直于x 轴时与题意不符.设直线l 的方程为y =kx +1,将其代入椭圆方程化简得(k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2, |CD |=k 2+1·x 1+x 22-4x 1x 2=22k 2+1k 2+2.由已知得22k 2+1k 2+2=322,解得k =± 2. 所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符.设直线l 的方程为y =kx +1(k ≠0且k ≠±1),所以P 点坐标为⎝ ⎛⎭⎪⎫-1k,0.设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2, 直线AC 的方程为y =y 1x 1+1(x +1), 直线BD 的方程为y =y 2x 2-1(x -1),将两直线方程联立,消去y 得x +1x -1=y 2x 1+1y 1x 2-1. 因为-1<x 1,x 2<1,所以x +1x -1与y 2y 1异号. ⎝ ⎛⎭⎪⎫x +1x -12=y 22x 1+12y 21x 2-12=2-2x 222-2x 21·x 1+12x 2-12=1+x11+x 21-x 11-x 2=1+-2k k 2+2+-1k 2+21--2k k 2+2+-1k 2+2=⎝ ⎛⎭⎪⎫k -1k +12.又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1=21-k 1+kk 2+2=-21+k 2k 2+2·k -1k +1,∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1同号, ∴x +1x -1=k -1k +1,解得x =-k . 因此Q 点坐标为(-k ,y 0).O P →·O Q →=⎝ ⎛⎭⎪⎫-1k ,0·()-k ,y 0=1.故O P →·O Q →为定值.【解析】(1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充分利用已知条件进行等价转化.方法总结 解决圆锥曲线中的定值问题的基本思路很明确:即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积等,其不受变化的量所影响的一个值即为定值,化解这类问题的关键是引进参数表示直线方程、数量积等,根据等式的恒成立、数式变换等寻找不受参数影响的量,解题过程中要注意讨论直线斜率的存在情况,计算要准确.四、课堂运用【基础】1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ).A .至多为1B .2C .1D .0答案:B 解析:由题意知:4m 2+n2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.【巩固】1.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若AB =22,OC 的斜率为22,求椭圆的方程.答案:椭圆方程为x 23+23y 2=1.解析:解 法一 设A (x 1,y 1)、B (x 2,y 2), 代入椭圆方程并作差得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k oc =22, 代入上式可得b =2a .再由|AB |=1+k 2|x 2-x 1|=2|x 2-x 1|=22, 其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故⎝⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1)、B (x 2,y 2), 则|AB |=k 2+1x 1-x 22=2·4b 2-4a +bb -1a +b2.∵|AB |=22,∴a +b -aba +b =1.①设C (x ,y ),则x =x 1+x 22=ba +b,y =1-x =aa +b,∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.2.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.答案:解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧y 1y 2=4, ①y 1+y 2=8+p2, ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2, 得抛物线G 的方程为x 2=4y .(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4kx -16k =0,④∴x 0=x C +x B2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 的中垂线方程为y -2k 2-4k =-1k(x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2,对于方程④,由Δ=16k 2+64k >0得k >0或k <-4. ∴b ∈(2,+∞).解析:(1)主要考察的是直线的点斜式及圆锥曲线的结合应用,加入向量的关系使得题目更加综合。
直线与圆锥曲线
客运从业资格证考试 /keyun/ 道路旅客运输从业资格证考试
货运从业资格证考试 /huoyun/ 道路货物运输从业资格证 出租汽车从业资格证考试 /czc/ 出租车驾驶员理论考试
x2 2 2.(2009· 全国卷理)椭圆 C: +y =1 的右焦点 F,右 2 →=3FB → ,则|AF →| 准线 l,点 A∈l,线段 AF 交圆于点 B,若FA =( ) A. 2 B.2 C. 3 D.3
[答案] y=x
过点A(-2,1)作直线l,当斜率k取何值时,l与抛 物线y2=4x有且只有一个公共点,两个公共点,无公共点?
[分析] 由图可知,l与抛物线有公共点,斜率必存在,故
可得l的点斜式方程与抛物线方程构成的方程组有一组解,就为
所求的情形.
[解] 直线 l 的方程可设为 y-1=k(x+2)联立 y2=4x 得 ky2-4y+8k+4=0 1 ①k=0 时,只有一个公共点( ,1),此时直线平行于抛 4 物线的轴. 1 ②k≠0 时,由 Δ=0 解得 k=-1 或 k= ,直线与抛物 2 线相切于一个公共点.
[解析] 过 B 作 BM⊥l 于 M,并设右准线 l 与 x 轴的交 点 N,则 FN=1,
2 → → FA=3FB,∴|BM|= , 3 |BF| 2 又|MB|=e= 2 , 2 ∴|BF|= 3 ,|AF|= 2, ∴选 A
[答案] A
3.(2009·海南卷)设抛物线C的顶点为原点,焦点F(1,0)直
x2 y2 过点 P(-1,1)作直线与椭圆 + =1 交于 A、 B 两点, 4 2 若线段 AB 的中点恰为 P,求 AB 所在直线的方程和线段 AB 的长度.
[解] 设 A(x1,y1),B(x2,y2),则
直线与圆锥曲线的位置关系(1)
(1 两曲线的交点坐标为( 解 : (1)两曲线的交点坐标为(x, y)满足方程组 x 2 sinθ + y 2 cosθ = 1 sinθ 2 2 x cosθ - y sinθ = 1 cosθ
2 2
x 2 = sinθ + cosθ sinθ 即 2 有4个不同的交点 有4 cosθ y = cosθ - sinθ
直线与圆锥曲线的位置关系( 直线与圆锥曲线的位置关系(1)
直线与圆锥曲线交点个数的判定方法; 弦长公式;
一、直线与圆锥曲线位置关系的判定 的方程为: 圆锥曲线的方程为f(x,y)=0, 圆锥曲线的方程为 设直线L的方程为:y=kx+m,圆锥曲线的方程为
y = kx + m 2 消去y 消去y得 : (b2+a2k2)x2+2kma2x+a2(m2-b2)=0 x y2 2 + 2 =1 a b 二次项系数不可能为0 二次项系数不可能为 y = kx + m 2 2 消去y 消去y得 : (b2-a2k2)x2-2kma2x+a2(m2+b2)=0 x y 2 - 2 =1 a b 二次项系数为0时 二次项系数为 时,L与双 与双 曲线的渐近线平行或重合。 曲线的渐近线平行或重合。 y = kx + m 消去y 消去y得 : K2x2+(2mk-2p)x+2m2=0 2 y = 2px 二次项系数为0时 二次项系数为 时,L与抛 物线的对称轴平行或重合。 物线的对称轴平行或重合。
∴ a ∈ (− 6, 6),
又设方程的两根为x1,x2,A(x1,y1),B(x2,y2), 又设方程的两根为
2a −2 , x1 x 2 = ∴ x1 + x 2 = 2 3−a 3 − a2
直线与圆锥曲线的位置关系
基本计算
1. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2 ,y2)则弦长公式为:
| AB | 1 k x1 x2
2
1 k ( x1 x2 ) 4 x1 x2
2 2
2.在与弦中点、弦的斜率有关的题型中,用韦达 定理是常见思路。
例1 已知抛物线的方程为 y 4 x ,直线 l 过定点P(-2,1),斜率为 k ,k 为值时,直线 l 与抛物线 y 2 4 x :只有一个公共点;有两个公 共点;没有公共点?
b|b 公共点,则b的取值范围为
2 若直线y=x+b与曲线
x 1y
2
恰好有一个
2或 - 1 b 1
3 在y轴上的截距为1的直线与焦点在x轴上的椭圆
x2 y2 1恒有公共,则m的取值范围是 [1,5)∪(5,+∞) 变2.是否存在实数m,使在y轴上的截距为1的直
基本方法
1 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的情 况的讨论来研究,即方程消元后得到一个一元二次 方程,利用判别式 来讨论。 2 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解决。 3 特殊情形: (1)在双曲线中,当直线平行于其渐近线时,直 线与双曲线有且仅有一个公共点。 (2)在抛物线中,平行于其对称轴的的直线和抛 物线有且仅有一个公共点。
2 x2 y2 y 2 1 2x 1 )恒有公共 线与椭圆 (或 5 m m
点。若存在,则求出m;若不存在,请说明理由。
y2 x2 变3.不论k为何值,直线y=kx+b 与椭圆 1 9 4 总有公共点,则b的取值范围为 -3≤b≤3
直线与圆锥曲线的位置关系问题
2.连结圆锥曲线上两点的线段称为圆锥曲线的弦 设直线 l:f(x,y)=0,曲线 E:F(x,y)=0,l 与 E 的两个 不同的交点 P、Q,设 P(x1,y1),Q(x2,y2),则(x1,y1),(x2,
f(x,y)=0 y2)是方程组F(x,y)=0的两组解,方程组消元后化为关于 x(或者 y)的一元二次方程 Ax2+Bx+C=0(A≠0).判别式 Δ=B2 -4AC,应有 Δ>0,所以 x1、x2 是方程 Ax2+Bx+C=0 的解.由 根与系数的关系(韦达定理)求得 x1+x2=-BA,x1x2=CA,所以 P、 Q 两 点 间 距 离 为 |PQ| = (x1-x2)2+(y1-y2)2 =
=16,
所以 xB2=4+16k2,
又 由 O→B = 2 O→A , 得
xB2
=
4xA2
,
即
16 4+k2
=
1+164k2,
解得 k=±1,故直线 AB 的方程为 y=x 或 y=
-x.
解法二:A,B 两点的坐标分别记为(xA,yA), (xB,yB),
由O→B=2O→A及(1)知, O,A,B 三点共线且点 A,B 不在 y 轴上, 因此可设直线 AB 的方程为 y=kx. 将 y=kx 代入x42+y2=1 中,得(1+4k2)x2=4,
(2)运用类比的手法可以推出,已知 PQ 是双曲 线xa22-by22=1 的弦,中点 M(x0,y0),则 kPQ=ba22xy00; 已知抛物线 y2=2px(p>0)的弦 PQ 的中点 M(x0,y0), 则 kPQ=yp0. 4.圆锥曲线上的点关于某一直线的对称问题,解 决此类题的方法是利用圆锥曲线上的两点所在直
(1)求椭圆 C2 的方程; (2)设 O 为坐标原点,点 A,B 分别在椭圆 C1 和 C2 上,O→B=2O→A,求直线 AB 的方程.
直线与圆锥曲线的位置关系教案
直线与圆锥曲线的位置关系教案第一章:直线与圆锥曲线的基本概念1.1 直线的基本概念直线的定义直线的性质直线的方程1.2 圆锥曲线的基本概念圆锥曲线的定义圆锥曲线的性质圆锥曲线的方程第二章:直线与圆锥曲线的交点2.1 直线与圆的交点直线与圆的位置关系直线与圆的交点个数直线与圆的交点坐标求解方法2.2 直线与椭圆的交点直线与椭圆的位置关系直线与椭圆的交点个数直线与椭圆的交点坐标求解方法2.3 直线与双曲线的交点直线与双曲线的position 关系直线与双曲线的交点个数直线与双曲线的交点坐标求解方法第三章:直线与圆锥曲线的切点3.1 直线与圆的切点直线与圆的位置关系直线与圆的切点性质直线与圆的切点坐标求解方法3.2 直线与椭圆的切点直线与椭圆的位置关系直线与椭圆的切点性质直线与椭圆的切点坐标求解方法3.3 直线与双曲线的切点直线与双曲线的position 关系直线与双曲线的切点性质直线与双曲线的切点坐标求解方法第四章:直线与圆锥曲线的距离4.1 直线与圆的距离直线与圆的位置关系直线与圆的距离公式直线与圆的距离求解方法4.2 直线与椭圆的距离直线与椭圆的位置关系直线与椭圆的距离公式直线与椭圆的距离求解方法4.3 直线与双曲线的距离直线与双曲线的position 关系直线与双曲线的距离公式直线与双曲线的距离求解方法第五章:直线与圆锥曲线的应用5.1 直线与圆的相切问题直线与圆相切的条件直线与圆相切的应用实例直线与圆相切的解题方法5.2 直线与椭圆的相切问题直线与椭圆相切的条件直线与椭圆相切的应用实例直线与椭圆相切的解题方法5.3 直线与双曲线的相切问题直线与双曲线相切的条件直线与双曲线相切的应用实例直线与双曲线相切的解题方法第六章:直线与圆锥曲线的对称性6.1 直线与圆的对称性直线与圆的对称性质直线与圆的对称变换直线与圆的对称问题实例与解法6.2 直线与椭圆的对称性直线与椭圆的对称性质直线与椭圆的对称变换直线与椭圆的对称问题实例与解法6.3 直线与双曲线的对称性直线与双曲线的对称性质直线与双曲线的对称变换直线与双曲线的对称问题实例与解法第七章:直线与圆锥曲线的相交弦7.1 直线与圆的相交弦直线与圆的相交弦性质直线与圆的相交弦公式直线与圆的相交弦问题实例与解法7.2 直线与椭圆的相交弦直线与椭圆的相交弦性质直线与椭圆的相交弦公式直线与椭圆的相交弦问题实例与解法7.3 直线与双曲线的相交弦直线与双曲线的相交弦性质直线与双曲线的相交弦公式直线与双曲线的相交弦问题实例与解法第八章:直线与圆锥曲线的焦点8.1 直线与圆的焦点直线与圆的焦点性质直线与圆的焦点问题实例与解法直线与圆的焦点应用8.2 直线与椭圆的焦点直线与椭圆的焦点性质直线与椭圆的焦点问题实例与解法直线与椭圆的焦点应用8.3 直线与双曲线的焦点直线与双曲线的焦点性质直线与双曲线的焦点问题实例与解法直线与双曲线的焦点应用第九章:直线与圆锥曲线的综合问题9.1 直线与圆的综合问题直线与圆的位置关系的综合应用直线与圆的交点、切点、距离的综合问题实例与解法直线与圆的对称性、相交弦、焦点的综合应用9.2 直线与椭圆的综合问题直线与椭圆的位置关系的综合应用直线与椭圆的交点、切点、距离的综合问题实例与解法直线与椭圆的对称性、相交弦、焦点的综合应用9.3 直线与双曲线的综合问题直线与双曲线的position 关系的综合应用直线与双曲线的交点、切点、距离的综合问题实例与解法直线与双曲线的对称性、相交弦、焦点的综合应用第十章:直线与圆锥曲线的拓展与提升10.1 直线与圆锥曲线的拓展问题直线与圆锥曲线的特殊位置关系问题直线与圆锥曲线的创新性问题实例与解法直线与圆锥曲线的综合应用提升10.2 直线与圆锥曲线的解题策略与方法直线与圆锥曲线的分类讨论方法直线与圆锥曲线的数形结合方法直线与圆锥曲线的构造法与方程法10.3 直线与圆锥曲线的教学反思与评价直线与圆锥曲线教学的重点与难点直线与圆锥曲线教学的方法与技巧直线与圆锥曲线教学的评价与反思重点和难点解析1. 第一章:直线与圆锥曲线的基本概念重点关注直线和圆锥曲线的定义、性质和方程。
直线与椭圆的位置关系
直线与椭圆的位置关系1. 求解直线与圆锥曲线的位置关系的基本方法是解方程组,转化为利用判别式判断一元二次方程是否有解,应特别注意数形结合思想的应用.2. 注意根与系数的关系的应用. (1)弦长公式:斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别是()11,A x y ,()22,B x y 则221212()()AB x x y y =-+-2121k x x =+-221212(1)[()4]k x x x x =++-21k a∆=+.3. 有关中点弦问题.(1)已知直线与圆锥曲线方程,求弦的中点及与中点有关的问题,常用根与系数的关系. (2)有关弦的中点轨迹,中点弦所在直线方程,中点坐标问题,有时采用“点差法”可简化运算.4. 圆锥曲线中的有关最值问题,常用代数法和几何法解决.(1)若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决.(2)若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数、三角函数、均值不等式等)求最值.二、题型梳理1.直线与椭圆位置关系的判断将直线的方程和椭圆的方程联立,通过讨论此方程组的实数解的组数来确定,即用消元后的关于x (或y )的一元二次方程的判断式Δ的符号来确定:当Δ>0时,直线和椭圆相交;当Δ=0时,直线和椭圆相切;当Δ<0时,直线和椭圆相离.2.直线和椭圆相交的弦长公式 |AB |=1+k 2[x 1+x 22-4x 1x 2] 或|AB |=⎝⎛⎭⎫1+1k 2[y 1+y 22-4y 1y 2]. 3.直线与椭圆相交时的常见处理方法当直线与椭圆相交时:涉及弦长问题,常用“根与系数的关系”,设而不求计算弦长;涉及到求平行弦中点的轨迹、求过定点的弦中点的轨迹和求被定点平分的弦所在的直线方程问题,常用“点差法”设而不求,将动点的坐标、弦所在直线的斜率、弦的中点坐标联系起来,相互转化.考点1点差法与中点弦例1 (1)椭圆221164x y+=的弦被点()2,1P所平分,求此弦所在直线的方程.(2)已知椭圆C:x2a2+y2b2=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=2b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为-1,求△PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.考点2直线与圆锥曲线的位置关系例2 在平面直角坐标系xOy中,经过点(0且斜率为k的直线l与椭圆221 2xy+=有两个不同的交点P和Q.求k的取值范围.规律方法(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法;(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线);(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论.考点3 与弦长有关的问题例3 已知椭圆:1922=+y x ,过左焦点F 作倾斜角为π6的直线l 交椭圆于A 、B 两点,求弦AB 的长.考点4 例4 过点)0 ,3(-P 面积的最大值及此时直线倾斜角的正切值.例5 如图,在平面直角坐标系xOy 中,已知椭圆)0(12222>>=+b a by a x (a>b>0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.yxOABP考点5 椭圆中的定点、定值问题例6 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过其右焦点F 与长轴垂直的弦长为1.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,点P 是直线x =1上的动点,直线P A 与椭圆的另一交点为M ,直线PB 与椭圆的另一交点为N .求证:直线MN 经过一定点.例7 如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆x 2a 2+y 2b 2=1(a >b >0)上不同的三点,A ⎝⎛⎭⎫32,322,B (-3,-3),C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C ),且直线PB ,PC 分别交直线OA 于M ,N 两点,证明:OM →·ON →为定值,并求出该定值.探究提高 (1)求定值问题常见的方法有两种:△从特殊入手,求出定值,再证明这个值与变量无关.△直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法.考点6 圆锥曲线中的最值、范围问题例8 已知圆为圆上一动点,点P 在AM 上,点N 在CM 上,且满足的轨迹为曲线E.(I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足,求的取值范围.M A y x C ),0,1(,8)1(:22定点=++N AM NP AP AM 点,0,2=⋅=λ=λ1.已知直线y =-x +1与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线l :x -2y =0上,求此椭圆的离心率.2.已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同两点关于该直线对称.3.已知椭圆C :)0(12222>>=+b a b y a x 的右焦点为F ,离心率22=e ,椭圆C 上的点到F的距离的最大值为12+,直线l 过点F 与椭圆C 交于不同的两点,.A B (1) 求椭圆C 的方程; (2) 若223||=AB ,求直线l 的方程.4.已知椭圆22221(0)x y a b a b+=>>,直线:l y kx m =+交椭圆于不同的两点A ,B .(Ⅰ)求椭圆的方程;(Ⅱ)若坐标原点O 到直线l 的距离为2,求AOB ∆面积的最大值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (-1,-1),c 为椭圆的半焦距,且c =2b .过点P作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N . (1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积; (3)若线段MN 的中点在x 轴上,求直线MN 的方程.6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(△)求椭圆C 的标准方程;(△)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.7.已知,椭圆C 以过点A (1,),两个焦点为(-1,0)(1,0). (1) 求椭圆C 的方程;(2) E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.32本次课课后练习1.椭圆221369x y +=的一条弦被()4,2A 平分,那么这条弦所在的直线方程是 .2.已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.3.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB =2OA ,求直线AB 的方程.4.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),离心率为22.分别过O ,F 的两条弦AB ,CD 相交于点E (异于A ,C 两点),且OE =EF . (1)求椭圆的方程;(2)求证:直线AC ,BD 的斜率之和为定值.5.已知,A B 是椭圆C :()222210x y a b a b+=>>的左,右顶点,B (2,0),过椭圆C 的右焦点F 的直线交于其于点M , N , 交直线4x =于点P ,且直线PA ,PF ,PB 的斜率成等差数列. (△)求椭圆C 的方程;(△)若记,AMB ANB ∆∆的面积分别为12,S S 求12S S 的取值范围.x6.已知椭圆的中点为坐标原点O,椭圆短轴长为2,动点M(2,t)(t>0)在椭圆的准线上.(1)求椭圆的标准方程.(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;(3)设点F是椭圆的右焦点,过点F作OM的垂线FH,且与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.。
第八章 第四节 直线与圆锥曲线的位置关系
第八章 第四节 直线与圆锥曲线的位置关系1.抛物线y 2=4x F 、M 且 与l 相切的圆共有( )A .0个B .1个C .2个D .4个解析:由于圆经过焦点F 且与准线l 相切,由抛物线的定义知圆心在抛物线上,又 因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段 FM 的垂直平分线与抛物线的交点,结合图形易知有两个交点,因此一共有2个满足 条件的圆. 答案:C2.(2010·广州摸拟)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C ,若AB =12BC,则双曲线的离心率是( )A. 2B. 3C. 5D.10解析:过点A (a,0)的直线的方程为y =-x +a ,则易求得该直线与双曲线的渐近线y=±b a x 的交点B 、C 的坐标为B (a 2a +b ,ab a +b )、C (a 2a -b ,-aba -b),由AB =12BC 得b =2a ,所以双曲线的离心率e =ca =a 2+b 2a = 5.答案:C3.(2009·全国卷A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k = ( ) A.13 B.23C.23D.223解析:过A 、B 作拋物线准线l 的垂线,垂足分别为A 1、B 1, 由拋物线定义可知,|AA 1|=|AF |,|BB 1|=|BF |,∵2|BF |=|AF |, ∴|AA 1|=2|BB 1|, 即B 为AC 的中点.从而y A =2y B ,联立方程组⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ⇒消去x 得:y 2-8ky +16=0,∴⎩⎪⎨⎪⎧y A +y B =8k ,y A ·y B =16⇒⎩⎪⎨⎪⎧3y B =8k ,2y 2B =16⇒消去y B 得k =223.答案:D4.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等 于( )A .3B .4C .3 2D .4 2 解析:设直线AB 的方程为y =x +b ,由⎩⎪⎨⎪⎧y =-x 2+3y =x +b⇒x 2+x +b -3=0⇒x 1+x 2=-1,得AB 的中点M (-12,-12+b ),又M (-12,-12+b )在直线x +y =0上可求出b =1,∴x 2+x -2=0,则|AB |=1+12(-1)2-4×(-2)=3 2. 答案:C5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设 |F A |>|FB |,则|F A |与|FB |的比值等于________. 解析:F (1,0),∴直线AB 的方程为y =x -1.⎩⎪⎨⎪⎧y =x -1,y 2=4x ⇒x 2-6x +1=0⇒x =3±2 2. ∵|F A |>|FB |,由抛物线定义知A 点的横坐标为3+22,B 点的横坐标为3-2 2.|F A ||FB |=x A +1x B +1=4+224-22=2+22-2=6+422=3+2 2. 答案:3+2 26.已知对∀k ∈R ,直线y -kx -1=0与椭圆x 5+y m =1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)解析:直线恒过定点(0,1),若直线与椭圆恒有公共点, 只需点(0,1)在椭圆上或内部,∴1m ≤1,又m >0且m ≠5,∴m ≥1且m ≠5. 答案:C7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率e 的最大值为________. 解析:设∠F 1PF 2=θ,由⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=4|PF 2|得⎩⎨⎧|PF 1|=83a ,|PF 2|=23a ,∴cos θ=17a 2-9c 28a 2=178-98e 2.∵cos θ∈[-1,1),∴1<e ≤53.答案:538.已知动圆过定点(2,0) (1)求动圆的圆心轨迹C 的方程;(2)是否存在直线l ,使l 过点(0,2),并与轨迹C 交于P ,Q 两点,且满足OP ·OQ=0?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心,F (2,0),过点M 作直线x =-2的垂线,垂足为N , 由题意知:|MF |=|MN |,即动点M 到定点F 与到定直线x =-2的距离相等,由抛物线的定义知,点M 的轨迹为 抛物线,其中F (2,0)为焦点,x =-2为准线,所以动圆圆 心轨迹C 的方程为y 2=8x .(2)由题可设直线l 的方程为x =k (y -2)(k ≠0),由⎩⎪⎨⎪⎧x =k (y -2)y 2=8x,得y 2-8ky +16k =0,Δ=(-8k )2-4×16k >0,解得k <0或k >1.设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=8k ,y 1y 2=16k ,由OP ·OQ =0,得x 1x 2+y 1y 2=0,即k 2(y 1-2)(y 2-2)+y 1y 2=0,整理得:(k 2+1)y 1y 2-2k 2(y 1+y 2)+4k 2=0,代入得16k (k 2+1)-2k 2·8k +4k 2=0,即16k +4k 2=0, 解得k =-4或k =0(舍去),所以直线l 存在,其方程为x +4y -8=0.9.已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON=0,其中点O 为坐标原点.解:设M (x 1,y 1),N (x 2,y 2),由已知易求B (1,0), 当MN 垂直于x 轴时,MN 的方程为x =1, 设M (1,y 0),N (1,-y 0)(y 0>0),由OM ·ON =0,得y 0=1,∴M (1,1),N (1,-1).又M (1,1),N (1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52,∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k (x -1). 由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0, 由题意知:λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM ·ON=0,且M 、N 在双曲线右支上,∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0x 1+x 2>0x 1x 2>0⇒⎩⎪⎨⎪⎧k 2=λ(1-λ)λ2+λ-1k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λλ2+λ-1>0⇒5-12<λ<23.综上,知5-12≤λ<23. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63,a =3,∴b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2). ①当AB ⊥x 轴时,|AB |= 3. ②当AB 与x 轴不垂直时, 设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0)≤3+122×3+6=4.当且仅当9k2=1k2,即k=±33时等号成立.当k=0时,|AB|= 3.综上所述,|AB|max=2.∴当|AB|最大时,△AOB面积取最大值:S max=12×|AB|max×32=32.。
8.4 直线与圆锥曲线
设M(x1,y1),N(x2,y2),Q(x0,y0),
13
【例3】(2009²成都模拟)已知椭圆的两个焦点
分别为F1(0, 2 2 ),F2(0, 2),离心率为 2 e= 2 2 . 3 (1)求椭圆方程; (2)一条不与坐标轴平行的直线l与椭圆交于不
同的两点M,N,且线段MN中点的横坐标为
1 - 2 ,求直线l的倾斜角的取值范围.
分析 涉及动弦中点的问题可考虑用下列方法: ①将直线方程代入曲线方程,得到一个一元二 次方程,利用根与系数的关系求解;②利用 “设而不求”的方法将直线的斜率和弦的中点 联系在一起.
得
x1+x2= 6 3 ,x1x2=11. ∵|AB|=
1 3 ²|x1-x2|=2(x2-x1),
|F1A|+|F1B|= 3 (x1+x2)+2a=20
以及x2-x1= ( x1 x2 ) 2 4 x1 x2 8 ,
∴(1)|AB|=2³8=16;
(2)△F1AB的周长=|AB|+|F1A|+|F1B|=36.
若方程无解( <0),则直线与椭圆相离 2.直线与双曲线的位置关系 (1)位置关系 ①相交:直线与双曲线有 两个交点或有 一个公 共点(直线与渐近线平行). ②相切:直线与双曲线 有且只有一个 公共点, 且直线不平行于双曲线的渐近线. ③相离:直线与双曲线 无 公共点. .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 第四节 直线与圆锥曲线的位置关系题组一直线和圆锥曲线的位置关系问题1.抛物线y 2=4x F 、M 且 与l 相切的圆共有( )A .0个B .1个C .2个D .4个解析:由于圆经过焦点F 且与准线l 相切,由抛物线的定义知圆心在抛物线上,又 因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段 FM 的垂直平分线与抛物线的交点,结合图形易知有两个交点,因此一共有2个满足 条件的圆. 答案:C2.(2010·广州摸拟)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C ,若AB =12BC ,则双曲线的离心率是( )A. 2B. 3C. 5D.10解析:过点A (a,0)的直线的方程为y =-x +a ,则易求得该直线与双曲线的渐近线y =±b a x 的交点B 、C 的坐标为B (a 2a +b ,ab a +b )、C (a 2a -b ,-ab a -b ),由AB =12BC 得b =2a ,所以双曲线的离心率e =ca =a 2+b 2a= 5. 答案:C题组二直线与圆锥曲线相交中的弦长问题3.(2009·全国卷A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k = ( ) A.13 B.23C.23D.223解析:过A 、B 作拋物线准线l 的垂线,垂足分别为A 1、B 1, 由拋物线定义可知,|AA 1|=|AF |,|BB 1|=|BF |, ∵2|BF |=|AF |, ∴|AA 1|=2|BB 1|, 即B 为AC 的中点.从而y A =2y B ,联立方程组⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ⇒消去x 得:y 2-8ky +16=0,∴⎩⎪⎨⎪⎧y A +y B =8k ,y A ·y B =16⇒⎩⎪⎨⎪⎧3y B =8k ,2y 2B =16⇒消去y B 得k =223.答案:D4.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等 于( )A .3B .4C .3 2D .4 2 解析:设直线AB 的方程为y =x +b ,由⎩⎪⎨⎪⎧y =-x 2+3y =x +b ⇒x 2+x +b -3=0⇒x 1+x 2=-1,得AB 的中点M (-12,-12+b ),又M (-12,-12+b )在直线x +y =0上可求出b =1,∴x 2+x -2=0, 则|AB |=1+12(-1)2-4×(-2)=3 2.答案:C5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________. 解析:F (1,0),∴直线AB 的方程为y =x -1.⎩⎪⎨⎪⎧y =x -1,y 2=4x ⇒x 2-6x +1=0⇒x =3±2 2.∵|F A |>|FB |,由抛物线定义知A 点的横坐标为3+22,B 点的横坐标为3-2 2. |F A ||FB |=x A +1x B +1=4+224-22=2+22-2=6+422=3+2 2. 答案:3+2 26.已知对∀k ∈R ,直线y -kx -1=0与椭圆x 5+y m =1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)解析:直线恒过定点(0,1),若直线与椭圆恒有公共点, 只需点(0,1)在椭圆上或内部,∴1m ≤1,又m >0且m ≠5,∴m ≥1且m ≠5. 答案:C7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率e 的最大值为________. 解析:设∠F 1PF 2=θ,由⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=4|PF 2|得⎩⎨⎧|PF 1|=83a ,|PF 2|=23a ,∴cos θ=17a 2-9c 28a 2=178-98e 2. ∵cos θ∈[-1,1),∴1<e ≤53.答案:53题组四综 合 问 题8.已知动圆过定点(2,0) (1)求动圆的圆心轨迹C 的方程;(2)是否存在直线l ,使l 过点(0,2),并与轨迹C 交于P ,Q 两点,且满足OP ·OQ = 0?若存在,求出直线l 的方程;若不存在,说明理由. 解:(1)如图,设M 为动圆圆心,F (2,0),过点M 作直线x =-2的垂线,垂足为N ,由题意知:|MF |=|MN |,即动点M 到定点F 与到定直线 x =-2的距离相等,由抛物线的定义知,点M 的轨迹为 抛物线,其中F (2,0)为焦点,x =-2为准线,所以动圆圆 心轨迹C 的方程为y 2=8x .(2)由题可设直线l 的方程为x =k (y -2)(k ≠0),由⎩⎪⎨⎪⎧x =k (y -2)y 2=8x,得y 2-8ky +16k =0,Δ=(-8k )2-4×16k >0,解得k <0或k >1.设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=8k ,y 1y 2=16k ,由OP ·OQ =0,得x 1x 2+y 1y 2=0, 即k 2(y 1-2)(y 2-2)+y 1y 2=0,整理得:(k 2+1)y 1y 2-2k 2(y 1+y 2)+4k 2=0,代入得16k (k 2+1)-2k 2·8k +4k 2=0,即16k +4k 2=0, 解得k =-4或k =0(舍去),所以直线l 存在,其方程为x +4y -8=0.9.已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点. 解:设M (x 1,y 1),N (x 2,y 2),由已知易求B (1,0), 当MN 垂直于x 轴时,MN 的方程为x =1,设M (1,y 0),N (1,-y 0)(y 0>0),由OM ·ON =0,得y 0=1, ∴M (1,1),N (1,-1).又M (1,1),N (1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52,∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k (x -1).由⎩⎨⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0, 由题意知:λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM ·ON =0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧ x 1x 2+y 1y 2=0x 1+x 2>0x 1x 2>0⇒⎩⎪⎨⎪⎧k 2=λ(1-λ)λ2+λ-1k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λλ2+λ-1>0⇒5-12<λ<23.综上,知5-12≤λ<23.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63,a =3,∴b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2). ①当AB ⊥x 轴时,|AB |= 3. ②当AB 与x 轴不垂直时, 设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34(k 2+1). 把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, ∴x 1+x 2=-6km3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1 =12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k 2+6(k ≠0)≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =±33时等号成立.当k =0时,|AB |= 3.综上所述,|AB|max=2.∴当|AB|最大时,△AOB面积取最大值:S max=12×|AB|max×32=32.。