2.3.1__离散型随机变量的均值(公开课)
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.3.1 离散型随机变量的均值
栏 目 链 接
自 测 自 评
1.分布列为 ξ P 的期望值为( C ) A.0 B.-1 C.- 2.设 ξ 的分布列为: 1 1 P 6 又设 η=2ξ+5,则 E(η)=( 7 17 17 32 A. B. C. D. 6 6 3 3 ξ 2 1 6 3 1 3 4 1 3 -1 1 2 0 1 3 1 1 6 1 3 D. 1 2
栏 目 链 接
每个单位的节目集中安排在一起,若采用抽签的方式随机 确定各单位的演出顺序(序号为1,2,…,6),求: (1)甲、乙两单位的演出序号至少有一个为奇数的概率;
(2)甲、乙两单位之间的演出单位个数ξ的分布列与数
学期望.
解析:只考虑甲、乙两单位的相对位置,故可用组合计算基本事 件数. (1)设 A 表示“甲、乙的演出序号至少有一个为奇数”,则- A 表示 “甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式得 C2 1 4 3 - P(A)=1-P( A )=1- 2=1- = . C6 5 5 (2)ξ 的所有可能值为 0,1,2,3,4,且 5 1 4 4 3 1 2 P(ξ=0)= 2= , P(ξ=1)= 2= , P(ξ=2)= 2= , P(ξ=3)= 2 C6 3 C6 15 C6 5 C6 2 1 1 = ,P(ξ=4)= 2= . 15 C6 15
栏 目 链 接
(1)求 m 的值; (2)求 E(X); (3)若 Y=2X-3,求 E(Y).
解析:(1)由随机变量分布列的性质,得 1 1 1 1 1 + + +m+ =1,解得 m= . 4 3 5 20 6
2.3.1离散型随机变量的均值(第一课时)
X P
0
1
… …
m
m n m CM CN M n CN
0 n 0 1 n 1 CM CN C C M M N M n n CN CN
(3)二项分布: 一般地,在n次独立重复试验中,若事件A每次发生 的概率都是p,则称事件A发生的次数X服从二项分布.
X P
0 n
0
1
0 n
…
k
…
n
C pq
五、小结巩固
掌握离散型随机变量的均值的概念、性质及计算:
1.离散型随机变量的均值
一般地,若离散型随机变量X的分布列为 X P x1 p1 x2 p2 … … xi pi … …
则称 EX=x1 p1+x2 p2+…+xi pi+… 为X的均值或数 学期望,数学期望又简称为期望. 它反映了离散型随机变量取值的平均水平.
∴ EX=1×P(X=1)+0×P(X=0) =1×0.7+0×0.3 =0.7 一般地,如果随机变量X服从两点分布,那么 EX=1×p+0× (1-p)=p 于是有 若X服从两点分布,则EX=p
3.两点分布的均值:
若X服从两点分布,则EX=p
例2.篮球运动员在比赛中每次罚球命中得1分,罚不中 得0分.已知某运动员罚球命中的概率为0.7,求他罚 2 次球的得分X的期望.
2、随机变量ξ的分布列是
.
ξ P
4 0.3
7 a
0.1 b=
9 b
10 0.2
0.4.
Eξ=7.5,则a=
练习二
1.(1)若 E(ξ)=4.5,则 E(-ξ)= -4.5 (2)E(ξ-Eξ)= 0 . .
2. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0 分.已知某运动员罚球命中的概率为0.7,则他罚球1次 的得分ξ的期望为 . 这是一个两点分布随机变量的期望
高中数学人教A版高二选修2-3教学案:2.3.1_离散型随机变量的均值_Word版含解析
2.3.1离散型随机变量的均值预习课本P60~63,思考并完成以下问题1.什么是离散型随机变量的均值?怎么利用离散型随机变量的分布列求出均值?2.离散型随机变量的均值有什么性质?3.两点分布、二项分布的均值是什么?[新知初探]1.离散型随机变量的均值或数学期望若离散型随机变量X的分布列为则称E(X)=x1p1+x2p2+…+x i p i+…+x n p n_量取值的平均水平.2.离散型随机变量的均值的性质若Y=aX+b,其中a,b为常数,则Y也是随机变量且P(Y=ax i+b)=P(X=x i),i=1,2,…,n,E(Y)=E(aX+b)=aE(X)+b.3.两点分布与二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X服从二项分布,即X~B(n,p),则E(X)=np.[点睛]两点分布与二项分布的关系(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1, 二项分布中随机变量的取值X=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)随机变量X的数学期望E(X)是个变量,其随X的变化而变化.()(2)随机变量的均值与样本的平均值相同.()(3)若随机变量ξ的数学期望E(ξ)=3,则E(4ξ-5)=7.()答案:(1)×(2)×(3)√2.已知离散型随机变量X的分布列为则X 的数学期望E (X )=( ) A .32B .2C .52D .3答案:A3.设随机变量X ~B (16,p ), 且E (X )=4, 则p =________. 答案:144.一名射手每次射击中靶的概率均为0.8, 则他独立射击3次中靶次数X 的均值为________. 答案:2.4[典例] 购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料.(1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及均值E (ξ).[解] (1)设甲、乙、丙中奖的事件分别为A ,B ,C ,那么 P (A )=P (B )=P (C )=16.P (A ·B ·C )=P (A )P (B )P (C )=16×56×56=25216.故甲中奖且乙、丙都没有中奖的概率是25216.(2)ξ的可能取值为0,1,2,3.P (ξ=k )=C k 3⎝⎛⎭⎫16k ⎝⎛⎭⎫563-k,k =0,1,2,3.P (ξ=0)=C 03×⎝⎛⎭⎫160×⎝⎛⎭⎫563=125216; P (ξ=1)=C 13×16×⎝⎛⎭⎫562=2572;P (ξ=2)=C 23×⎝⎛⎭⎫162×56=572, P (ξ=3)=C 33×⎝⎛⎭⎫163×⎝⎛⎭⎫160=1216. 所以中奖人数ξ的分布列为P125216 2572 572 1216E (ξ)=0×125216+1×2572+2×572+3×1216=12.求离散型随机变量的均值的步骤(1)确定取值:根据随机变量X 的意义,写出X 可能取得的全部值; (2)求概率:求X 取每个值的概率; (3)写分布列:写出X 的分布列; (4)求均值:由均值的定义求出E (X ).其中写出随机变量的分布列是求解此类问题的关键所在.[活学活用]1.甲、乙两人各进行3次射击, 甲每次击中目标的概率为12, 乙每次击中目标的概率为23, 记甲击中目标的次数为X, 乙击中目标的次数为Y ,(1)求X 的概率分布列; (2)求X 和Y 的数学期望.解:(1)已知X 的所有可能取值为0,1,2,3. P (X =k )=C k 3⎝⎛⎭⎫12k ⎝⎛⎭⎫123-k . 则P (X =0)=C 03×⎝⎛⎭⎫123=18;P (X =1)=C 13×12×⎝⎛⎭⎫122=38; P (X =2)=C 23×⎝⎛⎭⎫122×12=38; P (X =3)=C 33×⎝⎛⎭⎫123=18. 所以X 的概率分布列如下表:X 0 1 2 3 P18383818(2)由(1)知E (X )=0×18+1×38+2×38+3×18=1.5,或由题意X ~B ⎝⎛⎭⎫3,12,Y ~B ⎝⎛⎭⎫3,23, ∴E (X )=3×12=1.5,E (Y )=3×23=2.2.某运动员投篮投中的概率P =0.6. (1)求一次投篮时投中次数ξ的数学期望. (2)求重复5次投篮时投中次数η的数学期望.解:(1)ξ的分布列为:ξ0 1P 0.40.6则E(ξ)=0×0.4+1×0.6=0.6,即一次投篮时投中次数ξ的数学期望为0.6.(2)η服从二项分布,即η~B(5,0.6).∴E(η)=np=5×0.6=3,即重复5次投篮时投中次数η的数学期望为3.离散型随机变量均值的性质[典例]X -2-101 2P141315m120若Y=-2X,则E(Y)=________.[解析]由随机变量分布列的性质,得14+13+15+m+120=1, 解得m=16,∴E(X)=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.由Y=-2X,得E(Y)=-2E(X),即E(Y)=-2×⎝⎛⎭⎫-1730=1715.[答案]1715[一题多变]1.[变设问]本例条件不变,若Y=2X-3, 求E(Y).解:由公式E(aX+b)=aE(X)+b及E(X)=-1730得,E(Y)=E(2X-3)=2E(X)-3=2×⎝⎛⎭⎫-1730-3=-6215.2.[变条件,变设问]本例条件不变,若ξ=aX+3, 且E(ξ)=-112,求a的值.解:∵E(ξ)=E(aX+3)=aE(X)+3=-1730a+3=-112,∴a=15.与离散型随机变量性质有关问题的解题思路若给出的随机变量ξ与X的关系为ξ=aX+b,a,b为常数.一般思路是先求出E(X),再利用公式E(aX +b)=aE(X)+b求E(ξ).也可以利用ξ的分布列得到η的分布列,关键由ξ的取值计算η的取值,对应的概率相等,再由定义法求得E(η).均值的实际应用[典例]的分布列为ξ1234 5P 0.40.20.20.10.1250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(2)求η的分布列及均值E(η).[解](1)由A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”知,A表示事件“购买该商品的3位顾客中无人采用1期付款”.P(A)=(1-0.4)3=0.216,P(A)=1-P(A)=1-0.216=0.784.(2)η的可能取值为200元,250元,300元.P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=P(ξ=4)+P(ξ=5)=0.1+0.1=0.2,因此η的分布列为η200250300P 0.40.40.2E(η)=200×0.4+250×0.4+1.实际问题中的均值问题均值在实际中有着广泛的应用,如在体育比赛的安排和成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益等,都可以通过随机变量的均值来进行估计.2.概率模型的解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.[活学活用]甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.求投篮结束时甲的投球次数ξ的分布列与数学期望.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中, 则P (A k )=13,P (B k )=12,(k =1,2,3).ξ的所有可能值为1,2,3. 由独立性知P (ξ=1)=P (A 1)+P (A 1B 1)=13+23×12=23,P (ξ=2)=P (A 1B 1A 2)+P (A 1B1A 2B 2)=23×12×13+⎝⎛⎭⎫232×⎝⎛⎭⎫122=29,P (ξ=3)=P (A1B1A2B 2)=⎝⎛⎭⎫232×⎝⎛⎭⎫122=19.综上知,ξ的分布列为数学期望为E (ξ)=1×23+2×29+3×19=139.层级一 学业水平达标1.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无法求 B .0 C .E (X )D .2E (X )解析:选B ∵E (aX +b )=aE (X )+b ,而E (X )为常数,∴E (X -E (X ))=E (X )-E (X )=0. 2.若随机变量ξ的分布列如下表所示,则E (ξ)的值为( )A .118B .19C .209D .920 解析:选C 根据概率和为1,可得x =118,E (ξ)=0×2x +1×3x +2×7x +3×2x +4×3x +5×x =40x=209. 3.某射击运动员在比赛中每次击中10环得1分,击不中10环得0分.已知他击中10环的概率为0.8,则射击一次得分X 的期望是( )A .0.2B .0.8C .1D .0解析:选B 因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8. 4.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5, 14,则E (-ξ)的值为( ) A .14B .-14C .54D .-54解析:选D ∵E (ξ)=5×14=54,∴E (-ξ)=-E (ξ)=-54,故选D .5.有10件产品,其中3件是次品,从中任取2件,用X 表示取到次品的个数,则E (X )等于( ) A .35B .815C .1415D .1解析:选A X 的可能取值为0,1,2,P (X =0)=C 27C 210=715,P (X =1)=C 17C 13C 210=715,P (X =2)=C 23C 210=115.所以E (X )=1×715+2×115=35. 6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的数学期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24; P (X =1)=0.42×0.6=0.096; P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064 =2.376. 答案:2.3767.设离散型随机变量X 可能的取值为1,2,3,P (X =k )=ak +b (k =1,2,3).又X 的均值E (X )=3,则a +b =________.解析:∵P (X =1)=a +b ,P (X =2)=2a +b ,P (X =3)=3a +b , ∴E (X )=1×(a +b )+2×(2a +b )+3×(3a +b )=3, ∴14a +6b =3.①又∵(a +b )+(2a +b )+(3a +b )=1, ∴6a +3b =1.②∴由①②可知a =12,b =-23,∴a +b =-16.答案:-168.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.解析:设小王选对的个数为X ,得分为Y =5X , 则X ~B (12,0.8),E (X )=np =12×0.8=9.6, E (Y )=E (5X )=5E (X )=5×9.6=48. 答案:489.盒中装有5节同品牌的五号电池,其中混有2节废电池,现在无放回地每次取一节电池检验,直到取到好电池为止.求:(1)抽取次数X 的分布列; (2)平均抽取多少次可取到好电池. 解:(1)由题意知,X 取值为1,2,3. P (X =1)=35;P (X =2)=25×34=310;P (X =3)=25×14=110.所以X 的分布列为(2)E (X )=1×35+2×310+3×110=1.5,即平均抽取1.5次可取到好电池.10.如图所示是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x 的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列和数学期望.解:(1)依题意及频率分布直方图知,0.02+0.1+x +0.37+0.39=1,解得x =0.12. (2)由题意知,X ~B (3,0.1).因此P (X =0)=C 03×0.93=0.729; P (X =1)=C 13×0.1×0.92=0.243; P (X =2)=C 23×0.12×0.9=0.027;P (X =3)=C 33×0.13=0.001.故随机变量X 的分布列为故X 的数学期望为E (X )=3×0.1=0.3.层级二 应试能力达标1.已知随机变量ξ的分布列为若η=aξ+3,E (η)=73,则a =( )A .1B .2C .3D .4解析:选B 由分布列的性质得12+13+m =1,∴m =16.∴E (ξ)=-1×12+0×13+1×16=-13.∴E (η)=E (aξ+3)=aE (ξ)+3=-13a +3=73,∴a =2.2.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=|a -b |的取值,则ξ的数学期望E (ξ)为( )A .89B .35C .25D .13解析:选A ∵抛物线的对称轴在y 轴的左侧,∴-b 2a<0,即ba >0,∴a 与b 同号.∴ξ的分布列为∴E (ξ)=0×13+1×49+2×29=89.3.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( )A .3B .4C .5D .2解析:选A 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2,P (ξ=0)=C 27-xC 27=(7-x )(6-x )42,P (ξ=1)=C 1x ·C 17-xC 27=x (7-x )21, P (ξ=2)=C 2xC 27=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,解得x =3.4.甲、乙两台自动车床生产同种标准件,ξ表示甲车床生产1 000件产品中的次品数,η表示乙车床生产1 000件产品中的次品数,经一段时间考察,ξ,η的分布列分别是:据此判定( ) A .甲比乙质量好 B .乙比甲质量好 C .甲与乙质量相同D .无法判定解析:选A E (ξ)=0×0.7+1×0.1+2×0.1+3×0.1=0.6, E (η)=0×0.5+1×0.3+2×0.2+3×0=0.7. ∵E (η)>E (ξ),故甲比乙质量好.5.设p 为非负实数,随机变量X 的概率分布为:则E (X )的最大值为________.解析:由表可得⎩⎪⎨⎪⎧0≤12-p ≤1,0≤p ≤1,从而得P ∈⎣⎡⎦⎤0,12,期望值E (X )=0×⎝⎛⎭⎫12-p +1×p +2×12=p +1,当且仅当p =12时,E (X )最大值=32.答案:326.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E(ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450,所以E(η)=3.4E(ξ)-450=3.4×340-450=706(元).答案:7067.(重庆高考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35(个).8.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).解:各投保人是否出险相互独立,且出险的概率都是p,记投保的10 000人中出险的人数为ξ,则ξ~B(104,p).(1)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则A发生当且仅当ξ=0,P(A)=1-P(A)=1-P(ξ=0)=1-(1-p)104,又P(A)=1-0.999104,故p=0.001.(2)该险种总收入为104a元,支出是赔偿金总额与成本的和.支出:104ξ+5×104,盈利:η=104a-(104ξ+5×104),由ξ~B(104,10-3)知,E(ξ)=10,E(η)=104a-104E(ξ)-5×104=104a-105-5×104.由E(η)≥0⇔104a-105-5×104≥0⇔a-10-5≥0⇔a≥15(元).故每位投保人应交纳的最低保费为15元.。
最新-2021高中数学选修23课件:第二章23231离散型随机变量的均值 精品
值,是随机变量 X 的一个固有的数字特征,不具有随机
性.
2.离散型随机变量的性质
如果 X 为(离散型)随机变量,则 Y=aX+b(其中 a,b 为常数)也是(离散型)随机变量,且 P(X=xi)=P(Y=axi+ b),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.
解析:(1)错,随机变量 X 的数学期望是一个常量. (2)错,随机变量的均值与样本的平均值是两个不同 的概念. (3)对,E(2X)=2E(X)=2×3=6. 答案:(1)× (2)× (3)√
2.已知 ξ 的分布列为:
ξ -1 0 1 2
P
1 4
311 848
则 ξ 的均值为( )
A.0
B.-1
法二 由于 Y=2X-3,
所以 Y 的分布列如下:
Y -7 -5 -3 -1 1
P
1 4
1 3Leabharlann 1 511 6 20所以
E(Y) =
(
-
7)× 14
+(-
5)×
1 3
+
(
- 3)× 15 + ( -
1)×16+1×210=-6125.
归纳升华 若给出的随机变量 ξ 与 X 的关系为 ξ=aX+b,a,b 为常数.一般思路是先求出 E(X),再利用公式 E(aX+b) =aE(X)+b 求 E(ξ).也可以利用 ξ 的分布列得到 η 的分 布列,关键由 ξ 的取值计算 η 的取值,对应的概率相等, 再由定义法求得 E(η).
防范措施:在求随机变量取各值的概率时,务必理解
各取值的实际意义,以免失误.另外,可以利用分布列的
n
性质:(1)pi≥0(i=1,2,3,…,n),(2) pi=1 来检验.
高中数学选修2-3精品课件:2.3.1 离散型随机变量的均值
所以X的分布列为
X 10 20 100 -200
P
3 8
3 8
1 8
1 8
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则 P(A1)=P(A2)=P(A3)=P(X=-200)=18. 所以“三盘游戏中至少有一次出现音乐”的概率为 1-P(A1A2A3)=1-(18)3=1-5112=551112. 因此,玩三盘游戏至少有一盘出现音乐的概率是551112.
且事件 E 与 F,E 与 F , E 与 F, E 与 F 都相互独立.
(1)记 H={至少有一种新产品研发成功},则 H = E F , 于是 P( H )=P( E )P( F )=13×25=125, 故所求的概率为 P(H)=1-P( H )=1-125=1135.
(2) 设 企 业 可 获 利 润 为 X 万 元 , 则 X 的 可 能 取 值 为
(1)设每盘游戏获得的分数为X,求X的分布列.
解 X可能的取值为10,20,100,-200.
根据题意,有 P(X=10)=C13×(21)1×(1-21)2=83, P(X=20)=C23×(21)2×(1-21)1=83, P(X=100)=C33×(12)3×(1-12)0=18, P(X=-200)=C03×(21)0×(1-21)3=81.
1234
现按表中对阵方式出场胜队得1分,负队得0分,设A队,B 队最后所得总分分别为X,Y. (1)求X,Y的分布列; 解 X的可能取值分别为3,2,1,0. P(X=3)=23×25×25=785,
P(X=2)=23×25×35+13×25×25+23×35×25=2785, P(X=1)=23×35×35+13×25×35+13×35×25=25, P(X=0)=13×35×35=235; 根据题意X+Y=3,
人教版高中数学选修2-3课件:2.3.1 离散型随机变量的均值
当堂自测
[答案] A
当堂自测
3.设随机变量X~B(3,0.2),则
E(2X+1)= ( )
A.0.6
B.1.2
C.2.2
D.3.2
[答案] C
[解析] ∵随机变量 X~B(3,0.2),∴E(X)=3×0.2=0.6,∴E(2X+1)=2E(X)+1 =2×0.6+1=2.2,故选C.
当堂自测
故选D. (2)设该学生在这次测验中选对的题数 为X,该学生在这次测验中成绩为Y,则 X~B(20,0.9),Y=5X.由二项分布的均值公
式得E(X)=20×0.9=18.由随机变量均值 的线性性质得E(Y)=E(5X)=5×18=90.
考点类析
考点三 利用随机变量均值的性质解决问题
[导入] 若X是随机变量,且Y=aX+b,其中a,b为常数,试分析随机变量Y的均值E(Y)和E(X) 的关系.
考点一 随机变量X均值定义的应用
ξ012345 P 2x 3x 7x 2x 3x x
[答案] C
考点类析
例2 袋中有4只红球、3只 黑球,现从袋中随机取出4 只球,设取到1只红球得2分, 取得1只黑球得1分,试求得 分X的均值.
X5678 P
考点类析
考点二 两点分布、二项分布的均值
例3 (1)设X~B(40,p),且E(X)=16,则p=
的均值. (2)随机变量的均值是常数,其值不随X的变化而变化.
预习探究
[探究] 随机地抛掷一枚骰子,怎样求向上的点数X的均值?
X123456 P
预习探究
知识点二 离散型随机变量均值的性质
若Y=aX+b(a,b为常数),则E(Y)=E(aX+b)=
高中数学人教A版选修2-3课件:2.3.1离散型随机变量的均值
当 X=3 时,表示前 2 次中取得一红球,一白球或黑球,第 3 次取红球, ∴ P(X=3)=
1 2 ������1 2 ������3 ������2
������3 5
=
1 ; 5
2.3.1
问题导学
离散型随机变量的均值
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
x
2.3.1
问题导学
离散型随机变量的均值
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
解:由题意知 X 的取值为 2,3,4,5. 当 X=2 时,表示前 2 次取的都是红球, ∴ P(X=2)=
������2 2 ������2 5
=
1 ; 10
预习交流 2
若随机变量 X~B(5,0.3),则 E(X)= 提示:E(X)=5× 0.3=1.5. .
2.3.1
问题导学
离散型随机变量的均值
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
一、求离散型随机变量的均值(数学期望)
活动与探究 问题:某商场要将单价分别为 18 元/kg、24 元/kg、36 元/kg 的 3 种 糖果按 3∶ 2∶ 1 的比例混合销售,如何对混合糖果定价才合理?
当 X=4 时,表示前 3 次中取得一红球,2 个不是红球,第 4 次取红球, ∴ P(X=4)=
2 3 ������1 2 ������3 ������3
2.3.1离散型随机变量的确均值
pi
…
pn
aEX b
3、几个特殊分布的期望
例1、在篮球比赛中,罚球命中1次得1分,不中 得0分.如果某运动员罚球命中的概率为0.7,那 么他罚球1次的得分ξ的均值是多少?
解:ξ的分布列为
ξ P 0 0.3 1-P 1 0.7 P
所以
Eξ=0×P(ξ=0)+1×P(ξ=1) =0×1-P 0.3+1×0.7 P =0.7 P
设学生甲和学生乙在这次英语测验中选择了正确 解:
答案的选择题个数分别是ξ和η,则 ξ~B(20,0.9), η~B(20,0.25),
Eξ=20×0.9=18, Eη=20×0.25=5.
由于答对每题得5分,学生甲和学生乙在这次英语测验 中的成绩分别是5ξ和5η。所以,他们在测验中的成 绩的均值分别是
假如从这种混合糖果中随机选取一颗,记X为这颗 如果你买了1kg这种混合 糖果所属种类的单价(元 ),你能写出X的分布列吗? kg 糖果,你要付多少钱?
而你买的糖果的实际价值 解:随机变量X 可取值为 18 , 24和36 刚好是 23 元吗? 1 1
1 而P( X 18) , P( X 24) , P( 样本平均值 X 36) 2 3 6 所以X分布列为
X 所以Y的分布列为 Y
ax1 b ax2 b …
axi b …
axn b
P
p1
ห้องสมุดไป่ตู้p2
…
EY (ax1 b) p1 (ax2 b) p2 (axn b) pn a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
解:(Ⅰ)X的分布列:
X P 0
1 2
2.3.1离散型随机变量的均值
7070% 6030% 67
加
权
平
均
权数
问题: 某人射击10次,所得环数分别是:1,1,1,1,2,2,2, 3,3,4;则所得的平均环数是多少?
1111 2 2 233 4 2
10
1 4 2 3 3 2 4 1 10 10 10 10
权数 加
1 4 2 3 3 2 4 1 10 10 10 10
算术平均数
如果你期中考试各门成绩分别为: 91,85,80,80,75,59 那你的平均成绩是多少?
x 90 85 80 80 75 59 80 5
先介绍两种平均数:
的数权值是.加秤权加锤平权,均权平是数指均是在数起计权算衡若轻干重个作数用
量的平均数时,考虑到每个数量在总量 如果你中期所中具考有试的数重学要成性绩不为同7,0,分平别时给表予现不成同绩为60,学 校规定:在的你权学数分. 记录表中,该学期的数学成绩中考试成绩 占70%,平时成绩占30%,你最终的数学成绩为多少?
一.填空
补充练习
(1)某射手对目标进行射击,直到第一次命中为止,每 次命中率为0.6,现共有子弹4颗,命中后尚剩余子弹数目ξ 的数学期望是_____2_._3_7_6__ .
(2)有两台在两地独立工作的雷达,每台雷达发现飞 行目标的概率分别为0.9和0.85,设发现目标的雷达台数 为ξ,则E(ξ)=_____1_._7_5___ .
(3)设离散性随机变量 可能取的值为1,2,3,4 , P(ξ=k)=ak+b(k=1,2,3,4)又ξ的数学期望E(ξ)=3,则
1
a+b= _____1_0_.
二.选择
(1)口袋中有5只相同的球,编号为1、2、3、4、5, 从中任取3球,用ξ表示取出的球的最大号码,则Eξ= ( )
第2章 2.3 2.3.1 离散型随机变量的均值
2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标核心素养1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)1.通过离散型随机变量的均值的学习,体会数学抽象的素养.2.应用随机变量的均值解题提升数学运算的素养.1.离散型随机变量的均值(1)定义:若离散型随机变量X的分布列为:X x1x2…x i…x nP p1p2…p i…p n=x1p1+x2p2+…+x i p i+…+x n p n为随机变量(2)意义:它反映了离散型随机变量取值的平均水平.(3)性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.2.两点分布和二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X~B(n,p),则E(X)=np.思考:随机变量的均值与样本平均值有什么关系?[提示]随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.1.若随机变量X 的分布列为X -1 01 p121613A .0B .-1C .-16D .-12C [E (X )=∑i =13x i p i =(-1)×12+0×16+1×13=-16.]2.设E (X )=10,则E (3X +5)=________. 35 [E (3X +5)=3E (X )+5=3×10+5=35.]3.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________.43 [E (X )=np =4×13=43.]求离散型随机变量的均值【例1多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X 的分布列和X 的均值.[解] X 的取值分别为1,2,3,4.X =1,表明李明第一次参加驾照考试就通过了, 故P (X =1)=0.6.X =2,表明李明在第一次考试未通过,第二次通过了,故P (X =2)=(1-0.6)×0.7=0.28.X =3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X 123 4P 0.60.280.0960.024 所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.求离散型随机变量X的均值的步骤1.理解X的实际意义,并写出X的全部取值.2.求出X取每个值的概率.3.写出X的分布列(有时也可省略).4.利用定义公式E(X)=x1p1+x2p2+…+x n p n求出均值.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中要注重运用概率的相关知识.1.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X的分布列及均值.[解]X可取的值为1,2,3,则P(X=1)=35,P(X=2)=25×34=310,P(X=3)=25×14×1=110.抽取次数X的分布列为X 12 3P 35310110E(X)=1×35+2×310+3×110=32.离散型随机变量的均值公式及性质X -2 -1 0 1 2 P141315m120(2)求E (X );(3)若Y =2X -3,求E (Y ).[解] (1)由随机变量分布列的性质,得14+13+15+m +120=1, 解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:(公式法)由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215.法二:(直接法)由于Y =2X -3,所以Y 的分布列如下:Y -7 -5 -3 -1 1 P14131516120所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.1.该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,E (X )=x 1p 1+x 2p 2+…+x n p n 求解.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX +b 的分布列,再用均值公式求解,比较两种方式显然前者较方便.2.已知随机变量X 的分布列为X 1 2 3 P121316且Y=aX+3,若E(Y)=-2,则a的值为________.-3[E(X)=1×12+2×13+3×16=53.∵Y=aX+3,∴E(Y)=aE(X)+3=53a+3=-2.解得a=-3.]两点分布与二项分布的均值【例(1)求投篮1次时命中次数X的均值;(2)求重复5次投篮时,命中次数Y的均值.[思路点拨](1)利用两点分布求解.(2)利用二项分布的数学期望公式求解.[解](1)投篮1次,命中次数X的分布列如下表:X 0 1P 0.40.6(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.(变换条件)求重复10次投篮时,命中次数ξ的均值.[解]E(ξ)=10×0.6=6.2.(改变问法)重复5次投篮时,命中次数为Y,命中一次得3分,求5次投篮得分的均值.[解]设投篮得分为变量η,则η=3Y.所以E(η)=E(3Y)=3E(Y)=3×3=9.1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.离散型随机变量均值的实际应用[1.某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?[提示]每次平均得分为810=0.8.2.在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?[提示]在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X的均值的一个分数.【例4】随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?[思路点拨]根据利润的意义写出X的取值→写出X的分布列→求出均值E(X)→利用期望回答问题[解](1)X的所有可能取值有6,2,1,-2.P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为:X 621-2P 0.630.250.10.02(2)(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29).依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.1.实际问题中的均值问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的均值来进行估计.2.概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率,均值等所表示的结论.3.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,则他们选择何种方案抽奖,累计得分的数学期望较大?[解] (1)由已知得小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”为事件A ,则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415, 所以P (A )=1-P (X =5)=1115.所以这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖的次数为X 1,都选择方案乙抽奖中奖的次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知得X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45. 所以E (2X 1)=2E (X 1)=83, E (3X 2)-3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.1.求离散型随机变量均值的步骤: (1)确定离散型随机变量X 的取值;(2)写出分布列,并检查分布列的正确与否; (3)根据公式写出均值.2.若X ,Y 是两个随机变量,且Y =aX +b ,则E (Y )=aE (X )+b ;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.1.判断(正确的打“√”,错误的打“×”)(1)随机变量X 的数学期望E (X )是个变量,其随X 的变化而变化.( ) (2)随机变量的均值反映样本的平均水平.( )(3)若随机变量X 的数学期望E (X )=2,则E (2X )=4.( ) (4)随机变量X 的均值E (X )=x 1+x 2+…+x nn.( )[答案] (1)× (2)× (3)√ (4)× 2.已知随机变量X 的分布列为X 1 2 3 P0.20.5m则X A .2 B .2.1C .2.3D .随m 的变化而变化B [由0.2+0.5+m =1得m =0.3,∴E (X )=1×0.2+2×0.5+3×0.3=2.1,故选B.] 3.已知X ~B ⎝ ⎛⎭⎪⎫100,12,则E (2X +3)=________.103 [E (X )=100×12=50,E (2X +3)=2E (X )+3=103.]4.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.[解] (1)由题意知,X 可能取值为0,1,2,3,4.P(X=0)=C24C29=16,P(X=1)=C13C14C29=13,P(X=2)=C14C12+C23C29=1136,P(X=3)=C12C13C29=16,P(X=4)=C22C29=136.故X的分布列为(2)E(X)=0×16+1×13+2×1136+3×16+4×136=149.课时分层作业(十四)离散型随机变量的均值(建议用时:60分钟)[基础达标练]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于()A.0.1 B.0.2C.0.3 D.0.4D[∵E(X)=16,∴40p=16,∴p=0.4.]2.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)为()A.0.765 B.1.75C.1.765 D.0.22B[X的取值为0,1,2,P(X=0)=0.1×0.15=0.015,P (X =1)=0.9×0.15+0.1×0.85=0.22, P (X =2)=0.9×0.85=0.765,E (X )=0×0.015+1×0.22+2×0.765=1.75.] 3.已知Y =5X +1,E (Y )=6,则E (X )的值为( ) A .65 B .5 C .1D .31C [因为E (Y )=E (5X +1)=5E (X )+1=6, 所以E (X )=1.]4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400B [记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.]5.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C.2D.83D [X =2,3.所以P (X =2)=1C 23=13,P (X =3)=C 12C 23=23,所以E (X )=2×13+3×23=83.]二、填空题6.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是________.0.8 [因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.] 7.某射手射击所得环数X 的分布列如下:已知X 的均值E (X )=8.9,则y 的值为________. 0.4 [由题意得⎩⎨⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎨⎧ x +y =0.6,7x +10y =5.4,解得⎩⎨⎧x =0.2,y =0.4.] 8.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.1712 [由已知得X 的可能取值为0,1,2. P (X =0)=13×14=112, P (X =1)=23×14+13×34=512,P (X =2)=23×34=612,E (X )=0×112+1×512+2×612=1712.] 三、解答题9.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数X 的分布列及均值E (X ).[解] X 可能的取值为0,1,2.P (X =0)=C 217C 220=136190,P (X =1)=C 13C 117C 220=51190,P (X =2)=C 23C 220=3190.∴X 的分布列为:E(X)=0×136190+1×51190+2×3190=310.10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.[解](1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能取值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.[能力提升练]1.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是()A.2 000元B.2 200元C.2 400元D.2 600元B[出海的期望效益E(ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).]2.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是()A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫712,1 D.⎝ ⎛⎭⎪⎫12,1 B [根据题意,X 的所有可能取值为1,2,3,且P (X =1)=p ,P (X =2)=p (1-p ),P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.]3.把两封信投入A ,B ,C 三个空邮箱中,则A 邮箱中的信件数X 的均值E (X )=________.23[每封信投到A 邮箱的概率均为13, X ~B ⎝ ⎛⎭⎪⎫2,13,∴E (X )=23.]4.某人有10万元,准备用于投资房地产或购买股票,如果根据下面的盈利表进行决策:那么应选择的决策方案是________.投资房地产 [设购买股票的盈利为X ,投资房地产的盈利为Y , 则购买股票的盈利的均值为 E (X )=10×0.3+3×0.5+(-5)×0.2 =3+1.5-1=3.5.投资房地产的盈利的均值为 E (Y )=8×0.3+4×0.5+(-4)×0.2=2.4+2-0.8=3.6.因为E(Y)>E(X),所以投资房地产的平均盈利高,即应选择投资房地产.] 5.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.[解](1)∵每张奖券是否中奖是相互独立的,∴ξ~B(4,1 2).∴ξ的分布列为ξ0123 4P 116143814116(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100. 即实际支出的数学期望为2 100元.。
2.3.1_离散型随机变量的均值(2课时)
pi
…
pn
pn )
离散型随机变量均值的线性性质
E (aX b) aE ( X ) b
1、随机变量ξ的分布列是
ξ P
(1)则Eξ=
1 0.5
2.4
.
3 0.3
5.8 .
5 0.2
(2)若η=2ξ+1,则Eη= 2、随机变量ξ的分布列是
ξ P
Eξ=7.5,则a=
4 0.3
0.1
b=
7 a
10 -4 P 0.6 0.4 所以E=10×0.6+(-4) ×0.4=4.4
因为4.4>2, 所以商场应选择在商场外进行促销.
能力展现
遇大洪水损失60000元 遇小洪水损失10000元 有大洪水的概率为0.01 有小洪水的概率为0.25
大型设备
方案1:运走设备运费为3800;
方案2:建保护围墙,建设费2000元,但围墙只能 防小洪水; 方案3:不采取措施.
例题1
随机抛掷一个均匀的骰子,求所得骰子的点数 X的期望. 解:随机变量X的取值为1,2,3,4,5,6 其分布列为 X 1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6
所以随机变量X的均值为E(X)=1× 1/6+2× 1/6 +3×1/6+4× 1/6+5× 1/6+6× 1/6=3.5 变式:将所得点数的2倍加1作为得分数, 即 Y=2X+1,试求Y的期望?
…+ k×Cnkpkqn-k+…+ n×Cnnpnq0
=np(Cn-10p0qn-1+ Cn-11p1qn-2+ … +
Cn-1k-1pk-1q(n-1)-(k-1) +…+ Cn-1n-1pn-1q0) = np(p+q)n-1=np
选修2-3第二章2-3-1离散型随机变量的均值
则E(X)=p=0.6. (2)由题意,重复5次投篮,命中的次数Y服从二项分布, 即Y~B(5,0.6).则E(Y)=np=5×0.6=3. 规律方法 此类题的解法一般分两步:一是先判断随机变 量服从两点分布还是二项分布;二是代入两点分布或二项 分布的均值公式计算均值.
课前探究学习
加,样本平均值越来越接近于总体均值.
2. 两点分布与二项分布的均值 X X服从两点分布 X~B(n,p) np ___
课堂讲练互动 活页规范训练
E(X)
p (p为成功概率) __
课前探究学习
试一试:若某人投篮的命中率为0.8,那么他投篮10次一
定会进8个球吗? 提示 某人投篮的命中率为0.8,是通过大量重复的试验 来推断出来的一个均值.由于每次试验是相互独立的,投 一次可能成功,也可能失败.也就是说投篮10次可能一个
课前探究学习
课堂讲练互动
活页规范训练
题型一
利用定义求离散型随机变量的数学期望
【例1】 袋中有4只红球,3只黑球,今从袋中随机取出4只 球,设取到一只红球得2分,取得一只黑球得1分,试求得 分X的数学期望. [思路探索] 先分析得分的所有取值情况,再求分布列,代 入公式即可.
课前探究学习
课堂讲练互动
X P
5
4 35
6 18 35
7 12 35
8 1 35
4 18 12 1 44 ∴E(X)=5× +6× +7× +8× = (分). 35 35 35 35 7
课前探究学习
课堂讲练互动
活页规范训练
规律方法
求数学期望的步骤是:(1)明确随机变量的取
值,以及取每个值的试验结果;(2)求出随机变量取各个 值的概率;(3)列出分布列;(4)利用数学期望公式进行计 算.
《离散型随机变量的均值》示范公开课教案【高中数学北师大】
《离散型随机变量的均值》教案1.通过实例理解离散型随机变量的均值的含义,了解随机变量的均值与样本均值的区别与联系.2.能计算简单离散型随机变量的均值,并能解决一些实际问题.3.体会运用离散型随机变量的均值思想描述和分析某些随机现象的方法,在简单应用中培养学生分析和解决问题的能力.教学重点:离散型随机变量均值的含义及其应用. 教学难点:离散型随机变量均值的含义及其应用.一、新课导入问题1:已知在10件产品中有2件不合格品,从这10件产品中任取3件,用X 表示取得产品中不合格品的件数,求X 的分布列.答案:根据分布列的求法,可以求得X 的分布列如下表:k 012P (X=k )715 715 115问题2:在问题1的条件下,从这10件产品中任取3件,平均会取到几件不合格品?可否根据分布列得到一个数,这个数能“代表”这个随机变量取值的平均水平呢?探究:由于随机变量X 可能的取值为0,1,2.可否将三者的算术平均“1”“代表”这个随机变量的平均水平呢?为什么? 探究新知:问题3:设有12个西瓜,其中有4个质量是5kg ,3个质量是6kg ,5个质量是7kg ,求这12个西瓜的平均质量.分析:西瓜的平均质量应为12个西瓜的总重量除以西瓜的总个数,即54+63+7573=1212⨯⨯⨯ (kg ),也即54637573++=12121212⨯⨯⨯(kg ). ◆教学目标◆教学重难点◆教学过程显然,西瓜的平均质量不是5kg ,6 kg ,7kg 的算术平均,而是等于各个质量乘相应质量的西瓜个数在西瓜总个数中所占的比例后再求和,是5kg ,6kg ,7 kg 的加权平均,其中权数是相应质量的西瓜个数在西瓜总个数中所占的比例. 引导分析:类比问题3的方法,给出问题2的解决方法. 用随机变量X 三个取值0,1,2的加权平均7710+1+2=0.6151515⨯⨯⨯来代表随机变量X 的平均取值,其中0,1,2的权重分别是X 取这个值时的概率,即在一次抽取中,3件产品中平均有0.6件是不合格品.思考1:用上述方法求得随机变量X 的平均取值是否合理?答案:合理,这种取平均值的方法,考虑到了不同变量在总体中的比例份额,变量所占份额越大,对整组数据的平均数影响越大.思考2:抽出的不合格品的平均值是否可以是小数?可以,这个平均值的意义在于告诉我们抽出的不合格品最有可能出现的一个值,作用在于对结果的估计,得到的结果可能是与它接近的一个整数.问题4. 能否将上述求离散型随机变量平均值的方法推广到一般情形? 1.概念形成设离散型随机变量X 的分布列如下表:则称1122i i n n EX x p x p x p x p =+++++为随机变量X 的均值或者数学期望(简称期望).2.概念理解(1)均值EX 刻画的是X 取值的“中心位置”,反映了离散型随机变量X 取值的平均水平,是随机变量X 的一个重要特征.(2)均值EX 是随机变量X 取各个值的加权平均,由X 的分布列完全确定. 问题5.随机变量的均值与样本均值的联系与区别是什么?答案:随机变量的均值是一个常数,而样本均值是一个随机变量,样本均值随样本的变化而变化,这是两个均值的根本区别,在随机变量均值未知的情况下,通常用随机变量的观测值的平均值估计随机变量的均值.三、应用举例例1 设随机变量X 服从参数为p 的两点分布,求EX . 解:由均值定义,得EX =0•P (X =0)+1•P (X =1)=0•(1-p )+1•p =p .所以,服从参数为p 的两点分布的均值EX =p . 例2 设X 表示抛掷一枚均匀殷子掷出的点数,求EX . 解:依题意知X 的分布列为()()11234566P X i i ===,,,,, 如下表:根据均值的定义,可知11111171234566666662EX =⨯+⨯+⨯+⨯+⨯+⨯= .例3一个袋子里装有除颜色外完全相同的3个红球和2个黄球,从中同时取出2个球,则取出的红球个数的均值是多少?解:设X 表示取出红球的个数,则X 的取值为0,1,2.()023225C C 10C 10P X === , ()113225C C 631C 105P X ====,()203225C C 32C 10P X ===. 因此,X的分布列如下表:根据均值的定义,可知:1336012105105EX =⨯+⨯+⨯=. 总结:求离散型随机变量X 的均值的步骤: (1)理解X 的实际意义,写出X 全部可能取值; (2)求出X 取每个值时的概率; (3)写出X 的分布列;(4)利用定义公式E (X )=∑x i p i n i=1求出均值.例4 根据气象预报,某地区近期暴发小洪水的概率为0.25,暴发大洪水的概率为0.01.该地区某工地上有一台大型设备,为保护设备,有以下3种方案: 方案1:运走设备,搬运费为3800元.方案2:建一保护围墙,建设费为2000元,但围墙只能防小洪水.方案3:不采取措施,希望不发生洪水,此时遇到大洪水时要损失60 000元,遇到小洪水时要损失10 000元. 试比较哪一种方案好.解:用1X ,2X 和3X 分别表示以上3种方案的损失.采用方案1,无论有无洪水,都损失3 800元,即1X =3 800,故E 1X =3 800元. 采用方案2,遇到大洪水时,损失62 000元;没有大洪水时,损失2000元,因此 E 2X =62 000×0.01+2 000×(1-0.01)=2 600(元);采用方案3,遇到大洪水时,损失60 000元;遇到小洪水时,损失10000元;无洪水时,损失为0元,因此E 3X =60 000×0.01+10 000×0.25=3 100(元). 由此可见,就平均而言,方案2的损失最小. 思考3:为什么可以通过比较均值作出决策?答案:离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高,进而做出决策.四、课堂练习则数学期望E (X )=( ). A.13B. 23 C.1 D.22.甲、乙两名射手一次射击得分(分别用X 1,X 2表示)的分布列如下: 甲得分:乙得分:则甲、乙两人的射击技术相比( ).A .甲更好B .乙更好C .甲、乙一样好D .不可比较 3. “四书”是《大学》《中庸》《论语》《孟子》的合称,又称“四子书”,在世界文化史、思想史上地位极高,所载内容及哲学思想至今仍具有积极意义和参考价值.为弘扬中国优秀传统文化,某校计划开展“四书”经典诵读比赛活动.某班有4位同学参赛,每人从《大学》《中庸》《论语》《孟子》这4本书中选取1本进行准备,且各自选取的书均不相同.比赛时,若这4位同学从这4本书中随机抽取1本选择其中的内容诵读,则抽到自己准备的书的人数的均值为______.4.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X为小明的累计得分,求X的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 参考答案:1.由题意可知:1111232333EX =⨯+⨯+⨯=.故选D.2.因为E (X 1)=1×0.4+2×0.1+3×0.5=2.1,E (X 2)=1×0.1+2×0.6+3×0.3=2.2,所以E (X 2)>E (X 1),故乙的射击技术更好.故选:B .3.记抽到自己准备的书的学生数为X,则X可能值为0,1,2,4 ()1344C 390A 24P X ⨯===,()1444C 281A 24P X ⨯===,()2444C 162A 24P X ⨯===,()44114A 24P X ===, 则98610124124242424EX =⨯+⨯+⨯+⨯=. 4.(1)由题可知,X的所有可能取值为0,20,100.P (X=0)=1-0.8=0.2; P (X=20)=0.8(1-0.6)=0.32; P (X=100)=0.8×0.6=0.48. 所以X的分布列为(2)由(1)知,E (X )=0×0.2+20×0.32+100×0.48=54.4.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100. P (Y =0)=1-0.6=0.4; P (Y =80)=0.6(1-0.8)=0.12; P (Y =100)=0.8×0.6=0.48.所以E (Y )=0×0.4+80×0.12+100×0.48=54.4.. 因为54.4<57.6,所以小明应选择先回答B 类问题.五、归纳小结【课堂小结】1. 离散型随机变量均值的概念:则称1122i i n n EX x p x p x p x p =+++++为随机变量X 的均值或者数学期望(简称期望).2.求离散型随机变量X 的均值的步骤: (1)理解X 的实际意义,写出X 全部可能取值; (2)求出X 取每个值时的概率; (3)写出X 的分布列;(4)利用定义公式E (X )=∑x i p i n i=1求出均值.六、布置作业教材第200页练习第1~3题.。
原创1:2.3.1 离散型随机变量的均值(习题课)
7
a
7
∵E(Y)= ,∴- +3= ,
3
3
3
∴a=2.
两点分布与二项分布的均值
例4.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保
险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X
3
27
32 (21 43 +42 22 ൯
P(ξ=2)=
34
=
14
,
27
P(ξ=3)=
3 42 2
34
4
=
9
8
.
27
典例解析
综上知,ξ的分布列
ξ
1
2
3
P
1
27
14
27
4
9
1
14
4 65
从而有:Eξ=1× +2× +3× = .
27
27
9 27
典例解析
例2.某学校为调查高一年级学生每天晚自习自主支配学习时间(指除了完成
第二章
随机变量及其分布
§2.3.1离散型随机变量的均值(习题课)
高中数学选修2-3·精品课件
自主练习
1.若随机变量X的分布列如下表所示,已知E(X)=1.6,则a-b=(
X
0
1
2
3
P
0.1
a
b
0.1
A. 0.2
B.0.1
C.-0.2
D.-0.4
)
解析:由题意知,a+b=0.8,
且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
知识与技能
(1)理解离散型随机变量均值的概念; (2)会计算简单的离散型随机变量的均值,并解决一
些实际问题 .
过程与方法
(1)理解公式“E(aξ+b)=aEξ+b”,以及“若ξ
B(n,p),则Eξ=np”;
那你的平均成绩是多少?
问题:某人射击10次,所得环数分别是:1,1,1, 1,2,2,2,3,3,4;则所得的平均环数是多少?
加权平均
X 1111222334 2 10
把环数看成随机变量的概率分布列:
权数
4
3
2
1
10
10
10
10
X 1 4 2 3 3 2 4 1 2 10 10 10 10
解:该随机变量X服从两点分布: P(X=1)=0.7、P(X=0)=0.3
所以:EX=1×P(X=1)+0×P(X=0)=0.7
如果随机变量X服从两点分布, 那么 EX= p
探究
• 如果我们只关心他是否打中10环, 则在他5次射击中,打中10环的次数 设为X,则求X的均值。
如果X服从二项分布,则EX=?
EY2=E(5X2)=5EX2=25
思考
甲同学一定会得90分吗?
不一定.他的成绩是一个随机变量,可能取 值为0,5,10, …,95,100.这个随机变量的均值为90
分.其含义是在多次类似的考试中,他的平均成绩大 约是90分.
数学期望小结
• EX表示X所表示的随机变量的均值; • E(aX+b)=aEX+b • 两点分布:EX= p • 二项分布:EX= n p • 求数学期望时:
2.3.1 离散型随机 变量的均值
数学期望
引入
• 对于离散型随机变量,可以由它的概率分布列确 定与该随机变量相关事件的概率。但在实际问题 中,有时我们更感兴趣的是随机变量的某些数字 特征。例如,要了解某班同学在一次数学测验中 的总体水平,很重要的是看平均分;要了解某班 同学数学成绩是否“两极分化”则需要考察这个 班数学成绩的方差。
P( X k ) Cnk pk qnk
kCnk nCnk11
EX 0 Cn0 p0qn 1 Cn1 pqn1 ... n Cnn pnq0 1 Cn1 pqn1 2 Cn2 p2qn2 ... n Cnn pnq0 np
若X~B (n,p),则 EX= n p
例2
• 一次单元测验由20个选择题构成,每个选 择题有4个选项,其中仅有一个选项是正 确的。每题选对得5分,不选或选错不得 分,满分100分。学生甲选对任意一题的 概率为0.9,学生乙则在测验中对每题都 从各选项中随机地选出一个,分别求学生 甲和学生乙在这次测验中的成绩的均值。
(2)能熟练地应用它们求相应的离散型随机变量的均
值或期望.
情感、态度与价值观
承前启后,感悟数学与生活的和谐之美 ,体现数学的文 化功能与人文价值.
教学重难点
重点
离散型随机变量的均值或期望 的概念.
难点
根据离散型随机变量的分布列求 出均值或期望 .
算术平均数
• 如果你期中考试各门成绩为: 90、80、77、68、85、91
代表X的平均取值
数学期望
若离散型随机变量X的分布列为:
则称:
EX=x1p1+x2p2+…+xipi+…+xnpn
为随机变量X的均值或数学期望。 •它反映了离散型随机变量取值的平均水平。
理解概念
X的分布列
3
2
1
6
6
6
随机变量X的均值与 X可能取值的算术平
均数相同吗
EX 18 3 24 2 36 1 23
··· pn
EY (ax1 b) p1 (ax2 b) p2 (axn b) pn
a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
aEX b
例1
• 在篮球比赛中,如果某运动员罚球命中 的概率为0.7,那么他罚球一次得分设 为X,X的均值是多少?
假如从这种混合糖果中随机选取一颗,记X为这颗 糖果所属种类的单价(元 kg),你能写出X的分布列吗?
• 现在混合糖果中任取一个,它的实际 价格用X表示,X的分布列为:
X 18
1
P
2
24
1 3
36
1 6
1
1
1
合理价格=18× 2 +24× 3 +36× 6
=18×P(X=18)+24×P(X=24)+36×P(X=36)
加权平均数
• 权是称锤,权数是起权衡轻重的作 用的数值;
• 加权平均:计算若干数量的平均数 时,考虑到每个数量在总量中所具 有的重要性不同,分别给予不同的 权数。
18元/kg
24元/kg
36元/kg
•
按3:2:1的比例混合
• 混合糖果中每一粒糖果的质量都相等
• 如何给混合糖果定价才合理?定价为
可以吗 18+24+36 26 3
1. 已知是两点分布或二项分布,直接代用公式; 2. 其它分布的随机变量,先画出分布列,在对应求值。
作业
• 课本64页练习2、3、4、5; • 69页B组第1题。
6
6
6
X可能取值的算术平均数为18
24 3
36
26
随机变量x的均值与x可能 取值的算术平均数何时相等
随机抛掷一个骰子,求所得骰子的点数X的均值
111 1 666 6
11 66
EX1 1 1 2 1 ... 6 1 7
6
6
6
62
X可能取值的算术平均数为 1 2 ... 6 7
6
2
期望的线性性质
• 若X是一个随机变量,则 Y=aX+b
仍然是一个随机变量,其中a、b是常数。
• EY=E(aX+b)=aEX+b
X x1 x2 ··· xi ··· xn
P p1 p2 ··· pi ··· pn
X x1
Y ax1 b
P p1
x2
ax2 b
p2
··· xi ··· axi b
··· pi
··· xn ···axn b
解:设X1表示甲选对的题数、X2表示乙选对的题数 它们都满足二项分布:
X1~B(20,0.9)
X2~B(20,0.25)
所以:EX1= n p =20×0.9=18
EX2= n p =20×0.25=5
甲所得分数的均值为:18×5=90
乙所得分数的均值为: 5×5=25
解Байду номын сангаас设Y1表示甲所得分数、Y2表示乙所得分数 则Y1=5X1 Y2=5X2 所以:EY1=E(5X1)=5EX1=90