第二届全国大学生数学竞赛预赛试题01

合集下载

历届大学生高等数学竞赛真题及答案非数学类14页

历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛预赛试题

全国大学生数学竞赛预赛试题

全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算=--++??y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足?--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,?=10d )()(t xt f x g ,且A xx f x =→)(lim0,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)??-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π?≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分)(1)设22(1)(1)(1),n n x a a a =+++ 其中||1,a <求lim .n n x →∞ (2)求21lim 1x x x e x -→∞+。

历届全国大学生数学竞赛预赛试卷(精编文档).doc

历届全国大学生数学竞赛预赛试卷(精编文档).doc

【最新整理,下载后即可编辑】全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1.计算()ln(1)d yx y x y ++=⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面22=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(xf 连续,10()()g x f xt dt =⎰,且A x x f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n xnnu x u x xe n -'=+=,且ne u n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类) 一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰.(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂. (5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离.二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>, lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <.证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+, 其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1n n na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c++≤(其中0c b a <<<,密度为1)绕l 旋转.(1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0Lxy x x yx yϕ+=+⎰的值为常数. (1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0Lxy x x yx y ϕ+=+⎰; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x yx y ϕ++⎰.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫ ⎪⎝⎭; (2).求111lim (12)n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解. 三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值. 五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类) 一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤). (1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限1lim x x x t +. 二、(本题1020sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距.五、(本题12分)求最小实数C ,使得满足1()d 1f x x =⎰的连续函数()f x都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰, 求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类) 一、解答下列各题(每小题6分,共24分,要求写出重要步骤) 1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值. 4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim 0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑的敛散性,若收敛,求其和.2014年 第六届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x tπ-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x==.4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知13()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim xx f x .二、(本题12分)设n 为正整数,计算21d 1cos ln d d ne I x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B使得()f x A ≤,|"()|f x B ≤.证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b an nn dx x f a b x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n nn A n n n n =++++++,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2015年 第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭.(2)设函数(),z z x y =由方程,0z z F x y yx ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z z x y xy∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 .(4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 .(5)设区间()0,+∞上的函数()u x 定义域为()2xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 . 二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程. 三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f ff M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪ ⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim 1sin x x f x x xI e x→+=-. 3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若z z x∂=∂,求()f x 在0x >的表达式.4、设()sin 2xf x ex =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()2300d d aa f x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2n n k k n f x dx f n n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=.六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用Fourier 级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、1. 已知可导函数满足⎰+=+x x tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π. 3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c-=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=____. 5. 不定积分sin 2sin 2(1sin )x e x I dx x -=-⎰=________. 6. 记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dt α=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2b ab a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

历年全国大学生高等数学竞赛真题及答案

历年全国大学生高等数学竞赛真题及答案

第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解 令,则,,(*) 令,则,,,,2.设是连续函数,且满足, 则____________.解 令,则,,解得。

因此。

3.曲面平行平面的切平面方程是__________. 解 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由=--++⎰⎰y x yx x yy x Dd d 1)1ln()(D 1=+y x v x u y x ==+,v u y v x -==,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu u t-=121t u -=dt 2d t u -=42221t t u +-=)1)(1()1(2t t t u u +-=-⎰+--=0142d )21(2(*)t t t ⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t )(x f ⎰--=222d )(3)(x x f x x f =)(x f ⎰=2d )(x x f A23)(2--=A x x f A A x A x A 24)2(28d )23(22-=+-=--=⎰34=A 3103)(2-=x x f 2222-+=y x z 022=-+z y x 022=-+z y x )1,2,2(-2222-+=y x z ),(00y x )1),,(),,((0000-y x z y x z y x )1),,(),,((0000-y x z y x z y x )1,2,2(-,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面 的切平面方程是。

历届全国大学生数学竞赛预赛试卷

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类)2009年第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分)1.计算()ln(1)d d 1Dyx y x x y x y++=--⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n x nn u x u x x e n -'=+=L,且neu n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年第二届全国大学生数学竞赛预赛试卷(非数学类)一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x-→∞⎛⎫+ ⎪⎝⎭.(3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰L .(4)设函数()f t 有二阶连续导数,221,(,)r x y g x y f r ⎛⎫=+= ⎪⎝⎭,求2222g g x y ∂∂+∂∂.(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离. 二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <.证明:方程()0f x =在(,)-∞+∞恰有两个实根. 三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散. 五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0L xy x x yx yϕ+=+⎰Ñ的值为常数. (1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx yϕ+=+⎰Ñ; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d Cxy x x yx yϕ++⎰Ñ. 2011年第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim (12)n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦.计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年第四届全国大学生数学竞赛预赛试卷(非数学类)一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤).(1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂.确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限13sin lim d cos x x x tx t t t+→+∞+⎰. 二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距. 五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x 都有10()f x dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >.区域Ω是由抛物面22z x y =+和球面2222x y z t ++=(0)z >所围起来的部分.定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散. 2013年第五届全国大学生数学竞赛预赛试卷(非数学类)一、解答下列各题(每小题6分,共24分,要求写出重要步骤) 1.求极限()2lim 1sin 14nn n π→∞++.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值.4.过曲线3(0)y x x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()0lim 0x f x x →=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和. 2014年第六届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是.2.设有曲面22:2S z x y =+和平面022:=++z y x L .则与L 平行的S 的切平面方程是.3.设函数()y y x =由方程21sin d 4y xt x t π-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x ==.4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知130()lim 1x x f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d ne I x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤.证明:对任意]1,0[∈x ,有22|)('|B A x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R .证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=ban nn dx x f a b x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n n nA n n n n =++++++L ,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π. 2015年第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭L . (2)设函数(),z z x y =由方程,0z z F x y y x⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zx y xy∂∂+=∂∂.(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是. (4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是.(5)设区间()0,+∞上的函数()u x 定义域为()20xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是.二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程.三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!n n n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰.试证:(1)[]00,1x ∃∈使()04f x >;(2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤.若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y Mf x y dxdy π+≤≤⎰⎰.2016年第八届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,满分30分)1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x∂=∂,求()f x 在0x >的表达式.4、设()sin 2x f x e x =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx f n n →∞=⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()()23f x f x f x =+=+.用Fourier 级数理论证明()f x 为常数.2017年第九届全国大学生数学竞赛预赛试卷(非数学类)一、1.已知可导函数f (x )满足⎰+=+x x tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2.求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3.设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数.则21xx yy w w c -=_________. 4.设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=____.5.不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰=________. 6.记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分)设二元函数(,)f x y 在平面上有连续的二阶偏导数.对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>.证明)0,0(f 是(,)f x y 的极小值. 三、(本题满分14分)设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段.求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分)设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2bab a f x dx -+≤⎰. 五、(本题满分15分)设{}n a 为一个数列,p 为固定的正整数。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生数学竞赛预赛历年考试

历届全国大学生数学竞赛预赛历年考试

全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算()ln(1)d d 1Dyx y x x y x y++=--⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 地切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定地正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(l i m 0,A 为常数,求()g x '并讨论)(x g '在0=x 处地连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 地正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe.五、(10分)已知xxe xe y 21+=,xxexe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程地三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形地面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成地旋转体地体积V 最小.b5E2R 。

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)第三届全国大学生数学竞赛预赛试题一. 计算下列各题(共3小题,每小题各5分,共15分)(1).求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭; (2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e ⎧=+⎪⎨=-⎪⎩,求22d ydx。

二.(10分)求方程()()2410x y dx x y dy +-++-=的通解。

三.(15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=。

四.(17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值。

五.(16分)已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S的正法向的方向余弦。

计算:(1)(),,S zdS x y z ρ⎰⎰;(2)()3S z x y z dS λμν++⎰⎰六.(12分)设f(x)是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛。

七.(15分)是否存在区间[]0,2上的连续可微函数f(x),满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、?请说明理由。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

0
n
n1
0
n0
n0
n1

f (t)dt f (n) 1 f (t)dt ,
0
0
n0

f (n) xn2 ,
n0
n0
ln 1
1
lim x lim x 1
x1 1 x x1 1
f (t)dt
xt2 dt
t2 ln 1
e x dt
0
0
0
1
et2 dt
10
1 , 12
0
0
3
a2
1
x
4
dt
4 a(1 a)
1
x
3dt
4 (1 a)2
1
x
2dt
0
3
0
9
0
1 a2 1 a(1 a) 4 (1 a)2
5
3
27

V (a) 1 a2 1 a(1 a) 4 (1 a)2
5
3
27

V (a) 2 a 1 (1 2a) 8 (1 a) 0,
det
0 1
11 dudv dudv ,
D
(x
y) ln(1 1 x y
y) x dxdy
D
u
ln
u u ln 1u
vdudv
1
(
u
ln
u
u
dv
u
u
ln vdv)du
0 1u 0
1u 0
1 u2 ln u u(u ln u u) du
0 1u
1u
1
u2
du (*)
0 1u
L

第二届全国大学生数学竞赛决赛试卷(非数学类)

第二届全国大学生数学竞赛决赛试卷(非数学类)

第二届全国大学生数学竞赛决赛试卷(非数学类,2011年3月)一、(本小题3分,每小题各5分,共15分)计算下列各题(要求写出重要步骤).(1)11cos 0sin lim x x x x -→⎛⎫ ⎪⎝⎭(2)111lim 12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭ (3)已知()2ln 1arctan t t x e y t e⎧=+⎪⎨=-⎪⎩,求22d d y x 二、(本题10分)求方程(24)d (1)d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内有二阶连续导数,且(0),(0),(0)f f f '''均不为零. 证明:存在唯一一组实数123,,k k k ,使得12320()(2)(3)(0)lim 0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑和2∑的交线. 求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算(1)d (,,)S z S x y z ρ⎰⎰; (2)(3)d Sz x y z S λμν++⎰⎰. 六、(本题12分)设()f x 是在(,)-∞+∞内可微函数,且()()f x mf x '<,其中01m <<.任取实数0a ,定义1ln ()n n a f a -=,1,2,n = .证明:11()n n n aa ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[0,2]上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,20()d 1f x x ≤⎰?请说明理由.。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。

自2009年首届竞赛举办以来,已成功举办九届。

竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。

每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。

二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。

试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。

三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。

2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。

3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。

4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。

四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。

竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。

五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。

竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。

通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。

六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。

参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。

随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 e 1 1 t t (因为: '(1) 2e ). e 1 e (t ) 1 t t dt e
四、 (本题 15 分)设 an 0, S n

a
k 1
n
k
,证明:
an (1)当 1时,级数 收敛; n 1 S n
f '( x) C 0 x1 , x2 x3 x1 , x2 : f '( x3 ) 0 ;
且有 f "( x3 ) 0 ,可知 f ( x3 ) 为唯一极小值; 可知 f ( x3 ) 为最小值,由于 f x0 0 ,即有 f ( x3 ) 0 ;

;
6
i x
j y
k z
2
x, y, z ( , , )
z y i z x j + y x k
I ( , , ) x, y, z ( , , ) dV
2 2 2 z y + z x + y x dV
x2 y 2 z 2 1)的直线,均匀椭球 2 2 2 1(其中 a b c
2 2 2
0 c b a ,密度为 1)绕 l 旋转,
(1)求其转动惯量; (2)求其转动惯量关于方向 ( , , ) 的最大值和最小值. 解 (1) l :
x


y


z
4abc 2 2 2 a +b +c ( a 2 2 b 2 2 c 2 2 ) (2) L( , , ) 15 ( 2 2 2 1)
的定点分别为 A(1,1,0), B (2,1,3) ; 与两直线方向向量垂直的向量设 为: s ( m, n, p ) ; 则有
mn 0 1 (1, 1,6) . (m, n, p ) 38 4m 2n p 0 19 AB 1,0,3 ; d ABS . 38
(2)当 1,且 S n ( n ) 时,级数 证明 (1)当 1时,
an 发散. n 1 S n

5
dx 1 1 Sn1 x 1 x
Sn
Sn

Sn 1
1 S n1 S n 11 1
an an S n 1 S n Sn
2 g 2 g 求 2 2. x y

3 2 g x 1 2 g x 1 r 3x 1 3 f ' 2 3 f '' f ' ; 6 x r r r x r r r 2 2
3 2 g y 1 2 g y 1 r 3y 1 3 f ' , 2 3 f '' f ' ; 6 y r y r r r r r
2 g 2 g 1 1 3 1 f " 4 f ' . 2 2 4 x y r r r r
2
(5) 求直线 l1 : 解1
x y 0 x 2 y 1 z 3 与直线 l2 : 的距离. 2 1 4 z 0
两直线的方向向量分别为:(1,1,0),(4, 2,1) ;两直线上
f ( x) f , f ( x3 ) 0 ;
同理 f x 0 在 ( x3 , ) 恰有 1 实根.
f x 0 在 (, x3 ) 恰有 1 实根.
x 2t t 2 三、 (本题 15 分) 设函数 y f ( x ) 由参数方程 t 1 y (t ) d2 y 3 所确定, 且 2 , 其中 (t ) 具有二阶导数, 曲线 y (t ) dx 4(1 t )
19 . 38 38 二、 (本题共 15 分)设函数 f x 在 , 上具有二阶导数,并
且 f '' x 0 , lim f ' x 0, lim f ' x 0 ,且存在一
x x
2,1,3 1, 1,6 d
i j k 解 2 直线 l1 的方向 1 1 0 i j 1, 1,0 ; 0 0 1 i j k l1 l2 1 1 0 i j 6k 1, 1, 6 ; 4 2 1 O 0,0,0 l1 , M 0 2,1,3 l2 , OM 0 在 l1 l2 上的投影即为所求.
(1 2 ) x 2 (1 2 ) y 2 (1 2 ) z 2 dV

abc
x2 y2 z 2 a 2 b2 c2

2 2 2 2 x y z 2 x 2 2 y 2 2 z a (1 ) b (1 ) c (1 ) d d d a b c a b c 1
f '' 2 f ( x) f x0 f ' x0 x x0 x x0 2 f '' 2 f x0 x x0 x 2 f ( x) C 0 , x3 : f '( x) 0 ;


S
n S n ຫໍສະໝຸດ 1 (利用了拉格朗日中值定理)
S dx an an Sn dx 1 a1 ; S a1 x n 1 x n 1 S n n2 Sn n2
an 即级数 收敛. n 1 S n
X 2 Y 2 Z 2 1
1

Z 2 dXdYdZ
abc a 2 (1 2 ) b 2 (1 2 ) c 2 (1 2 ) 1 z 2 1 z 2 dz 2 2 abc a 2 (1 2 ) b 2 (1 2 ) c 2 (1 2 ) 3 5 4abc 2 2 2 a +b +c ( a 2 2 b 2 2 c 2 2 ) 15
x

1 x
x2
x2
1 解 lim e 1 e x x
x
1 2 lim x x ln 1 x x

1
1 1 1 1 lim x x 2 ln 1 lim x x 2 2 x 2 x x x 2 x


n s x n1 n e x dx I n1 S 0 S
n n 1 n! n! . I I 0 n n 1 2 n2 S S S
(4) 设函数 f (t ) 有二阶连续导数, r
1 x2 y 2 , g ( x, y ) f , r
4
dy '(t ) dx 2 2t
d 2 y ''(t ) 2 2t 2 '(t ) 3 ; 3 2 dx 4 1 t 2 2t ''(t ) 1 t '(t ) 3 1 t
2 2
e 1 ; 2 t 1
与y 解

t2
1
e u du
2
3 在 t 1处相切,求函数 (t ) . 2e
由曲线 y (t ) 与 y
4

t2
1
e
u2
du
3 在 t 1处相切,有: 2e
y ' 2te t
1 2 e (1) t 1
3 , '(1) 2e 1 ; 2e
(2)当 1,且 S n ( n ) 时,


an n 1 S n

an an ,由正项级数比 当 1 ,且 S n ( n ) 时 n 1 S n n2 Sn
较判别法可知,级数
an 发散. n 1 S n

五、 ( 本 题 15 分 ) 设 l 是 过 原 点 、 方 向 为 ( , , ) ( 其 中
1 lim e 1 e 2 . x x x x2 1
(3)设 s 0 ,求 I n 解


0
e s x x n dx (n 1, 2,)
In e
0

s x
1 s x n x dx e x n e s x x n1dx 0 0 S n
2 n n
2n
1 a (1 a ) (1 a lim
2 2 n
1 a (1 a )(1 a 2 ) (1 a 2 ) lim n 1 a
n
2n
)
lim
n
1 a 4 4 2n 1 a (1 a ) (1 a ) 1 a
'(t ) u ' 1 t u 1 t 3 1 t ; 令u
3
u ' u 1 t 3 1 t ——(1)
1
这是一阶线性非齐次微分方程.
ue
ln 1 t
1 t e ln1t dt C 1 t t C
第二届全国大学生数学竞赛预赛试题 (非数学类,2010)
一、 (本题共 5 小题,各小题 5 分,共 25 分)计算下列各题(要 求写出重要步骤) (1)设 xn (1 a )(1 a 2 ) (1 a 2 ) ,其中 a 1,求 lim xn .
相关文档
最新文档