龙格_库塔法的级数与阶数

合集下载

龙格库塔法解微分方程组

龙格库塔法解微分方程组

龙格库塔法解微分方程组引言微分方程组是数学中经常遇到的问题,在物理、工程和自然科学中都有广泛的应用。

为了求解微分方程组,我们需要利用数值方法来逼近解析解。

本文将介绍一种常用的数值方法——龙格库塔法(Runge-Kutta method),并探讨如何利用该方法来解微分方程组。

龙格库塔法概述龙格库塔法是一种迭代数值方法,用于求解常微分方程的初值问题。

它的主要思想是将微分方程的解进行离散化,将其转化为一系列的逼近值。

龙格库塔法的基本步骤如下:1.确定步长h和迭代次数n。

2.初始化初始条件,并假设第一个逼近值为y(xi)。

3.依次计算每个逼近值,直到得到y(xi+n*h)为止。

在每个迭代步骤中,龙格库塔法根据前一步的逼近值来计算下一步的逼近值。

该方法具有高阶精度和较好的稳定性,在实际应用中广泛使用。

单一微分方程的龙格库塔法首先,我们来看如何利用龙格库塔法来解一阶常微分方程。

以方程dy/dx = f(x, y)为例,其中f(x, y)为给定的函数。

步骤一:确定步长和迭代次数选择合适的步长h和迭代次数n来进行数值计算。

步长h决定了离散化的精度,而迭代次数n决定了逼近解的数目。

步骤二:初始化条件并计算逼近值设初始条件为y(x0) = y0,其中x0为起始点,y0为起始点处的函数值。

我们先通过欧拉法计算出y(x0 + h)的逼近值,然后再通过该逼近值来计算下一个逼近值。

逼近值的计算公式如下:k1 = h * f(x0, y0)k2 = h * f(x0 + h/2, y0 + k1/2)k3 = h * f(x0 + h/2, y0 + k2/2)k4 = h * f(x0 + h, y0 + k3)y(x0 + h) = y0 + 1/6 * (k1 + 2k2 + 2k3 + k4)步骤三:重复步骤二直到得到y(xi+n*h)依次利用上一步计算出的逼近值来计算下一个逼近值,直到得到y(xi+n*h)为止。

微分方程组的龙格库塔法对于一阶微分方程组的初值问题,我们可以将其转化为向量形式。

龙格库塔积分算法

龙格库塔积分算法

龙格库塔法龙格库塔法是常用于模拟常微分方程的解的重要的一类隐式或显式迭代法。

这些技术由数学家C. Runge和M.W. Kutta于1900年左右发明。

由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。

龙格库塔法是一种在工程上应用广泛的高精度单步算法,可以应用在物理、工程、控制、动力学中,如模糊控制、弹道分析以及分析光纤特性等,在系统仿真中得到广泛应用。

龙格库塔法源自于相应的泰勒级数方法,在每一插值节点用泰勒级数展开,其截断误差阶数也是,根据可省略更高阶的导数计算, 这种方法可构造任意阶数的龙格库塔法。

其中4 阶龙格库塔法是最常用的一种方法。

因为它相当精确、稳定、容易编程。

在计算中一般不必使用高阶方法, 因为附加的计算误差可由增加精度来弥补。

如果需要较高的精度, 可采取减小步长的方法即可。

4 阶龙格库塔法的精度类似4 阶泰勒级数法的精度。

1、初值问题对于一阶常微分方程的初值问题根据常微分方程的理论可知,此初值问题的解在区间[a,b]上存在,且唯一。

2、离散化取步长h=(b-a)/n,将区间[a , b]分成n个子区间:a=<=b在其中任意两点的曲线段上,根据积分中值定理,一段光滑曲线上至少有一点,它的斜率与整段曲线的平均斜率相同,得=y’() (0<<1)其中,=可以将上式改写成y()=y()+h*K (2.1)其中K为平均斜率,K=f()公式(2.1)表明,如果能够确定平均斜率K,就可以根据(2.1)式得到y()的值。

欧拉法和龙格库塔法就是用不同方法确定不同精度的平均斜率K,从而求得y()的近似值。

3、Euler法欧拉法虽然精度低,但它是最简单的一种显式单步法,也是龙格库塔法的基础。

首先,令、为y() 及y()的近似值,并且令平均斜率K=f(),即以点的斜率作为平均斜率K,便得到欧拉公式=+h* f() (3.1)4、改进的欧拉法此种方法是取、两点的斜率的平均值作为平均斜率K,即K= ,其中、均为y()以及y()的近似值,就得到改进后的欧拉公式(4.1)其中、分别为、两点的斜率值,即= ,=在上面的(4.1)式中,k2是未知的,采用一种叫预报法的方法来求解。

龙格库塔

龙格库塔

数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。

这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。

经典四阶龙格库塔法龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。

令初值问题表述如下。

则,对于该问题的RK4由如下方程给出:其中这样,下一个值(y n+1)由现在的值(y n)加上时间间隔(h)和一个估算的斜率的乘积决定。

该斜率是以下斜率的加权平均:∙k1是时间段开始时的斜率;∙k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点t n + h/2的值;∙k3也是中点的斜率,但是这次采用斜率k2决定y值;∙k4是时间段终点的斜率,其y值用k3决定。

当四个斜率取平均时,中点的斜率有更大的权值:RK4法是四阶方法,也就是说每步的误差是h5阶,而总积累误差为h4阶。

注意上述公式对于标量或者向量函数(y可以是向量)都适用。

显式龙格库塔法显示龙格-库塔法是上述RK4法的一个推广。

它由下式给出其中如果要求方法有精度p则还有相应的条件,也就是要求舍入误差为O(h p+1)时的条件。

这些可以从舍入误差本身的定义中导出。

例如,一个2阶精度的2段方法要求b1 + b2 = 1, b2c2 = 1/2, 以及b2a21 = 1/2。

在Matlab下输入:edit,然后将下面两行百分号之间的内容,复制进去,保存%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%function dxdt=ode_Miss_ghost(t,x)%分别用x(1),x(2),x(3),x(4)代替N1,P1,N2,P2N1=x(1);P1=x(2);N2=x(3);P2=x(4);K=2;tau_c=3e-9;tan_p=6e-12;beta =5e-5;delta=0.692;eta =0.0001;fm =8e6;Ith =26e-3;Ib =1.5*Ith;Im =0.3*Ith;I1=Ib+Im*sin(2*pi*fm*t)+K*P2;I2=Ib+Im*sin(2*pi*fm*t)+K*P1;dxdt=[(I1/Ith-N1-(N1-delta)/(1-delta)*P1)/tau_e;((N1-delta)/(1-delta)*(1-eta*P1)*P1-P1+beta*N1)/tau_p;(I2/Ith-N2-(N2-delta)/(1-delta)*P2)/tau_e;((N2-delta)/(1-delta)*(1-eta*P2)*P2-P2+beta*N2)/tau_p;]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%在Matlab下面输入:t_start=0;t_end=2e-9;y0=[1e-3;1e-4;0;0]; %初值[x,y]=ode15s('ode_Miss_ghost',[0,t_end],y0);plot(x,y);legend('N1','P1','N2','P2');xlabel('x');Mathlab定步长龙格-库塔法[345阶]、自适应步长rkf45经常看到很多朋友问定步长的龙格库塔法设置问题,下面吧定步长三阶、四阶、五阶龙格库塔程序贴出来,有需要的可以看看ODE3 三阶龙格-库塔法CODE:function Y = ode3(odefun,tspan,y0,varargin)%ODE3 Solve differential equations with a non-adaptive method of order 3.% Y = ODE3(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates% the system of differential equations y' = f(t,y) by stepping from T0 to% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.% The vector Y0 is the initial conditions at T0. Each row in the solution% array Y corresponds to a time specified in TSPAN.%% Y = ODE3(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters% P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).%% This is a non-adaptive solver. The step sequence is determined by TSPAN% but the derivative function ODEFUN is evaluated multiple times per step.% The solver implements the Bogacki-Shampine Runge-Kutta method of order 3.%% Example% tspan = 0:0.1:20;% y = ode3(@vdp1,tspan,[2 0]);% plot(tspan,y(:,1));% solves the system y' = vdp1(t,y) with a constant step size of 0.1, % and plots the first component of the solution.%if ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(y0)error('Y0 should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.')endtryf0 = feval(odefun,tspan(1),y0,varargin{:});catchmsg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];error(msg);endy0 = y0(:); % Make a column vector.if ~isequal(size(y0),size(f0))error('Inconsistent sizes of Y0 and f(t0,y0).');endneq = length(y0);N = length(tspan);Y = zeros(neq,N);F = zeros(neq,3);Y(:,1) = y0;for i = 2:Nti = tspan(i-1);hi = h(i-1);yi = Y(:,i-1);F(:,1) = feval(odefun,ti,yi,varargin{:});F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});F(:,3) = feval(odefun,ti+0.75*hi,yi+0.75*hi*F(:,2),varargin{:});Y(:,i) = yi + (hi/9)*(2*F(:,1) + 3*F(:,2) + 4*F(:,3));endY = Y.';ODE4 四阶龙格-库塔法CODE:function Y = ode4(odefun,tspan,y0,varargin)%ODE4 Solve differential equations with a non-adaptive method of order 4.% Y = ODE4(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates % the system of differential equations y' = f(t,y) by stepping from T0 to% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.% The vector Y0 is the initial conditions at T0. Each row in the solution% array Y corresponds to a time specified in TSPAN.%% Y = ODE4(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters % P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).%% This is a non-adaptive solver. The step sequence is determined by TSPAN % but the derivative function ODEFUN is evaluated multiple times per step.% The solver implements the classical Runge-Kutta method of order 4.%% Example% tspan = 0:0.1:20;% y = ode4(@vdp1,tspan,[2 0]);% plot(tspan,y(:,1));% solves the system y' = vdp1(t,y) with a constant step size of 0.1,% and plots the first component of the solution.%if ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(y0)error('Y0 should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.')endtryf0 = feval(odefun,tspan(1),y0,varargin{:});catchmsg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr]; error(msg);endy0 = y0(:); % Make a column vector.if ~isequal(size(y0),size(f0))error('Inconsistent sizes of Y0 and f(t0,y0).');endneq = length(y0);N = length(tspan);Y = zeros(neq,N);F = zeros(neq,4);Y(:,1) = y0;for i = 2:Nti = tspan(i-1);hi = h(i-1);yi = Y(:,i-1);F(:,1) = feval(odefun,ti,yi,varargin{:});F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:}); F(:,3) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:}); F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));endY = Y.';定步长RK4(自编):CODE:function Y=RungeKutta4(f,xn,y0)% xn=0:.1:1;% y0=1;% y_n=[];% f=@(X1,Y1) Y1-2*X1/Y1;y_n=[];h=diff(xn(1:2));for i=1:length(xn)-1K1=f(xn(i),y0);K2=f(xn(i)+h/2,y0+h*K1/2);K3=f(xn(i)+h/2,y0+h*K2/2);K4=f(xn(i)+h,y0+h*K3);y_n=[y_n;y0+h/6*(K1+2*K2+2*K3+K4)];y0=y_n(end);endY=y_n;ODE5 五阶龙格-库塔法CODE:function Y = ode5(odefun,tspan,y0,varargin)%ODE5 Solve differential equations with a non-adaptive method of order 5.% Y = ODE5(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates % the system of differential equations y' = f(t,y) by stepping from T0 to% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.% The vector Y0 is the initial conditions at T0. Each row in the solution% array Y corresponds to a time specified in TSPAN.%% Y = ODE5(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters % P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).%% This is a non-adaptive solver. The step sequence is determined by TSPAN % but the derivative function ODEFUN is evaluated multiple times per step.% The solver implements the Dormand-Prince method of order 5 in a general % framework of explicit Runge-Kutta methods.%% Example% tspan = 0:0.1:20;% y = ode5(@vdp1,tspan,[2 0]);% plot(tspan,y(:,1));% solves the system y' = vdp1(t,y) with a constant step size of 0.1,% and plots the first component of the solution.if ~isnumeric(tspan)error('TSPAN should be a vector of integration steps.');endif ~isnumeric(y0)error('Y0 should be a vector of initial conditions.');endh = diff(tspan);if any(sign(h(1))*h <= 0)error('Entries of TSPAN are not in order.')endtryf0 = feval(odefun,tspan(1),y0,varargin{:});catchmsg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];error(msg);endy0 = y0(:); % Make a column vector.if ~isequal(size(y0),size(f0))error('Inconsistent sizes of Y0 and f(t0,y0).');endneq = length(y0);N = length(tspan);Y = zeros(neq,N);% Method coefficients -- Butcher's tableau%% C | A% --+---% | BC = [1/5; 3/10; 4/5; 8/9; 1];A = [ 1/5, 0, 0, 0, 03/40, 9/40, 0, 0, 044/45 -56/15, 32/9, 0, 019372/6561, -25360/2187, 64448/6561, -212/729, 0 9017/3168, -355/33, 46732/5247, 49/176, -5103/18656];B = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84]; % More convenient storageA = A.';B = B(:);nstages = length(B);F = zeros(neq,nstages);Y(:,1) = y0;for i = 2:Nti = tspan(i-1);hi = h(i-1);yi = Y(:,i-1);% General explicit Runge-Kutta frameworkF(:,1) = feval(odefun,ti,yi,varargin{:});for stage = 2:nstageststage = ti + C(stage-1)*hi;ystage = yi + F(:,1:stage-1)*(hi*A(1:stage-1,stage-1));F(:,stage) = feval(odefun,tstage,ystage,varargin{:});endY(:,i) = yi + F*(hi*B);endY = Y.';-------------------------------------------------------------------------------------------------------------------自适应步长RKF45(相当于ode45)ODE45 是4阶方法提供候选解,5阶方法控制误差。

龙格库塔法介绍

龙格库塔法介绍

yn
hf
(xn, yn ))],
(x, y,h) 1[ f (x, y) f (x h, y hf (x, y))],
2
|
( x,
y1,
h)


(x,
y2 ,
h)
|
[L
2

L 2
(1
hL)]
|
y1

y2
|,
L

L(1
h0L),h 2

h0.
类似地,不难验证其他龙格 库塔方法的收敛性.
这里c1,c2,c3,2,3, 21, 31, 32均为待定参数.
Tn1 y(xn1) yn1 O(h4 )
(3.11)
c1 c2 c3 1

2

21
3 31 32
c22

c33

1 2
cc232223c2332
将步长折半,从xn用两步求xn1处的近似值,则有
y(xn1)

h
yn21

2c
h 2
5
.
从而
h
y ( xn 1) y ( xn 1)

yn21 ynh1

1, 16
得到事后估计式:
y ( xn 1)

h
yn21

1 15
(
h
yn21

ynh1).
通过检查步长折半前后计算结果的偏差,
y(x) (x, y(x),0) 0 p 1 单步法(4.1)收敛. 定义4 若单步法(4.1)增量函数(x, y,h)是否满足

龙格库塔方法理解及应用

龙格库塔方法理解及应用

龙格库塔方法理解及应用龙格库塔方法是一种常用的数值解微分方程的方法,也是许多科学、工程和经济领域中常用的算法之一。

本文将介绍龙格库塔方法的原理及其应用。

一、龙格库塔方法原理在计算微分方程时,往往需要对方程进行离散化,采用数值方法处理。

龙格库塔方法(Runge-Kutta method)就是一种离散化的数值方法,其原理可以概括为:通过相应的递推公式,将微分方程在离散时间点上进行逼近,从而得到近似的解。

具体来说,假设要求解如下形式的一阶常微分方程:$$ y'=f(t,y) $$其中,$f(t,y)$是已知的函数,$y(t)$是未知函数,并且已知初值$y(t_0)=y_0$。

为了离散化这个方程,我们可以采用以下的递推公式:$$ \begin{aligned} y_1 &=y_0 + h\varphi_1 \\ y_2 &=y_0 +h\varphi_2 \\ \cdots &=\cdots \\ y_n &=y_0 + h\varphi_n \end{aligned} $$其中,$h$是离散时间点的时间步长,$t_n=t_0+nh$,$\varphi_i$是与$t_i$有关的递推公式。

根据龙格库塔方法的不同级别,$\varphi_i$也有不同的形式。

二、龙格库塔方法的应用由于龙格库塔方法的较高精度和鲁棒性,以及易于实现等特点,它在各个领域都有着广泛的应用。

1. 数学领域在数学领域,龙格库塔方法可以用于求解常微分方程、偏微分方程、常微分方程组等等,特别是对于复杂的高阶微分方程,龙格库塔方法更是可以发挥其优势。

2. 物理学领域在物理学领域,各种微分方程是研究物理过程的基础。

龙格库塔方法在求解各种物理问题时也得到了广泛的应用,如天体力学、流体力学、电磁场问题等等。

3. 经济学领域在经济学领域,许多经济问题可以通过微分方程的形式进行建模,并采用龙格库塔方法进行数值求解。

龙格库塔法

龙格库塔法
a2c2h2 fx b21c2h2 ff y O(hБайду номын сангаас)
2020/4/25
10
令 y(xi1) yi1 对应项的系数相等,得到
c1 c2 1 ,
a2c2
1 2
,
b21c2
1 2
这里有 4 个未知 数,3 个方程。
存在无穷多个解。所有满足上式的格式统称为2阶龙格 - 库塔格式。
2020/4/25
• 1.在运动流体的整个空间,可绘出一系列的流线,称为流 线簇。流线簇的疏密程度反映了该时刻流场中速度的不同。 2.当为非定常流时,流线的形状随时间改变:对于定常流, 流线的形状和位置不随时间而变化。 3.定常流的流线和迹线重合。 4.一般情况下,流线不能相交,不能折转,只能是一条光 滑曲线。
龙格库塔法
2020/4/25
5
引入记号
y(xi1) y(xi ) K
K hy(i) hf i, y(i)
yi1 yi K
K可以认为是y y(x)在区间[xi , xi1]上的平均斜率
y
只要使用适当的方法求 出y(x)在区
y y(x)
间[xi , xi1]上平均斜率的近似值 K
K
就可得到相应的Runge-Kutta方法
2!
3!
4!
2020/4/25
20
龙格—库塔方法的推导基于Taylor展开方法,因而它要求所求的解具有
较好的光滑性。如果解的光滑性差,那么,使用四阶龙格—库塔方法求得的数 值解,其精度可能反而不如改进的欧拉方法。在实际计算时,应当针对问题的 具体特点选择合适的算法。对于光滑性不太好的解,最好采用低阶算法而将步 长h 取小。
23 4 5 6

四阶龙格——库塔法

四阶龙格——库塔法

2013-2014(1)专业课程实践论文题目:四阶龙格—库塔法一、算法理论由定义可知,一种数值方法的精度与局部截断误差()po h 有关,用一阶泰勒展开式近似函数得到欧拉方法,其局部截断误差为一阶泰勒余项2()o h ,故是一阶方法,完全类似地若用p 阶泰勒展开式2'''()11()()()......()()2!!pp p n n n n n h h y y x hy x y x y x O h p ++=+++++ 进行离散化,所得计算公式必为p 阶方法,式中'''''()(,),()(,)(,)(,)....x y x f x y y x f x y f x y f x y ==++由此,我们能够想到,通过提高泰勒展开式的阶数,可以得到高精度的数值方法,从理论上讲,只要微分方程的解()y x 充分光滑,泰勒展开方法可以构造任意的有限阶的计算公式,但事实上,具体构造这种公式往往相当困难,因为符合函数(,())f x y x 的高阶导数常常是很烦琐的,因此,泰勒展开方法一般不直接使用,但是我们可以间接使用泰勒展开方法,求得高精度的计算方法。

首先,我们对欧拉公式和改进欧拉公式的形式作进一步的分析。

如果将欧拉公式和改进的欧拉公式改写成如下的形式:欧拉公式{111(,)n n n n y y hK K f x y +==+改进的欧拉公式11211()22n n y y h K K +=++, 1(,)n n K f x y =,21(,)n n K f x h y hK =++。

这两组公式都是用函数(,)f x y 在某些点上的值的线性组合来计算1()n y x +的近似值1n y +,欧拉公式每前进一步,就计算一次(,)f x y 的值。

另一方面它是1()n y x +在n x 处的一阶泰勒展开式,因而是一阶方法。

改进的欧拉公式每前进一步,需要计算两次(,)f x y 的值。

(完整版)第二节龙格-库塔方法

(完整版)第二节龙格-库塔方法
en1 en h[( xn , y( xn ), h) ( xn , yn , h)] Tn1
因为单步法是 p阶的:h0 , 0 h h0 满足| Tn1 | Chp1
| en1 || en | hL | en | Ch p1 | en |
其中 1 hL, Ch p1
en O(hp )
即取
K * 1K1 2 K2 yi1 yi h(1K1 2 K2 )
其中1 和 2 是待定常数。若取 K1 f ( xi , yi ) ,则
问题在于如何确定 xi p 处的斜率 K2 和常数 1 和 2 。
仿照改进的欧拉方法,用欧拉方法预测 y( xi p ) 的值,
yi p yi phK1
k2
f ( xn
h 2
,
yn
h 2 k1)
hh k3 f ( xn 2 , yn 2 k2 )
k4 f ( xn h, yn hk3 )
例2:用经典的龙格-库塔方法
求解下列初值问题 h 0.1
dy 。 dx
y
2x y
x (0,1)
解:经典的四阶龙格-库塔公式: y(0) 1
E(h) 1 h
绝对稳定域: 1 h 1
当 R 时, 1 h 1 2 h 0
绝对稳定区间:(2, 0)
❖经典的R-K公式:yn1
yn
h 6
(k1
2k2
2k3
k4 )
k1 f ( xn , yn ) yn
k2
f
(
yn1 yn hf ( xn , yn )
n1 yn1 yn1
n1 n h[ f ( xn , yn ) f ( xn , yn )] [1 hf y ( xn , )]n

龙格库塔法

龙格库塔法

c1
c2
1
0,
1 2
c2
0
即常数c1, c2 , 满足条件
c1 c2 1
c2
1 2
方程组有三个未知数,但只有两个方程,因此可得到
局部截断误差为O(h3 )的计算公式.
如果取c1
c2
1 ,
2
1,递推公式为
y0
k1 f (ti , yi )
k2 f (ti h, yi hk1)
yi
代入上式, 得
yi1 yi h(c1 f c2 f ) c2h( ft ffy ) O(h2 )
在局部截断误差的前提假设yi y(ti )下,得
y(ti1)
yi1
h(c1
c2
1)
f
h2(1 2
c2 )( ft
ffy ) O(h3)
要使局部截断误差y(ti1) yi1 O(h3 ),当且仅当
§9-3 龙格—库塔法
一、高阶泰勒法
假设初值问题
dy f (t, y) a t b dt
(1)
y(a)
的解y(t)及f (t, y)足够光滑.
将y(ti1)在ti处作n阶泰勒展开 , 得
y(ti1)
y(ti )
y(ti )h
y(ti ) h2 2!
y(n) (ti ) hn n!
y(n1) (i ) hn1
f
(ti
1 2
h,
yi
1 2 hk1)
(10)
yi1 yi hk2 )
公式(8)、(9)、(10)三式是三种常见的二阶龙格—库塔公式
局部截断误差为 O(h3).
三、三、四阶龙格—库塔法
三阶龙格—库塔法

龙格-库塔(Runge-Kutta)方法

龙格-库塔(Runge-Kutta)方法
证明:
( )
dy dy y′ = = f, y′′ = f x + f y = f x + ffy = F dx dx F F dy F F y′′′ = + = +f x y dx x y F = f xx + f x f y + ffyx = f xx + f x f y + ffxy x F 2 2 f = f(fxy + f y f y + ffyy ) = ffxy + ffy + f f yy y
y ( x) = e

x2

x
0
e dt
t2

x
0
e dt 难以求积
t2
ODE数值解的基本思想和方法特点 数值解的基本思想和方法特点
1. 离散化 级数、 用Taylor级数、数值积分和差商逼近导数, 级数 数值积分和差商逼近导数, 将 ODE转化为离散的代数方程 称差分方程 。 转化为离散的代数方程(称差分方程 转化为离散的代数方程 称差分方程)。
(ha2 ) + (ha3 ) +
f 2 2! x
2 2 2
(ha f ) +
2
2
K3 f + ha3 f x + h (a3 b32 ) f + b32 K2 f y 2! 2! + h2a3 (a3 b32 ) f + b32 K2 f xy f xx + h (a3 b32 ) f + b32 K2
2
Euler法 后退 法 ym+1 = ym + hK2 + O(h2 ) K2 = f ( xm + h, ym+1 )

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

函数功能ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。

ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)³。

解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.使用方法[T,Y] = ode45(odefun,tspan,y0)odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf]y0 是初始值向量T 返回列向量的时间点Y 返回对应T的求解列向量[T,Y] = ode45(odefun,tspan,y0,options)options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)在设置了事件参数后的对应输出TE 事件发生时间YE 事件解决时间IE 事件消失时间sol =ode45(odefun,[t0 tf],y0...)sol 结构体输出结果应用举例1 求解一阶常微分方程程序:一阶常微分方程odefun=@(t,y) (y+3*t)/t^2; %定义函数tspan=[1 4]; %求解区间y0=-2; %初值[t,y]=ode45(odefun,tspan,y0);plot(t,y) %作图title('t^2y''=y+3t,y(1)=-2,1<t<4')legend('t^2y''=y+3t')xlabel('t')ylabel('y')% 精确解% dsolve('t^2*Dy=y+3*t','y(1)=-2')% ans =一阶求解结果图% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t)2 求解高阶常微分方程关键是将高阶转为一阶,odefun的书写.F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量dxdy=[y(1),y(2)....]程序:function Testode45tspan=[3.9 4.0]; %求解区间y0=[2 8]; %初值[t,x]=ode45(@odefun,tspan,y0);plot(t,x(:,1),'-o',t,x(:,2),'-*')legend('y1','y2')title('y'' ''=-t*y + e^t*y'' +3sin2t')xlabel('t')ylabel('y')function y=odefun(t,x)y=zeros(2,1); % 列向量y(1)=x(2);y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);endend高阶求解结果图相关函数ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tbMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

第3讲(龙格-库塔方法)

第3讲(龙格-库塔方法)
h f yi [ f ( x i , yi ) f ( xi , yi ) ( x i , yi ) h 2 x f ( xi , yi ) h f ( xi , yi ) O( h2 )] y
易见,它与二阶泰勒级数方法仅相差 O( h3 )!
这一分析给我们提供了一个重要信息,那就是 我们所遇到的泰勒级数方法中求导数的困难是可以 克服的,改进的欧拉方法就没有用到导数,而是借 助于函数在某些点处的值 (复合函数的思想)。
又 y( x ) df ( x , y( x )) f x f y y f x f y f dx
故二阶泰勒级数方法为 h2 yi 1 yi h f ( xi , yi ) ( f x ( xi , yi ) f ( xi , yi ) f y ( xi , yi )) 2! 更高阶方法更复杂,主要是求导复杂!
yi 1
h2 hk ( k ) yi h y y yi i i 2! k!
这样的数值方法称为k 阶泰勒级数方法。
yi 1
h2 hk ( k ) yi h y y yi i i 2! k!
泰勒级数方法也是单步法,且其局部截断误差为
h2 hk ( k ) LTE y( xi 1 ) y( xi ) hy( xi ) y( xi ) y ( x i ) 2! k!
第二节 龙格-库塔方法
(Runge-Kutta)
根据局部截断误差与整体误差的关系可知, 局部截断误差的阶是衡量一个方法优劣的重要依据。 考虑用提高局部截断误差的阶来提高数值方法的 精度。 泰勒级数法 龙格―库塔方法
一、泰勒级数方法
d y f ( x, y ), x I 如果初值问题 d x 的精确解 y(x) 在 I y( x ) y 0 0

常微分方程初值问题的数值解法

常微分方程初值问题的数值解法

常微分方程初值问题的数值解法在实际应用中,对于某些微分方程,我们并不能直接给出其解析解,需要通过数值方法来求得其近似解,以便更好地理解和掌握现象的本质。

常微分方程初值问题(IVP)即为一种最常见的微分方程求解问题,其求解方法有多种,本文将对常微分方程初值问题的数值解法进行较为详细的介绍。

一、欧拉法欧拉法是最基本的一种数值解法,它采用泰勒级数展开并截断低阶项,从而获得一个差分方程近似求解。

具体来讲,设 t 为独立变量,y(t) 为函数 y 关于 t 的函数,方程为:$$y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$$其中 f(t,y(t)) 为已知的函数,y(t_0) 为已知的初值。

将函数 y(t) 进行泰勒级数展开:$$y(t+h) = y(t) + hf(t, y(t)) + O(h^2)$$其中 h 表示步长,O(h^2) 表示其他高阶项。

为了使误差较小,一般取步长 h 尽可能小,于是我们可以用欧拉公式表示数值解:$$y_{n+1} = y_n + hf(t_n, y_n), \qquad y_0 = y(t_0)$$欧拉法的优点是容易理解和实现,但是由于截取低阶项且使用的单步法,所以误差较大,精度较低,在具体应用时需要慎重考虑。

二、龙格-库塔法龙格-库塔法(Runge-Kutta method)是一种多步法,比欧拉法更加精确。

龙格-库塔法的主要思想是使用不同的插值多项式来计算近似解,并且将时间步长分解,每次计算需要多次求解。

以下简要介绍二阶和四阶龙格-库塔法。

二阶龙格-库塔法将时间步长 h 分解成两步 h/2,得到近似解表达式:$$\begin{aligned} k_1 &= hf(t_n, y_n)\\ k_2 &= hf(t_n+h/2,y_n+k_1/2)\\ y_{n+1} &= y_n+k_2+O(h^3)\\ \end{aligned}$$四阶龙格-库塔法四阶龙格-库塔法是龙格-库塔法中应用最为广泛的一种方法,其需要计算的中间值较多,但是具有更高的精度。

龙格-库塔法,求解常微分方程

龙格-库塔法,求解常微分方程

隆格库塔法求解常微分方程摘要科学技术中常常需要求解常微分方程的定解问题,这里问题最简单的形式,是本章将着重考察的一阶方程的初值问题.虽然求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些特殊类型的方程,实际问题中归结出来的微分方程主要靠数值解法求解.本文着重讨论了隆格库塔法求解一阶常微分方程的初值问题,采用了精度较高的经典的四阶隆格库塔法,然后通过对实例运用Matlab编程进行计算求解,为了体现计算结果的精确性和方法的优越性,再采用了欧拉法和预估较正法对实例进行计算求解作为比较.通过比较三种方法的计算精度,发现四阶经典龙格-库塔方法的误差最小,预估较正法其次,欧拉方法误差则比较大.最后通过选取不同的步长,研究了不同的步长对隆格库塔法求解常微分方程初值问题的计算精度的影响.总之,本文全面分析了隆格库塔法在求解常微分方程的应用,相比与其他的数值解法,隆格库塔法计算精度较高,收敛性较好,其中四阶的隆格库塔法的效率最高,精度也最高.关键词:四阶隆格库塔法;欧拉法;预估较正法;一阶常微分方程;MatlabRunge Kutta Method For Solving Ordinary Differential EquationsABSTRACTProblem solving ordinary differential equations are often needed in science andtechnology. the problem in the simplest form is the initial value problem of first order equations in this chapter ,which will be discussed. Although there are various analytical methods for solving ordinary differential equations, the analytical method can only be used to solve some special types of equations.differential equations can be summed up the actual problems whichThis paper discusses the initial value problem of Runge Kutta Barclays by solving a differential equation, using the four order Runge Kutta method with high accuracy.for instance through classic Matlab programming calculation, the superiority in order to accurately and reflect the calculation result, then the Euler method and the prediction correction method for instance by calculation through the calculation precision. The comparison of three kinds of methods, found that the error of four order Runge Kutta method of minimum, prediction correction method secondly, Euler method error is relatively large. Finally, by selecting different step, study the affect the calculation accuracy of different step of Runge Kutta method to solve initial value problems of ordinary differential equations.In short, this paper comprehensively analyzes the application of Runge Kutta method for solving ordinary differential equations, compared with the numerical solution of other, higher accuracy Runge Kutta method, good convergence, the Runge Kutta method of order four of the highest efficiency and its precision is the highest.Key words: Four order Runge Kutta method; Euler method; prediction correction method; first order ordinary differential equations; Matlab目录1 问题的提出 (1)1.1 问题背景............................................... . (1)1.2 问题的具体内容 (1)2 问题假设 (2)3 符号系统 (2)4 问题的分析 (3)4.1 欧拉格式 (3)4.2 预估较正法 (3)4.3 四阶隆格库塔法的格式 (4)5 模型的建立与求解 (4)5.1 隆格库塔法的基本原理 (4)5.1.1 Taylor级数 (4)5.1.2 隆格库塔法的基本思想 (4)5.1.3 四阶的隆格库塔法 (5)5.2 其他求解常微分方程边值问题算法的简介 (6)5.3 模型求解 (8)5.3.1 运用MATLAB软件对模型求解结果及析 (8)6 模型的评价 (16)7 课程设计的总结与体会 (16)参考文献 (17)附录 (18)一、问题的提出1.1 问题背景:科学技术中常常需要求常微分方程的定解问题,微分方程里最简单的方程形式莫过于一阶常微分方程的初值问题,即:0(,)()dy f x y a x b dx y a y ⎧=≤≤⎪⎨⎪=⎩ (1)其中a ,b 为常数.虽然求解此类微分方程有各种各样的解析方法,但解析方法只能用于求解一些特殊类型方程,实际问题中归结出来的微分方程主要靠数值解法求解.因为一阶常微分方程简单但又是求解其他方程的基础,所以发展了许多典型的解法.本文着重讨论一类高精度的单步法——隆格库塔法,并且运用四阶的隆格库塔格式来求解初值问题,并且通过实例运用四阶的隆格库塔格式来求解初值问题,同时与显式与隐式的Euler 格式求解出的结果进行精度比较.1.2 问题的具体内容实例一:在区间[0,1]上采用经典的四阶隆格库塔方法求解微分方程1(0)1dy y x dx y ⎧=-++⎪⎨⎪=⎩,其精确解为x y x e -=+,步长为0.5,然后用欧拉法,预估校正法分别求解,且将计算结果与精确解进行比较,对三个算法的收敛性的进行分析比较.实例二:在区间[0,1]上用经典的四阶龙格库塔方法求解初值问题 (0)1x dy xe y dx y -⎧=-⎪⎨⎪=⎩, 其精确解为21(2)2xx e -+,然后用欧拉法,预估校正法分别求解,且将计算结果与精确解进行比较,对三个算法的收敛性的进行分析比较.最后在区间[0,1]上分别取步长h=0.1;0.05时进行计算,并且探究选取不同的步长对计算结果精度的影响.二、问题假设2.1 假设数值方法本身的计算是准确的.2.2 假设选取的步长趋于0时计算的结果会收敛到微分方程的准确解.2.3 假设步长的增加不会导致舍入误差的严重积累.三、符号系统3.1 符号说明符号含义h选取的步长*K平均斜率p精度的阶数∆前后两次计算结果的偏差y第n个节点的实验值n()y x第n个节点的精确值nδ实验值与精确值的绝对误差四、问题的分析问题要求运用隆格库塔算法来求解一阶微分方程的初值问题,针对前面提出的实例,本文先用经典的四阶隆格库塔法来求解上面的微分方程,为了体现隆格库塔法的优越性,同时用欧拉法,预估校正法分别求解,且将计算结果与精确解进行比较,对三个算法的收敛性的进行分析比较.最后在区间[0,1]上分别取步长h=0.1;0.05时进行计算,分析在选取不同的步长时,求解结果的精度变化如何.下面是欧拉法,预估校正法以及经典的四阶隆格库塔法的计算公式.4.1欧拉格式(1)显式欧拉格式1(,)n n n n y y hf x y +=+ (2) 局部截断误差22211()()()()22n n n h h y x y y y x o h ξ++''''-=≈= (3) (2)隐式欧拉格式111(,)n n n n y y hf x y +++=+ (4)局部截断误差2211()()()2n n n h y x y y x o h ++''-≈-= (5) 4.2 预估校正法预估 1(,)n n n n y y hf x y +=+ (6)校正 111[(,)(,)]2n n n n n n h y y f x y f x y +++=++ (7) 统一格式 1[(,)(,(,))]2n n n n n n n n h y y f x y f x h y hf x y +=++++ (8) 平均化格式 11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++⎧⎪=+⎪=+⎨⎪⎪=+⎩ (9)4.3 四阶龙格库塔方法的格式(经典格式)112341213243(22),6(,),(,),22(,),22(,).n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩(10)五、模型的建立与模型求解5.1 隆格库塔法的基本原理隆格库塔法是一种高精度的单步法,这类方法与下述Taylor 级数法有着紧密的联系.5.1.1 Taylor 级数设初值问题 '00(,)()y f x y y x y ⎧=⎨=⎩有解,按泰勒展开,有2'''1()()()()....2n n n n h y x y x hy x y x +=+++; (11) 其中()y x 的各阶导数依据所给方程可以用函数f 来表达,下面引进函数序列(,)j f x y 来描叙求导过程,即(0)(1)'(0)''(1)(1)(1)'''(2),f f y f f y f f x x f f y f f x y ∂∂=≡=+≡∂∂∂∂=+≡∂∂ (12)(2)(2)()(1)j j j j f f y f f x y ---∂∂=+≡∂∂ (13) 根据上式,结果导出下面 Taylor 格式2'''()1...2!!pp n n nn n h h y y hy y y p +=++++ (14)其中一阶Taylor 格式为: '1n n n y y hy +=+提高Taylor 格式的阶数p 即可提高计算结果的精度,显然,p 阶Taylor 格式的局部截断误差为:11(1)1(1)!p p n n h y y y p ζ+++-+=+ (15) 因此它具有p 阶精度.5.1.2 隆格库塔方法的基本思想隆格库塔法实质就是间接地使用Taylor 级数法的一种方法,考察差商1()()n n y x y x h+- 根据微分中值定理,这有'1()()()n n n y x y x y x h h θ+-=+ (16) 利用所给方程 '(,)y f x y =1()()(,())n n n n y x y x hf x h y x h θθ+=+++ (17) 设 平均斜率*(,())n n K f x h y x h θθ=++,由此可见,只要对平均斜率一种算法,便相应地可以导出一种计算格式.再考察改进的Euler 格式,它可以改写成平均化的形式:1121211()2(,)(,)n n n n n n h y y K K K f x y K f x y hK ++⎧=++⎪⎪=⎨⎪=+⎪⎩(18) 这个处理过程启示我们,如果设法在1(,)n n x x +内多预测几个点的斜率值,然后将它们加权平均作为平均斜率,则有可能构造具有更高精度的计算格式,这就是隆格库塔法的基本思想.5.1.3 四阶的隆格库塔法为了方便起见,本文主要运用经典的隆格库塔算法-四阶隆格库塔格式.其格式如下:112341213243(22),6(,),(,),22(,),22(,).n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩(19)下面为其具体的算法流程图:5.2 其他求解常微分边值问题算法的简介5.2.1欧拉数值算法(显式)微分方程里最简单的方程形式莫过于一阶常微分方程的初值问题,即:(,)()dyf x y a x b dx y a y ⎧=≤≤⎪⎨⎪=⎩(20) 其中a ,b 为常数.开始输入x 0,y 0,h,N x 1=x 0+hk 1=f(x 0,y 0),k 2=f(x 0+h/2,y 0+hk 1/2)k 3=f(x 0+h/2,y 0+hk 2/2),k 4=f(x 1,y 0+hk 3)y 1=y 0+h(k 1+2k 2+2k 3+k 4)/6n=1输出x 1,y 1n=N? 结束n=n+1x 0=x 1,y 0=y 1否是图5.1 龙格-库塔法流程图因为其简单但又是求解其他方程的基础,所以发展了许多典型的解法.所有算法中的f 就是代表上式中(,)f x y ,而y f 表示(,)f x y y ∂∂,x f 表示(,)f x y x∂∂. 简单欧拉法是一种单步递推算法.简单欧拉法的公式如下所示:1(,)n n n n y y hf x y +=+ (21)简单欧拉法的算法过程介绍如下:给出自变量x 的定义域[,]a b ,初始值0y 及步长h .对0,1,()/k b a h =-,计算1(,)k k k k y y hf x y +=+5.2.2欧拉数值算法(隐式)隐式欧拉法也叫退欧拉法,隐式欧拉法的公式如下所示:111(,)n n n n y y hf x y +++=+ (22)隐式欧拉法是一阶精度的方法,比它精度高的公式是:111[(,)(,)]2n n n n n n hy y f x y f x y +++=++ (23)隐式欧拉的算法过程介绍如下.给出自变量x 的定义域[,]a b ,初始值0y 及步长h .对0,1,()/k b a h =-,用牛顿法或其他方法求解方111(,)k k k k y y hf x y +++=+得出1k y +.5.2.3 欧拉预估-校正法改进欧拉法是一种二阶显式求解法,其计算公式如下所示:1[,(,)]22n n n n n n h h y y hf x y f x y +=+++11(,)[(,)(,)]2n n n n n n n n t y hf x y h y y f x y f x t ++=+⎧⎪⎨=++⎪⎩ (24)四阶龙格-库塔法有多种形式,除了改进的欧拉法外还有中点法.中点法计算公式为:1[,(,)]22n n n n n n h h y y hf x y f x y +=+++ (25)5.3 模型求解5.3.1运用MATLAB 软件对模型求解结果及分析用欧拉法、改进的欧拉格式、经典的四阶龙格库塔法来求解常微分方程的边值问题,并且比较其精度(具体的MATLAB 源程序见附录) 以下进行实例分析:实例一. 1(0)1dyy x dx y ⎧=-++⎪⎨⎪=⎩由题可知精确解为:x y x e -=+,当x=0时,y(x)=0.在这里取步长h 为0.1, 通过MATLAB 程序的计算,相应的结果如下:表5-1 步长为0.1时各方法的预测值与精确值的比较(精确到6位小数)初值 Euler 法 相对误差 预估校正法 相对误差 经典四阶库 相对误差精确值 0 -- -- -- -- -- -- 1.00000 0.1 1.00910 0.00424 1.00500 0.00016 1.00484 0.00000 1.00484 0.2 1.02646 0.00759 1.01903 0.00029 1.01873 0.00000 1.01873 0.3 1.05134 0.01011 1.04122 0.00038 1.04082 0.00000 1.04082 0.4 1.08304 0.01189 1.07080 0.00045 1.07032 0.00000 1.07032 0.5 1.12095 0.01303 1.10708 0.00049 1.10653 0.00000 1.10653 0.6 1.16451 0.01366 1.14940 0.00052 1.14881 0.00000 1.14881 0.7 1.21319 0.01388 1.19721 0.00052 1.19659 0.00000 1.19659 0.8 1.26655 0.01378 1.24998 0.00052 1.24933 0.00000 1.24933 0.9 1.32414 0.01344 1.30723 0.00050 1.30657 0.00000 1.30657 1.01.38558 0.01294 1.36854 0.00048 1.36788 0.000001.36788步长为0.1时的精确值与预测值的比较精确值欧拉法改进欧拉格式四阶龙格库塔轴Y00.10.20.30.40.50.60.70.80.91 1.1 1.2 1.3 1.4X轴图5.2 步长为0.1时各方法的预测值与精确值的比较原函数图像轴YX轴图5.3 步长为0.1时原函数图像在这里取步长h为0.05,通过MATLAB程序的计算,相应的结果如下:表5-2 h=0.05时三个方法与精确值的真值表步长Euler法相对误差预估校正法相对误差经典四阶库相对误差精确值0 -- -- -- -- -- --1.00000 0.05 1.00250 0.00911 1.00125 0.01035 1.00123 0.01037 1.00484 0.10 1.00738 0.01711 1.00488 0.01954 1.00484 0.01958 1.01873 0.15 1.01451 0.02405 1.01076 0.02765 1.01071 0.02770 1.04082 0.20 1.02378 0.03001 1.01880 0.03473 1.01873 0.03479 1.07032 0.25 1.03509 0.03507 1.02889 0.04085 1.02880 0.04093 1.10653 0.30 1.04834 0.03930 1.04092 0.04610 1.04082 0.04619 1.14881 0.35 1.06342 0.04277 1.05480 0.05053 1.05469 0.05063 1.19659 0.40 1.08025 0.04555 1.07044 0.05422 1.07032 0.05432 1.24933 0.45 1.09874 0.04772 1.08775 0.05724 1.08763 0.05734 1.30657 0.50 1.11880 0.04933 1.10666 0.05964 1.10653 0.05975 1.36788 0.55 1.14036 0.05045 1.12709 0.06150 1.12695 0.06161 1.00484 0.60 1.16334 0.05113 1.14895 0.06286 1.14881 0.06298 1.01873 0.65 1.18768 0.05143 1.17219 0.06379 1.17205 0.06391 1.04082 0.70 1.21329 0.05139 1.19674 0.06433 1.19659 0.06445 1.07032 0.75 1.24013 0.05106 1.22252 0.06453 1.22237 0.06465 1.10653 0.80 1.26812 0.05048 1.24949 0.06443 1.24933 0.06455 1.14881 0.85 1.29722 0.04969 1.27757 0.06408 1.27742 0.06419 1.19659 0.90 1.32735 0.04871 1.30673 0.06349 1.30657 0.06361 1.249330.95 1.35849 0.04759 1.33690 0.06272 1.33674 0.06283 1.306571.00 1.39056 0.04634 1.36804 0.06178 1.36788 0.06189 1.36788欧拉格式 改进欧拉格式四阶龙格库塔精确值图5.4 步长为0.05时各方法的预测值与精确值的比较11.051.11.151.21.251.31.351.4X 轴Y 轴原函数图像图5.5 步长为0.05时原函数图像实例2 (0)1xdy xe ydx y -⎧=-⎪⎨⎪=⎩由题可知精确解为:21(2)2x x e -+当x=0时,y(x)=0.在这里取步长h为0.1,通过MATLAB程序的计算,相应的结果如下:步长Euler法相对误差预估校正法相对误差经典四阶库相对误差精确值0.1 0.9000 0.0318 0.9096 0.0214 0.9094 0.0216 0.9295 0.2 0.8192 0.0611 0.8359 0.0420 0.8356 0.0424 0.8726 0.3 0.7544 0.0876 0.7761 0.0614 0.7757 0.0619 0.8268 0.4 0.7027 0.1109 0.7277 0.0793 0.7272 0.0799 0.7903 0.5 0.6617 0.1310 0.6886 0.0956 0.6881 0.0963 0.7615 0.6 0.6294 0.1480 0.6572 0.1103 0.6567 0.1110 0.7387 0.7 0.6040 0.1621 0.6320 0.1234 0.6315 0.1241 0.7209 0.8 0.5841 0.1737 0.6116 0.1349 0.6111 0.1355 0.70690.9 0.5686 0.1830 0.5951 0.1450 0.5946 0.1456 0.69591.0 0.5563 0.1905 0.5815 0.1538 0.5811 0.1544 0.6872原函数图像轴Y00.10.20.30.40.50.60.70.80.91X轴图5.6 步长为0.1时原函数图像各方法的预测值与精确值的比较欧拉格式改进的格式四阶龙格库塔精确值轴Y0.10.20.30.40.50.60.70.80.91X轴图5.7 步长为0.1时各方法的预测值与精确值的比较在这里取步长h为0.05,通过MATLAB程序的计算,相应的结果如下:表5-4 步长为0.1时各方法的预测值与精确值的比较(精确到5位小数)步长Euler法相对误差预估校正法相对误差经典四阶库相对误差精确值0.050.95000 0.01342 0.95245 0.01088 0.95242 0.01090 0.96292 0.100.90490 0.02650 0.90947 0.02158 0.90942 0.02163 0.92953 0.150.86428 0.03916 0.87067 0.03206 0.87061 0.03213 0.89951 0.200.82774 0.05137 0.83567 0.04228 0.83559 0.04237 0.87256 0.250.79491 0.06307 0.80414 0.05219 0.80405 0.05230 0.84842 0.300.76545 0.07423 0.77576 0.06176 0.77566 0.06188 0.82682 0.350.73904 0.08482 0.75023 0.07096 0.75013 0.07110 0.80754 0.40 0.71541 0.09482 0.72730 0.07977 0.72719 0.07991 0.79035 0.45 0.69427 0.10422 0.70672 0.08817 0.70660 0.08832 0.77505 0.50 0.67539 0.11302 0.68825 0.09615 0.68813 0.09630 0.76146 0.55 0.65855 0.12123 0.67168 0.10370 0.67156 0.10386 0.74940 0.60 0.64352 0.12886 0.65683 0.11084 0.65671 0.11100 0.73871 0.65 0.63012 0.13593 0.64351 0.11756 0.64340 0.11773 0.72925 0.70 0.61819 0.14245 0.63157 0.12388 0.63145 0.12405 0.72087 0.75 0.60754 0.14847 0.62085 0.12981 0.62073 0.12998 0.71347 0.80 0.59805 0.15400 0.61121 0.13537 0.61110 0.13553 0.70691 0.85 0.58957 0.15908 0.60254 0.14058 0.60243 0.14073 0.70109 0.90 0.58198 0.16374 0.59470 0.14545 0.59460 0.14560 0.695930.95 0.57517 0.16802 0.58761 0.15001 0.58751 0.15016 0.691321.00 0.56904 0.17194 0.58117 0.15429 0.58107 0.15443 0.687190.10.20.30.40.50.60.70.80.910.550.60.650.70.750.80.850.90.951X 轴Y 轴各方法下的预测值与精确值的比较欧拉格式改进欧拉格式四阶龙格库塔精确值图5.8 步长为0.05时各方法的预测值与精确值的比较六、模型的评价本文着重讨论了4阶的隆格库塔法来求解微分方程,并且通过两个实例验证了隆格库塔法在求解初值问题的优越性.从上面的实例比较可知,在计算精度上,四阶经典龙格-库塔方法的误差最小,改进欧拉方法其次,欧拉方法误差则比较大,所以四阶经典龙格-库塔方法得到最佳的精度.而在计算量上面,相应地,很明显的四阶经典龙格-库塔方法也是最大,改进欧拉方法其次,欧拉方法计算量最小.这样的结果,说明了运用以上三种方法时,其计算量的多少与精度的大小成正比.我们在实际运用与操作中,可以根据实际情况,选择这3种方法中的其中一种最适合的,追求精度的话,可以使用四阶经典龙格-库塔方法;而改进的欧拉方法,在精度上和计算量上都表现得很出色,能够满足一般情况;而欧拉方法更主要的是适用于对y的估计上,而精度则有所欠缺,以上各方法的选择,都取决于具体的情况.七、课程设计的总结与体会本文着重采用隆格库塔法运用MATLAB编程来求解微分方程,相比于欧拉法以及预估校正法,隆格库塔法在提高近似值解的精度上是非常起作用的,而且又具有计算量不大、算法组织容易.其次,每一次的课程设计总是让我学到了更多的知识,不论是C++、SPASS还是MATLAB软件,这些都让我学到了如何解决实际问题的好工具,通过这些工具,是自己能够得到突破和成长.以下是我完成此次课程设计的几点体会:(1)必须学好基础知识,在做的过程中,发现自己有很多东西都不懂,要博学必须从一点一点做起.以往训练得少只是把握的不牢靠.所以做起来感到有点吃力.所以,无论什么学科,一定要打好基础.(2)程序设计要靠多练,多见识,那样形成一种编程思维,我想对我是有很大好处的.尤其像我这种平时学得不扎实的人.(3)做事情要有恒心,遇到困难不要怕,坚决去做.如果做出来了,固然高兴,如果没有做出来也没关系,自己努力了对得起自己就好.同时,把它看做是对自己的锻炼. (4)做程序特别是做大程序是很有趣的.虽然有的问题很难,要花很多时间很多精力,但是那种解决了一个问题时的喜悦足以把付出的辛苦补偿回来.得到一种心里的慰藉.参考文献[1] 李庆杨,王能超,易大义编.数值分析(第四版)[M]:华中科技大学出版社,2006.[2] 姜启源,谢金星,叶俊编.数学模型(第三版)[M].北京:高等教育出版社,2005[3] 刘琼荪,数学实验[M],高等教育出版社,2004[4] 王建伟,MATLAB7.X程序设计[M],中国水利水电出版社,2007[5] 王高雄,周之铭等编.常微分方程(第三版) [M]:高等教育出版社,2006[6]何坚勇编著. 运筹学基础(第二版)[M]. 北京:清华大学出版社,2008.附录附录一:显示欧拉法matlab程序%欧拉法clear allclcx=[];y=[];y1=[];h=0.1;x=0:h:1;n=length(x);for i=1:ny(i)=f1(x(i));endfigure(1)plot(x,y,'g-');hold ony1(1)=1;for j=2:ny1(j)=y1(j-1)+h*f(x(j-1),y1(j-1)); endY=[x;y1];fid=fopen('data.txt','wt');fprintf(fid,'%6.2f %12.4f\n',Y);fclose(fid);plot(x,y1,'r-');figure(2)DT=abs(y-y1);plot(x,DT)%1.建立导数函数文件function z=f(x,y)z=y-2*x/y;%2.建立原函数文件function z1=f1(x)z1=(2*x+1)^(1/2);迭代n次的后退的欧拉格式matlab程序%1.建立导数函数文件function z=f(x,y)z=y-2*x/y;%2.建立原函数文件function z1=f1(x)z1=(2*x+1)^(1/2);%迭代n次的后退的欧拉格式clear allclcN=input('请输入迭代次数:');x=[];y=[];y1=[];h=0.1;x=0:0.1:1;n=length(x);for i=1:ny(i)=f1(x(i));endfigure(1)plot(x,y,'g-');for j=2:ny1(j)=y1(j-1)+h*f(x(j-1),y1(j-1)); T=y1(j);for k=1:NT=y1(j-1)+h*f(x(j),T);endy1(j)=T;endY=[x;y1];fid=fopen('data.txt','wt');fprintf(fid,'%6.2f %12.4f\n',Y); fclose(fid);plot(x,y1,'r-');figure(2)DT=abs(y-y1);plot(x,DT)附录二:预估校正法matlab程序%1.建立导数函数文件function z=f(x,y)z=y-2*x/y;%2.建立原函数文件function z1=f1(x)z1=(2*x+1)^(1/2);%预估校正法%欧拉法clear allclcx=[];y1(1)=1;y2=[];y2(1)=1;h=0.1;x=0:0.1:1;n=length(x);for i=1:ny(i)=f1(x(i));endfigure(1)plot(x,y,'g-');hold onfor j=2:ny1(j)=y2(j-1)+h*f(x(j-1),y2(j-1));y2(j)=y2(j-1)+(h/2).*[f(x(j-1),y2(j-1))+f(x(j),y1(j))]; endY=[x;y2];fid=fopen('data.txt','wt');fprintf(fid,'%6.2f %12.4f\n',Y);fclose(fid);plot(x,y2,'r-');figure(2)DT=y-y2;plot(x,DT)附录三:四阶龙格库塔法matlab程序%四阶龙格库塔法clear allclcn=length(x);y=[];y1=[];y1(1)=1;for i=1:ny(i)=f1(x(i));endfigure(1)plot(x,y,'g-');hold onfor j=2:nK1=f(x(j-1),y1(j-1));K2=f(x(j-1)+h/2,y1(j-1)+h/2*K1);K3=f(x(j-1)+h/2,y1(j-1)+h/2*K2);K4=f(x(j-1)+h,y1(j-1)+h*K3);y1(j)=y1(j-1)+(h/6)*(K1+2*K2+2*K3+K4); endY=[x;y1];fid=fopen('data1.txt','wt');fprintf(fid,'%6.2f %12.4f\n',Y);fclose(fid);plot(x,y1,'r-');figure(2)DT=abs(y-y1);plot(x,DT)。

matlab ppt_13_龙格-库塔法

matlab ppt_13_龙格-库塔法

这就是改进的欧拉公式,通常写成 h y = y + ( K1 + K2 ) i i+1 2 K1 = f ( x i , y i ) K2 = f (xi + h, yi + hK1) 由此可见,为了提高精度,可以多取几点的斜率值作加权平均当作平均斜 率kave,这就是龙格库塔法基本思想. 一般的显式龙格库塔方法可以写成
2. 二阶龙格――库塔法
在改进的欧拉公式中将xi+1替换为区间中的任意一点 xi+p = xi + ph (0 < p ≤ 1)
将它的斜率记为K2。利用欧拉公式得y (xi+p)的预报值 y i+p = yi + phK1 求得 K2 = f (xi+p, y i+p) 平均斜率则取 Keve ≈ λ1K1 + λ2K2 其中λ1, λ2是待定的系数。
(h)
y (xi+1) − yi+1 由此可得下列事后估计式
2 y (xi+1) − yi+1 ≈
(h)

1 16
(h)
1 (h (h) 2) (yi+1 − yi+1) 15
这样,可以通过检查步长折半前后两次计算结果的偏差 ∆=
(h 2) |yi+1
− yi+1|
(j )
来判断所选取的步长是否合适。具体可分以下两种情况: 1. 对于给定的精度 ,如果∆ > ,就反复将步长折半计算,直至∆ < 为 (h 2) 止,这时取步长折半后的“新值”yi+1 作为结果。 2. 如果∆ < ,就反复将步长加倍,直至∆ > 为止,这时取步长加倍前 的“旧值”作为结果。 这种通过步长折半或加倍的计算的方法就叫变步长方法。表面上看,为了 选择步长,每一步的计算量似乎增加了,但从总体上考虑往往是合算的。

2Runge-Kutta方法

2Runge-Kutta方法

(h ) 2 n 1
h 5 2C ( ) 2
y( xn1 ) y y( xn1 ) y
( h / 2) n 1 ( h) n 1
1 16
( h / 2) ( h) 记 | yn y 1 n1 |
16( y( xn1 ) y
( h / 2) n1
y( xn1 ) y
p( N )
1,2,3,4 N
5,6,7 N-1
8,9 N-2
10,11,…
N 2
若要得到N阶以上方法,则使用N级隐式R-K方法
N级隐式R-K方法的一般形式:
yn1 yn h ci ki
i 1 N
N级隐式R-K法 可以达到2N阶
ki f ( xn ai h, yn h bij k j ); i 1,..., N
p 1
) p 为尽可能大的整数
dy f ( x, y ) 设 y( x )满足初值问题: dx ( ) y( x0 ) y0 ; x x0
h y( xn1 ) yn1 y( xn ) hy( xn ) y( xn ) 2 ! h p ( p) p 1 y ( xn ) O( h ) yn h ( xn , yn , h) p!
2
h y( x ) 若取 ( x , y , h) y( x ) 2!

h p1 ( p ) y ( x) p!
d y( x ) f ( x , y( x )) y( x )的各阶导数的计算 dx 2 d y( x ) f ( x , y( x )) y( x ) 2 f ( x , y( x )) ...... dx
Heun(休恩)二级方法

龙格库塔积分算法

龙格库塔积分算法

龙格库塔法龙格库塔法是常用于模拟常微分方程的解的重要的一类隐式或显式迭代法。

这些技术由数学家C. Runge和M.W. Kutta于1900年左右发明。

由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。

龙格库塔法是一种在工程上应用广泛的高精度单步算法,可以应用在物理、工程、控制、动力学中,如模糊控制、弹道分析以及分析光纤特性等,在系统仿真中得到广泛应用。

龙格库塔法源自于相应的泰勒级数方法,在每一插值节点用泰勒级数展开,其截断误差阶数也是,根据可省略更高阶的导数计算, 这种方法可构造任意阶数的龙格库塔法。

其中4 阶龙格库塔法是最常用的一种方法。

因为它相当精确、稳定、容易编程。

在计算中一般不必使用高阶方法, 因为附加的计算误差可由增加精度来弥补。

如果需要较高的精度, 可采取减小步长的方法即可。

4 阶龙格库塔法的精度类似4 阶泰勒级数法的精度。

1、初值问题对于一阶常微分方程的初值问题根据常微分方程的理论可知,此初值问题的解在区间[a,b]上存在,且唯一。

2、离散化取步长h=(b-a)/n,将区间[a , b]分成n个子区间:a=<=b在其中任意两点的曲线段上,根据积分中值定理,一段光滑曲线上至少有一点,它的斜率与整段曲线的平均斜率相同,得=y’() (0<<1)其中,=可以将上式改写成y()=y()+h*K (2.1)其中K为平均斜率,K=f()公式(2.1)表明,如果能够确定平均斜率K,就可以根据(2.1)式得到y()的值。

欧拉法和龙格库塔法就是用不同方法确定不同精度的平均斜率K,从而求得y()的近似值。

3、Euler法欧拉法虽然精度低,但它是最简单的一种显式单步法,也是龙格库塔法的基础。

首先,令、为y() 及y()的近似值,并且令平均斜率K=f(),即以点的斜率作为平均斜率K,便得到欧拉公式=+h* f() (3.1)4、改进的欧拉法此种方法是取、两点的斜率的平均值作为平均斜率K,即K= ,其中、均为y()以及y()的近似值,就得到改进后的欧拉公式(4.1)其中、分别为、两点的斜率值,即= ,=在上面的(4.1)式中,k2是未知的,采用一种叫预报法的方法来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档