第一节挡土墙土压力计算

合集下载

挡土墙土压力计算

挡土墙土压力计算

(3)Ea
r ( A0tg
cos(25031' 350 ) B0 ) sin(25031' 690 )
17 (22.8 tg25031'
5.6847)
cos(25031'350 ) sin(25031' 690 )
139.05KN
/
m
Ex Ea cos( ) 139 .05 cos(20 0 14 0 ) 115 .28KN / n Eg Ea sin( ) 77.76KN / m
a)ctg1
Htg ]2
* cos sin 1 cos( 1)
其中: AB (b L) (H a)ctg1 Htg
在ABC
中,由正弦定理:CD
BC
sin
1
AB
cos sin 1 cos( 1)
BC
sin(90
)
AB
sin(90
1)
BC
AB
sin(900 ) sin(900 1)
b
d ]H 0
1 2
(a
H
2h0
)(a
H )tg
1 2
ab
(b
d )h0
1 2
H
(H
2a
2h0
)tg
令: A0
1(a 2
H
2h0
)(a
H
)
B0
1 2
ab
(b
d )h0
1 2
H(H
2a
2h0 )tg
则: S A0tg B0
破裂棱体的重:G rs r( A0tg B0 )
Ea
r ( A0tg
S Somnp SpnB SQmp SOQA SABC Sklij

土力学土压力.

土力学土压力.
土力学中的水平应力是土压力计算的重要组成部分,特别是在静止土压力的计算中。静止土压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的侧压力,在墙体静止不动、土体处于弹性平衡状态时出现。水平应力作为土压力强度的一部分,其大小与土体的重度、深度以及静止土压力系数有关。静止土压力系数K0可通过公式K0=1-sinφ'计算,其中φ'为土的有效内摩擦角。在了解水平应力的基础上,可以进一步计算主动土压力和被动土压力,这两种土压力分别对应于墙体外移和内移的极限平衡状态。主动土压力是墙体向外移动时土压力逐渐减小至最小值,而被动土压力则是墙体内移时土压力逐渐增大至最大值。土压力的计算对于挡土墙的设计和施工至关重பைடு நூலகம்,它关系到墙体的稳定性和安全性。

砌体挡土墙计算实例

砌体挡土墙计算实例

砌体挡土墙计算实例在土木工程中,砌体挡土墙是一种常见的结构,用于支撑土体,防止其坍塌或滑移。

为了确保挡土墙的稳定性和安全性,需要进行精确的计算。

下面,我们将通过一个具体的实例来详细介绍砌体挡土墙的计算过程。

假设我们要设计一个高度为 5 米的砌体挡土墙,墙背填土为砂土,填土表面水平,墙后地下水位在墙底以下 1 米处。

挡土墙采用 MU30 毛石、M75 水泥砂浆砌筑,墙身重度为 22kN/m³。

一、土压力计算首先,我们需要计算作用在挡土墙上的土压力。

根据库仑土压力理论,主动土压力系数可以通过以下公式计算:Ka =tan²(45° φ/2)其中,φ 为填土的内摩擦角。

假设填土的内摩擦角为 30°,则主动土压力系数 Ka 为:Ka = tan²(45° 30°/2) = 033土压力的分布呈三角形,顶部为零,底部最大。

土压力强度可以通过以下公式计算:σa =γhKa其中,γ 为填土的重度,h 为计算点距离填土表面的高度。

假设填土重度为 18kN/m³,则墙顶处土压力强度为零,墙底处土压力强度为:σa = 18×5×033 = 297kN/m²土压力的合力可以通过三角形面积计算:Ea = 05×297×5 = 7425kN/m合力作用点距离墙底的高度为:h = 5/3 = 167m二、抗滑移稳定性验算为了保证挡土墙不会沿基底滑移,需要进行抗滑移稳定性验算。

抗滑移稳定系数 Ks 可以通过以下公式计算:Ks =(μ∑Gn + Ep) / Ea其中,μ 为基底摩擦系数,∑Gn 为垂直于基底的重力之和,Ep 为墙前被动土压力。

由于本例中不考虑墙前被动土压力,Ep 为零。

假设基底摩擦系数为 04,重力之和为:∑Gn = G + Ey其中,G 为挡土墙自重,Ey 为墙后土压力的水平分力。

挡土墙自重 G 可以通过墙身体积乘以重度计算:G = 05×5×22 = 55kN/m墙后土压力的水平分力 Ey 为:Ey =Ea×cos(δ)其中,δ 为墙背与填土之间的摩擦角,假设为 15°。

挡土墙主动土压力 DQ-1 计算结果

挡土墙主动土压力 DQ-1 计算结果

1挡土墙主动土压力计算: DQ-11.1基本资料1.1.1工程名称:工程一1.1.2挡土结构的高度 h =2.43m,主动土压力增大系数ψc= 1,挡土墙墙背的倾角α = 90°1.1.3地表均布荷载标准值 q = 5kN/m2,边坡对水平面的坡角β = 27°1.1.4填土的重度γ = 18kN/m3,土的粘聚力 c = 0kN/m2,墙背填土的内摩擦角φ = 30°,土对挡土墙墙背的摩擦角δ = 15°1.2挡土墙主动土压力系数κa挡土墙在土压力作用下,其主动压力系数应按基础规范式 L.0.1-1 计算:κa= {Sin(α+β) / [Sinα·Sin(α+β-φ-δ)]2}{κq·[Sin(α+β)·Sin(α-δ)+ Sin(φ+δ)·Sin(φ-β)] + 2η·Sinα·Cosφ·Cos(α+β-φ-δ)- 2·[(κq·Sin(α+β)·Sin(φ-β)+ η·Sinα·Cosφ)(κq·Sin(α-δ)·Sin(φ+δ) + η·Sinα·Cosφ)]0.5}1.2.1κq= 1 + [2q / (γ·h)]·[Sinα·Cosβ/Sin(α+β)]= 1+[2*5/(18*2.43)]*[Sin90°*Cos27°/Sin(90°+27°)] = 1.229 1.2.2η = 2c /(γ·h) = 2*0/(18*2.43) = 01.2.3令 A = Sin(α+β) / [Sinα·Sin(α+β-φ-δ)]2A = Sin(90°+27°)/[Sin90°*Sin(90°+27°-30°-15°)]2= 0.9851.2.4令 B =κq·[Sin(α+β)·Sin(α-δ) + Sin(φ+δ)·Sin(φ-β)]B = 1.229*[Sin(90°+27°)*Sin(90°-15°)+Sin(30°+15°)*Sin(30°-27°)] = 1.1031.2.5令 C = 2η·Sinα·Cosφ·Cos(α+β-φ-δ)C = 2*0*Sin90°*Cos30°*Cos(90°+27°-30°-15°) = 01.2.6令 D =κq·Sin(α+β)·Sin(φ-β) + η·Sinα·CosφD = 1.229*Sin(90°+27°)*Sin(30°-27°)+0*Sin90°*Cos30°= 0.0571.2.7令 E =κq·Sin(α-δ)·Sin(φ+δ) + η·Sinα·CosφE = 1.229*Sin(90°-15°)*Sin(30°+15°)+0*Sin90°*Cos30°= 0.8391.2.8κa= A·[B + C - 2·(D·E)0.5] = 0.985*[1.103+0-2*(0.057*0.839)0.5] =0.6541.3主动土压力合力标准值 E aE a=ψc·0.5·γ·h2·κa= 1*0.5*18*2.432*0.654 = 34.8kN___________________________________________________________________________ _____________【MorGain 结构快速设计程序 V2011.05.1995.1989】 Date:2012-04-19 10:54:37_____________________________________________________ _____________。

挡土墙计算

挡土墙计算

6.2 挡土墙土压力计算6.2.1 作用在挡土墙上的力系挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。

作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力.主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括:1.挡土墙自重G及位于墙上的衡载;2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载);3.基底的法向反力N及摩擦力T;4.墙前土体的被动土压力Ep .对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。

附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。

特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。

在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。

各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。

6.2.2 一般条件下库伦(coulomb)主动土压力计算土压力是挡土墙的主要设计荷载。

挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。

当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力. 采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。

路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。

对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全.主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。

土力学第八章挡土墙土压力

土力学第八章挡土墙土压力
土压力是作用于这类建筑物上的重要荷载,它是由 于土体自重、土上荷载或结构物的侧向挤压作用,挡土 结构物所承受的来自墙后填土的侧向压力。
挡土墙的种类 作用在挡土墙上的土压力
第一节 概述
一、挡土墙的几种类型
E
地下室
地下室侧墙
填土E 重力式挡土墙
桥面支撑土坡的 挡土墙 填土 EE
堤岸挡土墙
填土
E
拱桥桥台
pa z Ka
其中:Ka为朗肯主动土压力系数
Ka tg 2 (45 / 2)
总主动土压力
Ea

1 2
KaH 2
s1
z
pa=s3
45+/2
Ea Ka H 2 / 2
1 H
3
pa KaH
2)粘性土
主动土压力强度
pa z Ka 2c Ka
库仑和朗肯土压力的比较
1、朗肯土压力理论
1)依据:半空间的应力状态和土的极限平衡条件; 2)概念明确、计算简单、使用方便; 3)理论假设条件; 4)理论公式直接适用于粘性土和无粘性土; 5)由于忽略了墙背与填土之间的摩擦,主动土压力偏 大,被动土压力偏小。
2、库仑土压力理论:
1)依据:墙后土体极限平衡状态、楔体的静力平衡条件; 2)理论假设条件; 3)理论公式仅直接适用于无粘性土; 4)考虑了墙背与土之间的摩擦力,并可用于墙背倾斜,填 土面倾斜的情况。但库伦理论假设破裂面是一平面,与按 滑动面为曲面的计算结果有出入。
4、填土表面倾斜
滑裂面1
A
B
cr
Ea´
B
= 时

cr


45
2

挡土墙及土压力计算

挡土墙及土压力计算
K f ( , , , ) 当 长用 度Ep粘 Байду номын сангаас性变E土 量mi,回n故填无12时法,得在其H确B2C切K面解p上析各解力;合C成p参时与,合将成出后现,粘C、聚N力和之和f 三C者=之c.和BC设弧为长R,D由,于由B图C知弧:
RD 一定位于 R 的下方,即 RD 与 N 之间的夹角φD 一定大于 R 与 N 之间的夹角φ ,鉴于
挡土墙:为G防止12土体 坍H 塌2 而sin修(9建0第o的s六i挡n章(土:结挡)构土)s。inc墙土(o9及s压02 o土力压:墙力后计 )土算体对墙背的作用力称为土压力。
一、三种土压力——根据墙、土间可能的位移方向的不同,土压力可以分为三种类型:
1.主动土压力 Ea——在土压力作用下,挡土墙发生离开土体方向的位移,墙后填土达到极
2.被动土压力 压力系数,应用时,查表。
其中
库仑被动土
Ep 沿深度呈三角形分布,其作用点距墙底 H/3,位于墙背法线下方,与墙背法线成δ角。 库仑理论应用中的几个问题 1. 关于δ的取值: δ值与墙后填土的性质、填土含水量及墙背的粗糙程度变化于 0~φ之间,实用中常取δ =1/2~1/3φ。 2. 当墙后填土为粘性土时——为了得到确切的解析解,库仑理论假设墙后填土为无粘性土,
二、三种土压力在数量上的关系
墙、土间无位移,墙后填土处于弹性平衡状态,与天然状态相同,此时的土压力为静止土压
力;在此基础上,墙发生离开土体方向的位移,墙、土间的接触作用减弱,墙、土间的接触
压力减小,因此主动土压力在数值上将比静止土压力小;而被动土压力是在静止土压力的基
础上墙挤向土体,随着墙、土间挤压位移量的增加,这种挤压作用越来越强,挤压应力越来
此,实用中,可考虑将粘性土的φ值适当增大,用增大后的Δφ来近似考虑 c 值对土压力的

精品课件- 土压力计算与挡土墙设计

精品课件- 土压力计算与挡土墙设计
能滑动,二者之间的相互作用力即为主动土压力。所以,主动土压力的大小可由土 楔体的静力平衡条件来确定。
1. 作用在土楔体ABC上的力 • 假设滑动面AC与水平面夹角为α,取滑动土楔体ABC为脱离体,则作用在土楔体ABC上
的力有:
(1)土楔体自重 • 在三角形ABC中,利用正弦定理可得:
(2)滑动面 上B的C反力R
应力分别为:
• (因为已假设墙背是光滑的、直立的,所以在单元上不存在剪应力。) • 该应力状态仅由填土的自重产生,故此时土体处于弹性状态,其相应的莫尔园如下
图所示的园Ⅰ,一定处于填土抗剪强度曲线之下。
• 当挡土墙离开填土向前发生微小的转动或位移时, σ1 =σz =yz不变, σ3 =σx而却不断减 少,相应的莫尔园也在逐步扩大。当位移量达到一定值时, σ3减少到σ3f ,由σ3f与 σ1 =yz构成的应力园与抗剪强度曲线相切,如图Ⅱ所示,称为主动极限应力园。此时, 土中各点均处于极限平衡状态,达到最低什的小主应力σ3f称为朗肯主动土压力pa(即 pa = σ3f )。与此同时,土体中存在过墙踵的滑动面(剪切破坏面),滑动面与大主 应力作用平面(水平面)的夹角为450+φ/2。

q——填土面上的均布荷载,kPa。
四、墙后有地下水时
• 若墙后有地下水时,水下应取浮重度,同时应考虑静水压力,如下图所示。
• 五、墙背倾斜时 • 式中:W0——楔体ABB‘的自重。
§3 朗肯土压力理论
一、基本概念
1.假设 (1)墙背直立、光滑; (2)墙后填土面水平; (3)土体为均质各向
同性体。 2.主动朗肯状态 • 如上图所示,在墙后土体中深度Z处任取一单元体,当挡土墙静止不动时,则两个主

h=q/r

挡土墙设计主动土压力计算

挡土墙设计主动土压力计算

挡土墙库仑土压力理论)(θf E =挡土墙土压力计算时应用了库仑(Coulomb)土压力理论,通过对墙背后破坏棱体的受力分析,得到土压力的反力E是破裂角的函数,即,再求E的极值可以得到主动土压力和被动土压力。

库仑法的假定为:破裂面为平面且通过墙踵、填料为砂性土(c=0)、墙背存在摩擦、挡墙和破坏土体为刚体。

8、一般条件下库伦主动土压力计算挡土墙土压力考虑1、主动土压力与被动土压力的区分:假定挡土墙处于极限移动状态,土体有沿墙及假想破裂面移动的趋势,则土推墙即为主动土压力,墙推土即为被动土压力。

2、路基挡土墙的土压力考虑:路基挡土墙一般都有可能有向外的位移或倾覆,因此,在设计中按墙背土体达到主动极限平衡状态考虑,且取一定的安全系数以保证墙背土体的稳定。

墙趾前土体的被动土压力一般不计。

8、一般条件下库仑主动土压力计算1、破裂面交于内边坡;δφG E a θφ--90αδ--90θδφα+++G E a R R 1.破裂面交于内边坡αθABC δαφψψθφθψθφθ++=++=+--︒=式中:G G E a )sin()cos()sin()90sin(8、一般条件下库仑主动土压力计算2.破裂面交于路基面计算步骤⏹计算挡土墙土压力Ea,先要求出破裂角θ,也就是确定产生最大土压力的破裂面;⏹破裂面按哪一种边界条件出现,事先不知道,必须试算:1、先假定交于路基面的某个位置(一般是荷载中部);2、按此图示计算出最大土压力对应的θ,再与假定的θ比较,看是否相符;3、如不符,根据2计算的θ重新假定破裂面,重复2,3步骤,直到算出的θ与假定值相符(范围相符)⏹根据最终的θ,求最大主动土压力。

用土压应力分布图计算主动土压力土压应力分布图表示墙背在竖直投影面上的应力分布情况,按下述假定绘制:(1)墙顶以上的填土及均布荷载向墙背扩散压应力的方向平行于破裂面;(2)各点压应力的大小与其所承受的垂直压力成正比,即,K为土压力系数,其合力即是主动土压力;(3)其作用点由压应力图的重心定出,或计算压应力图的面积矩,除以总面积求得。

挡土墙上土压力的计算

挡土墙上土压力的计算

郎 肯 土 压
γz(σ3)
移,竖向应力保持不变, 水平应力逐渐增大,位移
增大到△p,墙后土体处
h
z

σp(σ1)于朗肯被动状态时,墙后

土体出现一组滑裂面,它
计 算
45o-ϕ/2
与小主应力面夹角45o-
ϕ/2,水平应力增大到最
大值
极限平衡条件
朗肯被动土压力强度
σ1
=
σ
3
tan2
⎜⎛ ⎝
45o+ϕ
2
⎟⎞+2c ⎠
哪种情况下墙后土体更密实,挡土墙上的土压力更大?
挡土结构与基坑工程
挡土墙上土压力的计算
1.主动土压力(Ea)
土 当墙在土压力作用下
压 力 的
向前移动或转动时, 达到一定位移量时,
类 墙后土体达到极限平
型 衡状态,此时的土压
力叫主动土压力
2.被动土压力(Ep) 3.静止土压力(Eo)
挡土墙在外力作用 下向后移动,压缩 填土达到极限平衡 状态,此时作用于
Kp
挡土结构与基坑工程
挡土墙上土压力的计算
滑动面
450 + ϕ / 2
σ3
σ1 = γ z
γz K0γ z
主动土压力
静止土压力
滑动面
450 −ϕ / 2
σ3
=
σ γ
1
z
被动土压力
挡土结构与基坑工程
挡土墙上土压力的计算

理论假设

土 压
1. 墙背倾斜,具有倾角α;

2. 墙后填土为砂土,表面倾角为角β;
H
2
Ea
H 3
γ HKa
1.无粘性土主动土压力强度与z成正比,沿墙高呈三角形分布

各个挡土墙详细计算和计算图形

各个挡土墙详细计算和计算图形

目录1。

重力式挡土墙 (2)1。

1土压力计算 (2)1.2挡土墙检算 (4)2。

2设计计算 (6)3。

扶壁式挡土墙 (9)3。

1土压力计算 (9)5。

2锚杆设计计算 (16)5。

3锚杆长度计算 (17)6.锚定板挡土墙 (17)6.1土压力计算 (17)6。

3抗拔力计算 (18)7.土钉墙 (18)7.1土压力计算 (18)7.2土钉长度计算和强度检算 (18)7.3土钉墙内部整体稳定性检算 (19)7.4土钉墙外部整体稳定性检算 (19)1。

重力式挡土墙 1.1土压力计算⑴第一破裂面ψϕδα=++()00tan tan tan cot tan B A θψψϕψ⎛⎫=-±++⎪⎝⎭土压力系数:()()()cos tan tan sin θϕλθαθψ+=-+土压力:()()()00cos tan sin a E A B θϕγθθψ+=-+()cos ax a E E δα=- ()sin ay a E E δα=-① 破裂面在荷载分布内侧()2012A A a H =+ ()012tan 22H B ab H a α=-+ a a σγλ= H H σγλ=1tan tan tan b a h θθα-=+ 21h H h =-()()32211223332x H a H h H h Z H a H h +-+=⎡⎤+-⎣⎦tan y x Z B Z α=-②破裂面在荷载分布范围中()()00122A a H h a H =+++ ()()000122tan 22HB ab b d h H a h α=++-++00h σγλ= a a σγλ= H H σγλ=1tan tan tan b a h θθα-=+ 2tan tan dh θα=+ 312h H h h =--()()322211032103333322x H a H h H h h h Z H aH ah h h +-++=+-+ tan y x Z B Z α=-③破裂面在荷载分布外侧()2012A a H =+ ()00012tan 22HB ab l h H a α=--+00h σγλ= a a σγλ= H H σγλ=1tan tan tan b a h θθα-=+ 2tan tan dh θα=+ 03tan tan l h θα=+ 4123h H h h h =---()()()322211033421033332322x H a H h H h h h h h Z H aH ah h h +-+++=+-+tan y x Z B Z α=-⑵第二破裂面 查有关的计算手册。

土力学 第七章土压力

土力学 第七章土压力
2
h
1 2 Ea h 2
1 Ea h 2 K a 2
土对挡土墙背的摩擦 角,根据墙背光滑, 排水情况查表确定
库仑主动土压 力系数,查表 确定
C A

主动土压力
1 Ea h 2 K a 2
Ea

h
•主动土压力与墙高的平方 成正比

•主动土压力强度
h
h/3
B
hKa
pa
dEa d 1 2 z K a zK a dz dz 2
作用在墙背的总压力:土压力+水压力,作用点在 合力分布图形的形心处
3.填土表面有均布荷载
q A
填土表面深度z处竖向应 力为(q+z)
z
z+q
h
相应主动土压力强度
pa (q z) K a 2c K a
当z=0: paA qKa 2c K a If paA<0 ,临界深度. (q z0 ) K a 2c K a 0 求出z0 paB (q h) K a 2c K a 当 z=h:
2.墙后填土存在地下水 作用在墙背上的土侧压力有 土压力和水压力两部分,可 A 分两层计算,一般假设地下 水位上下土层的抗剪强度指 B 标相同,地下水位以下土层 用浮重度计算
C
(h1+ h2)Ka
h2
h
h1
B点下
w h
2
z)K a2 pa ( 1h1 2 2c2 K a 2
外摩擦角δ
• 取决于墙背的粗糙成都、填土类别以及墙背的排水条件。 还与超载及填土面的倾角有关。表7-1
• 粘性土
• 对于填土为的性土或者填土面不是平面,而是任意折线 或者曲线时,前述库仑公式就不能使用,可以用图解法 来求解土压力。

土压力计算

土压力计算

第五章土压力计算本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法。

学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力。

第一节土压力的类型土体作用在挡土墙上的压力称为土压力。

一、土压力的分类作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种。

1.静止土压力挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力。

2.主动土压力挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动。

土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小。

当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小。

此时作用在墙背上的最小土压力称为主动土压力。

3.被动土压力挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大。

此时作用在墙背上的最大土压力称为被动土压力。

大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间。

二、影响土压力的因素1.挡土墙的位移挡土墙的位移(或转动)方向和位移量的大小,是影响土压力大小的最主要的因素,产生被动土压力的位移量大于产生主动土压力的位移量。

2.挡土墙的形状挡土墙剖面形状,包括墙背为竖直或是倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样。

3.填土的性质挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状(水平、上斜或下斜)等,都将影响土压力的大小。

土压力计算方法

土压力计算方法

第五章土压力计算本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法。

学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力。

第一节土压力的类型土体作用在挡土墙上的压力称为土压力。

一、土压力的分类作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种。

1.静止土压力挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力。

2.主动土压力挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动。

土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小。

当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小。

此时作用在墙背上的最小土压力称为主动土压力。

3.被动土压力挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大。

此时作用在墙背上的最大土压力称为被动土压力。

大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间。

二、影响土压力的因素1.挡土墙的位移挡土墙的位移(或转动)方向和位移量的大小,是影响土压力大小的最主要的因素,产生被动土压力的位移量大于产生主动土压力的位移量。

2.挡土墙的形状挡土墙剖面形状,包括墙背为竖直或是倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样。

3.填土的性质挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状(水平、上斜或下斜)等,都将影响土压力的大小。

挡土墙的土压力计算(朗肯_库仑)

挡土墙的土压力计算(朗肯_库仑)

处。
第六章
第18页/共43页
三、被动土压力的计算
同计算主动土压力一样用1、3作摩尔应力圆,如下图。 使挡土墙向右方移动,则右半部分土体有压缩的趋势,墙 面的法向应力h增大 。h、 v为大小主应力。当挡土墙的位 移使得h增大到使土体达到极限平衡状态时,则h达到最高限 值pp ,即为所求的朗肯被动土压力强度。
当墙背倾角α>45°-/2时,滑动土楔不再沿墙背滑动, 墙后土体中出现两个滑动面的挡土墙称为坦墙。
第六章
第23页/共43页
αcr=45°-/2
第六章 第24页/共43页
第六章
第25页/共43页
(四)填土成层和有地下水时的土压力计算
(a)

1 1
h1
(b)
(c)
1 h1 K a 1
第六章
第16页/共43页
对于无粘性土 主动土压力强度为: p a 3 ztg(45
2 O


2 1 2
) zK a
总的土压力为: Pa 作用点位置在墙高 1 3
第六章
1 2
2 H 2 tg(45 O

2

H 2 K a
H处。
第17页/共43页
对于粘性土:
主动土压力强度为: p a 3 ztg(45
第六章
挡土墙在土压力作用下,不向任何方向发生位移和转动 时,墙后土体处于弹性平衡状态,作用在墙背上的土压力 称为静止土压力。 当挡土墙沿墙趾向离开填土方向转动或平行移动,且位 移达到一定量时,墙后土体达到主动极限平衡状态,填土 中开始出现滑动面 ,这时在挡土墙上的土压力称为主动土 压力。 当挡土墙在外力作用下向墙背填土方向转动或平行移动 时,土压力逐渐增大,当位移达到一定量时,潜在滑动面 上的剪应力等于土的抗剪强度,墙后土体达到被动极限平 衡状态,填土内开始出现滑动面 ,这时作用在挡土墙上的 土压力增加至最大,称为被动土压力。

挡土墙主动土压力计算公式

挡土墙主动土压力计算公式

挡土墙主动土压力计算公式
1.土壤的重力是均匀分布的;
2.土壤的内摩擦角和墙与土壤的摩擦角没有明显差异;
3.挡土墙和土壤之间的界面摩擦是充分发展的。

根据这些假设,挡土墙主动土压力可以通过卡诺定理进行计算。

卡诺定理的基本原理是,土壤对挡土墙产生的压力可以分解为水平分量和垂直分量,其中水平分量对应于土壤壁面的水平压力,垂直分量对应于土壤壁面的垂直压力。

Pa=1/2*γ*H^2*Ka,
其中
Pa为挡土墙的主动土压力(单位为kN/m);
γ为土壤的干容重(单位为kN/m^3);
H为挡土墙的高度(单位为m);
Ka为活动土压力系数,其大小取决于土壤的内摩擦角和挡土墙的后坡角度。

活动土压力系数Ka的取值通常根据实际情况进行确定,可以通过查表或进行现场试验得到。

常见的Ka值范围在0.15到0.45之间,取决于土壤的类型和挡土墙的几何形状。

需要注意的是,挡土墙的主动土压力只是整个挡土墙稳定性计算中的一个因素,还需要考虑其他因素,如墙体的抗滑稳定性、抗倾覆稳定性和
抗底部推力等。

因此,在实际工程中,对挡土墙的设计和计算需要综合考虑各种因素的影响。

土力学计算

土力学计算

..’. 挡土墙的一般力学计算一、库伦主动土压力计算主动土压力计算公式:Eα=1/2γH2Ka式中:Eα——主动土压力(KN),γ——土的容重(KN/m3),H——挡土墙高(m) ,Ka——库伦主动土压力系数。

二、滑动稳定验算挡土墙沿基底的滑动稳定系数Kc应不小于1.3。

计算公式为:Kc= (W+Ey)f / Ex式中:W——挡土墙自重,衡重式时,包括衡重台上的土重(KN),Ex,Ey——主动土压力的水平和垂直分力(KN),f——基底摩擦系数。

设计中,为增加挡土墙的抗滑稳定性,常将基底做成向内倾斜,以增大滑动稳定系数。

基底斜坡坡度一般不超过1:5。

三、倾覆稳定验算挡土墙绕墙趾的倾覆稳定系数Ko应不小于1.5。

计算公式为:Ko=(WZw+EyZx)/(ExZy)式中:Zx——Ey对墙趾O点的力臂(m),Zy——Ex对墙趾O点的力臂(m),Zw——W对墙趾O点的力臂(m)。

四、基底应力及偏心验算基底的合力偏心距e。

计算公式为:e=B/2-Zn=B/2-(WZw+EyZx-ExZy)/(W+Ey)在土质地基上,e≤B/6;在软弱岩石地基上,e≤B/5;在不易风化的岩石地基上,e≤B/4。

当e≤B/6时,墙趾和墙踵处的法向压应力为:σ1,2=(W+Ey)(1±6e/B)/B≤[σ]式中,[σ] ——地基土修正后的容许承载力(KPa)[σ]= [σo]+K1γ1(B-2)式中,[σo] ——地基土的容许承载力(KPa),K1 ——地基土容许承载力随基础宽度的修正系数,γ1 ——地基土的天然容重(KN/m3)。

当e>B/6时,基底出现拉应力,考虑到一般情况下地基与基础间不能承受拉力,故不计拉力而按应力重分布计算基底最大拉应力:σ1=2(W+Ey)/ 3Zn≤[σ]若出现负偏心,则上式的Zn改为(B-Zn)。

五、墙身截面强度验算通常选取一、两个截面进行验算。

验算截面可选在基础底面、1/2墙高处或上下墙交界处等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.墙后填土延伸到无限远处,填土表面水平(β=0);
3.墙背垂直光滑(墙与垂向夹角ε=0,墙与土的摩擦角 δ=0)。
σ1 σ3 σ1
σ3
考察挡土墙后土体表面下深度z处的微小单元体的应力状 态变化过程:
(1)当用挡土墙代替半空间左侧的土体,且不发生位移时, 作用在微分土体上的应力为自重应力,此时,挡土墙土压 力即为静止土压力,大小等于水平向自重应力σh。 (2)当挡土墙在土压力的作用下向远离土体的方向位移时, 作用在微分土体上的竖向应力σv保持不变,而水平向应力σh 逐渐减小,直至达到土体处于极限平衡状态,此时水平向 应力(σ3)即为主动土压力强度pa 。 (3)当挡土墙在土压力的作用下向着土体方向位移时, 作用在微分土体上的竖向应力σv保持不变,而水平向应力σh 逐渐增大,由小主应力变为大主应力,直至达到土体处于 极限平衡状态,此时水平向应力(σ1)即为被动土压力强 度pp 。
解:(1)计算土压力系数 静止土压力系数:
主动土压力系数:
被动土压力系数:
(2)计算墙底处土压力强度
静止土压力:
主动土压力:
被动土压力:
(3)计算单位墙长度上的总土压力 总静止土压力:
总主动土压力:
总被动土压力:
三者比较可以看出Pa<P0<Pp。
例题6-2土压力强度分布图
作业4 1.有一高9m的挡土墙,墙背直立光滑、填土表面水平。 填土的物理力学性质指标为:c=15kPa,φ=20°,γ =19kN/m3,试用朗肯理论计算主动土压力及作用点位 置,并绘出主动土压力分布图。 2.有一重力式挡土墙高8m,墙背垂直光滑,墙后填土水 平。填土的物理力学性质指标为:c=18kPa,φ=16°, γ=20kN/m3,试求出作用于墙上的静止、主动及被动 土压力的大小和分布。
作用点位置在墙高的H/3处。
粘性土的土压力强度由二部分组成,一部分为由土的 自重引起的土压力γzKa ,随深度z呈三角形变化;另一部 分为粘聚力c引起的土压力 ,为一负值,不随深度变化。
(理论值) 叠加的结果如图6-5c所示。图中ade部分为负侧压力。 由于墙面光滑,土对墙面产生的拉力会使土脱离墙,出 现深度为z0的裂隙。
【例题6-1】有一高7m的挡土墙,墙背直立光滑、填土 表面水平。填土的物理力学性质指标为:c=12kPa,φ= 15°,γ=18kN/m3,试求主动土压力及作用点位置,并 绘出主动土压力分布图。 解:(1)总主动土压力为
(2)临界深度z0为
(3)主动土压力Pa作用点距墙底的距离为
(4)在墙底处的主动土压力强度为
(二)、墙体位移与土压力类型
墙体位移的方向和位移量决定着土压力的性质和大小。 太沙基为研究作用于墙背上的土压力,曾作过模型试验, 试验结果入如下图所示。 挡墙 从图中可以看出根据挡土墙 发生位移的大小和方向,土压 力可以分为以下三种: 一)静止土压力 挡土墙在土压力作用下不向 任何方向发生位移和转动时, 墙后土体没有破坏,处于弹性 平衡状态,此时作用在
水平向应力为原来土体内部应力,等于土对墙的应力, 即为静止土压力强度p0:
式中K0称为静止土压力系数,静止土压力强度p0 的单位为kPa。 K0 1 sin 静止土压力沿墙高呈三角形分布,作用于墙背面 单位长度上的总静止土压力(P0):
P0的作用点位于墙底面往上1/3H处,单位[kN/m]。
土压力类型
墙位移方向 不向任何方向发 生位移和转动 沿墙趾向离开填 土方向转动或平 行移动时
墙后土体状态
三种土压力大小 关系
静止土压力P0
弹性平衡状态
主动土压力Pa
主动极限平衡状 态
Pa<P0<Pp
被动土压力Pp
在外力作用下 (如拱桥的桥台) 被动极限平衡状 向墙背填土方向 态 转动或移动时
主动和被动土压力是特定条件下的土压力,仅当墙有足够大的位移或 转动时才能产生。另外,当墙和填土都相同时,产生被动土压力所需位 移比产生主动土压力所需位移要大得多。
第四章 土力学在岩土工程中的应用 第一节 挡土墙土压力计算
一、 概述
房屋建筑中的地下室外墙,重力式码头的岸壁,桥 梁接岸的桥台,以及地下硐室的侧墙等都支撑着侧向土 体。这些用来侧向支撑土体的结构物,统称为挡土墙。 而被支撑的土体作用于挡土墙上的侧向压力,称为土压 力。 (一)、挡土墙的工程应用 挡土墙是一种防止土体下滑的构筑物,在土木工程中 应用很广,图6-1为挡土墙在工程中的常用类型。
二、静止土压力计算 静止土压力强度(p0)可按半空间直线变形体在土 的自重作用下无侧向变形时的水平侧向应力σh来计算。
图6-3(a)表示半无限土体中深度为z处土单元的应力状 态,设想用一挡土墙代替单元体左侧的土体,挡土墙墙 背光滑,则墙后土体的应力状态并没有变化,仍处于侧 限应力状态。
竖向应力为自重应力:
(二)、主动土压力计算
根据土的极限平衡理论。当土内某点达到主动极限平 衡状态时,该点的主动土压力强度pa的表达式如下: 无粘性土: 粘性土: 式中:Ka为主动土压力系数,有:
对于无粘性土,主动土压力强度与深度z成正比,土压 力分布图呈三角形(图6-5b)。据此可以求出墙单位长 度总主动土压力为:
(5)主动土压力分布曲线如下图所示。
例题6-1图
(三)、被动土压力计算 计算被动土压力时可取σh为最大主应力 ,σv为最小 主应力 。根据极限平衡理论,当墙移向土体的位移达到 朗肯被动土压力状态时,在深度z处任意一点的被动土压 力强度pp的表达式为: 无粘性土: 粘性土:
式中:Kp为被动土压力系数,有:
1 Pa H 2 K a 2c K a H 2
因此,略去这部分土压力后,实际土压力分布为abc部分。
a点至填土表面的高度z0称为临界深度,可由pa=0求得,

ZKa 2c Ka 0
则总主动土压为:
作用点位置在墙底往上(H-z0)/3 处。 朗肯主动土压力的计算方法可参阅例题6-1。
三)被动土压力 当挡土墙在外力作用下(如拱桥的桥台)向墙背填土
方向转动或移动时,墙挤压填土,墙后土体有向上滑动 的趋势,土压力逐渐增大。 当位移达到一定值时,潜在滑动面上的剪应力等于土 的抗剪强度,墙后土体达到被动极限平衡状态,填土内 也开始出现滑动面。这时作用在挡土墙上的土压力增加 至最大,称为被动土压力,用Pp表示,对应于图中的C 点。 (三)、三种土压力的关系
(d)图是处在静止土压力状态下的土单元的应力摩尔 圆,可以看出,这种应力状态离破坏包线很远,属于弹 性平衡应力状态。
三、朗肯土压力理论 1857年英国学者朗肯(Rankine)从研究弹性半空 间体内的应力状态入手,根据土的极限平衡理论,得 出计算土压力的方法,称为朗肯土压力理论,又称极 限应力法。 (一)、基本原理 朗肯理论的基本假设: 1.墙本身是刚性的,不考虑墙身的变形;
由式(6-9)和(6-10)可知,无粘性土被动土压力分布 呈三角形(图6-6b),粘性土的土压力的分布为梯形 (图6-6c)。单位墙长度总被动土压力为:
无粘性土: 作用点位置在墙高的H/3处。 粘性土: 作用位置通过梯形面积重心。
朗】有一重力式挡土墙高5m,墙背垂直光滑,墙 后填土水平。填土的性质指标为:c=0,φ=40°,γ= 18kN/m3,试求出作用于墙上的静止、主动及被动土压力 的大小和分布。
填土
墙背上的土压力称为静止土压力,以P0表示,对应于图中 纵轴上的A点。 二)主动土压力
当挡土墙沿墙趾向离开填土方向转动或平行移动时, 墙后土压力逐渐减小。这是因为墙后土体有随墙的运动 而下滑的趋势,为阻止其下滑,土内沿潜在滑动面上的 剪应力增加,从而使墙背上的土压力减小。当位移达到 一定量时,滑动面上的剪应力等于土的抗剪强度,墙后 土体达到主动极限平衡状态,填土中开始出现滑动面, 这时作用在挡土墙上的土压力减至最小,称为主动土压 力,用Pa表示。对应于图中的B点。
相关文档
最新文档